1
|
Madison CA, Debler RA, Gallegos PL, Hillbrick L, Chapkin RS, Safe S, Eitan S. 1,4-dihydroxy-2-naphthoic acid prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced motor function deficits. Behav Pharmacol 2024:00008877-990000000-00111. [PMID: 39660867 DOI: 10.1097/fbp.0000000000000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Parkinson's disease (PD), characterized by death of dopaminergic neurons in the substantia nigra, is the second most prevalent progressive neurodegenerative disease. However, the etiology of PD is largely elusive. This study employed the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent model to examine the effectiveness of 1,4-dihydroxy-2-naphthoic acid (1,4-DHNA), an aryl hydrocarbon receptor (AhR) active gut bacteria-derived metabolite, in mitigating MPTP's motoric deficits, and the role of AhR in mediating these effects. Male C57BL/6 mice were fed daily with vehicle, 20 mg/kg 1,4-DHNA, or AhR-inactive isomer 3,7-DHNA, for 3 weeks before administration of 80 mg/kg MPTP or vehicle. Four weeks later, mice were assessed for motoric functions. Both 1,4-DHNA and 3,7-DHNA prevented MPTP-induced deficits in the motor pole test and in the adhesive strip removal test. Additionally, 1,4-DHNA improved balance beam performance and completely prevented MPTP-induced reduction in stride length. In contrast, 3,7-DHNA, an AhR-inactive compound, did not improve balance beam performance and had only a partial effect on stride length. This study suggests that natural metabolites of gut microbiota, such as 1,4-DHNA, could be beneficial to counteract the development of motor deficits observed in PD. Thus, this study further supports the hypothesis that pathological and mitigating processes in the gut could play an essential role in PD development. Moreover, this indicates that 1,4-DHNA's ability to combat various motor deficits is likely mediated via multiple underlying molecular mechanisms. Specifically, AhR is involved, at least partially, in control of gait and bradykinesia, but it likely does not mediate the effects on fine motor skills.
Collapse
Affiliation(s)
- Caitlin A Madison
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences
| | - Roanna A Debler
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences
| | - Paula L Gallegos
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences
| | - Lauren Hillbrick
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences
| | | | - Stephen Safe
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences
| |
Collapse
|
2
|
Liu S, Zhang Q, Zhao F, Deng F, Wang Y. Regulating effect of Qifu Yin on intestinal microbiota in mice with memory impairment induced by scopolamine hydrobromide. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118445. [PMID: 38851472 DOI: 10.1016/j.jep.2024.118445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qifu Yin (QFY) originates from "Jingyue Quanshu · Volume 51 · New Fang Bazhen · Buzhen" a work by Zhang Jingyue, a distinguished Chinese medical practitioner from the Ming Dynasty. QFY is composed of Ginseng Radix et Rhizoma, Rehmanniae Radix Praeparata, Angelicae Sinensis Radix, Atractylodis Macrocephalae Rhizoma, Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle, Ziziphi Spinosae Semen, and Polygalae Radix. QFY is frequently employed to address memory loss and cognitive impairment stemming from vascular dementia, Alzheimer's disease (AD), and related conditions. Our findings indicate that QFY can mitigate nerve cell damage. Moreover, the study explores the impact of QFY on the calcium ion pathway and sphingolipid metabolism in mice with myocardial infarction, presenting a novel perspective on QFY's mechanism in ameliorating myocardial infarction through lipidomics. While this research provides an experimental foundation for the clinical application of QFY, a comprehensive and in-depth analysis of its improvement mechanism remains imperative. AIM OF THE STUDY To clarify the regulatory mechanism of QFY on intestinal microecology in mice with memory impairment (MI). MATERIAL AND METHODS The memory impairment mouse model was established by intraperitoneal injection of scopolamine hydrobromide. Kunming (KM) mice were randomly divided into blank group, Ginkgo tablet group (0.276 g/kg), QFY high, medium and low dose groups (17.2 g/kg, 8.6 g/kg, 4.3 g/kg). The effect on memory ability was evaluated by open field and step-down behavioral experiments. The morphological changes of nerve cells in the hippocampus of mice were observed by pathological method. The contents of superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GSH-Px) in