1
|
Wescott DL, Hasler BP, Franzen PL, Taylor ML, Klevens AM, Gamlin P, Siegle GJ, Roecklein KA. Circadian photoentrainment varies by season and depressed state: associations between light sensitivity and sleep and circadian timing. Sleep 2024; 47:zsae066. [PMID: 38530635 PMCID: PMC11168757 DOI: 10.1093/sleep/zsae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/08/2024] [Indexed: 03/28/2024] Open
Abstract
STUDY OBJECTIVES Altered light sensitivity may be an underlying vulnerability for disrupted circadian photoentrainment. The photic information necessary for circadian photoentrainment is sent to the circadian clock from melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). The current study tested whether the responsivity of ipRGCs measured using the post-illumination pupil response (PIPR) was associated with circadian phase, sleep timing, and circadian alignment, and if these relationships varied by season or depression severity. METHODS Adult participants (N = 323, agem = 40.5, agesd = 13.5) with varying depression severity were recruited during the summer (n = 154) and winter (n = 169) months. Light sensitivity was measured using the PIPR. Circadian phase was assessed using Dim Light Melatonin Onset (DLMO) on Friday evenings. Midsleep was measured using actigraphy. Circadian alignment was calculated as the DLMO-midsleep phase angle. Multilevel regression models covaried for age, gender, and time since wake of PIPR assessment. RESULTS Greater light sensitivity was associated with later circadian phase in summer but not in winter (β = 0.23; p = 0.03). Greater light sensitivity was associated with shorter DLMO-midsleep phase angles (β = 0.20; p = 0.03) in minimal depression but not in moderate depression (SIGHSAD < 6.6; Johnson-Neyman region of significance). CONCLUSIONS Light sensitivity measured by the PIPR was associated with circadian phase during the summer but not in winter, suggesting ipRGC functioning in humans may affect circadian entrainment when external zeitgebers are robust. Light sensitivity was associated with circadian alignment only in participants with minimal depression, suggesting circadian photoentrainment, a possible driver of mood, may be decreased in depression year-round, similar to decreased photoentrainment in winter.
Collapse
Affiliation(s)
| | - Brant P Hasler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter L Franzen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Maddison L Taylor
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alison M Klevens
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Greg J Siegle
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
2
|
Vuković M, Nosek I, Boban J, Kozić D. Pineal gland volume loss in females with multiple sclerosis. Front Neuroanat 2024; 18:1386295. [PMID: 38813079 PMCID: PMC11133707 DOI: 10.3389/fnana.2024.1386295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Multiple sclerosis has a complex pathophysiology, and numerous risk factors can contribute to its development, like exposure to sunlight that is associated with serum levels of melatonin. The aim of this study was to determine whether the volume of the pineal gland, assessed by magnetic resonance imaging (MRI), correlated with the presence of multiple sclerosis. Methods This retrospective study included a total of 394 patients. Subjects were divided into two groups: the first group consisted of 188 patients with a definite diagnosis of multiple sclerosis (based on revised McDonald criteria) and the second group consisted of 206 healthy controls. To examine the influence of age on pineal gland volume, we stratified the whole sample into three age groups: first involved patients under 20 years, second patients between 20 and 40 years, and third group included patients over 40 years. The maximum length (L) and height (H) of the pineal gland were measured on the T1-weighted sagittal images, and the width (W) was measured on the T2-weighted coronal or axial images. The volume of the gland was calculated as an approximation to an ellipse, according to the formula V = (L × H × W)/2. Results Pineal gland volume of female multiple sclerosis (MS) patients (N = 129) was significantly lower than in healthy females (N = 123) (p = 0.013; p < 0.05), unlike in males where there is not such difference. Also, pineal gland volume is not age-dependent, and the observed smaller pineal gland in MS patients can reliably be attributed to the disease itself. Additionally, large pineal gland size, especially over 62.83 mm3 when compared to pineal gland volume below 31.85 mm3 is associated with more than double reduced risk of multiple sclerosis (OR 0.42; p = 0.003). Discussion Our results suggest that women with multiple sclerosis have smaller pineal glands that can theoretically be explained by a lack of input stimuli and the resultant decrease in gland volume. Additionally, the risk of multiple sclerosis is reduced in larger pineal gland volumes.
Collapse
Affiliation(s)
- Miloš Vuković
- Department of Radiology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Department for Radiology Diagnostics, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Igor Nosek
- Department of Radiology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Department for Radiology Diagnostics, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Jasmina Boban
- Department of Radiology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Department for Radiology Diagnostics, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Duško Kozić
- Department of Radiology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Department for Radiology Diagnostics, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| |
Collapse
|
3
|
Song YM, Jeong J, de Los Reyes AA, Lim D, Cho CH, Yeom JW, Lee T, Lee JB, Lee HJ, Kim JK. Causal dynamics of sleep, circadian rhythm, and mood symptoms in patients with major depression and bipolar disorder: insights from longitudinal wearable device data. EBioMedicine 2024; 103:105094. [PMID: 38579366 PMCID: PMC11002811 DOI: 10.1016/j.ebiom.2024.105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Sleep and circadian rhythm disruptions are common in patients with mood disorders. The intricate relationship between these disruptions and mood has been investigated, but their causal dynamics remain unknown. METHODS We analysed data from 139 patients (76 female, mean age = 23.5 ± 3.64 years) with mood disorders who participated in a prospective observational study in South Korea. The patients wore wearable devices to monitor sleep and engaged in smartphone-delivered ecological momentary assessment of mood symptoms. Using a mathematical model, we estimated their daily circadian phase based on sleep data. Subsequently, we obtained daily time series for sleep/circadian phase estimates and mood symptoms spanning >40,000 days. We analysed the causal relationship between the time series using transfer entropy, a non-linear causal inference method. FINDINGS The transfer entropy analysis suggested causality from circadian phase disturbance to mood symptoms in both patients with MDD (n = 45) and BD type I (n = 35), as 66.7% and 85.7% of the patients with a large dataset (>600 days) showed causality, but not in patients with BD type II (n = 59). Surprisingly, no causal relationship was suggested between sleep phase disturbances and mood symptoms. INTERPRETATION Our findings suggest that in patients with mood disorders, circadian phase disturbances directly precede mood symptoms. This underscores the potential of targeting circadian rhythms in digital medicine, such as sleep or light exposure interventions, to restore circadian phase and thereby manage mood disorders effectively. FUNDING Institute for Basic Science, the Human Frontiers Science Program Organization, the National Research Foundation of Korea, and the Ministry of Health & Welfare of South Korea.
