1
|
Abraham DS, Vinoba M, Bhagiyalakshmi M. NiCr-LDH/V 4C 3 MXene nanocomposites as an efficient electrocatalyst for urea oxidation. NANOSCALE 2025. [PMID: 39782877 DOI: 10.1039/d4nr04064c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The quest for highly efficient electrocatalysts for direct urea fuel cells (DUFCs) is vital in addressing the energy deficits and environmental crisis. Ni-based LDHs are widely known for their substantial capability in urea oxidation reactions (UOR). This study involved the synthesis of NiCr-LDH/V4C3 MXene nanocomposites (NCVs) and the evaluation of their electrochemical efficiency towards UOR. The hybridization of V4C3 with NiCr-LDH improved the redox kinetics of the nanocomposite. NCV-21 achieved a notable efficiency of 10 mA cm-2 at a lower onset potential of 1.36 V versus the reversible hydrogen electrode in a 1.0 M KOH solution containing 0.33 M urea. Furthermore, it demonstrated an enhanced current density of 112.64 mA cm-2 and long-term durability. The robust interaction and electronic coupling between NiCr-LDH and V4C3 MXene, marked by superior current density and significant charge transfer, confers the nanocomposite with remarkable catalytic activity and stability towards substantial urea oxidation performance. Based on the results obtained, the NiCr-LDH/V4C3 MXene nanocomposite is an efficient anodic catalyst for urea oxidation. This study will open a new avenue for the development of various LDH/MXene nanocomposites for energy conservation applications.
Collapse
Affiliation(s)
| | - Mari Vinoba
- Kuwait Institute for Scientific Research, Safat-13109, Kuwait
| | | |
Collapse
|
2
|
Molybdenum carbide/Ni nanoparticles-incorporated carbon nanofibers as effective non-precious catalyst for urea electrooxidation reaction. Sci Rep 2022; 12:22574. [PMID: 36585465 PMCID: PMC9803659 DOI: 10.1038/s41598-022-26975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, molybdenum carbide and carbon were investigated as co-catalysts to enhance the nickel electro-activity toward urea oxidation. The proposed electrocatalyst has been formulated in the form of nanofibrous morphology to exploit the advantage of the large axial ratio. Typically, calcination of electropsun polymeric nanofibers composed of poly(vinyl alcohol), molybdenum chloride and nickel acetate under vacuum resulted in producing good morphology molybdenum carbide/Ni NPs-incorporated carbon nanofibers. Investigation on the composition and morphology of the proposed catalyst was achieved by XRD, SEM, XPS, elemental mapping and TEM analyses which concluded formation of molybdenum carbide and nickel nanoparticles embedded in a carbon nanofiber matrix. As an electrocatalyst for urea oxidation, the electrochemical measurements indicated that the proposed composite has a distinct activity when the molybdenum content is optimized. Typically, the nanofibers prepared from electrospun nanofibers containing 25 wt% molybdenum precursor with respect to nickel acetate revealed the best performance. Numerically, using 0.33 M urea in 1.0 M KOH, the obtained current densities were 15.5, 44.9, 52.6, 30.6, 87.9 and 17.6 mA/cm2 for nanofibers prepared at 850 °C from electropsun mats containing 0, 5, 10, 15, 25 and 35 molybdenum chloride, respectively. Study the synthesis temperature of the proposed composite indicated that 1000 °C is the optimum calcination temperature. Kinetic studies indicated that electrooxidation reaction of urea does not follow Arrhenius's law.
