1
|
Yoo C, Xing D, Gonzalez DE, Jenkins V, Nottingham K, Dickerson B, Leonard M, Ko J, Lewis MH, Faries M, Kephart W, Purpura M, Jäger R, Wells SD, Liao K, Sowinski R, Rasmussen CJ, Kreider RB. Paraxanthine provides greater improvement in cognitive function than caffeine after performing a 10-km run. J Int Soc Sports Nutr 2024; 21:2352779. [PMID: 38725238 PMCID: PMC11089923 DOI: 10.1080/15502783.2024.2352779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/01/2024] [Indexed: 05/15/2024] Open
Abstract
RATIONALE Intense exercise promotes fatigue and can impair cognitive function, particularly toward the end of competition when decision-making is often critical for success. For this reason, athletes often ingest caffeinated energy drinks prior to or during exercise to help them maintain focus, reaction time, and cognitive function during competition. However, caffeine habituation and genetic sensitivity to caffeine (CA) limit efficacy. Paraxanthine (PX) is a metabolite of caffeine reported to possess nootropic properties. This study examined whether ingestion of PX with and without CA affects pre- or post-exercise cognitive function. METHODS 12 trained runners were randomly assigned to consume in a double-blind, randomized, and crossover manner 400 mg of a placebo (PL); 200 mg of PL + 200 mg of CA; 200 mg of PL + 200 mg of PX (ENFINITY®, Ingenious Ingredients); or 200 mg PX + 200 mg of CA (PX+CA) with a 7-14-day washout between treatments. Participants donated fasting blood samples and completed pre-supplementation (PRE) side effects questionnaires, the Berg-Wisconsin Card Sorting Test (BCST), and the Psychomotor Vigilance Task Test (PVTT). Participants then ingested the assigned treatment and rested for 60 minutes, repeated tests (PRE-EX), performed a 10-km run on a treadmill at a competition pace, and then repeated tests (POST-EX). Data were analyzed using General Linear Model (GLM) univariate analyses with repeated measures and percent changes from baseline with 95% confidence intervals. RESULTS BCST correct responses in the PX treatment increased from PRE-EX to POST-EX (6.8% [1.5, 12.1], p = 0.012). The error rate in the PL (23.5 [-2.8, 49.8] %, p = 0.078) and CA treatment (31.5 [5.2, 57.8] %, p = 0.02) increased from PRE-EX values with POST-EX errors tending to be lower with PX treatment compared to CA (-35.7 [-72.9, 1.4] %, p = 0.059). POST-EX perseverative errors with PAR rules were significantly lower with PX treatment than with CA (-26.9 [-50.5, -3.4] %, p = 0.026). Vigilance analysis revealed a significant interaction effect in Trial #2 mean reaction time values (p = 0.049, η p 2 = 0.134, moderate to large effect) with POST-EX reaction times tending to be faster with PX and CA treatment. POST-EX mean reaction time of all trials with PX treatment was significantly faster than PL (-23.2 [-43.4, -2.4] %, p = 0.029) and PX+CA (-29.6 [-50.3, -8.80] %, p = 0.006) treatments. There was no evidence that PX ingestion adversely affected ratings of side effects associated with stimulant intake or clinical blood markers. CONCLUSIONS Results provide some evidence that pre-exercise PX ingestion improves prefrontal cortex function, attenuates attentional decline, mitigates cognitive fatigue, and improves reaction time and vigilance. Adding CA to PX did not provide additional benefits. Therefore, PX ingestion may serve as a nootropic alternative to CA.