Collapse
Affiliation(s)
- Yun Min Song
- Department of Mathematical Sciences, KAIST, Daejeon, 34141, Republic of Korea; Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Jaegwon Jeong
- Department of Psychiatry, Korea University College of Medicine, Seoul, 02841, Republic of Korea; Chronobiology Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Aurelio A de Los Reyes
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea; Institute of Mathematics, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Dongju Lim
- Department of Mathematical Sciences, KAIST, Daejeon, 34141, Republic of Korea; Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, 02841, Republic of Korea; Chronobiology Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Won Yeom
- Department of Psychiatry, Korea University College of Medicine, Seoul, 02841, Republic of Korea; Chronobiology Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Taek Lee
- Division of Computer Science and Engineering, Sun Moon University, Asan, 31460, Republic of Korea
| | - Jung-Been Lee
- Division of Computer Science and Engineering, Sun Moon University, Asan, 31460, Republic of Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, 02841, Republic of Korea; Chronobiology Institute, Korea University, Seoul, 02841, Republic of Korea.
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, KAIST, Daejeon, 34141, Republic of Korea; Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
4
|
Madsen HØ, Hageman I, Martiny K, Faurholt-Jepsen M, Kolko M, Henriksen TEG, Kessing LV. BLUES - stabilizing mood and sleep with blue blocking eyewear in bipolar disorder - a randomized controlled trial study protocol. Ann Med 2023; 55:2292250. [PMID: 38109922 PMCID: PMC10732202 DOI: 10.1080/07853890.2023.2292250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/26/2023] [Indexed: 12/20/2023] Open
Abstract
INTRODUCTION Chronotherapeutic interventions for bipolar depression and mania are promising interventions associated with rapid response and benign side effect profiles. Filtering of biologically active short wavelength (blue) light by orange tinted eyewear has been shown to induce antimanic and sleep promoting effects in inpatient mania. We here describe a study protocol assessing acute and long-term stabilizing effects of blue blocking (BB) glasses in outpatient treatment of bipolar disorder. PATIENTS AND METHODS A total of 150 outpatients with bipolar disorder and current symptoms of (hypo)-mania will be randomized 1:1 to wear glasses with either high (99%) (intervention group) or low (15%) (control group) filtration of short wavelength light (<500 nm). Following a baseline assessment including ratings of manic and depressive symptoms, sleep questionnaires, pupillometric evaluation and 48-h actigraphy, participants will wear the glasses from 6 PM to 8 AM for 7 consecutive days. The primary outcome is the between group difference in change in Young Mania Rating Scale scores after 7 days of intervention (day 9). Following the initial treatment period, the long-term stabilizing effects on mood and sleep will be explored in a 3-month treatment paradigm, where the period of BB treatment is tailored to the current symptomatology using a 14-h antimanic schedule during (hypo-) manic episodes (BB glasses or dark bedroom from 6 PM to 8 AM) and a 2-h maintenance schedule (BB glasses on two hours prior to bedtime/dark bedroom) during euthymic and depressive states.The assessments will be repeated at follow-up visits after 1 and 3 months. Throughout the 3-month study period, participants will perform continuous daily self-monitoring of mood, sleep and activity in a smartphone-based app. Secondary outcomes include between-group differences in actigraphic sleep parameters on day 9 and in day-to-day instability in mood, sleep and activity, general functioning and objective sleep markers (actigraphy) at weeks 5 and 15. TRIAL REGISTRATION The trial will be registered at www.clinicaltrials.gov prior to initiation and has not yet received a trial reference. ADMINISTRATIVE INFORMATION The current paper is based on protocol version 1.0_31.07.23. Trial sponsor: Lars Vedel Kessing.
