1
|
Jing MR, Liang XY, Zhang YX, Zhu YW, Wang Y, Chu T, Jin YQ, Zhang CH, Zhu SG, Zhang CJ, Wang QM, Feng ZF, Ji XY, Wu DD. Role of hydrogen sulfide-microRNA crosstalk in health and disease. Nitric Oxide 2024; 152:19-30. [PMID: 39260562 DOI: 10.1016/j.niox.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/15/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The mutual regulation between hydrogen sulfide (H2S) and microRNA (miRNA) is involved in the development of many diseases, including cancer, cardiovascular disease, inflammatory disease, and high-risk pregnancy. Abnormal expressions of endogenous H2S-producing enzyme and miRNA in tissues and cells often indicate the occurrence of diseases, so the maintenance of their normal levels in the body can mitigate damages caused by various factors. Many studies have found that H2S can promote the migration, invasion, and proliferation of cancer cells by regulating the expression of miRNA, while many H2S donors can inhibit cancer progression by interfering with the proliferation, apoptosis, cell cycle, metastasis, and angiogenesis of cancer cells. Furthermore, the mutual regulation between H2S and miRNA can also prevent cell injury in cardiovascular disease and inflammatory disease through anti-inflammation, anti-oxidation, anti-apoptosis, and pro-autophagy. In addition, H2S can promote angiogenesis and relieve vasoconstriction by regulating the expression of miRNA, thereby improving fetal growth in high-risk pregnancy. In this review, we discuss the mechanism of mutual regulation between H2S and miRNA in various diseases, which may provide reliable therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chuan-Hao Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shuai-Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chao-Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qi-Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
2
|
Zhu XX, Meng XY, Chen G, Su JB, Fu X, Xu AJ, Liu Y, Hou XH, Qiu HB, Sun QY, Hu JY, Lv ZL, Sun HJ, Jiang HB, Han ZJ, Zhu J, Lu QB. Nesfatin-1 enhances vascular smooth muscle calcification through facilitating BMP-2 osteogenic signaling. Cell Commun Signal 2024; 22:488. [PMID: 39394127 PMCID: PMC11468037 DOI: 10.1186/s12964-024-01873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Vascular calcification (VC) arises from the accumulation of calcium salts in the intimal or tunica media layer of the aorta, contributing to higher risk of cardiovascular events and mortality. Despite this, the mechanisms driving VC remain incompletely understood. We previously described that nesfatin-1 functioned as a switch for vascular smooth muscle cells (VSMCs) plasticity in hypertension and neointimal hyperplasia. In this study, we sought to investigate the role and mechanism of nesfatin-1 in VC. The expression of nesfatin-1 was measured in calcified VSMCs and aortas, as well as in patients. Loss- and gain-of-function experiments were evaluated the roles of nesfatin-1 in VC pathogenesis. The transcription activation of nesfatin-1 was detected using a mass spectrometry. We found higher levels of nesfatin-1 in both calcified VSMCs and aortas, as well as in patients with coronary calcification. Loss-of-function and gain-of-function experiments revealed that nesfatin-1 was a key regulator of VC by facilitating the osteogenic transformation of VSMCs. Mechanistically, nesfatin-1 promoted the de-ubiquitination and stability of BMP-2 via inhibiting the E3 ligase SYTL4, and the interaction of nesfatin-1 with BMP-2 potentiated BMP-2 signaling and induced phosphorylation of Smad, followed by HDAC4 phosphorylation and nuclear exclusion. The dissociation of HDAC4 from RUNX2 elicited RUNX2 acetylation and subsequent nuclear translocation, leading to the transcription upregulation of OPN, a critical player in VC. From a small library of natural compounds, we identified that Curculigoside and Chebulagic acid reduced VC development via binding to and inhibiting nesfatin-1. Eventually, we designed a mass spectrometry-based DNA-protein interaction screening to identify that STAT3 mediated the transcription activation of nesfatin-1 in the context of VC. Overall, our study demonstrates that nesfatin-1 enhances BMP-2 signaling by inhibiting the E3 ligase SYTL4, thereby stabilizing BMP-2 and facilitating the downstream phosphorylation of SMAD1/5/9 and HDAC4. This signaling cascade leads to RUNX2 activation and the transcriptional upregulation of MSX2, driving VC. These insights position nesfatin-1 as a potential therapeutic target for preventing or treating VC, advancing our understanding of the molecular mechanisms underlying this critical cardiovascular condition.
Collapse
Affiliation(s)
- Xue-Xue Zhu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
- Department of Physiology, Eberhard-Karls-University of Tübingen, Tübingen University, Tübingen, 72076, Germany
| | - Xin-Yu Meng
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Guo Chen
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jia-Bao Su
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214122, China
| | - Xiao Fu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - An-Jing Xu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yao Liu
- Department of Ultrasound, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Xiao-Hui Hou
- Department of Ultrasound, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Hong-Bo Qiu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Qing-Yi Sun
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jin-Yi Hu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Zhuo-Lin Lv
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Hai-Jian Sun
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Hai-Bin Jiang
- Department of Cardiology, Wuxi No.2 People's Hospital (Jiangnan University Medical Center), Wuxi School of Medicine, Jiangnan University, Wuxi, 214001, China.
| | - Zhi-Jun Han
- Department of Clinical Research Center, Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi School of Medicine, Jiangnan University, Wuxi, 214001, China.
| | - Jian Zhu
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214122, China.