the brain tissue of mice were detected. The expression levels of CREB, Brain-Derived Neurotrophic Factor (BDNF) and Recombinant Amyloid Precursor Protein (APP) in the hippocampus of mice were determined using immunohistochemistry. The expression of N-methyl-D-aspartate receptor (NMDAR) and cAMP response element binding protein (CREB) related factors in the serum of mice was analyzed by ELISA. The levels of apoptosis signal-regulating kinase-1 (ASK1) and c-Jun N-terminal kinase (JNK) mRNA in the hippocampus were detected by quantitative real-time fluorescence polymerase chain reaction (qPCR). The intestinal feces of mice were collected, and the 16 S rDNA technology was used to detect the changes in intestinal microbiota microecological structure of feces in each group. RESULTS Behavioral experiments showed that the high-dose QFY group exhibited a significant increase in exercise time (P<0.05) and a decrease in diagonal time (P<0.05) compared to the model group. The medium-dose group of QFY showed a reduction in diagonal time (P<0.05). Additionally, the latency time significantly increased in the medium and high-dose groups of QFY (P<0.01). The number of errors in the low, medium and high dose groups was significantly decreased (P<0.05, P<0.01, P<0.01). The nerve cells in the CA1 and CA3 regions of QFY-treated mice demonstrated close arrangement and clear structure. Furthermore, the content of SOD significantly increased (P<0.01) and the content of MDA significantly decreased (P<0.05) in the low and high-dose QFY groups. The content of CAT in the medium-dose group significantly increased (P < 0.05). Immunohistochemical analysis showed a significant reduction in the number of APP expression particles in the CA1 and CA3 regions of all QFY groups. Moreover, BDNF expression significantly increased in the medium and high-dose groups, while CREB expression significantly increased in the low and medium-dose groups of QFY within the CA1 and CA3 regions. Serum analysis revealed significant increases in CREB content in the low, medium, and high dose groups of QFY (P<0.01, P<0.05, P<0.05), and decreases in NMDAR content across all QFY dose groups (P<0.01). PCR analysis showed a significant decrease in the contents of ASK1 and JNK in the medium-dose group (P<0.01). Microecological analysis of intestinal microbiota demonstrated a significant restoration trend in the relative abundance of Fusobacteria, Planctomycetes, and Verrucomicrobia (P<0.01 or P<0.05) at the phylum level in the QFY groups. At the genus level, Akkermansia, Paramuribaculum, Herminiimonas, Erysipelatoclostridium and other genera in the QFY groups showed a significant trend of relative abundance restoration (P<0.01 or P<0.05). CONCLUSION QFY can improve the memory of MI animals induced by scopolamine hydrobromide by restoring the homeostasis of intestinal microbiota and regulating related indexes in serum and brain tissue.
Collapse
Affiliation(s)
- Shiqi Liu
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Qingling Zhang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Fuxia Zhao
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China.
| | - Fanying Deng
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China.
| | - Yan Wang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China.
| |
Collapse
|
3
|
Liu H, Zhu K, Yang C. The Intersection between Tryptophan-Kynurenine Pathway Metabolites and Immune Inflammation, Hormones, and Gut Microbiota in Perinatal Depression. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:733-740. [PMID: 39403906 PMCID: PMC11475056 DOI: 10.62641/aep.v52i5.1748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Perinatal depression is a prevalent mental disorder among pregnant women, characterized by sleep disturbances, appetite changes, negative emotions, cognitive impairment, and suicidal or homicidal tendencies. These symptoms severely compromise personal well-being, disrupt family life, and burden society. Early detection and intervention are thus crucial. The tryptophan-kynurenine (TRP-KYN) pathway is central to the inflammatory hypothesis of depression and has gained significant attention in perinatal depression research. This pathway encompasses numerous metabolic enzymes and neuroactive metabolites that interact with other physiological systems, influencing neurotransmitter synthesis and neuronal development. Through these interactions, the TRP-KYN pathway exerts psychotropic effects. This article reviews the key metabolites and enzymes of the TRP-KYN pathway and examines its intersection with immune inflammation, hormones, and gut microbiota.