Collapse
Affiliation(s)
- Helle Østergaard Madsen
- Copenhagen Affective Disorder Research Centre (CADIC), Mental Health Centre Copenhagen, Copenhagen, Denmark
| | - Ida Hageman
- Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Klaus Martiny
- Copenhagen Affective Disorder Research Centre (CADIC), Mental Health Centre Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Faurholt-Jepsen
- Copenhagen Affective Disorder Research Centre (CADIC), Mental Health Centre Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Miriam Kolko
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tone E. G. Henriksen
- Department of Research and Innovation, Division of Mental Health Care, Valen Hospital, Fonna Health Authority, Kvinnherad, Norway
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Mental Health Centre Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Kosanovic Rajacic B, Sagud M, Pivac N, Begic D. Illuminating the way: the role of bright light therapy in the treatment of depression. Expert Rev Neurother 2023; 23:1157-1171. [PMID: 37882458 DOI: 10.1080/14737175.2023.2273396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Despite the growing number of different therapeutic options, treatment of depression is still a challenge. A broader perspective reveals the benefits of bright light therapy (BLT). It stimulates intrinsically photosensitive retinal ganglion cells, which induces a complex cascade of events, including alterations in melatonergic, neurotrophic, GABAergic, glutamatergic, noradrenergic, serotonergic systems, and HPA axis, suggesting that BLT effects expand beyond the circadian pacemaker. AREAS COVERED In this review, the authors present and discuss recent data of BLT in major depressive disorder, non-seasonal depression, bipolar depression or depressive phase of bipolar disorder, and seasonal affective disorder, as well as in treatment-resistant depression (TRD). The authors further highlight BLT effects in various depressive disorders compared to placebo and report data from several studies suggesting a response to BLT in TRD. Also, the authors report data showing that BLT can be used both as a monotherapy or in combination with other pharmacological treatments. EXPERT OPINION BLT is an easy-to-use and low-budget therapy with good tolerability. Future studies should focus on clinical and biological predictors of response to BLT, on defining specific populations which may benefit from BLT and establishing treatment protocols regarding timing, frequency, and duration of BLT.
Collapse
Affiliation(s)
- Biljana Kosanovic Rajacic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marina Sagud
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine University of Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, Croatian Zagorje Polytechnic Krapina, Krapina, Croatia
| | - Drazen Begic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine University of Zagreb, Zagreb, Croatia
| |
Collapse
|
6
|
Burns AC, Phillips AJK, Rutter MK, Saxena R, Cain SW, Lane JM. Genome-wide gene by environment study of time spent in daylight and chronotype identifies emerging genetic architecture underlying light sensitivity. Sleep 2023; 46:zsac287. [PMID: 36519390 PMCID: PMC9995784 DOI: 10.1093/sleep/zsac287] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/14/2022] [Indexed: 12/23/2022] Open
Abstract
STUDY OBJECTIVES Light is the primary stimulus for synchronizing the circadian clock in humans. There are very large interindividual differences in the sensitivity of the circadian clock to light. Little is currently known about the genetic basis for these interindividual differences. METHODS We performed a genome-wide gene-by-environment interaction study (GWIS) in 280 897 individuals from the UK Biobank cohort to identify genetic variants that moderate the effect of daytime light exposure on chronotype (individual time of day preference), acting as "light sensitivity" variants for the impact of daylight on the circadian system. RESULTS We identified a genome-wide significant SNP mapped to the ARL14EP gene (rs3847634; p < 5 × 10-8), where additional minor alleles were found to enhance the morningness effect of daytime light exposure (βGxE = -.03, SE = 0.005) and were associated with increased gene ARL14EP expression in brain and retinal tissues. Gene-property analysis showed light sensitivity loci were enriched for genes in the G protein-coupled glutamate receptor signaling pathway and genes expressed in Per2+ hypothalamic neurons. Linkage disequilibrium score regression identified Bonferroni significant genetic correlations of greater light sensitivity GWIS with later chronotype and shorter sleep duration. Greater light sensitivity was nominally genetically correlated with insomnia symptoms and risk for post-traumatic stress disorder (PTSD). CONCLUSIONS This study is the first to assess light as an important exposure in the genomics of chronotype and is a critical first step in uncovering the genetic architecture of human circadian light sensitivity and its links to sleep and mental health.
Collapse
Affiliation(s)
- Angus C Burns
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Broad Institute, Cambridge, MA, USA
| | - Andrew J K Phillips
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Martin K Rutter
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Broad Institute, Cambridge, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Sean W Cain
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jacqueline M Lane
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Broad Institute, Cambridge, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Wüthrich F, Nabb CB, Mittal VA, Shankman SA, Walther S. Actigraphically measured psychomotor slowing in depression: systematic review and meta-analysis. Psychol Med 2022; 52:1208-1221. [PMID: 35550677 PMCID: PMC9875557 DOI: 10.1017/s0033291722000903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Psychomotor slowing is a key feature of depressive disorders. Despite its great clinical importance, the pathophysiology and prevalence across different diagnoses and mood states are still poorly understood. Actigraphy allows unbiased, objective, and naturalistic assessment of physical activity as a marker of psychomotor slowing. Yet, the true effect-sizes remain unclear as recent, large systematic reviews are missing. We conducted a novel meta-analysis on actigraphically measured slowing in depression with strict inclusion and exclusion criteria for diagnosis ascertainment and sample duplications. Medline/PubMed and Web-of-Science were searched with terms combining mood-keywords and actigraphy-keywords until September 2021. Original research measuring actigraphy for ⩾24 h in at least two groups of depressed, remitted, or healthy participants and applying operationalized diagnosis was included. Studies in somatically ill patients, N < 10 participants/group, and studies using consumer-devices were excluded. Activity-levels between groups were compared using random-effects models with standardized-mean-differences and several moderators were examined. In total, 34 studies (n = 1804 patients) were included. Patients had lower activity than controls [standardized mean difference (s.m.d.) = -0.78, 95% confidence interval (CI) -0.99 to -0.57]. Compared to controls, patients with unipolar and bipolar disorder had lower activity than controls whether in depressed (unipolar: s.m.d. = -0.82, 95% CI -1.07 to -0.56; bipolar: s.m.d. = -0.94, 95% CI -1.41 to -0.46), or remitted/euthymic mood (unipolar: s.m.d. = -0.28, 95% CI -0.56 to 0.0; bipolar: s.m.d. = -0.92, 95% CI -1.36 to -0.47). None of the examined moderators had any significant effect. To date, this is the largest meta-analysis on actigraphically measured slowing in mood disorders. They are associated with lower activity, even in the remitted/euthymic mood-state. Studying objective motor behavior via actigraphy holds promise for informing screening and staging of affective disorders.