| | - Qing-Bo Lu
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Liang YF, You QX, Chen SY, Ni L, Meng XL, Gao JX, Ren YB, Song HJ, Su JL, Teng Y, Gu QY, Lv C, Yuan BY, Wang X, Zheng YT, Zhang DD. The Impact of Hydrogen Sulfide in the Paraventricular Nucleus on the MAPK Pathway in High Salt-Induced Hypertension. J Cardiovasc Pharmacol 2024; 84:468-478. [PMID: 39115898 PMCID: PMC11446517 DOI: 10.1097/fjc.0000000000001622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 08/01/2024] [Indexed: 10/04/2024]
Abstract
ABSTRACT The hypothalamic paraventricular nucleus (PVN) plays a central role in regulating cardiovascular activity and blood pressure. We administered hydroxylamine hydrochloride (HA), a cystathionine-β-synthase inhibitor, into the PVN to suppress endogenous hydrogen sulfide and investigate its effects on the mitogen-activated protein kinase (MAPK) pathway in high salt (HS)-induced hypertension. We randomly divided 40 male Dahl salt-sensitive rats into 4 groups: the normal salt (NS) + PVN vehicle group, the NS + PVN HA group, the HS + PVN vehicle group, and the HS + PVN HA group, with 10 rats in each group. The rats in the NS groups were fed a NS diet containing 0.3% NaCl, while the HS groups were fed a HS diet containing 8% NaCl. The mean arterial pressure was calculated after noninvasive measurement using an automatic sphygmomanometer to occlude the tail cuff once a week. HA or vehicle was infused into the bilateral PVN using Alzet osmotic mini pumps for 6 weeks after the hypertension model was successfully established. We measured the levels of H 2 S in the PVN and plasma norepinephrine using enzyme linked immunosorbent assay. In addition, we assessed the parameters of the MAPK pathway, inflammation, and oxidative stress through western blotting, immunohistochemical analysis, or real-time polymerase chain reaction. In this study, we discovered that decreased levels of endogenous hydrogen sulfide in the PVN contributed to the onset of HS-induced hypertension. This was linked to the activation of the MAPK signaling pathway, proinflammatory cytokines, and oxidative stress in the PVN, as well as the activation of the sympathetic nervous system.
Collapse
Affiliation(s)
- Yan-Feng Liang
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Qing-Xin You
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Shu-Yue Chen
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Lei Ni
- First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Xiang-Lian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Jian-Xiang Gao
- Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, China; and
| | - Yong-Bo Ren
- First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Han-Jun Song
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Jia-Lu Su
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Yang Teng
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Qing-Yun Gu
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Chao Lv
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Bo-Yang Yuan
- First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Xuan Wang
- First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Yong-Tai Zheng
- First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Dong-Dong Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| |
Collapse
|
4
|
Song N, Yu JE, Ji E, Choi KH, Lee S. Hydrogen sulfide inhibits gene expression associated with aortic valve degeneration by inducing NRF2-related pro-autophagy effect in human aortic valve interstitial cells. Mol Cell Biochem 2024; 479:2653-2662. [PMID: 37861880 DOI: 10.1007/s11010-023-04881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Aortic valve stenosis (AS) is the most common valvular heart disease but there are currently no effective medical treatments that can delay disease progression due to a lack of knowledge of the precise pathophysiology. The expression of sulfide: quinone oxidoreductase (SQOR) and nuclear factor erythroid 2-related factor 2 (NRF2) was decreased in the aortic valve of AS patients. However, the role of SQOR and NRF2 in the pathophysiology of AS has not been found. We investigated the effects of hydrogen sulfide (H2S)-releasing compounds on diseased aortic valve interstitial cells (AVICs) to explain the cellular mechanism of SQOR and elucidate the medical value of H2S for AS treatment. Sodium hydrosulfide (NaHS) treatment increased the expression of SQOR and NRF2 gene and consequently induced the NRF2 target genes, such as NAD(P)H quinone dehydrogenase 1 and cystathionine γ-lyase. In addition, NaHS dose-dependently decreased the expression level of fibrosis and inflammation-related genes (MMP9, TNF-α, IL6) and calcification-related genes (ALP, osteocalcin, RUNX2, COL1A1) in human AVICs. Furthermore, NaHS activated the AMPK-mTOR pathway and inhibited the PI3K-AKT pathway, resulting in a pro-autophagy effect in human AVICs. An NRF2 inhibitor, brusatol, attenuated NaHS-induced AMPK activation and decreased the autophagy markers Beclin-1 and LC3AB, suggesting that the mechanism of action of H2S is related to NRF2. In conclusion, H2S decreased gene expression levels related to aortic valve degeneration and activated AMPK-mTOR-mediated pro-autophagy function associated with NRF2 in human AVICs. Therefore, H2S could be a potential therapeutic target for the development of AS treatment.
Collapse
Affiliation(s)
- Naaleum Song
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jeong Eun Yu
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Eunhye Ji
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Hee Choi
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sahmin Lee
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
5
|
Tang H, Kong Q, Zhang Z, Wu W, Yuan L, Liu X. Regulation of transcription factor function by purinergic signalling in cardiovascular diseases. Purinergic Signal 2024:10.1007/s11302-024-10045-8. [PMID: 39215950 DOI: 10.1007/s11302-024-10045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs), including hypertension, atherosclerosis, myocardial ischemia, and myocardial infarction, constitute the primary cause of mortality worldwide. Transcription factors play critical roles in the development of CVDs and contribute to the pathophysiology of these diseases by coordinating the transcription of many genes involved in inflammation, oxidative stress, angiogenesis, and glycolytic metabolism. One important regulator of hemostasis in both healthy and pathological settings has been identified as a purinergic signalling pathway. Research has demonstrated that several signalling networks implicated in the pathophysiology of CVDs are formed by transcription factors that are regulated by purinergic substances. Here, we briefly summarize the roles and mechanisms of the transcription factors regulated by purinergic pathways in various types of CVD. This information will be essential for discovering novel approaches for CVD treatment and prevention.