Collapse
Affiliation(s)
- Huiyan Liu
- Department of Anesthesiology, Liuyang Maternal and Child Health Hospital, 410300 Liuyang, Hunan, China
| | - Kuangyi Zhu
- Department of Neonatology, Liuyang Maternal and Child Health Hospital, 410300 Liuyang, Hunan, China
| | - Cheng Yang
- Department of Obstetrical, Liuyang Maternal and Child Health Hospital, 410300 Liuyang, Hunan, China
| |
Collapse
|
4
|
Ramakrishna K, Karuturi P, Siakabinga Q, T A G, Krishnamurthy S, Singh S, Kumari S, Kumar GS, Sobhia ME, Rai SN. Indole-3 Carbinol and Diindolylmethane Mitigated β-Amyloid-Induced Neurotoxicity and Acetylcholinesterase Enzyme Activity: In Silico, In Vitro, and Network Pharmacology Study. Diseases 2024; 12:184. [PMID: 39195183 DOI: 10.3390/diseases12080184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by beta-amyloid (Aβ) deposition and increased acetylcholinesterase (AchE) enzyme activities. Indole 3 carbinol (I3C) and diindolylmethane (DIM) are reported to have neuroprotective activities against various neurological diseases, including ischemic stroke, Parkinson's disease, neonatal asphyxia, depression, stress, neuroinflammation, and excitotoxicity, except for AD. In the present study, we have investigated the anti-AD effects of I3C and DIM. Methods: Docking and molecular dynamic studies against AchE enzyme and network pharmacological studies were conducted for I3C and DIM. I3C and DIM's neuroprotective effects against self and AchE-induced Aβ aggregation were investigated. The neuroprotective effects of I3C and DIM against Aβ-induced neurotoxicity were assessed in SH-S5Y5 cells by observing cell viability and ROS. Results: Docking studies against AchE enzyme with I3C and DIM show binding efficiency of -7.0 and -10.3, respectively, and molecular dynamics studies revealed a better interaction and stability between I3C and AchE and DIM and AchE. Network pharmacological studies indicated that I3C and DIM interacted with several proteins involved in the pathophysiology of AD. Further, I3C and DIM significantly inhibited the AchE (IC50: I3C (18.98 µM) and DIM (11.84 µM)) and self-induced Aβ aggregation. Both compounds enhanced the viability of SH-S5Y5 cells that are exposed to Aβ and reduced ROS. Further, I3C and DIM show equipotential neuroprotection when compared to donepezil. Conclusions: Our findings indicate that both I3C and DIM show anti-AD effects by inhibiting the Aβ induced neurotoxicity and AchE activities.
Collapse
Affiliation(s)
- Kakarla Ramakrishna
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur 522302, Andhra Pradesh, India
| | - Praditha Karuturi
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur 522302, Andhra Pradesh, India
| | - Queen Siakabinga
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur 522302, Andhra Pradesh, India
| | - Gajendra T A
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, IIT BHU, Varanasi 221005, Uttar Pradesh, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, IIT BHU, Varanasi 221005, Uttar Pradesh, India
| | - Shreya Singh
- SBS College of Pharmacy, Malwan, Fatehpur 212664, Uttar Pradesh, India
| | - Sonia Kumari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali 160062, Punjab, India
| | - G Siva Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali 160062, Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali 160062, Punjab, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
5
|
Debler RA, Gallegos PL, Ojeda AC, Perttula AM, Lucio A, Chapkin RS, Safe S, Eitan S. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces depression-like phenotype. Neurotoxicology 2024; 103:71-77. [PMID: 38838945 PMCID: PMC11288769 DOI: 10.1016/j.neuro.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
The etiology of major depressive disorder (MDD) remains poorly understood. Our previous studies suggest a role for the aryl hydrocarbon receptor (AhR) in depression. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a toxic environmental contaminant, with a high AhR binding affinity, and an established benchmark for assessing AhR activity. Therefore, this study examined the effect of TCDD on depression-like behaviors. Female mice were fed standard chow or a high-fat diet (HFD) for 11 weeks, and their weight was recorded. Subsequently, they were tested for baseline sucrose preference and splash test grooming. Then, TCDD (0.1 µg/kg/day) or vehicle was administered orally for 28 days, and mice were examined for their sucrose preference and performances in the splash test, forced swim test (FST), and Morris water maze (MWM) task. TCDD significantly decreased sucrose preference, increased FST immobility time, and decreased groom time in chow-fed mice. HFD itself significantly reduced sucrose preference. However, TCDD significantly increased FST immobility time and decreased groom time in HFD-fed mice. A small decrease in bodyweight was observed only at the fourth week of daily TCDD administration in chow-fed mice, and no significant effects of TCDD on bodyweights were observed in HFD-fed mice. TCDD did not have a significant effect on spatial learning in the MWM. Thus, this study demonstrated that TCDD induces a depression-like state, and the effects were not due to gross lethal toxicity. This study further suggests that more studies should examine a possible role for AhR and AhR-active environmental pollutants in precipitating or worsening MDD.