Collapse
Affiliation(s)
- Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Carver B Nabb
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Vijay A Mittal
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston/Chicago, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
| | - Stewart A Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
McCarthy MJ, Gottlieb JF, Gonzalez R, McClung CA, Alloy LB, Cain S, Dulcis D, Etain B, Frey BN, Garbazza C, Ketchesin KD, Landgraf D, Lee H, Marie‐Claire C, Nusslock R, Porcu A, Porter R, Ritter P, Scott J, Smith D, Swartz HA, Murray G. Neurobiological and behavioral mechanisms of circadian rhythm disruption in bipolar disorder: A critical multi-disciplinary literature review and agenda for future research from the ISBD task force on chronobiology. Bipolar Disord 2022; 24:232-263. [PMID: 34850507 PMCID: PMC9149148 DOI: 10.1111/bdi.13165] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM Symptoms of bipolar disorder (BD) include changes in mood, activity, energy, sleep, and appetite. Since many of these processes are regulated by circadian function, circadian rhythm disturbance has been examined as a biological feature underlying BD. The International Society for Bipolar Disorders Chronobiology Task Force (CTF) was commissioned to review evidence for neurobiological and behavioral mechanisms pertinent to BD. METHOD Drawing upon expertise in animal models, biomarkers, physiology, and behavior, CTF analyzed the relevant cross-disciplinary literature to precisely frame the discussion around circadian rhythm disruption in BD, highlight key findings, and for the first time integrate findings across levels of analysis to develop an internally consistent, coherent theoretical framework. RESULTS Evidence from multiple sources implicates the circadian system in mood regulation, with corresponding associations with BD diagnoses and mood-related traits reported across genetic, cellular, physiological, and behavioral domains. However, circadian disruption does not appear to be specific to BD and is present across a variety of high-risk, prodromal, and syndromic psychiatric disorders. Substantial variability and ambiguity among the definitions, concepts and assumptions underlying the research have limited replication and the emergence of consensus findings. CONCLUSIONS Future research in circadian rhythms and its role in BD is warranted. Well-powered studies that carefully define associations between BD-related and chronobiologically-related constructs, and integrate across levels of analysis will be most illuminating.
Collapse
Affiliation(s)
- Michael J. McCarthy
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
- VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - John F. Gottlieb
- Department of PsychiatryFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Robert Gonzalez
- Department of Psychiatry and Behavioral HealthPennsylvania State UniversityHersheyPennsylvaniaUSA
| | - Colleen A. McClung
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lauren B. Alloy
- Department of PsychologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sean Cain
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
| | - Davide Dulcis
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
| | - Bruno Etain
- Université de ParisINSERM UMR‐S 1144ParisFrance
| | - Benicio N. Frey
- Department Psychiatry and Behavioral NeuroscienceMcMaster UniversityHamiltonOntarioCanada
| | - Corrado Garbazza
- Centre for ChronobiologyPsychiatric Hospital of the University of Basel and Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
| | - Kyle D. Ketchesin
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dominic Landgraf
- Circadian Biology GroupDepartment of Molecular NeurobiologyClinic of Psychiatry and PsychotherapyUniversity HospitalLudwig Maximilian UniversityMunichGermany
| | - Heon‐Jeong Lee
- Department of Psychiatry and Chronobiology InstituteKorea UniversitySeoulSouth Korea
| | | | - Robin Nusslock
- Department of Psychology and Institute for Policy ResearchNorthwestern UniversityChicagoIllinoisUSA
| | - Alessandra Porcu
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
| | | | - Philipp Ritter
- Clinic for Psychiatry and PsychotherapyCarl Gustav Carus University Hospital and Technical University of DresdenDresdenGermany
| | - Jan Scott
- Institute of NeuroscienceNewcastle UniversityNewcastleUK
| | - Daniel Smith
- Division of PsychiatryUniversity of EdinburghEdinburghUK
| | - Holly A. Swartz
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Greg Murray
- Centre for Mental HealthSwinburne University of TechnologyMelbourneVictoriaAustralia
| |
Collapse
|
9
|
Spitschan M, Santhi N. Individual differences and diversity in human physiological responses to light. EBioMedicine 2022; 75:103640. [PMID: 35027334 PMCID: PMC8808156 DOI: 10.1016/j.ebiom.2021.103640] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/18/2021] [Accepted: 10/06/2021] [Indexed: 02/01/2023] Open
Abstract
Exposure to light affects our physiology and behaviour through a pathway connecting the retina to the circadian pacemaker in the hypothalamus - the suprachiasmatic nucleus (SCN). Recent research has identified significant individual differences in the non-visual effects of light,mediated by this pathway. Here, we discuss the fundamentals and individual differences in the non-visual effects of light. We propose a set of actions to improve our evidence database to be more diverse: understanding systematic bias in the evidence base, dedicated efforts to recruit more diverse participants, routine deposition and sharing of data, and development of data standards and reporting guidelines.