Collapse
Affiliation(s)
- Hao Tang
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qihang Kong
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhewei Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenchao Wu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Lixing Yuan
- Public Laboratory of West China Second University Hospital and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, 610041, China.
| | - Xiaojing Liu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Wang M, Luo K, Sha T, Li Q, Dong Z, Dou Y, Zhang H, Zhou G, Ba Y, Yu F. Apoptosis and Inflammation Involved with Fluoride-Induced Bone Injuries. Nutrients 2024; 16:2500. [PMID: 39125380 PMCID: PMC11313706 DOI: 10.3390/nu16152500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Excessive fluoride exposure induces skeletal fluorosis, but the specific mechanism responsible is still unclear. Therefore, this study aimed to identify the pathogenesis of fluoride-induced bone injuries. METHODS We systematically searched fluoride-induced bone injury-related genes from five databases. Then, these genes were subjected to enrichment analyses. A TF (transcription factor)-mRNA-miRNA network and protein-protein interaction (PPI) network were constructed using Cytoscape, and the Human Protein Atlas (HPA) database was used to screen the expression of key proteins. The candidate pharmacological targets were predicted using the Drug Signature Database. RESULTS A total of 85 studies were included in this study, and 112 osteoblast-, 35 osteoclast-, and 41 chondrocyte-related differential expression genes (DEGs) were identified. Functional enrichment analyses showed that the Atf4, Bcl2, Col1a1, Fgf21, Fgfr1 and Il6 genes were significantly enriched in the PI3K-Akt signaling pathway of osteoblasts, Mmp9 and Mmp13 genes were enriched in the IL-17 signaling pathway of osteoclasts, and Bmp2 and Bmp7 genes were enriched in the TGF-beta signaling pathway of chondrocytes. With the use of the TF-mRNA-miRNA network, the Col1a1, Bcl2, Fgfr1, Mmp9, Mmp13, Bmp2, and Bmp7 genes were identified as the key regulatory factors. Selenium methyl cysteine, CGS-27023A, and calcium phosphate were predicted to be the potential drugs for skeletal fluorosis. CONCLUSIONS These results suggested that the PI3K-Akt signaling pathway being involved in the apoptosis of osteoblasts, with the IL-17 and the TGF-beta signaling pathways being involved in the inflammation of osteoclasts and chondrocytes in fluoride-induced bone injuries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fangfang Yu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (K.L.); (T.S.); (Q.L.); (Z.D.); (Y.D.); (H.Z.); (G.Z.); (Y.B.)
| |
Collapse
|
7
|
Xian G, Huang R, Xu M, Zhao H, Xu X, Chen Y, Ren H, Xu D, Zeng Q. Noncoding RNA regulates the expression of Krm1 and Dkk2 to synergistically affect aortic valve lesions. Exp Mol Med 2024; 56:1560-1573. [PMID: 38945954 PMCID: PMC11297286 DOI: 10.1038/s12276-024-01256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 07/02/2024] Open
Abstract
Calcific aortic valve disease (CAVD) is becoming an increasingly important global medical problem, but effective pharmacological treatments are lacking. Noncoding RNAs play a pivotal role in the progression of cardiovascular diseases, but their relationship with CAVD remains unclear. Sequencing data revealed differential expression of many noncoding RNAs in normal and calcified aortic valves, with significant differences in circHIPK3 and miR-182-5p expression. Overexpression of circHIPK3 ameliorated aortic valve lesions in a CAVD mouse model. In vitro experiments demonstrated that circHIPK3 inhibits the osteogenic response of aortic valve interstitial cells. Mechanistically, DEAD-box helicase 5 (DDX5) recruits methyltransferase 3 (METTL3) to promote the N6-methyladenosine (m6A) modification of circHIPK3. Furthermore, m6A-modified circHIPK3 increases the stability of Kremen1 (Krm1) mRNA, and Krm1 is a negative regulator of the Wnt/β-catenin pathway. Additionally, miR-182-5p suppresses the expression of Dickkopf2 (Dkk2), the ligand of Krm1, and attenuates the Krm1-mediated inhibition of Wnt signaling. Activation of the Wnt signaling pathway significantly contributes to the promotion of aortic valve calcification. Our study describes the role of the Krm1-Dkk2 axis in inhibiting Wnt signaling in aortic valves and suggests that noncoding RNAs are upstream regulators of this process.