Collapse
Affiliation(s)
- Choongsung Yoo
- Texas A&M University, Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| | - Dante Xing
- Texas A&M University, Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| | - Drew E. Gonzalez
- Texas A&M University, Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| | - Victoria Jenkins
- Texas A&M University, Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| | - Kay Nottingham
- Texas A&M University, Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| | - Broderick Dickerson
- Texas A&M University, Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| | - Megan Leonard
- Texas A&M University, Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| | - Joungbo Ko
- Texas A&M University, Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| | - Megan H. Lewis
- Texas A&M University, Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| | - Mark Faries
- Texas A&M University, Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
- Texas A&M University, Texas A&M AgriLife Extension, College Station, TX, USA
| | - Wesley Kephart
- University of Wisconsin – Whitewater, Department of Kinesiology, Whitewater, WI, USA
| | - Martin Purpura
- Increnovo LLC, Milwaukee, WI, USA
- Ingenious Ingredients LP, Lewisville, TX, USA
| | - Ralf Jäger
- Increnovo LLC, Milwaukee, WI, USA
- Ingenious Ingredients LP, Lewisville, TX, USA
| | | | - Kylin Liao
- Ingenious Ingredients LP, Lewisville, TX, USA
| | - Ryan Sowinski
- Texas A&M University, Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| | - Christopher J. Rasmussen
- Texas A&M University, Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| | - Richard B. Kreider
- Texas A&M University, Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, College Station, TX, USA
| |
Collapse
|
2
|
Yoo C, Maury J, Gonzalez DE, Ko J, Xing D, Jenkins V, Dickerson B, Leonard M, Estes L, Johnson S, Chun J, Broeckel J, Pradelles R, Sowinski R, Rasmussen CJ, Kreider RB. Effects of Supplementation with a Microalgae Extract from Phaeodactylum tricornutum Containing Fucoxanthin on Cognition and Markers of Health in Older Individuals with Perceptions of Cognitive Decline. Nutrients 2024; 16:2999. [PMID: 39275314 PMCID: PMC11397347 DOI: 10.3390/nu16172999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Phaeodactylum tricornutum (PT) is a microalgae extract that contains fucoxanthin and has been shown to enhance cognitive function in younger populations. The present study assessed if PT supplementation affects cognition in healthy, young-old, physically active adults with self-perceptions of cognitive and memory decline. METHODS Forty-three males and females (64.3 ± 6.0 years, 79.8 ± 16.0 kg, 27.0 ± 4.0 kg/m2) with perceptions of cognitive and memory decline completed the double-blind, randomized, parallel-arm, placebo-controlled intervention clinical trial. Participants were counterbalanced by sex and BMI and randomly allocated to their respective 12-week supplementation interventions, which were either the placebo (PL) or 1100 mg/day of PT containing 8.8 mg of fucoxanthin (FX). Fasting blood samples were collected, and cognitive assessments were performed during the testing session at 0, 4, and 12 weeks of intervention. The data were analyzed by multivariate and univariate general linear model (GLM) analyses with repeated measures, pairwise comparisons, and mean changes from baseline analysis with 95% confidence intervals (CIs) to assess the clinical significance of the findings. RESULTS FX supplementation significantly affected (p < 0.05) or exhibited tendencies toward significance (p > 0.05 to p < 0.10 with effect sizes ranging from medium to large) for word recall, picture recognition reaction time, Stroop color-word test, choice reaction time, and digit vigilance test variables. Additionally, FX supplementation promoted a more consistent clinical improvement from baseline values when examining mean changes with 95% CIs, although most differences were seen over time rather than between groups. CONCLUSIONS The results demonstrate some evidence that FX supplementation can improve working and secondary memory, vigilance, attention, accuracy, and executive function. There was also evidence that FX promoted more positive effects on insulin sensitivity and perceptions about sleep quality with no negative effects on clinical blood panels or perceived side effects. Additional research should investigate how FX may affect cognition in individuals perceiving memory and cognitive decline. Registered clinical trial #NCT05759910.
Collapse
Affiliation(s)
- Choongsung Yoo
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Jonathan Maury
- Research & Development Department, Microphyt, 34670 Baillargues, France; (J.M.); (R.P.)
| | - Drew E. Gonzalez
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Joungbo Ko
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Dante Xing
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Victoria Jenkins
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Broderick Dickerson
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Megan Leonard
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Landry Estes
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Sarah Johnson
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Jisun Chun
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Jacob Broeckel
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Rémi Pradelles
- Research & Development Department, Microphyt, 34670 Baillargues, France; (J.M.); (R.P.)