Collapse
Affiliation(s)
- Manuel Spitschan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany; Department of Experimental Psychology, University of Oxford, United Kingdom.
| | - Nayantara Santhi
- Department of Psychology, Northumbria University, United Kingdom.
| |
Collapse
|
10
|
Burns AC, Saxena R, Vetter C, Phillips AJK, Lane JM, Cain SW. Time spent in outdoor light is associated with mood, sleep, and circadian rhythm-related outcomes: A cross-sectional and longitudinal study in over 400,000 UK Biobank participants. J Affect Disord 2021; 295:347-352. [PMID: 34488088 PMCID: PMC8892387 DOI: 10.1016/j.jad.2021.08.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/29/2021] [Accepted: 08/21/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Light has powerful effects on mood, sleep, and the circadian system. Humans evolved in an environment with a clear distinction between day and night, but our modern environments have blurred this distinction. Negative effects of light exposure at night have been well characterized. The importance of daytime light exposure has been less well characterized. Here we examine the cross-sectional and longitudinal associations of time spent in daytime outdoor light with mood, sleep, and circadian-related outcomes. METHODS Participants were drawn from the UK Biobank cohort, a large study of UK adults (n = 502,000; 37-73 years old; 54% women). RESULTS UK Biobank participants reported spending a median of 2.5 daylight hours (IQR = 1.5-3.5 h) outdoors per day. Each additional hour spent outdoors during the day was associated with lower odds of lifetime major depressive disorder (95% CI OR:0.92-0.98), antidepressant usage (OR:0.92-0.98), less frequent anhedonia (OR:0.93-0.96) and low mood (OR:0.87-0.90), greater happiness (OR:1.41-1.48) and lower neuroticism (incident rate ratio, IRR:0.95-0.96), independent of demographic, lifestyle, and employment covariates. In addition, each hour of daytime light was associated with greater ease of getting up (OR:1.46-1.49), less frequent tiredness (OR:0.80-0.82), fewer insomnia symptoms (OR:0.94-0.97), and earlier chronotype (adjusted odds ratio; OR:0.75-0.77). Auto-Regressive Cross-Lagged (ARCL) models were used to examine the longitudinal association of time spent in outdoor light at baseline with later mood-, sleep- and circadian-related outcomes reported at time point 2. Overall, longitudinal associations support cross-sectional findings, though generally with smaller effect sizes. LIMITATIONS Future studies that examine the intensity of daytime light exposure at the ocular level are needed. CONCLUSIONS Our findings suggest that low daytime light exposure is an important environmental risk factor for mood, sleep, and circadian-related outcomes.
Collapse
Affiliation(s)
- Angus C Burns
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Richa Saxena
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA USA; Medical and Population Genetics, Broad Institute, Cambridge, MA USA; The Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA USA
| | - Céline Vetter
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Andrew J K Phillips
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Jacqueline M Lane
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA USA; Medical and Population Genetics, Broad Institute, Cambridge, MA USA; The Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA USA
| | - Sean W Cain
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Long-term variable photoperiod exposure impairs the mPFC and induces anxiety and depression-like behavior in male wistar rats. Exp Neurol 2021; 347:113908. [PMID: 34710402 DOI: 10.1016/j.expneurol.2021.113908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/07/2021] [Accepted: 10/23/2021] [Indexed: 01/15/2023]
Abstract
Long-term shift work can cause circadian misalignment, which has been linked to anxiety and depression. However, the associated pathophysiologic changes have not been described in detail, and the mechanism underlying this association is not fully understood. To address these points, we used a rat model of CM induced by long-term variable photoperiod exposure [L-VP] (ie, for 90 days). We compared the numbers of neurons, astrocytes, and dendritic spines; dendrite morphology; long-term potentiation (LTP), long-term depression (LTD) and paired-pulse ratio (PPR); expression of glutamate receptor [N-methyl-d-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)] subunits and brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC); and the anxiety and depression behaviors between rats in the circadian misalignment (CM) and circadian alignment (CA, with normal circadian rhythm) groups. The results showed that L-VP reduced the number of neurons and astrocytes in the mPFC and decreased the number of dendritic spines, dendrite complexity, LTP, LTD, PPR, and expression of glutamate receptors (GluR1, GluR2, GluR3, NMDAR2A, and NMDAR2B) and BDNF in the mPFC. L-VP also induced anxiety and depression-like behaviors, as measured by the open field test, elevated plus-maze, sucrose preference test, and forced swim test. These results suggest that CM induces a loss of neurons and astrocytes and synaptic damage in surviving pyramidal cells in the mPFC might be involved in the pathophysiology of anxiety and depression.
Collapse
|
12
|
Circadian Rhythm Dysregulation and Restoration: The Role of Melatonin. Nutrients 2021; 13:nu13103480. [PMID: 34684482 PMCID: PMC8538349 DOI: 10.3390/nu13103480] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Sleep is an essential component of overall human health but is so tightly regulated that when disrupted can cause or worsen certain ailments. An important part of this process is the presence of the well-known hormone, melatonin. This compound assists in the governing of sleep and circadian rhythms. Previous studies have postulated that dysregulation of melatonin rhythms is the driving force behind sleep and circadian disorders. A computer-aided search spanning the years of 2015–2020 using the search terms melatonin, circadian rhythm, disorder yielded 52 full text articles that were analyzed. We explored the mechanisms behind melatonin dysregulation and how it affects various disorders. Additionally, we examined associated therapeutic treatments including bright light therapy (BLT) and exogenous forms of melatonin. We found that over the past 5 years, melatonin has not been widely investigated in clinical studies thus there remains large gaps in its potential utilization as a therapy.