Collapse
|
3
|
Zhao Z, Wang H, Tan H, Wu X, Kang Y, Dong Y, Li X, Jin S, Chang X. Deciphering the active origin for urea oxidation reaction over nitrogen penetrated nickel nanoparticles embedded in carbon nanotubes. J Colloid Interface Sci 2022; 626:740-751. [DOI: 10.1016/j.jcis.2022.06.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/26/2022] [Accepted: 06/24/2022] [Indexed: 10/31/2022]
|
4
|
Tragacanth Gum Hydrogel-Derived Trimetallic Nanoparticles Supported on Porous Carbon Catalyst for Urea Electrooxidation. Gels 2022; 8:gels8050292. [PMID: 35621590 PMCID: PMC9141339 DOI: 10.3390/gels8050292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The fabrication of electrocatalysts with high catalytic activity, high durability and low cost towards urea oxidation by a facile method is a great challenge. In this study, non-precious NiCoFe trimetallic supported on porous carbon (NiCoFe@PC) was prepared via gelation and pyrolysis method, presenting a remarkable electrocatalytic activity with low onset potential for urea oxidation in an alkaline medium. Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were used to clarify the morphology of the NiCoFe@PC nanostructure and its nanoparticle size of 17.77 nm. The prepared catalyst with the composition ratio of 24.67, 5.92 and 5.11% for Ni, Fe and Co, respectively, with highly crystalline nanoparticles, fixed on porous carbon, according to energy-dispersive X-ray (EDX) and X-ray diffraction (XRD) analysis. The FeCoNi@PC catalyst showed a catalytic activity of 44.65 mA/cm2 at 0.57 V vs. Ag/AgCl and a low onset potential of 218 mV, which is superior to many other transition bi/trimetallic-based catalysts previously reported.
Collapse
|
5
|
Insights into the Electrochemical Behavior and Kinetics of NiP@PANI/rGO as a High-Performance Electrode for Alkaline Urea Oxidation. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Lera IL, Khasnabis S, Wangatia LM, Femi OE, Ramamurthy PC. An innovative catalyst of PdNiP nanosphere deposited PEDOT:PSS/rGO hybrid material as an efficient electrocatalyst for alkaline urea oxidation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Abdel-Hady EE, Shaban M, Abdel-Hamed MO, Gamal A, Yehia H, Ahmed AM. Synthesis and Characterization of NiCoPt/CNFs Nanoparticles as an Effective Electrocatalyst for Energy Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:492. [PMID: 35159837 PMCID: PMC8840489 DOI: 10.3390/nano12030492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 11/23/2022]
Abstract
In this work, three nanoparticle samples, Ni4Co2Pt/CNFs, Ni5CoPt/CNFs and Ni6Pt/CNFs, were designed according to the molar ratio during loading on carbon nanofibers (CNFs) using electrospinning and carbonization at 900 °C for 7 h in an argon atmosphere. The metal loading and carbon ratio were fixed at 20 and 80 wt%, respectively. Various analysis tools were used to investigate the chemical composition, structural, morphological, and electrochemical (EC) properties. For samples with varying Co%, the carbonization process reduces the fiber diameter of the obtained electrospun nanofibers from 200-580 nm to 150-200 nm. The EDX mapping revealed that nickel, platinum, and cobalt were evenly and uniformly incorporated into the carbonized PVANFs. The prepared Ni-Co-Pt/CNFs have a face-centered cubic (FCC) structure with slightly increased crystallite size as the Co% decreased. The electrocatalytic properties of the samples were investigated for ethanol, methanol and urea electrooxidation. Using cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance measurements, the catalytic performance and electrode stability were investigated as a function of electrolyte concentration, scan rate, and reaction time. When Co is added to Ni, the activation energy required for the electrooxidation reaction decreases and the electrode stability increases. In 1.5 M methanol, the Ni5CoPt/CNFs electrode showed the lowest onset potential and the highest current density (30.6 A/g). This current density is reduced to 28.2 and 21.2 A/g for 1.5 M ethanol and 0.33 M urea, respectively. The electrooxidation of ethanol, methanol, and urea using our electrocatalysts is a combination of kinetic/diffusion control limiting reactions. This research provided a unique approach to developing an efficient Ni-Co-Pt-based electrooxidation catalyst for ethanol, methanol and urea.
Collapse
Affiliation(s)
- Esam E. Abdel-Hady
- Physics Department, Faculty of Science, Minia University, Minia 61519, Egypt; (E.E.A.-H.); (M.O.A.-H.); (H.Y.)