| | - Ryan Sowinski
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Christopher J. Rasmussen
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab., Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (C.Y.); (D.E.G.); (J.K.); (D.X.); (V.J.); (B.D.); (M.L.); (L.E.); (S.J.); (J.C.); (J.B.); (R.S.); (C.J.R.)
| |
Collapse
|
3
|
Ho DKN, Chiu WC, Kao JW, Tseng HT, Lin CY, Huang PH, Fang YR, Chen KH, Su TY, Yang CH, Yao CY, Su HY, Wei PH, Chang JS. Reliability Issues of Mobile Nutrition Apps for Cardiovascular Disease Prevention: Comparative Study. JMIR Mhealth Uhealth 2024; 12:e54509. [PMID: 39233588 PMCID: PMC11391091 DOI: 10.2196/54509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/14/2024] [Accepted: 06/24/2024] [Indexed: 09/06/2024] Open
Abstract
Background Controlling saturated fat and cholesterol intake is important for the prevention of cardiovascular diseases. Although the use of mobile diet-tracking apps has been increasing, the reliability of nutrition apps in tracking saturated fats and cholesterol across different nations remains underexplored. Objective This study aimed to examine the reliability and consistency of nutrition apps focusing on saturated fat and cholesterol intake across different national contexts. The study focused on 3 key concerns: data omission, inconsistency (variability) of saturated fat and cholesterol values within an app, and the reliability of commercial apps across different national contexts. Methods Nutrient data from 4 consumer-grade apps (COFIT, MyFitnessPal-Chinese, MyFitnessPal-English, and LoseIt!) and an academic app (Formosa FoodApp) were compared against 2 national reference databases (US Department of Agriculture [USDA]-Food and Nutrient Database for Dietary Studies [FNDDS] and Taiwan Food Composition Database [FCD]). Percentages of missing nutrients were recorded, and coefficients of variation were used to compute data inconsistencies. One-way ANOVAs were used to examine differences among apps, and paired 2-tailed t tests were used to compare the apps to national reference data. The reliability across different national contexts was investigated by comparing the Chinese and English versions of MyFitnessPal with the USDA-FNDDS and Taiwan FCD. Results Across the 5 apps, 836 food codes from 42 items were analyzed. Four apps, including COFIT, MyFitnessPal-Chinese, MyFitnessPal-English, and LoseIt!, significantly underestimated saturated fats, with errors ranging from -13.8% to -40.3% (all P<.05). All apps underestimated cholesterol, with errors ranging from -26.3% to -60.3% (all P<.05). COFIT omitted 47% of saturated fat data, and MyFitnessPal-Chinese missed 62% of cholesterol data. The coefficients of variation of beef, chicken, and seafood ranged from 78% to 145%, from 74% to 112%, and from 97% to 124% across MyFitnessPal-Chinese, MyFitnessPal-English, and LoseIt!, respectively, indicating a high variability in saturated fats across different food groups. Similarly, cholesterol variability was consistently high in dairy (71%-118%) and prepackaged foods (84%-118%) across all selected apps. When examining the reliability of MyFitnessPal across different national contexts, errors in MyFitnessPal were consistent across different national FCDs (USDA-FNDSS and Taiwan FCD). Regardless of the FCDs used as a reference, these errors persisted to be statistically significant, indicating that the app's core database is the source of the problems rather than just mismatches or variances in external FCDs. Conclusions The findings reveal substantial inaccuracies and inconsistencies in diet-tracking apps' reporting of saturated fats and cholesterol. These issues raise concerns for the effectiveness of using consumer-grade nutrition apps in cardiovascular disease prevention across different national contexts and within the apps themselves.
