1
|
Bie F, Yan X, Xing J, Wang L, Xu Y, Wang G, Wang Q, Guo J, Qiao J, Rao Z. Rising global burden of anxiety disorders among adolescents and young adults: trends, risk factors, and the impact of socioeconomic disparities and COVID-19 from 1990 to 2021. Front Psychiatry 2024; 15:1489427. [PMID: 39691785 PMCID: PMC11651023 DOI: 10.3389/fpsyt.2024.1489427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/28/2024] [Indexed: 12/19/2024] Open
Abstract
Background Anxiety disorders are among the most prevalent mental health conditions globally, particularly affecting adolescents and young adults (10-24 years), and causing substantial psychological and social impairments. This study analyzed changes in the incidence, prevalence, and disability-adjusted life years (DALYs) of anxiety disorders in this age group from 1990 to 2021, emphasizing the impact of socioeconomic disparities and the COVID-19 pandemic, particularly post-2019. Methods Utilizing the Global Burden of Disease(GBD) 2021 data from 204 countries, this study evaluated global trends in anxiety disorders among adolescents and young adults. Conducted between May 16 and August 1, 2024, it assessed prevalence, incidence, DALYs, and estimated annual percentage changes (EAPCs) from 1990 to 2021. Joinpoint regression identified significant shifts in incidence rates, with key risk factors, especially bullying victimization,examined. The analysis was stratified by region, country, age group, sex, and Socio-Demographic Index (SDI). Results From 1990 to 2021, the global incidence of anxiety disorders among those aged 10-24 years increased by 52%, particularly in the 10-14 age group and post-2019. Females showed higher prevalence rates than males, and DALYs rose notably among the 20-24-year-olds. Regions with middle SDI reported the highest incidence and prevalence, whereas high SDI regions experienced the largest increases. India had the highest number of cases, while Mexico saw the greatest rise. A gradual decline in incidence was noted until 2001, followed by a slow increase, with a sharp rise from 2019 to 2021. Bullying victimization was a significant risk factor, especially in regions with a high anxiety disorder burden. Conclusion The rising incidence of anxiety disorders among adolescents and young adults over the past 30 years reflects the increasing global mental health burden. Socioeconomic factors, particularly in middle SDI regions, and the impact of the COVID-19 pandemic have exacerbated this trend. Effective, targeted interventions focusing on early prevention and community-based mental health management are urgently needed to mitigate the long-term impact on young populations globally.
Collapse
Affiliation(s)
- Fengsai Bie
- National Center for Occupational Safety and Health, National Health Commission of the People’s Republic of China, Beijing, China
| | - Xiaoling Yan
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Xing
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Leilei Wang
- Office of Education and Training (Graduate School), Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Xu
- National Center for Occupational Safety and Health, National Health Commission of the People’s Republic of China, Beijing, China
| | - Guan Wang
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Qian Wang
- Department of Psychology, School of Humanities, Tongji University, Shanghai, China
| | - Jinyu Guo
- National Center for Occupational Safety and Health, National Health Commission of the People’s Republic of China, Beijing, China
| | - Jing Qiao
- Educational Department, Peking University First Hospital, Beijing, China
| | - Zhenzhen Rao
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
2
|
Reis JAS, Rossi GN, L Osório F, Bouso JC, Hallak JEC, Dos Santos RG. Interventions for deficits in recognition of emotions in facial expressions in major depressive disorder: An updated systematic review of clinical trials. Neurosci Biobehav Rev 2023; 153:105367. [PMID: 37619644 DOI: 10.1016/j.neubiorev.2023.105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
The recognition of emotions in facial expressions (REFE) is a core construct of social cognition. In the last decades, studies have showed that REFE is altered in major depressive disorder (MDD), but the evidence is conflicting. Thus, we conducted a systematic review of clinical trials involving therapeutic interventions in MDD and any evaluation of REFE to update (2018-2023) and systematically evaluate the evidence derived from controlled clinical trials on the effects of therapeutic strategies to MDD on the REFE. Eleven studies were included in the final review. Some interventions, including drugs (ketamine, bupropion, psylocibin) and non-pharmacological strategies (psychotherapy) seem to be able to reduce pre-existing REFE biases in MDD patients. However, there was a high heterogeneity in the evaluated studies, in terms of sample, interventions, tasks and results. Further studies and more consistent evaluation tools are highly needed to better understand nuanced deficits and specific actions of different treatment options.