- Academy of Scientific Research and Technology (ASRT) of the Arab Republic of Egypt, Cairo 11516, Egypt
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (A.G.); (A.M.A.)
| | - Mohamed O. Abdel-Hamed
- Physics Department, Faculty of Science, Minia University, Minia 61519, Egypt; (E.E.A.-H.); (M.O.A.-H.); (H.Y.)
- Academy of Scientific Research and Technology (ASRT) of the Arab Republic of Egypt, Cairo 11516, Egypt
| | - Ahmed Gamal
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (A.G.); (A.M.A.)
| | - Heba Yehia
- Physics Department, Faculty of Science, Minia University, Minia 61519, Egypt; (E.E.A.-H.); (M.O.A.-H.); (H.Y.)
| | - Ashour M. Ahmed
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (A.G.); (A.M.A.)
| |
Collapse
|
8
|
Elghamry I, Al-Jendan SA, Saleh MM, Abdelsalam ME. Bimetallic nickel/manganese phosphate–carbon nanofiber electrocatalyst for the oxidation of formaldehyde in alkaline medium. RSC Adv 2022; 12:20656-20671. [PMID: 35919157 PMCID: PMC9292137 DOI: 10.1039/d2ra03359c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/09/2022] [Indexed: 11/30/2022] Open
Abstract
The development of earth-abundant transition metal-based catalysts, supported by a conductive carbonaceous matrix, has received great attention in the field of conversion of formaldehyde derivatives into toxic-free species. Herein, we report a comprehensive investigation of bimetallic electrocatalyst activity towards the electrooxidation of formaldehyde. The bimetallic phosphate catalyst is prepared by co-precipitation of Ni and Mn phosphate precursors using a simple reflux approach. Then the bimetallic catalyst is produced by mixing the Ni/Mn with carbon fibres (CNFs). The structural properties and crystallinity of the catalyst were investigated by using several techniques, such as scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and Brunauer Emmett−Teller theory. The system performance was studied under potentiostatic conditions. Some theoretical thermodynamic and kinetic models were applied to assess the system performance. Accordingly, key electrochemical parameters, including surface coverage (Γ) of active species, charge transfer rate (ks), diffusion coefficient of the formaldehyde (D), and catalytic rate constant (kcat) were calculated at Γ = 1.690 × 10−4 mmol cm−2, ks = 1.0800 s−1, D = 1.185 × 10−3 cm2 s−1 and kcat = 1.08 × 105 cm3 mol−1 s−1. These findings demonstrate the intrinsic electrocatalytic activity of formaldehyde electrooxidation on nickel/manganese phosphate- CNFs in alkaline medium. The catalytic performance of bimetallic Ni/Mn phosphate–carbon nanofiber composite catalyst is better than mono metallic catalysts toward electrooxidation of formaldehyde.![]()
Collapse
Affiliation(s)
- Ibrahim Elghamry
- Department of Chemistry, College of Science, King Faisal University, P. O. Box 400, Al-Ahsa, 31982, Saudi Arabia
| | - Samya A. Al-Jendan
- Department of Chemistry, College of Science, King Faisal University, P. O. Box 400, Al-Ahsa, 31982, Saudi Arabia
| | - M. M. Saleh
- Department of Chemistry, College of Science, King Faisal University, P. O. Box 400, Al-Ahsa, 31982, Saudi Arabia
| | - Mamdouh E. Abdelsalam
- Department of Chemistry, College of Science, King Faisal University, P. O. Box 400, Al-Ahsa, 31982, Saudi Arabia
| |
Collapse
|
9
|
Lera IL, Khasnabis S, Wangatia LM, Femi OE, Ramamurthy PC. Insights into electrochemical behavior and kinetics of NiP on PEDOT:PSS/reduced graphene oxide as high-performance electrodes for alkaline urea oxidation. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05080-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Banitaba SN, Ehrmann A. Application of Electrospun Nanofibers for Fabrication of Versatile and Highly Efficient Electrochemical Devices: A Review. Polymers (Basel) 2021; 13:1741. [PMID: 34073391 PMCID: PMC8197972 DOI: 10.3390/polym13111741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Electrochemical devices convert chemical reactions into electrical energy or, vice versa, electricity into a chemical reaction. While batteries, fuel cells, supercapacitors, solar cells, and sensors belong to the galvanic cells based on the first reaction, electrolytic cells are based on the reversed process and used to decompose chemical compounds by electrolysis. Especially fuel cells, using an electrochemical reaction of hydrogen with an oxidizing agent to produce electricity, and electrolytic cells, e.g., used to split water into hydrogen and oxygen, are of high interest in the ongoing search for production and storage of renewable energies. This review sheds light on recent developments in the area of electrospun electrochemical devices, new materials, techniques, and applications. Starting with a brief introduction into electrospinning, recent research dealing with electrolytic cells, batteries, fuel cells, supercapacitors, electrochemical solar cells, and electrochemical sensors is presented. The paper concentrates on the advantages of electrospun nanofiber mats for these applications which are mostly based on their high specific surface area and the possibility to tailor morphology and material properties during the spinning and post-treatment processes. It is shown that several research areas dealing with electrospun parts of electrochemical devices have already reached a broad state-of-the-art, while other research areas have large space for future investigations.