Collapse
Affiliation(s)
- Gaopeng Xian
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Rong Huang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Minhui Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hengli Zhao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Xingbo Xu
- Department of Cardiology, University Medical Center of Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Hao Ren
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
8
|
Chen C, Ding Y, Huang Q, Zhang C, Zhao Z, Zhou H, Li D, Zhou G. Relationship between arginine methylation and vascular calcification. Cell Signal 2024; 119:111189. [PMID: 38670475 DOI: 10.1016/j.cellsig.2024.111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
In patients on maintenance hemodialysis (MHD), vascular calcification (VC) is an independent predictor of cardiovascular disease (CVD), which is the primary cause of death in chronic kidney disease (CKD). The main component of VC in CKD is the vascular smooth muscle cells (VSMCs). VC is an ordered, dynamic activity. Under the stresses of oxidative stress and calcium-‑phosphorus imbalance, VSMCs undergo osteogenic phenotypic transdifferentiation, which promotes the formation of VC. In addition to traditional epigenetics like RNA and DNA control, post-translational modifications have been discovered to be involved in the regulation of VC in recent years. It has been reported that the process of osteoblast differentiation is impacted by catalytic histone or non-histone arginine methylation. Its function in the osteogenic process is comparable to that of VC. Thus, we propose that arginine methylation regulates VC via many signaling pathways, including as NF-B, WNT, AKT/PI3K, TGF-/BMP/SMAD, and IL-6/STAT3. It might also regulate the VC-related calcification regulatory factors, oxidative stress, and endoplasmic reticulum stress. Consequently, we propose that arginine methylation regulates the calcification of the arteries and outline the regulatory mechanisms involved.
Collapse
Affiliation(s)
- Chen Chen
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Yuanyuan Ding
- Department of Pain Management, Shengjing Hospital, China Medical University, China
| | - Qun Huang
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Chen Zhang
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Detian Li
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Guangyu Zhou
- Department of Nephrology, Shengjing Hospital, China Medical University, China.
| |
Collapse
|
9
|
He K, Zhang H, Tan B, Song C, Liang Z, Zhang L, Tian D, Xiao L, Xue H, Guo Q, Teng X, Jin S, An C, Wu Y. Hydrogen Sulfide Ameliorates Heart Aging by Downregulating Matrix Metalloproteinase-9. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07586-w. [PMID: 38884920 DOI: 10.1007/s10557-024-07586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE Aging contributes significantly to cardiovascular diseases and cardiac dysfunction, leading to the upregulation of matrix metalloproteinase-9 (MMP-9) in the heart and a significant decrease in hydrogen sulfide (H2S) content, coupled with impaired cardiac diastolic function. This study explores whether supplementing exogenous hydrogen sulfide during aging ameliorates the decline in H2S concentration in the heart, suppresses MMP-9 expression, and improves the age-associated impairment in cardiac morphology and function. METHODS We collected plasma from healthy individuals of different ages to determine the relationship between aging and H2S and MMP-9 levels through Elisa detection and liquid chromatography-tandem mass spectrometry (LC/MC) detection of plasma H2S content. Three-month-old mice were selected as the young group, while 18-month-old mice were selected as the old group, and sodium hydrosulfide (NaHS) was injected intraperitoneally from 15 months old until 18 months old as the old + NaHS group. Plasma MMP-9 content was detected using Elisa, plasma H2S content, cardiac H2S content, and cystathionine gamma-lyase (CSE) activity were detected using LC/MC, and cardiac function was detected using echocardiography. Heart structure was assessed using hematoxylin and eosin staining, Masone staining was used to detect the degree of cardiac fibrosis, while western blot was used to detect the expression of MMP-9, CSE, and aging marker proteins. Knockdown of MMP-9 and CSE in H9c2 cells using small interfering RNA was carried out to determine the upstream-downstream relationship between MMP-9 and CSE. RESULTS H2S content in the plasma of healthy individuals decreases with escalating age, whereas MMP-9 level rises with age progression. Aging leads to a decrease in H2S levels in the heart and plasma of mice, severe impairment of cardiac diastolic function, interstitial relaxation, and fibrosis of the heart. Supplementing with exogenous H2S can improve these phenomena. CONCLUSION H2S maintains the structure and function of the heart by inhibiting the expression of MMP-9 during the aging process.
Collapse
Affiliation(s)
- Kaichuan He
- Department of Physiology, Hebei Medical University, 050017, Hebei, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, 050017, Hebei, China
| | - Bo Tan
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Chengqing Song
- Department of Physiology, Hebei Medical University, 050017, Hebei, China
| | - Zihui Liang
- Clinical Practice Teaching Department, Hebei Medical University, 050017, Hebei, China
| | - Lixia Zhang
- Department of Medical Laboratory, Hebei Children's Hospital, 050017, Hebei, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, 050017, Hebei, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, 050017, Hebei, China
| | - Hongmei Xue
- Department of Physiology, Hebei Medical University, 050017, Hebei, China
| | - Qi Guo
- Department of Physiology, Hebei Medical University, 050017, Hebei, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, 050017, Hebei, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, 050017, Hebei, China
| | - Cuixia An
- Department of Psychiatry, the First Hospital of Hebei Medical University, 050031, Hebei, China.
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, 050017, Hebei, China.
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 050017, Hebei, China.
- Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, 050017, Hebei, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, 050017, Hebei, China.
| |
Collapse
|
10
|
Yang X, Zeng J, Xie K, Su S, Guo Y, Zhang H, Chen J, Ma Z, Xiao Z, Zhu P, Zheng S, Xu D, Zeng Q. Advanced glycation end product-modified low-density lipoprotein promotes pro-osteogenic reprogramming via RAGE/NF-κB pathway and exaggerates aortic valve calcification in hamsters. Mol Med 2024; 30:76. [PMID: 38840067 PMCID: PMC11155186 DOI: 10.1186/s10020-024-00833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Advanced glycation end product-modified low-density lipoprotein (AGE-LDL) is related to inflammation and the development of atherosclerosis. Additionally, it has been demonstrated that receptor for advanced glycation end products (RAGE) has a role in the condition known as calcific aortic valve disease (CAVD). Here, we hypothesized that the AGE-LDL/RAGE axis could also be involved in the pathophysiological mechanism of CAVD. METHODS Human aortic valve interstitial cells (HAVICs) were stimulated with AGE-LDL following pre-treatment with or without interleukin 37 (IL-37). Low-density lipoprotein receptor deletion (Ldlr-/-) hamsters were randomly allocated to chow diet (CD) group and high carbohydrate and high fat diet (HCHFD) group. RESULTS AGE-LDL levels were significantly elevated in patients with CAVD and in a hamster model of aortic valve calcification. Our in vitro data further demonstrated that AGE-LDL augmented the expression of intercellular cell adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6) and alkaline phosphatase (ALP) in a dose-dependent manner through NF-κB activation, which was attenuated by nuclear factor kappa-B (NF-κB) inhibitor Bay11-7082. The expression of RAGE was augmented in calcified aortic valves, and knockdown of RAGE in HAVICs attenuated the AGE-LDL-induced inflammatory and osteogenic responses as well as NF-κB activation. IL-37 suppressed inflammatory and osteogenic responses and NF-κB activation in HAVICs. The vivo experiment also demonstrate that supplementation with IL-37 inhibited valvular inflammatory response and thereby suppressed valvular osteogenic activities. CONCLUSIONS AGE-LDL promoted inflammatory responses and osteogenic differentiation through RAGE/NF-κB pathway in vitro and aortic valve lesions in vivo. IL-37 suppressed the AGE-LDL-induced inflammatory and osteogenic responses in vitro and attenuated aortic valve lesions in a hamster model of CAVD.
Collapse
Affiliation(s)
- Xi Yang
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Jingxin Zeng
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kaiji Xie
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Shuwen Su
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Yuyang Guo
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Hao Zhang
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Jun Chen
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Zhuang Ma
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dingli Xu
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Qingchun Zeng
- State Key Laboratory for Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
11
|
Chen M, Liu S. Atorvastatin reduces calcification in valve interstitial cells via the NF-κB signalling pathway by promoting Atg5-mediated autophagy. Eur J Histochem 2024; 68:3983. [PMID: 38619020 PMCID: PMC11110720 DOI: 10.4081/ejh.2024.3983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024] Open
Abstract
Aortic valve calcification (AVC) is a common cardiovascular disease and a risk factor for sudden death. However, the potential mechanisms and effective therapeutic drugs need to be explored. Atorvastatin is a statin that can effectively prevent cardiovascular events by lowering cholesterol levels. However, whether atorvastatin can inhibit AVC by reducing low-density lipoprotein (LDL) and its possible mechanism of action require further exploration. In the current study, we constructed an in vitro AVC model by inducing calcification of the valve interstitial cells. We found that atorvastatin significantly inhibited osteogenic differentiation, reduced the deposition of calcium nodules in valve interstitial cells, and enhanced autophagy in calcified valve interstitial cells, manifested by increased expression levels of the autophagy proteins Atg5 and LC3B-II/I and the formation of smooth autophagic flow. Atorvastatin inhibited the NF-κB signalling pathway and the expression of inflammatory factors mediated by NF-κB in calcified valve interstitial cells. The activation of the NF-κB signalling pathway led to the reversal of atorvastatin's effect on enhancing autophagy and alleviating valve interstitial cell calcification. In conclusion, atorvastatin inhibited the NF-κB signalling pathway by upregulating autophagy, thereby alleviating valve interstitial cell calcification, which was conducive to improving AVC.
Collapse
Affiliation(s)
- Menghui Chen
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei; Department of Cardiothoracic Surgery, The Third Hospital of Shijiazhuang, Hebei.
| | - Su Liu
- Department of Surgery, Hebei Medical University, Shijiazhuang; Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei.
| |
Collapse
|
12
|
Mao S, Wang X, Li M, Liu H, Liang H. The role and mechanism of hydrogen sulfide in liver fibrosis. Nitric Oxide 2024; 145:41-48. [PMID: 38360133 DOI: 10.1016/j.niox.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/20/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Hydrogen sulfide (H2S) is the third new gas signaling molecule in the human body after the discovery of NO and CO. Similar to NO, it has the functions of vasodilation, anti-inflammatory, antioxidant, and regulation of cell formation. Enzymes that can produce endogenous H2S, such as CSE, CSB, and 3-MST, are common in liver tissues and are important regulatory molecules in the liver. In the development of liver fibrosis, H2S concentration and expression of related enzymes change significantly, which makes it possible to use exogenous gases to treat liver diseases. This review summarizes the role of H2S in liver fibrosis and its complications induced by NAFLD and CCl4, and elaborates on the anti-liver fibrosis effect of H2S through the mechanism of reducing oxidative stress, inhibiting inflammation, regulating autophagy, regulating glucose and lipid metabolism, providing theoretical reference for further research on the treatment of liver fibrosis with H2S.