Collapse
|
13
|
Roecklein KA, Franzen PL, Wescott DL, Hasler BP, Miller MA, Donofry SD, DuPont CM, Gratzmiller SM, Drexler SP, Wood-Vasey WM, Gamlin PD. Melanopsin-driven pupil response in summer and winter in unipolar seasonal affective disorder. J Affect Disord 2021; 291:93-101. [PMID: 34029883 PMCID: PMC8693789 DOI: 10.1016/j.jad.2021.04.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/19/2021] [Accepted: 04/25/2021] [Indexed: 11/30/2022]
Abstract
A retinal subsensitivity to environmental light may trigger Seasonal Affective Disorder (SAD) under low wintertime light conditions. The main aim of this study was to assess the responses of melanopsin-containing retinal ganglion cells in participants (N= 65) diagnosed with unipolar SAD compared to controls with no history of depression. Participants attended a summer visit, a winter visit, or both. Retinal responses to light were measured using the post-illumination pupil response (PIPR) to assess melanopsin-driven responses in the non-visual light input pathway. Linear mixed-effects modeling was used to test a group*season interaction on the Net PIPR (red minus blue light response, percent baseline). We observed a significant group*season interaction such that the PIPR decreased from summer to winter significantly in the SAD group while not in the control group. The SAD group PIPR was significantly lower in winter compared to controls but did not differ between groups in summer. Only 60% of the participants underwent an eye health exam, although all participants reported no history of retinal pathology, and eye exam status was neither associated with outcome nor different between groups. This seasonal variation in melanopsin driven non-visual responses to light may be a risk factor for SAD, and further highlights individual differences in responses to light for direct or indirect effects of light on mood.
Collapse
Affiliation(s)
- Kathryn A. Roecklein
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,The Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, USA.,Corresponding Author:Kathryn A. Roecklein, Ph.D. Associate Professor Department of Psychology, University of Pittsburgh 210 S. Bouquet Street Pittsburgh, PA 15206 (412) 624-4553
| | - Peter L. Franzen
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Delainey L. Wescott
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brant P. Hasler
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Megan A. Miller
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shannon D. Donofry
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Caitlin M. DuPont
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah M. Gratzmiller
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Scott P. Drexler
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - W. Michael Wood-Vasey
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul D. Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Connolly LJ, Rajaratnam SMW, Spitz G, Lockley SW, Ponsford JL. Factors Associated With Response to Pilot Home-Based Light Therapy for Fatigue Following Traumatic Brain Injury and Stroke. Front Neurol 2021; 12:651392. [PMID: 34335435 PMCID: PMC8319544 DOI: 10.3389/fneur.2021.651392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Fatigue and sleep disturbance are common and debilitating problems after brain injury. Light therapy shows promise as a potential treatment. We conducted a trial of in-home light therapy to alleviate fatigue and sleep disturbance. The aim of the current study was to identify factors moderating treatment response. Methods: Participants were 24 individuals with traumatic brain injury (TBI) (n = 19) or stroke (n = 5) reporting clinically significant fatigue. Outcomes included fatigue on Brief Fatigue Inventory (primary outcome), sleep disturbance on Pittsburgh Sleep Quality Index, reaction time (RT) on Psychomotor Vigilance Task and time spent in productive activity. Interactions of demographic and clinical variables with these outcomes were examined in linear mixed-model analyses. Results: Whilst there were no variables found to be significantly associated with change in our primary outcome of fatigue, some variables revealed medium or large effect sizes, including chronotype, eye color, injury severity as measured by PTA, and baseline depressive symptoms. Chronotype significantly moderated sleep quality, with evening chronotype being associated with greater improvement during treatment. Injury type significantly predicted mean RT, with stroke participants exhibiting greater post-treatment reduction than TBI. Age significantly predicted productive activity during Treatment, with younger participants showing stronger Treatment effect. Conclusion: Light therapy may have a greater impact on sleep in younger individuals and those with an evening chronotype. Older individuals may need higher treatment dose to achieve benefit. Clinical Trial Registration:www.anzctr.org.au, identifier: ACTRN12617000866303.
Collapse
Affiliation(s)
- Laura J Connolly
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, VIC, Australia.,School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Shantha M W Rajaratnam
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Gershon Spitz
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, VIC, Australia.,School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Steven W Lockley
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Jennie L Ponsford
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, VIC, Australia.,School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Afraid of the dark: Light acutely suppresses activity in the human amygdala. PLoS One 2021; 16:e0252350. [PMID: 34133439 PMCID: PMC8208532 DOI: 10.1371/journal.pone.0252350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/12/2021] [Indexed: 12/04/2022] Open
Abstract
Light improves mood. The amygdala plays a critical role in regulating emotion, including fear-related responses. In rodents the amygdala receives direct light input from the retina, and light may play a role in fear-related learning. A direct effect of light on the amygdala represents a plausible mechanism of action for light’s mood-elevating effects in humans. However, the effect of light on activity in the amygdala in humans is not well understood. We examined the effect of passive dim-to-moderate white light exposure on activation of the amygdala in healthy young adults using the BOLD fMRI response (3T Siemens scanner; n = 23). Participants were exposed to alternating 30s blocks of light (10 lux or 100 lux) and dark (<1 lux), with each light intensity being presented separately. Light, compared with dark, suppressed activity in the amygdala. Moderate light exposure resulted in greater suppression of amygdala activity than dim light. Furthermore, functional connectivity between the amygdala and ventro-medial prefrontal cortex was enhanced during light relative to dark. These effects may contribute to light’s mood-elevating effects, via a reduction in negative, fear-related affect and enhanced processing of negative emotion.