Collapse
Affiliation(s)
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
11
|
Kim B, Das G, Kim J, Yoon HH, Lee DH. Ni-Co-B nanoparticle decorated carbon felt by electroless plating as a bi-functional catalyst for urea electrolysis. J Colloid Interface Sci 2021; 601:317-325. [PMID: 34087592 DOI: 10.1016/j.jcis.2021.05.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
A free-standing catalyst electrode for urea electrolysis was synthesized by electroless plating of NiCoB alloy onto a flexible carbon felt. The synthesized NiCoB@C catalyst exhibited porous and partially amorphous metallic structure depending on its composition, as analysed by XRD, XPS, and TEM; thus, NiCoB@C catalyst showed a high catalytic activity for urea oxidation reaction as well as hydrogen evolution reaction. The required cell voltage in the electrolysis cell with NiCoB@C as anode and cathode was as low as 1.34 V for the current densities 10 mA cm-2. Similar performance of the urea electrolysis for H2 production using 0.33 M urea and a fresh urine in 1 M KOH was observed. The result indicated that NiCoB could be incorporated on to carbon felt by electroless plating, and it could be used as free-standing bifunctional electrodes for urea electrolysis using urea as well as urine.
Collapse
Affiliation(s)
- Bohyeon Kim
- Department of Chemical and Biological Engineering, Gachon University, Gyeonggi-Do, Republic of Korea
| | - Gautam Das
- Department of Chemical Engineering, Hanyang University (Erica Campus), Ansan-Si, Gyeonggi Do, Republic of Korea
| | - Jihyeon Kim
- Department of Chemical and Biological Engineering, Gachon University, Gyeonggi-Do, Republic of Korea
| | - Hyon Hee Yoon
- Department of Chemical and Biological Engineering, Gachon University, Gyeonggi-Do, Republic of Korea.
| | - Dal Ho Lee
- Department of Electronic Engineering, Gachon University, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
12
|
Gopi S, Ramu AG, Sakthivel S, Maia G, Jang CH, Choi D, Yun K. Cobalt-modified 2D porous organic polymer for highly efficient electrocatalytic removal of toxic urea and nitrophenol. CHEMOSPHERE 2021; 265:129052. [PMID: 33246703 DOI: 10.1016/j.chemosphere.2020.129052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
The urea oxidation reaction (UOR) and nitrophenol reduction are safe and key limiting reactions for sustainable energy conversion and storage. Urea and nitrophenol are abundant in industrial and agricultural wastes, human wastewater, and in the environment. Catalytic oxidative and reductive removal is the most effective process to remove urea and 4-nitrophenol from the environment, necessary to protect human health. 2D carbon-supported, cobalt nanoparticle-based materials are emerging catalysts for nitrophenol reduction and as an anode material for the UOR. In this work, cobalt modified on a porous organic polymer (CoPOP) was synthesized and carbonized at 400 and 600 °C. The formation of CoPOP was confirmed by FT-IR spectroscopy, the 2D graphitic layer and amorphous carbon with cobalt metal by TEM, SEM, and PXRD, and the elemental composition by TEM mapping, EDX, and XPS. The catalytic activity for the 4-nitrophenol reduction was studied and the related electrocatalytic UOR was scientifically evaluated. The catalytic activity toward the reduction of 4-NP to 4-AP was tested with the addition of NaBH4; CoPOP-3 exhibited enhanced activity at a rate of 0.069 min-1. Furthermore, LSV investigated the catalytic activity of materials toward UOR, producing hydrogen gas, the products of which were analyzed via gas chromatography. Among the electrocatalysts studied, CoPOP-2 exhibited a lower onset potential, and the Tafel slope was 1.34 V and 80 mV dec-1. This study demonstrates that cobalt metal-doped porous organic polymers can be used as efficient catalysts to remove urea and nitrophenol from wastewater.