Collapse
Affiliation(s)
- Shaoyu Mao
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xuemei Wang
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Miaoqing Li
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hanshu Liu
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongxia Liang
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
13
|
Delgado-Marin M, Sánchez-Esteban S, Cook-Calvete A, Jorquera-Ortega S, Zaragoza C, Saura M. Indoxyl Sulfate-Induced Valve Endothelial Cell Endothelial-to-Mesenchymal Transition and Calcification in an Integrin-Linked Kinase-Dependent Manner. Cells 2024; 13:481. [PMID: 38534325 DOI: 10.3390/cells13060481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is a significant concern for cardiovascular health and is closely associated with chronic kidney disease (CKD). Aortic valve endothelial cells (VECs) play a significant role in the onset and progression of CAVD. Previous research has suggested that uremic toxins, particularly indoxyl sulfate (IS), induce vascular calcification and endothelial dysfunction, but the effect of IS on valve endothelial cells (VECs) and its contribution to CAVD is unclear. Our results show that IS reduced human VEC viability and increased pro-calcific markers RUNX2 and alkaline phosphatase (ALP) expression. Additionally, IS-exposed VECs cultured in pro-osteogenic media showed increased calcification. Mechanistically, IS induced endothelial-to-mesenchymal transition (EndMT), evidenced by the loss of endothelial markers and increased expression of mesenchymal markers. IS triggered VEC inflammation, as revealed by NF-kB activation, and decreased integrin-linked kinase (ILK) expression. ILK overexpression reversed the loss of endothelial phenotype and RUNX2, emphasizing its relevance in the pathogenesis of CAVD in CKD. Conversely, a lower dose of IS intensified some of the effects in EndMT caused by silencing ILK. These findings imply that IS affects valve endothelium directly, contributing to CAVD by inducing EndMT and calcification, with ILK acting as a crucial modulator.
Collapse
Affiliation(s)
- Maria Delgado-Marin
- Unidad de Fisiología, Departamento de Biología de Sistemas, Facultad de Medicina, IRYCIS, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Sandra Sánchez-Esteban
- Unidad de Fisiología, Departamento de Biología de Sistemas, Facultad de Medicina, IRYCIS, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Alberto Cook-Calvete
- Unidad de Fisiología, Departamento de Biología de Sistemas, Facultad de Medicina, IRYCIS, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Sara Jorquera-Ortega
- Unidad de Fisiología, Departamento de Biología de Sistemas, Facultad de Medicina, IRYCIS, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Carlos Zaragoza
- Cardiovascular Research University Francisco de Vitoria and Hospital Ramon y Cajal, IRYCIS, 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Saura
- Unidad de Fisiología, Departamento de Biología de Sistemas, Facultad de Medicina, IRYCIS, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
14
|
ZHANG Q, CHEN D, ZHU G, ZHANG S, FENG X, MA C, ZHANG Y. Efficacy of Tounongsan decoction on pyogenic liver abscess: network pharmacology and clinical trial validation. J TRADIT CHIN MED 2024; 44:145-155. [PMID: 38213249 PMCID: PMC10774731 DOI: 10.19852/j.cnki.jtcm.20231110.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/17/2022] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To elucidate the molecular mechanisms governing the effect of Tounongsan decoction (, TNS) on the pyogenic liver abscess. METHODS Based on oral bioavailability and drug-likeness, the main active components of TNS were screened using the Traditional Chinese Medicine Systems Pharmacology platform. The GeneCard and UniProt databases were used to establish a database of pyogenic liver abscess targets. The interactive network map of drug-ingredients-target-disease was constructed using Cytoscape software (Version 3.7.2). A protein-protein interaction network was constructed using the STRING database, and the related protein interaction relationships were analyzed. biological process of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed for the core targets. Finally, a clinical trial was performed to verify the reliability of the network pharmacology. RESULTS Forty active components of TNS decoction were obtained, and 61 potential targets and 11 proteins were identified. Pathways involved in the treatment of pyogenic liver abscess include the phosphatidylinositide 3-kinases-protein kinase B (PI3K-AKT), advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE), and tumor necrosis factor (TNF) signaling pathways. The results of network pharmacology analysis combined with clinical trials validated that TNS decoction could alleviate the inflammatory response of pyogenic liver abscesses by decreasing interleukin 6 (IL-6) levels. CONCLUSIONS TNS decoction has the characteristics of being multi-system, multi-component, and multi-target. Active ingredients in TNS, such as quercetin, kaempferol, fisetin, and β-sitosterol, have strong potential to be candidate drugs for treating pyogenic liver abscesses. The possible mechanism of TSN decoction includes regulating immune and inflammatory responses and reducing IL-6 production to control inflammatory development.