Collapse
|
16
|
Vethe D, Scott J, Engstrøm M, Salvesen Ø, Sand T, Olsen A, Morken G, Heglum HS, Kjørstad K, Faaland PM, Vestergaard CL, Langsrud K, Kallestad H. The evening light environment in hospitals can be designed to produce less disruptive effects on the circadian system and improve sleep. Sleep 2021; 44:5909282. [PMID: 32954412 PMCID: PMC7953207 DOI: 10.1093/sleep/zsaa194] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Indexed: 01/12/2023] Open
Abstract
STUDY OBJECTIVES Blue-depleted lighting reduces the disruptive effects of evening artificial light on the circadian system in laboratory experiments, but this has not yet been shown in naturalistic settings. The aim of the current study was to test the effects of residing in an evening blue-depleted light environment on melatonin levels, sleep, neurocognitive arousal, sleepiness, and potential side effects. METHODS The study was undertaken in a new psychiatric hospital unit where dynamic light sources were installed. All light sources in all rooms were blue-depleted in one half of the unit between 06:30 pm and 07:00 am (melanopic lux range: 7-21, melanopic equivalent daylight illuminance [M-EDI] range: 6-19, photopic lux range: 55-124), whereas the other had standard lighting (melanopic lux range: 30-70, M-EDI range: 27-63, photopic lux range: 64-136), but was otherwise identical. A total of 12 healthy adults resided for 5 days in each light environment (LE) in a randomized cross-over trial. RESULTS Melatonin levels were less suppressed in the blue-depleted LE (15%) compared with the normal LE (45%; p = 0.011). Dim light melatonin onset was phase-advanced more (1:20 h) after residing in the blue-depleted LE than after the normal LE (0:46 h; p = 0.008). Total sleep time was 8.1 min longer (p = 0.032), rapid eye movement sleep 13.9 min longer (p < 0.001), and neurocognitive arousal was lower (p = 0.042) in the blue-depleted LE. There were no significant differences in subjective sleepiness (p = 0.16) or side effects (p = 0.09). CONCLUSIONS It is possible to create an evening LE that has an impact on the circadian system and sleep without serious side effects. This demonstrates the feasibility and potential benefits of designing buildings or hospital units according to chronobiological principles and provide a basis for studies in both nonclinical and clinical populations.
Collapse
Affiliation(s)
- Daniel Vethe
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway
| | - Jan Scott
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Institute of Neuroscience, University of Newcastle, Newcastle, UK
| | - Morten Engstrøm
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical Neurophysiology, St. Olav's University Hospital, Trondheim Norway
| | - Øyvind Salvesen
- Unit of Applied Clinical Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trond Sand
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical Neurophysiology, St. Olav's University Hospital, Trondheim Norway
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Gunnar Morken
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway
| | - Hanne S Heglum
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Novelda AS, Trondheim, Norway
| | - Kaia Kjørstad
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway
| | - Patrick M Faaland
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway
| | - Cecilie L Vestergaard
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway
| | - Knut Langsrud
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway
| | - Håvard Kallestad
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.,Division of Mental Health Care, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
17
|
Circadian depression: A mood disorder phenotype. Neurosci Biobehav Rev 2021; 126:79-101. [PMID: 33689801 DOI: 10.1016/j.neubiorev.2021.02.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/18/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022]
Abstract
Major mood syndromes are among the most common and disabling mental disorders. However, a lack of clear delineation of their underlying pathophysiological mechanisms is a major barrier to prevention and optimised treatments. Dysfunction of the 24-h circadian system is a candidate mechanism that has genetic, behavioural, and neurobiological links to mood syndromes. Here, we outline evidence for a new clinical phenotype, which we have called 'circadian depression'. We propose that key clinical characteristics of circadian depression include disrupted 24-h sleep-wake cycles, reduced motor activity, low subjective energy, and weight gain. The illness course includes early age-of-onset, phenomena suggestive of bipolarity (defined by bidirectional associations between objective motor and subjective energy/mood states), poor response to conventional antidepressant medications, and concurrent cardiometabolic and inflammatory disturbances. Identifying this phenotype could be clinically valuable, as circadian-targeted strategies show promise for reducing depressive symptoms and stabilising illness course. Further investigation of underlying circadian disturbances in mood syndromes is needed to evaluate the clinical utility of this phenotype and guide the optimal use of circadian-targeted interventions.
Collapse
|
18
|
Madsen HØ, Ba-Ali S, Heegaard S, Hageman I, Knorr U, Lund-Andersen H, Martiny K, Kessing LV. Melanopsin-mediated pupillary responses in bipolar disorder-a cross-sectional pupillometric investigation. Int J Bipolar Disord 2021; 9:7. [PMID: 33644827 PMCID: PMC7917036 DOI: 10.1186/s40345-020-00211-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Visible light, predominantly in the blue range, affects mood and circadian rhythm partly by activation of the melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). The light-induced responses of these ganglion cells can be evaluated by pupillometry. The study aimed to assess the blue light induced pupil constriction in patients with bipolar disorder (BD). METHODS We investigated the pupillary responses to blue light by chromatic pupillometry in 31 patients with newly diagnosed bipolar disorder, 22 of their unaffected relatives and 35 healthy controls. Mood state was evaluated by interview-based ratings of depressive symptoms (Hamilton Depression Rating Scale) and (hypo-)manic symptoms (Young Mania Rating Scale). RESULTS The ipRGC-mediated pupillary responses did not differ across the three groups, but subgroup analyses showed that patients in remission had reduced ipRGC-mediated responses compared with controls (9%, p = 0.04). Longer illness duration was associated with more pronounced ipRGC-responses (7% increase/10-year illness duration, p = 0.02). CONCLUSIONS The ipRGC-mediated pupil response to blue light was reduced in euthymic patients compared with controls and increased with longer disease duration. Longitudinal studies are needed to corroborate these potential associations with illness state and/or progression.