Collapse
Affiliation(s)
- Sivalingam Gopi
- Department of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Adam Gopal Ramu
- Department of Materials Science and Engineering, Hongik University, 2639-Sejong- ro, Jochiwon-eup, Sejong-city, 30016, South Korea
| | | | - Gilberto Maia
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, Campo Grande, MS, 79074-460, Brazil
| | - Chang-Hyun Jang
- Department of Chemistry, Gachon University, GyeongGi -Do, 13120, Republic of Korea
| | - Dongjin Choi
- Department of Materials Science and Engineering, Hongik University, 2639-Sejong- ro, Jochiwon-eup, Sejong-city, 30016, South Korea.
| | - Kyusik Yun
- Department of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
13
|
Barbosa JR, Paranhos CH, Alves OC, Checca NR, Serna JP, Rossi AL, Silva JCM. Low loading platinum dispersed on Ni/C nanoparticles as high active catalysts for urea electrooxidation reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Elishav O, Mosevitzky Lis B, Miller EM, Arent DJ, Valera-Medina A, Grinberg Dana A, Shter GE, Grader GS. Progress and Prospective of Nitrogen-Based Alternative Fuels. Chem Rev 2020; 120:5352-5436. [PMID: 32501681 DOI: 10.1021/acs.chemrev.9b00538] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alternative fuels are essential to enable the transition to a sustainable and environmentally friendly energy supply. Synthetic fuels derived from renewable energies can act as energy storage media, thus mitigating the effects of fossil fuels on environment and health. Their economic viability, environmental impact, and compatibility with current infrastructure and technologies are fuel and power source specific. Nitrogen-based fuels pose one possible synthetic fuel pathway. In this review, we discuss the progress and current research on utilization of nitrogen-based fuels in power applications, covering the complete fuel cycle. We cover the production, distribution, and storage of nitrogen-based fuels. We assess much of the existing literature on the reactions involved in the ammonia to nitrogen atom pathway in nitrogen-based fuel combustion. Furthermore, we discuss nitrogen-based fuel applications ranging from combustion engines to gas turbines, as well as their exploitation by suggested end-uses. Thereby, we evaluate the potential opportunities and challenges of expanding the role of nitrogen-based molecules in the energy sector, outlining their use as energy carriers in relevant fields.
Collapse
Affiliation(s)
- Oren Elishav
- The Nancy and Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Bar Mosevitzky Lis
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Elisa M Miller
- Materials and Chemical Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Douglas J Arent
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Agustin Valera-Medina
- College of Physical Sciences and Engineering, Cardiff University, Wales, United Kingdom
| | - Alon Grinberg Dana
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gennady E Shter
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Gideon S Grader
- The Nancy and Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa 3200003, Israel.,The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
15
|
Zhu B, Liang Z, Zou R. Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906133. [PMID: 31913584 DOI: 10.1002/smll.201906133] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Urea oxidation reaction (UOR) is the underlying reaction that determines the performance of modern urea-based energy conversion technologies. These technologies include electrocatalytic and photoelectrochemical urea splitting for hydrogen production and direct urea fuel cells as power engines. They have demonstrated great potentials as alternatives to current water splitting and hydrogen fuel cell systems with more favorable operating conditions and cost effectiveness. At the moment, UOR performance is mainly limited by the 6-electron transfer process. In this case, various material design and synthesis strategies have recently been reported to produce highly efficient UOR catalysts. The performance of these advanced catalysts is optimized by the modification of their structural and chemical properties, including porosity development, heterostructure construction, defect engineering, surface functionalization, and electronic structure modulation. Considering the rich progress in this field, the recent advances in the design and synthesis of UOR catalysts for urea electrolysis, photoelectrochemical urea splitting, and direct urea fuel cells are reviewed here. Particular attention is paid to those design concepts, which specifically target the characteristics of urea molecules. Moreover, challenges and prospects for the future development of urea-based energy conversion technologies and corresponding catalysts are also discussed.