Collapse
Affiliation(s)
- Qi ZHANG
- 1 Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China; Zhuzhou Orthopaedic Hospital of Traditional Chinese Medicine, Zhuzhou 412300, China
| | - Dexuan CHEN
- 2 Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Guixiang ZHU
- 3 Department of General Surgery, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing 210029, China
| | - Shihu ZHANG
- 2 Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiao FENG
- 2 Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Chaoqun MA
- 2 Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Yi ZHANG
- 2 Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
15
|
Dong QQ, Tu YC, Gao P, Liao QQ, Zhou P, Zhang H, Shu HP, Sun LL, Feng L, Yao LJ. SGK3 promotes vascular calcification via Pit-1 in chronic kidney disease. Theranostics 2024; 14:861-878. [PMID: 38169564 PMCID: PMC10758069 DOI: 10.7150/thno.87317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
Rationale: Vascular calcification (VC) is a life-threatening complication in patients with chronic kidney disease (CKD) caused mainly by hyperphosphatemia. However, the regulation of VC remains unclear despite extensive research. Although serum- and glucocorticoid-induced kinase 3 (SGK3) regulate the sodium-dependent phosphate cotransporters in the intestine and kidney, its effect on VC in CKD remains unknown. Additionally, type III sodium-dependent phosphate cotransporter-1 (Pit-1) plays a significant role in VC development induced by high phosphate in vascular smooth muscle cells (VSMCs). However, it remains unclear whether SGK3 regulates Pit-1 and how exactly SGK3 promotes VC in CKD via Pit-1 at the molecular level. Thus, we investigated the role of SGK3 in the certified outflow vein of arteriovenous fistulas (AVF) and aortas of uremic mice. Methods and Results: In our study, using uremic mice, we observed a significant upregulation of SGK3 and calcium deposition in certified outflow veins of the AVF and aortas, and the increase expression of SGK3 was positively correlated with calcium deposition in uremic aortas. In vitro, the downregulation of SGK3 reversed VSMCs calcification and phenotype switching induced by high phosphate. Mechanistically, SGK3 activation enhanced the mRNA transcription of Pit-1 through NF-κB, downregulated the ubiquitin-proteasome mediated degradation of Pit-1 via inhibiting the activity of neural precursor cells expressing developmentally downregulated protein 4 subtype 2 (Nedd4-2), an E3 ubiquitin ligase. Moreover, under high phosphate stimulation, the enhanced phosphate uptake induced by SGK3 activation was independent of the increased protein expression of Pit-1. Our co-immunoprecipitation and in vitro kinase assays confirmed that SGK3 interacts with Pit-1 through Thr468 in loop7, leading to enhanced phosphate uptake. Conclusion: Thus, it is justifiable to conclude that SGK3 promotes VC in CKD by enhancing the expression and activities of Pit-1, which indicate that SGK3 could be a therapeutic target for VC in CKD.
Collapse
Affiliation(s)
- Qing-Qing Dong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yu-Chi Tu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Gao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian-Qian Liao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nephrology, Wuhan Fourth Hospital, Wuhan, China
| | - Peng Zhou
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Zhang
- Department of Ultrasonography, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Pan Shu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu-Lu Sun
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Feng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Jun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Xie W, Shan Y, Wu Z, Liu N, Yang J, Zhang H, Sun S, Chi J, Feng W, Lin H, Guo H. Herpud1 deficiency alleviates homocysteine-induced aortic valve calcification. Cell Biol Toxicol 2023; 39:2665-2684. [PMID: 36746840 DOI: 10.1007/s10565-023-09794-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/21/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To evaluate the role and therapeutic value of homocysteine (hcy)-inducible endoplasmic reticulum stress (ERS) protein with ubiquitin like domain 1 (Herpud1) in hcy-induced calcific aortic valve disease (CAVD). BACKGROUND The morbidity and mortality rates of calcific aortic valve disease (CAVD) remain high while treatment options are limited. METHODS In vivo, we use the low-density lipoprotein receptor (LDLR) and Herpud1 double knockout (LDLR-/-/Herpud1-/-) mice and used high methionine diet (HMD) to assess of aortic valve calcification lesions, ERS activation, autophagy, and osteogenic differentiation of aortic valve interstitial cells (AVICs). In vitro, the role of Herpud1 in the Hcy-related osteogenic differentiation of AVICs was investigated by manipulating of Herpud1 expression. RESULTS Herpud1 was highly expressed in calcified human and mouse aortic valves as well as primary aortic valve interstitial cells (AVICs). Hcy increased Herpud1 expression through the ERS pathway and promoted CAVD progression. Herpud1 deficiency inhibited hcy-induced CAVD in vitro and in vivo. Herpud1 silencing activated cell autophagy, which subsequently inhibited hcy-induced osteogenic differentiation of AVICs. ERS inhibitor 4-phenyl butyric acid (4-PBA) significantly attenuated aortic valve calcification in HMD-fed low-density lipoprotein receptor-/- (LDLR-/-) mice by suppressing ERS and subsequent Herpud1 biosynthesis. CONCLUSIONS These findings identify a previously unknown mechanism of Herpud1 upregulation in Hcy-related CAVD, suggesting that Herpud1 silencing or inhibition is a viable therapeutic strategy for arresting CAVD progression. HIGHLIGHTS • Herpud1 is upregulated in the leaflets of Hcy-treated mice and patients with CAVD. • In mice, global knockout of Herpud1 alleviates aortic valve calcification and Herpud1 silencing activates cell autophagy, inhibiting osteogenic differentiation of AVICs induced by Hcy. • 4-PBA suppressed Herpud1 expression to alleviate AVIC calcification in Hcy treated AVICs and to mitigate aortic valve calcification in mice.
Collapse
Affiliation(s)
- Wenqing Xie
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Yue Shan
- Department of Anesthesiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
| | - Zhuonan Wu
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Nan Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Jinjin Yang
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Hanlin Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shiming Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
- Shaoxing Key Laboratory of Cardio-cerebral Vascular Disease Rehabilitation Technology Innovation and Application, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Weizhong Feng
- Department of Cardiovascular Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China.