Collapse
Affiliation(s)
- Helle Østergaard Madsen
- Copenhagen Affective Disorder Research Center (CADIC), Mental Health Center Copenhagen, Rigshospitalet, Edel Sauntes Allé 10, 2100, Copenhagen Ø, Denmark.
| | - Shakoor Ba-Ali
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark
| | | | - Ida Hageman
- Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Ulla Knorr
- Copenhagen Affective Disorder Research Center (CADIC), Mental Health Center Copenhagen, Rigshospitalet, Edel Sauntes Allé 10, 2100, Copenhagen Ø, Denmark
| | | | - Klaus Martiny
- Copenhagen Affective Disorder Research Center (CADIC), Mental Health Center Copenhagen, Rigshospitalet, Edel Sauntes Allé 10, 2100, Copenhagen Ø, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Center (CADIC), Mental Health Center Copenhagen, Rigshospitalet, Edel Sauntes Allé 10, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
19
|
Cain SW, McGlashan EM, Vidafar P, Mustafovska J, Curran SPN, Wang X, Mohamed A, Kalavally V, Phillips AJK. Evening home lighting adversely impacts the circadian system and sleep. Sci Rep 2020; 10:19110. [PMID: 33154450 PMCID: PMC7644684 DOI: 10.1038/s41598-020-75622-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023] Open
Abstract
The regular rise and fall of the sun resulted in the development of 24-h rhythms in virtually all organisms. In an evolutionary heartbeat, humans have taken control of their light environment with electric light. Humans are highly sensitive to light, yet most people now use light until bedtime. We evaluated the impact of modern home lighting environments in relation to sleep and individual-level light sensitivity using a new wearable spectrophotometer. We found that nearly half of homes had bright enough light to suppress melatonin by 50%, but with a wide range of individual responses (0–87% suppression for the average home). Greater evening light relative to an individual’s average was associated with increased wakefulness after bedtime. Homes with energy-efficient lights had nearly double the melanopic illuminance of homes with incandescent lighting. These findings demonstrate that home lighting significantly affects sleep and the circadian system, but the impact of lighting for a specific individual in their home is highly unpredictable.
Collapse
Affiliation(s)
- Sean W Cain
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.
| | - Elise M McGlashan
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Parisa Vidafar
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Jona Mustafovska
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Simon P N Curran
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Xirun Wang
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Anas Mohamed
- Department of Electrical and Computer Systems Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Malaysia
| | - Vineetha Kalavally
- Department of Electrical and Computer Systems Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Malaysia
| | - Andrew J K Phillips
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Stone JE, McGlashan EM, Quin N, Skinner K, Stephenson JJ, Cain SW, Phillips AJK. The Role of Light Sensitivity and Intrinsic Circadian Period in Predicting Individual Circadian Timing. J Biol Rhythms 2020; 35:628-640. [PMID: 33063595 DOI: 10.1177/0748730420962598] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is large interindividual variability in circadian timing, which is underestimated by mathematical models of the circadian clock. Interindividual differences in timing have traditionally been modeled by changing the intrinsic circadian period, but recent findings reveal an additional potential source of variability: large interindividual differences in light sensitivity. Using an established model of the human circadian clock with real-world light recordings, we investigated whether changes in light sensitivity parameters or intrinsic circadian period could capture variability in circadian timing between and within individuals. Healthy participants (n = 12, aged 18-26 years) underwent continuous light monitoring for 3 weeks (Actiwatch Spectrum). Salivary dim-light melatonin onset (DLMO) was measured each week. Using the recorded light patterns, a sensitivity analysis for predicted DLMO times was performed, varying 3 model parameters within physiological ranges: (1) a parameter determining the steepness of the dose-response curve to light (p), (2) a parameter determining the shape of the phase-response curve to light (K), and (3) the intrinsic circadian period (tau). These parameters were then fitted to obtain optimal predictions of the three DLMO times for each individual. The sensitivity analysis showed that the range of variation in the average predicted DLMO times across participants was 0.65 h for p, 4.28 h for K, and 3.26 h for tau. The default model predicted the DLMO times with a mean absolute error of 1.02 h, whereas fitting all 3 parameters reduced the mean absolute error to 0.28 h. Fitting the parameters independently, we found mean absolute errors of 0.83 h for p, 0.53 h for K, and 0.42 h for tau. Fitting p and K together reduced the mean absolute error to 0.44 h. Light sensitivity parameters captured similar variability in phase compared with intrinsic circadian period, indicating they are viable targets for individualizing circadian phase predictions. Future prospective work is needed that uses measures of light sensitivity to validate this approach.
Collapse
Affiliation(s)
- Julia E Stone
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | - Elise M McGlashan
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | - Nina Quin
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | - Kayan Skinner
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | - Jessica J Stephenson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | - Sean W Cain
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | - Andrew J K Phillips
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| |
Collapse
|