Collapse
Affiliation(s)
- Roanna A Debler
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Paula L Gallegos
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Alexandra C Ojeda
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Andrea M Perttula
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Ashley Lucio
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA.
| |
Collapse
|
6
|
Kakarla R, Karuturi P, Siakabinga Q, Kasi Viswanath M, Dumala N, Guntupalli C, Nalluri BN, Venkateswarlu K, Prasanna VS, Gutti G, Yadagiri G, Gujjari L. Current understanding and future directions of cruciferous vegetables and their phytochemicals to combat neurological diseases. Phytother Res 2024; 38:1381-1399. [PMID: 38217095 DOI: 10.1002/ptr.8122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
Neurological disorders incidences are increasing drastically due to complex pathophysiology, and the nonavailability of disease-modifying agents. Several attempts have been made to identify new potential chemicals to combat these neurological abnormalities. At present, complete abolishment of neurological diseases is not attainable except for symptomatic relief. However, dietary recommendations to help brain development or improvement have increased over the years. In recent times, cruciferous vegetables and their phytochemicals have been identified from preclinical and clinical investigations as potential neuroprotective agents. The present review highlights the beneficial effects and molecular mechanisms of phytochemicals such as indole-3-carbinol, diindolylmethane, sulforaphane, kaempferol, selenium, lutein, zeaxanthin, and vitamins of cruciferous vegetables against neurological diseases including Parkinson's disease, Alzheimer's disease, stroke, Huntington's disease, autism spectra disorders, anxiety, depression, and pain. Most of these cruciferous phytochemicals protect the brain by eliciting antioxidant, anti-inflammatory, and antiapoptotic properties. Regular dietary intake of cruciferous vegetables may benefit the prevention and treatment of neurological diseases. The present review suggests that there is a lacuna in identifying the clinical efficacy of these phytochemicals. Therefore, high-quality future studies should firmly establish the efficacy of the above-mentioned cruciferous phytochemicals in clinical settings.
Collapse
Affiliation(s)
- Ramakrishna Kakarla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Praditha Karuturi
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Queen Siakabinga
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | | | - Naresh Dumala
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | | | - Buchi N Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Kojja Venkateswarlu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Varanasi, India
| | - Vani Sai Prasanna
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, India
| | - Gopichand Gutti
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Ganesh Yadagiri
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Lohitha Gujjari
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Beurel E. Stress in the microbiome-immune crosstalk. Gut Microbes 2024; 16:2327409. [PMID: 38488630 PMCID: PMC10950285 DOI: 10.1080/19490976.2024.2327409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
The gut microbiota exerts a mutualistic interaction with the host in a fragile ecosystem and the host intestinal, neural, and immune cells. Perturbations of the gastrointestinal track composition after stress have profound consequences on the central nervous system and the immune system. Reciprocally, brain signals after stress affect the gut microbiota highlighting the bidirectional communication between the brain and the gut. Here, we focus on the potential role of inflammation in mediating stress-induced gut-brain changes and discuss the impact of several immune cells and inflammatory molecules of the gut-brain dialogue after stress. Understanding the impact of microbial changes on the immune system after stress might provide new avenues for therapy.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
8
|
Debler RA, Madison CA, Hillbrick L, Gallegos P, Safe S, Chapkin RS, Eitan S. Selective aryl hydrocarbon receptor modulators can act as antidepressants in obese female mice. J Affect Disord 2023; 333:409-419. [PMID: 37084978 PMCID: PMC10561895 DOI: 10.1016/j.jad.2023.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Obese females are more likely to suffer from depression and are also more likely to be resistant to current medications. This study examined the potential antidepressant-like effects of 1,4-dihydroxy-2-napthoic acid (DHNA), a selective aryl hydrocarbon receptor modulator (SAhRM), in obese female mice. METHODS Obesity was established by feeding C57BL/6N female mice a high fat diet (HFD) for 9-10 weeks. Subsequently, mice were subjected to unpredictable chronic mild stress (UCMS) or remained unstressed. Daily administration of vehicle or 20 mg/kg DHNA began three weeks prior or on the third week of UCMS. Mice were examined for depression-like behaviors (sucrose preference, forced swim test (FST), splash and tape groom tests), anxiety (open-field test, light/dark test, novelty-induced hypophagia), and cognition (object location recognition, novel object recognition, Morris water maze). RESULTS UCMS did not alter, and DHNA slightly increased, weight gain in HFD-fed females. HFD decreased sucrose preference, increased FST immobility time, but did not alter splash and tape tests' grooming time. UCMS did not have additional effects on sucrose preference. UCMS further increased FST immobility time and decreased splash and tape tests' grooming time; these effects were prevented and reversed by DHNA treatment. HFD did not affect behaviors in the cognitive tests. UCMS impaired spatial learning; this effect was not prevented nor reversed by DHNA. CONCLUSIONS DHNA protected against UCMS-induced depression-like behaviors in HFD-fed female mice. DHNA neither improved nor worsened UCMS-induced impairment of spatial learning. Our findings indicate that DHNA has high potential to act as an antidepressant in obese females.