Collapse
Affiliation(s)
- Dang Khanh Ngan Ho
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wuxing Street, Xinyi District, Taipei, 110, Taiwan, 886 2-27361661 ext 6542
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wuxing Street, Xinyi District, Taipei, 110, Taiwan, 886 2-27361661 ext 6542
- Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jing-Wen Kao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wuxing Street, Xinyi District, Taipei, 110, Taiwan, 886 2-27361661 ext 6542
| | - Hsiang-Tung Tseng
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wuxing Street, Xinyi District, Taipei, 110, Taiwan, 886 2-27361661 ext 6542
| | - Cheng-Yu Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wuxing Street, Xinyi District, Taipei, 110, Taiwan, 886 2-27361661 ext 6542
| | - Pin-Hsiang Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wuxing Street, Xinyi District, Taipei, 110, Taiwan, 886 2-27361661 ext 6542
| | - Yu-Ren Fang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wuxing Street, Xinyi District, Taipei, 110, Taiwan, 886 2-27361661 ext 6542
| | - Kuei-Hung Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wuxing Street, Xinyi District, Taipei, 110, Taiwan, 886 2-27361661 ext 6542
| | - Ting-Ying Su
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wuxing Street, Xinyi District, Taipei, 110, Taiwan, 886 2-27361661 ext 6542
| | - Chia-Hui Yang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wuxing Street, Xinyi District, Taipei, 110, Taiwan, 886 2-27361661 ext 6542
| | - Chih-Yuan Yao
- Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsiu-Yueh Su
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wuxing Street, Xinyi District, Taipei, 110, Taiwan, 886 2-27361661 ext 6542
- Department of Dietetics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Pin-Hui Wei
- Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wuxing Street, Xinyi District, Taipei, 110, Taiwan, 886 2-27361661 ext 6542
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Chinese Taipei Society for the Study of Obesity (CTSSO), Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Li X, Yin A, Choi HY, Chan V, Allman-Farinelli M, Chen J. Evaluating the Quality and Comparative Validity of Manual Food Logging and Artificial Intelligence-Enabled Food Image Recognition in Apps for Nutrition Care. Nutrients 2024; 16:2573. [PMID: 39125452 PMCID: PMC11314244 DOI: 10.3390/nu16152573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
For artificial intelligence (AI) to support nutrition care, high quality and accuracy of its features within smartphone applications (apps) are essential. This study evaluated popular apps' features, quality, behaviour change potential, and comparative validity of dietary assessment via manual logging and AI. The top 200 free and paid nutrition-related apps from Australia's Apple App and Google Play stores were screened (n = 800). Apps were assessed using MARS (quality) and ABACUS (behaviour change potential). Nutritional outputs from manual food logging and AI-enabled food-image recognition apps were compared with food records for Western, Asian, and Recommended diets. Among 18 apps, Noom scored highest on MARS (mean = 4.44) and ABACUS (21/21). From 16 manual food-logging apps, energy was overestimated for Western (mean: 1040 kJ) but underestimated for Asian (mean: -1520 kJ) diets. MyFitnessPal and Fastic had the highest accuracy (97% and 92%, respectively) out of seven AI-enabled food image recognition apps. Apps with more AI integration demonstrated better functionality, but automatic energy estimations from AI-enabled food image recognition were inaccurate. To enhance the integration of apps into nutrition care, collaborating with dietitians is essential for improving their credibility and comparative validity by expanding food databases. Moreover, training AI models are needed to improve AI-enabled food recognition, especially for mixed dishes and culturally diverse foods.