Collapse
Affiliation(s)
- José Augusto Silva Reis
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University São Paulo, SP, Brazil.
| | - Giordano Novak Rossi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University São Paulo, SP, Brazil.
| | - Flávia L Osório
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM), CNPq, Brazil.
| | - José Carlos Bouso
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University São Paulo, SP, Brazil; International Center for Ethnobotanical Education, Research, and Service (ICEERS), Barcelona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain.
| | - Jaime Eduardo Cecílio Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM), CNPq, Brazil; International Center for Ethnobotanical Education, Research, and Service (ICEERS), Barcelona, Spain.
| | - Rafael Guimarães Dos Santos
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University São Paulo, SP, Brazil; National Institute for Translational Medicine (INCT-TM), CNPq, Brazil; International Center for Ethnobotanical Education, Research, and Service (ICEERS), Barcelona, Spain.
| |
Collapse
|
3
|
Medeiros GC, Matheson M, Demo I, Reid MJ, Matheson S, Twose C, Smith GS, Gould TD, Zarate CA, Barrett FS, Goes FS. Brain-based correlates of antidepressant response to ketamine: a comprehensive systematic review of neuroimaging studies. Lancet Psychiatry 2023; 10:790-800. [PMID: 37625426 PMCID: PMC11534374 DOI: 10.1016/s2215-0366(23)00183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 08/27/2023]
Abstract
Ketamine is an effective antidepressant, but there is substantial variability in patient response and the precise mechanism of action is unclear. Neuroimaging can provide predictive and mechanistic insights, but findings are limited by small sample sizes. This systematic review covers neuroimaging studies investigating baseline (pre-treatment) and longitudinal (post-treatment) biomarkers of responses to ketamine. All modalities were included. We performed searches of five electronic databases (from inception to April 26, 2022). 69 studies were included (with 1751 participants). There was substantial methodological heterogeneity and no well replicated biomarker. However, we found convergence across some significant results, particularly in longitudinal biomarkers. Response to ketamine was associated with post-treatment increases in gamma power in frontoparietal regions in electrophysiological studies, post-treatment increases in functional connectivity within the prefrontal cortex, and post-treatment increases in the functional activation of the striatum. Although a well replicated neuroimaging biomarker of ketamine response was not identified, there are biomarkers that warrant further investigation.
Collapse
Affiliation(s)
- Gustavo C Medeiros
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Malcolm Matheson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isabella Demo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew J Reid
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Claire Twose
- Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, NIMH-NIH, Bethesda, MD, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Department of Psychological and Brain Sciences, and Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Sen ZD, Chand T, Danyeli LV, Kumar VJ, Colic L, Li M, Yemisken M, Javaheripour N, Refisch A, Opel N, Macharadze T, Kretzschmar M, Ozkan E, Deliano M, Walter M. The effect of ketamine on affective modulation of the startle reflex and its resting-state brain correlates. Sci Rep 2023; 13:13323. [PMID: 37587171 PMCID: PMC10432502 DOI: 10.1038/s41598-023-40099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Ketamine is a rapid-acting antidepressant that also influences neural reactivity to affective stimuli. However, the effect of ketamine on behavioral affective reactivity is yet to be elucidated. The affect-modulated startle reflex paradigm (AMSR) allows examining the valence-specific aspects of behavioral affective reactivity. We hypothesized that ketamine alters the modulation of the startle reflex during processing of unpleasant and pleasant stimuli and weakens the resting-state functional connectivity (rsFC) within the modulatory pathway, namely between the centromedial nucleus of the amygdala and nucleus reticularis pontis caudalis. In a randomized, double-blind, placebo-controlled, cross-over study, thirty-two healthy male participants underwent ultra-high field resting-state functional magnetic resonance imaging at 7 T before and 24 h after placebo and S-ketamine infusions. Participants completed the AMSR task at baseline and one day after each infusion. In contrast to our hypothesis, ketamine infusion did not impact startle potentiation during processing of unpleasant stimuli but resulted in diminished startle attenuation during processing of pleasant stimuli. This diminishment significantly correlated with end-of-infusion plasma levels of ketamine and norketamine. Furthermore, ketamine induced a decrease in rsFC within the modulatory startle reflex pathway. The results of this first study on the effect of ketamine on the AMSR suggest that ketamine might attenuate the motivational significance of pleasant stimuli in healthy participants one day after infusion.