Collapse
Affiliation(s)
- Bingjun Zhu
- College of Space and Environment, Beihang University, Beijing, 100191, China
| | - Zibin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
16
|
Electrochemical Oxidation of Urea on NiCu Alloy Nanoparticles Decorated Carbon Nanofibers. Catalysts 2019. [DOI: 10.3390/catal9050397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bimetallic Cu3.8Ni alloy nanoparticles (NPs)-anchored carbon nanofibers (composite NFs) were synthesized using a simple electrospinning machine. XRD, SEM, TEM, and TGA were employed to examine the physiochemical characteristics of these composite NFs. The characterization techniques proved that Cu3.8Ni alloy NPs-anchored carbon NFs were successfully fabricated. Urea oxidation (UO) processes as a source of hydrogen and electrical energy were investigated using the fabricated composite NFs. The corresponding onset potential of UO and the oxidation current density (OCD) were measured via cyclic voltammetry as 380 mV versus Ag/AgCl electrode and 98 mA/cm2, respectively. Kinetic study indicated that the electrochemical oxidation of urea followed the diffusion controlled process and the reaction order is 0.5 with respect to urea concentration. The diffusion coefficient of urea using the introduced electrocatalyst was found to be 6.04 × 10−3 cm2/s. Additionally, the composite NFs showed steady state stability for 900 s using chronoamperometry test.
Collapse
|
17
|
Influence of Sn Content, Nanostructural Morphology, and Synthesis Temperature on the Electrochemical Active Area of Ni-Sn/C Nanocomposite: Verification of Methanol and Urea Electrooxidation. Catalysts 2019. [DOI: 10.3390/catal9040330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In contrast to precious metals (e.g., Pt), which possess their electro catalytic activities due to their surface electronic structure, the activity of the Ni-based electrocatalysts depends on formation of an electroactive surface area (ESA) from the oxyhydroxide layer (NiOOH). In this study, the influences of Sn content, nanostructural morphology, and synthesis temperature on the ESA of Sn-incorporated Ni/C nanostructures were studied. To investigate the effect of the nanostructural, Sn-incorporated Ni/C nanostructures, nanofibers were synthesized by electrospinning a tin chloride/nickel acetate/poly (vinyl alcohol) solution, followed by calcination under inert atmosphere at high temperatures (700, 850, and 1000 °C). On the other hand, the same composite was formulated in nanoparticulate form by a sol-gel procedure. The electrochemical measurements indicated that the nanofibrous morphology strongly enhanced formation of the ESA. Investigation of the tin content concluded that the optimum co-catalyst content depends on the synthesis temperature. Typically, the maximum ESA was observed at 10 and 15 wt % of the co-catalyst for the nanofibers prepared at 700 and 850 °C, respectively. Study of the effect of synthesis temperature concluded that at the same tin content, 850 °C calcination temperature reveals the best activity compared to 700 and 1000 °C. Practical verification was achieved by investigation of the electrocatalytic activity toward methanol and urea oxidation. The results confirmed that the activity is directly proportionate to the ESA, especially in the case of urea oxidation. Moreover, beside the distinct increase in the current density, at the optimum calcination temperature and co-catalyst content, a distinguished decrease in the onset potential of both urea and methanol oxidation was observed.
Collapse
|