Collapse
Affiliation(s)
- Roanna A Debler
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Caitlin A Madison
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Lauren Hillbrick
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Paula Gallegos
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
9
|
Madison CA, Hillbrick L, Kuempel J, Albrecht GL, Landrock KK, Safe S, Chapkin RS, Eitan S. Intestinal epithelium aryl hydrocarbon receptor is involved in stress sensitivity and maintaining depressive symptoms. Behav Brain Res 2023; 440:114256. [PMID: 36528169 PMCID: PMC9839636 DOI: 10.1016/j.bbr.2022.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a key regulator in the microbiome-gut-brain axis, and AhR-active microbial metabolites modulate multiple neuronal responses. We recently demonstrated that 3,3'-diindolylmethane (DIM) and 1,4-dihydroxy-2-naphthoic acid (DHNA), two selective AhR modulators (SAhRMs), act as antidepressants in female mice. Thus, to examine the role of intestinal AhR in depression, anxiety, and spatial learning, this study employed transgenic mice in which the AhR was knockout only in the intestinal epithelium (AhRΔIEC). Additionally, this study examined whether the antidepressant effects of dietary DIM and DHNA is mediated by intestinal AhR. AhRΔIEC and WT female mice were fed daily with vehicle, 20 mg/kg DIM or DHNA for three weeks prior to four weeks of unpredictable chronic mild stress (UCMS). Mice were examined for weight gain, anhedonia-like behavior (sucrose preference test), anxiety levels (open field, light/dark, elevated plus maze, novelty-induced hypophagia, and marble burying tests), and spatial learning (Morris water maze). UCMS reduced weight gain in AhRΔIECs, but not WTs. Moreover, UCMS initially reduced sucrose preference in both AhRΔIECs and WTs, but over 4 weeks of UCMS, AhRΔIECs develop resilience to UCMS-induced anhedonia. Additionally, AhRΔIECs exhibit slightly reduced anxiety in certain tests and faster spatial learning. DIM and DHNA acted as antidepressants in both AhRΔIECs and WTs. Thus, this study suggests that intestinal AhR plays differential roles, mitigating stress effects on weight gain, and increasing stress effects on mood. However, the site of antidepressant action of SAhRMs, such as DIM and DHNA, is not dependent on the expression of intestinal AhR.
Collapse
Affiliation(s)
- Caitlin A Madison
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Lauren Hillbrick
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Jacob Kuempel
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Georgia Lee Albrecht
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Kerstin K Landrock
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
10
|
Madison CA, Debler RA, Vardeleon NI, Hillbrick L, Jayaraman A, Safe S, Chapkin RS, Eitan S. Sex-dependent differences in the stress mitigating and antidepressant effects of selective aryl hydrocarbon receptor modulators. J Affect Disord 2022; 319:213-220. [PMID: 36206882 PMCID: PMC10391660 DOI: 10.1016/j.jad.2022.09.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Our recent study demonstrated that selective aryl hydrocarbon receptor modulators (SAhRMs), such as 1,4-dihydroxy-2-napthoic acid (DHNA) act as antidepressants in female mice. Given that some effects of certain SAhRMs are known to also be mediated via estrogen receptor signaling, this study examined whether the effects of SAhRMs on mood, emotional state, and cognition are sex-dependent. METHODS C57BL/6N mice were fed with vehicle or 20 mg/kg DHNA for three weeks prior to four weeks of unpredictable chronic mild stress (UCMS). Mice were examined for depression-like behaviors (sucrose preference, forced swim test (FST), splash test, tape groom test), emotional state (open-field test, light/dark test, marble burying, novelty-induced hypophagia, elevated-plus maze), and cognition (object location recognition, novel object recognition, Morris water maze). RESULTS In females, UCMS decreased sucrose preference and increased FST immobility time; both effects were prevented by DHNA. In males, UCMS increased FST immobility time, and increased the latency to groom in the splash test. These effects were not mitigated by DHNA. However, in males, UCMS induced an increase in novelty-induced locomotion, an increase in the time spent in the light compartment in the L/D test, and an increase in the time spent with an object in a novel location. These effects were prevented by DHNA. CONCLUSIONS Our findings indicate that DHNA has high potential to act as antidepressants in females. However, given classical interpretation, DHNA did not appear to act as an antidepressant in males. Nonetheless, our findings indicate that DHNA can mitigate stress effects and reactivity in males.
Collapse
Affiliation(s)
- Caitlin A Madison
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Roanna A Debler
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Nathan I Vardeleon
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Lauren Hillbrick
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA.
| |
Collapse
|