Collapse
Affiliation(s)
- Xinyi Li
- Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Annabelle Yin
- Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ha Young Choi
- Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Virginia Chan
- Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Margaret Allman-Farinelli
- Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Juliana Chen
- Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Spring B, Pfammatter AF, Scanlan L, Daly E, Reading J, Battalio S, McFadden HG, Hedeker D, Siddique J, Nahum-Shani I. An Adaptive Behavioral Intervention for Weight Loss Management: A Randomized Clinical Trial. JAMA 2024; 332:21-30. [PMID: 38744428 PMCID: PMC11094642 DOI: 10.1001/jama.2024.0821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/19/2024] [Indexed: 05/16/2024]
Abstract
Importance Lifestyle interventions for weight loss are difficult to implement in clinical practice. Self-managed mobile health implementations without or with added support after unsuccessful weight loss attempts could offer effective population-level obesity management. Objective To test whether a wireless feedback system (WFS) yields noninferior weight loss vs WFS plus telephone coaching and whether participants who do not respond to initial treatment achieve greater weight loss with more vs less vigorous step-up interventions. Design, Setting, and Participants In this noninferiority randomized trial, 400 adults aged 18 to 60 years with a body mass index of 27 to 45 were randomized in a 1:1 ratio to undergo 3 months of treatment initially with WFS or WFS plus coaching at a US academic medical center between June 2017 and March 2021. Participants attaining suboptimal weight loss were rerandomized to undergo modest or vigorous step-up intervention. Interventions The WFS included a Wi-Fi activity tracker and scale transmitting data to a smartphone app to provide daily feedback on progress in lifestyle change and weight loss, and WFS plus coaching added 12 weekly 10- to 15-minute supportive coaching calls delivered by bachelor's degree-level health promotionists viewing participants' self-monitoring data on a dashboard; step-up interventions included supportive messaging via mobile device screen notifications (app-based screen alerts) without or with coaching or powdered meal replacement. Participants and staff were unblinded and outcome assessors were blinded to treatment randomization. Main Outcomes and Measures The primary outcome was the between-group difference in 6-month weight change, with the noninferiority margin defined as a difference in weight change of -2.5 kg; secondary outcomes included between-group differences for all participants in weight change at 3 and 12 months and between-group 6-month weight change difference among nonresponders exposed to modest vs vigorous step-up interventions. Results Among 400 participants (mean [SD] age, 40.5 [11.2] years; 305 [76.3%] women; 81 participants were Black and 266 were White; mean [SD] body mass index, 34.4 [4.3]) randomized to undergo WFS (n = 199) vs WFS plus coaching (n = 201), outcome data were available for 342 participants (85.5%) at 6 months. Six-month weight loss was -2.8 kg (95% CI, -3.5 to -2.0) for the WFS group and -4.8 kg (95% CI, -5.5 to -4.1) for participants in the WFS plus coaching group (difference in weight change, -2.0 kg [90% CI, -2.9 to -1.1]; P < .001); the 90% CI included the noninferiority margin of -2.5 kg. Weight change differences were comparable at 3 and 12 months and, among nonresponders, at 6 months, with no difference by step-up therapy. Conclusions and Relevance A wireless feedback system (Wi-Fi activity tracker and scale with smartphone app to provide daily feedback) was not noninferior to the same system with added coaching. Continued efforts are needed to identify strategies for weight loss management and to accurately select interventions for different individuals to achieve weight loss goals. Trial Registration ClinicalTrials.gov Identifier: NCT02997943.
Collapse
Affiliation(s)
- Bonnie Spring
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Angela F. Pfammatter
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Public Health, College of Education, Health, and Human Sciences, The University of Tennessee, Knoxville
| | - Laura Scanlan
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Elyse Daly
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jean Reading
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sam Battalio
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - H. Gene McFadden
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Don Hedeker
- Department of Public Health Sciences, The University of Chicago Biological Sciences, Chicago, Illinois
| | - Juned Siddique
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | |
Collapse
|
6
|
Chavez JW, Christie AL, Zimmern PE. In-Depth Analysis of Diet Diary and Urine pH Measurements Improved Food Diet Reporting in Postmenopausal Women with RUTI. WOMEN'S HEALTH REPORTS (NEW ROCHELLE, N.Y.) 2024; 5:367-375. [PMID: 39035142 PMCID: PMC11257122 DOI: 10.1089/whr.2024.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 07/23/2024]
Abstract
Introduction We proceeded with an in-depth review of diet diaries for nutrient analysis from a cohort of women suffering from uncomplicated recurrent urinary tract infection (RUTI) to validate the accuracy of our current food diet record (FDR) form and evaluate possible domains of improvement. Materials and Methods As part of an IRB-approved study, this previously published cohort of NHANES-comparable women was analyzed for consistency of the nutrient intake over 3 days, the influence of the time between meals and urine pH, the effect of nutrient intake over interval time between meals, and seasonal and before/during the COVID-19 pandemic changes. Intrarater reliability for nutrient analysis and intrapatient variability for urine pH were computed to test for consistency. Results Intrarater reliability for diet analysis was 91% accurate for foods and beverage matching and nutrient analysis. Mean standard deviation of urine pH readings within study participants was 0.4 (95% CI: 0.4, 0.5). An association was noted between total calories and fat consumed at breakfast and an increase in time to lunch. Calories consumed were unaffected across seasons or during the COVID-19 pandemic. Water intake during summer was significantly lower than that during fall and winter (both, p < 0.001). The patients who reported drinking water had a significantly lower average urine pH than women who did not report drinking water (5.8 vs. 6.2; p = 0.026). Conclusion In this cohort of postmenopausal women with RUTIs, in-depth analysis of our current FDR findings led to several actionable items, which will improve our current food diet self-reporting process by our patients.