Collapse
Affiliation(s)
- Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Halle-Jena-Magdeburg Site, Jena, Germany
| | - Tara Chand
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
- Department of Clinical Psychology, Friedrich Schiller University Jena, Am Steiger 3-1, 07743, Jena, Germany
- Jindal Institute of Behavioural Sciences, O. P. Jindal Global University (Sonipat), Haryana, India
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | | | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
- German Center for Mental Health (DZPG), Halle-Jena-Magdeburg Site, Jena, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
- German Center for Mental Health (DZPG), Halle-Jena-Magdeburg Site, Jena, Germany
| | - Merve Yemisken
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Nooshin Javaheripour
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany
- German Center for Mental Health (DZPG), Halle-Jena-Magdeburg Site, Jena, Germany
| | - Tamar Macharadze
- Department of Anesthesiology and Intensive Care Medicine, Medical Faculty, Otto-Von-Guericke-Universität Magdeburg, Magdeburg, Germany
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Moritz Kretzschmar
- Department of Anesthesiology and Intensive Care Medicine, Medical Faculty, Otto-Von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Esra Ozkan
- Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Matthias Deliano
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
- Leibniz Institute for Neurobiology, Magdeburg, Combinatorial NeuroImaging Core Facility, Brenneckestraße 6, 39118, Magdeburg, Germany.
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany.
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany.
- German Center for Mental Health (DZPG), Halle-Jena-Magdeburg Site, Jena, Germany.
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
- Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
5
|
López-Arnau R, Camarasa J, Carbó ML, Nadal-Gratacós N, Puigseslloses P, Espinosa-Velasco M, Urquizu E, Escubedo E, Pubill D. 3,4-Methylenedioxy methamphetamine, synthetic cathinones and psychedelics: From recreational to novel psychotherapeutic drugs. Front Psychiatry 2022; 13:990405. [PMID: 36262632 PMCID: PMC9574023 DOI: 10.3389/fpsyt.2022.990405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The utility of classical drugs used to treat psychiatric disorders (e.g., antidepressants, anxiolytics) is often limited by issues of lack of efficacy, delayed onset of action or side effects. Psychoactive substances have a long history of being used as tools to alter consciousness and as a gateway to approach the unknown and the divinities. These substances were initially obtained from plants and animals and more recently by chemical synthesis, and its consumption evolved toward a more recreational use, leading to drug abuse-related disorders, trafficking, and subsequent banning by the authorities. However, these substances, by modulation of certain neurochemical pathways, have been proven to have a beneficial effect on some psychiatric disorders. This evidence obtained under medically controlled conditions and often associated with psychotherapy, makes these substances an alternative to conventional medicines, to which in many cases the patient does not respond properly. Such disorders include post-traumatic stress disease and treatment-resistant depression, for which classical drugs such as MDMA, ketamine, psilocybin and LSD, among others, have already been clinically tested, reporting successful outcomes. The irruption of new psychoactive substances (NPS), especially during the last decade and despite their recreational and illicit uses, has enlarged the library of substances with potential utility on these disorders. In fact, many of them were synthetized with therapeutic purposes and were withdrawn for concrete reasons (e.g., adverse effects, improper pharmacological profile). In this review we focus on the basis, existing evidence and possible use of synthetic cathinones and psychedelics (specially tryptamines) for the treatment of mental illnesses and the properties that should be found in NPS to obtain new therapeutic compounds.