Collapse
Affiliation(s)
| | - Alana L. Christie
- Simmons Comprehensive Cancer Center Biostatistics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Philippe E. Zimmern
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Dickerson B, Maury J, Jenkins V, Nottingham K, Xing D, Gonzalez DE, Leonard M, Kendra J, Ko J, Yoo C, Johnson S, Pradelles R, Purpura M, Jäger R, Sowinski R, Rasmussen CJ, Kreider RB. Effects of Supplementation with Microalgae Extract from Phaeodactylum tricornutum (Mi136) to Support Benefits from a Weight Management Intervention in Overweight Women. Nutrients 2024; 16:990. [PMID: 38613023 PMCID: PMC11013338 DOI: 10.3390/nu16070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Microalgae like Phaeodactylum tricornutum (PT) contain the carotenoid, fucoxanthin, which has been purported to promote fat loss, lower blood lipids, and improve glucose management. This study examined whether dietary supplementation with microalgae extracts from PT containing 4.4 mg/d of fucoxanthin affects changes in body composition or health markers in overweight women during an exercise and diet intervention. MATERIALS AND METHODS A total of 37 females (28.6 ± 7.9 years, 80.2 ± 14.9 kg, 29.6 ± 3.8 kg/m², 41.4 ± 4.2% fat) fasted for 12 h, donated a fasting blood sample, completed health and mood state inventories, and undertook body composition, health, and exercise assessments. In a counterbalanced, randomized, and double-blind manner, participants ingested a placebo (PL), or microalgae extract of Phaeodactylum tricornutum standardized to 4.4 mg of fucoxanthin (FX) for 12 weeks while participating in a supervised exercise program that included resistance-training and walking (3 days/week) with encouragement to accumulate 10,000 steps/day on remaining days of the week. The diet intervention involved reducing energy intake by about -300 kcal/d (i.e., ≈1400-1600 kcals/d, 55% carbohydrate, 30% fat, 15% protein) to promote a -500 kcal/d energy deficit with exercise. Follow-up testing was performed at 6 and 12 weeks. A general linear model (GLM) with repeated measures statistical analysis was used to analyze group responses and changes from baseline with 95% confidence intervals. RESULTS Dietary supplementation with microalgae extract from PT containing fucoxanthin for 12 weeks did not promote additional weight loss or fat loss in overweight but otherwise healthy females initiating an exercise and diet intervention designed to promote modest weight loss. However, fucoxanthin supplementation preserved bone mass, increased bone density, and saw greater improvements in walking steps/day, resting heart rate, aerobic capacity, blood lipid profiles, adherence to diet goals, functional activity tolerance, and measures of quality of life. Consequently, there appears to be some benefit to supplementing microalgae extract from PT containing fucoxanthin during a diet and exercise program. Registered clinical trial #NCT04761406.
Collapse
Affiliation(s)
- Broderick Dickerson
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Jonathan Maury
- Research & Development Department, Microphyt, 34670 Baillargues, France; (J.M.); (R.P.)
| | - Victoria Jenkins
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Kay Nottingham
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Dante Xing
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Drew E. Gonzalez
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Megan Leonard
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Jacob Kendra
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Joungbo Ko
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Choongsung Yoo
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Sarah Johnson
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Rémi Pradelles
- Research & Development Department, Microphyt, 34670 Baillargues, France; (J.M.); (R.P.)
| | - Martin Purpura
- Increnovo LLC, Whitefish Bay, WI 53217, USA; (M.P.); (R.J.)