Collapse
Affiliation(s)
- Raúl López-Arnau
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Jordi Camarasa
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Marcel Lí Carbó
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Núria Nadal-Gratacós
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Pol Puigseslloses
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - María Espinosa-Velasco
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Edurne Urquizu
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Elena Escubedo
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - David Pubill
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
6
|
Selvanayagam J, Johnston KD, Wong RK, Schaeffer D, Everling S. Ketamine disrupts gaze patterns during face viewing in the common marmoset. J Neurophysiol 2021; 126:330-339. [PMID: 34133232 DOI: 10.1152/jn.00078.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Faces are stimuli of critical importance for primates. The common marmoset (Callithrix jacchus) is a promising model for investigations of face processing, as this species possesses oculomotor and face-processing networks resembling those of macaques and humans. Face processing is often disrupted in neuropsychiatric conditions such as schizophrenia (SZ), and thus, it is important to recapitulate underlying circuitry dysfunction preclinically. The N-methyl-d-aspartate (NMDA) noncompetitive antagonist ketamine has been used extensively to model the cognitive symptoms of SZ. Here, we investigated the effects of a subanesthetic dose of ketamine on oculomotor behavior in marmosets during face viewing. Four marmosets received systemic ketamine or saline injections while viewing phase-scrambled or intact videos of conspecifics' faces. To evaluate effects of ketamine on scan paths during face viewing, we identified regions of interest in each face video and classified locations of saccade onsets and landing positions within these areas. A preference for the snout over eye regions was observed following ketamine administration. In addition, regions in which saccades landed could be significantly predicted by saccade onset region in the saline but not the ketamine condition. Effects on saccade control were limited to an increase in saccade peak velocity in all conditions and a reduction in saccade amplitudes during viewing of scrambled videos. Thus, ketamine induced a significant disruption of scan paths during viewing of conspecific faces but limited effects on saccade motor control. These findings support the use of ketamine in marmosets for investigating changes in neural circuits underlying social cognition in neuropsychiatric disorders.NEW & NOTEWORTHY Face processing, an important social cognitive ability, is impaired in neuropsychiatric conditions such as schizophrenia. The highly social common marmoset model presents an opportunity to investigate these impairments. We administered subanesthetic doses of ketamine to marmosets to model the cognitive symptoms of schizophrenia. We observed a disruption of scan paths during viewing of conspecifics' faces. These findings support the use of ketamine in marmosets as a model for investigating social cognition in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Janahan Selvanayagam
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Kevin D Johnston
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Raymond K Wong
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| | - David Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stefan Everling
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Alario AA, Niciu MJ. Biomarkers of ketamine's antidepressant effect: a clinical review of genetics, functional connectivity, and neurophysiology. CHRONIC STRESS 2021; 5:24705470211014210. [PMID: 34159281 PMCID: PMC8186113 DOI: 10.1177/24705470211014210] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022]
Abstract
Major depressive disorder (MDD) is one of the leading causes of morbidity and all-cause mortality (including suicide) worldwide, and, unfortunately, first-line monoaminergic antidepressants and evidence-based psychotherapies are not effective for all patients. Subanesthetic doses of the N-methyl-D-aspartate receptor antagonists and glutamate modulators ketamine and S-ketamine have rapid and robust antidepressant efficacy in such treatment-resistant depressed patients (TRD). Yet, as with all antidepressant treatments including electroconvulsive therapy (ECT), not all TRD patients adequately respond, and we are presently unable to a priori predict who will respond or not respond to ketamine. Therefore, antidepressant treatment response biomarkers to ketamine have been a major focus of research for over a decade. In this article, we review the evidence in support of treatment response biomarkers, with a particular focus on genetics, functional magnetic resonance imaging, and neurophysiological studies, i.e. electroencephalography and magnetoencephalography. The studies outlined here lay the groundwork for replication and dissemination.
Collapse
Affiliation(s)
- Alexandra A Alario
- Department of Psychiatry and Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA, USA
| | - Mark J Niciu
- Department of Psychiatry and Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA, USA
| |
Collapse
|