| | - Ralf Jäger
- Increnovo LLC, Whitefish Bay, WI 53217, USA; (M.P.); (R.J.)
| | - Ryan Sowinski
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Christopher J. Rasmussen
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| |
Collapse
|
8
|
Leonard M, Maury J, Dickerson B, Gonzalez DE, Kendra J, Jenkins V, Nottingham K, Yoo C, Xing D, Ko J, Pradelles R, Faries M, Kephart W, Sowinski R, Rasmussen CJ, Kreider RB. Effects of Dietary Supplementation of a Microalgae Extract Containing Fucoxanthin Combined with Guarana on Cognitive Function and Gaming Performance. Nutrients 2023; 15:nu15081918. [PMID: 37111136 PMCID: PMC10142384 DOI: 10.3390/nu15081918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Esports competitive gaming requires selective visual attention, memory, quick judgment, and an ability to sustain psychomotor performance over time. Fucoxanthin is a carotenoid, found in specific microalgae varieties such as Phaeodactylum tricornutum (PT), that has been purported to possess nootropic and neuroprotective effects through its anti-inflammatory and antioxidant properties. This study evaluated whether acute and 30-day supplementation of an extract of PT from microalgae combined with guarana (a natural source of caffeine) affects cognitive function in gamers. MATERIALS AND METHODS In a double-blind, placebo-controlled manner, 61 experienced gamers (21.7 ± 4.1 years, 73 ± 13 kg) were randomly assigned to ingest a placebo (PL), a low-dose (LD) supplement containing 440 mg of PT extract including 1% fucoxanthin +500 mg of guarana containing 40-44 mg caffeine (MicroPhyt™, Microphyt, Baillargues, FR), or a high-dose (HD) supplement containing 880 mg of PT extract +500 mg of guarana for 30 days. At baseline, cognitive function tests were administered before supplementation, 15 min post-supplementation, and after 60 min of competitive gameplay with participants' most played video game. Participants continued supplementation for 30 days and then repeated pre-supplementation and post-gaming cognitive function tests. General linear model univariate analyses with repeated measures and changes from baseline with 95% confidence intervals were used to analyze data. RESULTS There was some evidence that acute and 30-day ingestion of the PT extract from microalgae with guarana improved reaction times, reasoning, learning, executive control, attention shifting (cognitive flexibility), and impulsiveness. While some effects were seen after acute ingestion, the greatest impact appeared after 30 days of supplementation, with some benefits seen in the LD and HD groups. Moreover, there was evidence that both doses of the PT extract from microalgae with guarana may support mood state after acute and 30-day supplementation. Registered clinical trial #NCT04851899.
Collapse
Affiliation(s)
- Megan Leonard
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Jonathan Maury
- Microphyt, Research & Development Department, 34670 Baillargues, France
| | - Broderick Dickerson
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Drew E Gonzalez
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Jacob Kendra
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Victoria Jenkins
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Kay Nottingham
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Choongsung Yoo
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Dante Xing
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Joungbo Ko
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Rémi Pradelles
- Microphyt, Research & Development Department, 34670 Baillargues, France
| | - Mark Faries
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
- Texas A&M AgriLife Extension, Texas A&M University, College Station, TX 77843, USA
| | - Wesley Kephart
- Department of Kinesiology, University of Wisconsin, Whitewater, WI 53190, USA
| | - Ryan Sowinski
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Christopher J Rasmussen
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Xing D, Yoo C, Gonzalez D, Jenkins V, Nottingham K, Dickerson B, Leonard M, Ko J, Faries M, Kephart W, Purpura M, Jäger R, Sowinski R, Rasmussen CJ, Kreider RB. Effects of Acute Ashwagandha Ingestion on Cognitive Function. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191911852. [PMID: 36231152 PMCID: PMC9565281 DOI: 10.3390/ijerph191911852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Ashwagandha (Withania somnifera) has been reported to decrease perceptions of stress, enhance mood, and improve cognitive function. However, it is currently unknown whether acute ashwagandha supplementation affects memory and cognitive function. This study evaluated the effects of acute ashwagandha extract ingestion on executive function. MATERIALS AND METHODS 13 healthy volunteers were administered the Berg-Wisconsin Card Sorting (BCST), Go/No-Go (GNG), Sternberg Task (STT), and Psychomotor Vigilance Task (PVTT) tests. Participants then ingested in a double-blind, placebo-controlled, and crossover manner 400 mg of a placebo (PLA) or ashwagandha (ASH) extract (NooGandha®, Specnova Inc., Boca Raton, FL, USA). Participants then performed cognitive function tests every hour for 6 h. After a 4-day washout period, volunteers repeated the experiment while receiving the remaining supplement. Data were analyzed by repeated measures General Linear Model multivariate and univariate statistics with body weight as a covariate. RESULTS Acute ASH supplementation increased STT-determined working memory as demonstrated by an improvement in 6 letter length, Present Reaction Time at 3 and 6 h. PVTT analysis revealed that ASH sustained attention by helping maintain reaction times, preventing mental fatigue, and remaining vigilant. Conversely, reaction times (at task 20, hour 6; overall, hour 3) increased with PLA. In the BCST, there was evidence that ASH increased the ability to recognize and 'shift' to a new rule compared with baseline. However, this was not seen when evaluating changes from baseline, suggesting that differences in baseline values influence results. In the GNG test, ASH ingestion promoted faster response times to respond correctly than PLA, indicating less metal fatigue. However, ASH did not affect accuracy compared to PLA, as both treatments decreased the percentage of correct answers. CONCLUSIONS Acute supplementation with 400 mg of ashwagandha improved selected measures of executive function, helped sustain attention, and increased short-term/working memory.
Collapse
Affiliation(s)
- Dante Xing
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Choongsung Yoo
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Drew Gonzalez
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Victoria Jenkins
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Kay Nottingham
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Broderick Dickerson
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Megan Leonard
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Joungbo Ko
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Mark Faries
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
- Texas A&M AgriLife Extension, Texas A&M University, College Station, TX 77843, USA
| | - Wesley Kephart
- Department of Kinesiology, University of Wisconsin, Whitewater, WI 53190, USA
| | | | | | - Ryan Sowinski
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Christopher J. Rasmussen
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| |
Collapse
|
10
|
Validating Accuracy of an Internet-Based Application against USDA Computerized Nutrition Data System for Research on Essential Nutrients among Social-Ethnic Diets for the E-Health Era. Nutrients 2022; 14:nu14153168. [PMID: 35956344 PMCID: PMC9370220 DOI: 10.3390/nu14153168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Internet-based applications (apps) are rapidly developing in the e-Health era to assess the dietary intake of essential macro-and micro-nutrients for precision nutrition. We, therefore, validated the accuracy of an internet-based app against the Nutrition Data System for Research (NDSR), assessing these essential nutrients among various social-ethnic diet types. The agreement between the two measures using intraclass correlation coefficients was good (0.85) for total calories, but moderate for caloric ranges outside of <1000 (0.75) and >2000 (0.57); and good (>0.75) for most macro- (average: 0.85) and micro-nutrients (average: 0.83) except cobalamin (0.73) and calcium (0.51). The app underestimated nutrients that are associated with protein and fat (protein: −5.82%, fat: −12.78%, vitamin B12: −13.59%, methionine: −8.76%, zinc: −12.49%), while overestimated nutrients that are associated with carbohydrate (fiber: 6.7%, B9: 9.06%). Using artificial intelligence analytics, we confirmed the factors that could contribute to the differences between the two measures for various essential nutrients, and they included caloric ranges; the differences between the two measures for carbohydrates, protein, and fat; and diet types. For total calories, as an example, the source factors that contributed to the differences between the two measures included caloric range (<1000 versus others), fat, and protein; for cobalamin: protein, American, and Japanese diets; and for folate: caloric range (<1000 versus others), carbohydrate, and Italian diet. In the e-Health era, the internet-based app has the capacity to enhance precision nutrition. By identifying and integrating the effects of potential contributing factors in the algorithm of output readings, the accuracy of new app measures could be improved.
Collapse
|