- Shaoxing Key Laboratory of Cardio-cerebral Vascular Disease Rehabilitation Technology Innovation and Application, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| | - Hangyuan Guo
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
- Shaoxing Key Laboratory of Cardio-cerebral Vascular Disease Rehabilitation Technology Innovation and Application, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
17
|
Ma W, Zhang W, Liu H, Qian B, Lai R, Yao Z, Wang Y, Yan Y, Yuan Z. Plasma Cell-Free DNA Is a Potential Biomarker for Diagnosis of Calcific Aortic Valve Disease. Cardiology 2023; 149:155-162. [PMID: 37899036 PMCID: PMC10994581 DOI: 10.1159/000534229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Calcific aortic valve disease (CAVD) is the third most common cardiovascular disease in aging populations. Despite a growing number of biomarkers having been shown to be associated with CAVD, a marker suitable for routine testing in clinical practice is still needed. Plasma cell-free DNA (cfDNA) has been suggested as a biomarker for diagnosis and prognosis in multiple diseases. In this study, we aimed to test whether cfDNA could be used as a biomarker for the diagnosis of CAVD. METHODS Serum samples were collected from 137 diagnosed CAVD patients and 180 normal controls. The amount of cfDNA was quantified by amplifying a short fragment (ALU 115) and a long fragment (ALU 247) using quantitative real-time PCR. The cfDNA integrity (cfDI) was calculated as the ratio of ALU247 to ALU115. The association between CAVD and cfDI was evaluated using regression analysis. RESULTS CAVD patients had increased ALU 115 fragments (median, 185.14 (416.42) versus 302.83 (665.41), p < 0.05) but a decreased value of cfDI (mean, 0.50 ± 0.25 vs. 0.41 ± 0.26, p < 0.01) in their serum when compared to controls. This difference was more dramatic in non-rheumatic CAVD patients (p < 0.001) versus rheumatic CAVD patients (no significant difference). Similarly, CAVD patients with bicuspid aortic valve (BAV) (p < 0.01) showed a greater difference than non-BAV CAVD patients (p < 0.05). Linear regression and logistic regression showed that cfDI was independently and significantly associated with the presence of CAVD (95% CI, 0.096 to 0.773, p < 0.05). The ROC assay revealed that cfDI combined with clinical characteristics had a better diagnostic value than cfDI alone (AUC = 0.6191, p < 0.001). CONCLUSION cfDI may be a potential biomarker for diagnosis of CAVD.
Collapse
Affiliation(s)
- Wangge Ma
- Department of Cardiology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Wei Zhang
- Department of General Practice, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huahua Liu
- Department of Cardiology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Benheng Qian
- Department of Cardiology, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rongguang Lai
- Department of Cardiology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zijun Yao
- Department of Cardiology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yidong Wang
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, The Institute of Cardiovascular Sciences, School of Basic Medical Sciences; Department of Cardiology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yang Yan
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zuyi Yuan
- Department of Cardiology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
18
|
Liu X, Zheng Q, Wang K, Luo J, Wang Z, Li H, Liu Z, Dong N, Shi J. Sam68 promotes osteogenic differentiation of aortic valvular interstitial cells by TNF-α/STAT3/autophagy axis. J Cell Commun Signal 2023; 17:863-879. [PMID: 36847917 PMCID: PMC10409708 DOI: 10.1007/s12079-023-00733-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
Calcified aortic valve disease (CAVD) is a major non-rheumatic heart valve disease in the world, with a high mortality rate and without suitable pharmaceutical therapy due to its complex mechanisms. Src-associated in mitosis 68-KD (Sam68), an RNA binding protein, has been reported as a signaling adaptor in numerous signaling pathways (Huot in Mol Cell Biol, 29(7), 1933-1943, 2009), particularly in inflammatory signaling pathways. The effects of Sam68 on the osteogenic differentiation process of hVICs and its regulation on signal transducer and activator of transcription 3 (STAT3) signaling pathway have been investigated in this study. Human aortic valve samples detection found that Sam68 expression was up-regulated in human calcific aortic valves. We used tumor necrosis factor α (TNF-α) as an activator for osteogenic differentiation in vitro and the result indicated that Sam68 was highly expressed after TNF-α stimulation. Overexpression of Sam68 promoted osteogenic differentiation of hVICs while Sam68 knockdown reversed this effect. Sam68 interaction with STAT3 was predicted by using String database and was verified in this study. Sam68 knockdown reduced phosphorylation of STAT3 activated by TNF-α and the downstream gene expression, which further influenced autophagy flux in hVICs. STAT3 knockdown alleviated the osteogenic differentiation and calcium deposition promoted by Sam68 overexpression. In conclusion, Sam68 interacts with STAT3 and participates in its phosphorylation to promote osteogenic differentiation of hVICs to induce valve calcification. Thus, Sam68 may be a new therapeutic target for CAVD. Regulatory of Sam68 in TNF-α/STAT3/Autophagy Axis in promoting osteogenesis of hVICs.
Collapse
Affiliation(s)
- Xing Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| | - Qiang Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| | - Kan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| | - Jinjing Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| | - Zhijie Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| | - Huadong Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| |
Collapse
|
19
|
Li S, Luo Z, Su S, Wen L, Xian G, Zhao J, Xu X, Xu D, Zeng Q. Targeted inhibition of PTPN22 is a novel approach to alleviate osteogenic responses in aortic valve interstitial cells and aortic valve lesions in mice. BMC Med 2023; 21:252. [PMID: 37443055 PMCID: PMC10347738 DOI: 10.1186/s12916-023-02888-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/02/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is the most prevalent valvular disease and has high morbidity and mortality. CAVD is characterized by complex pathophysiological processes, including inflammation-induced osteoblastic differentiation in aortic valve interstitial cells (AVICs). Novel anti-CAVD agents are urgently needed. Protein tyrosine phosphatase nonreceptor type 22 (PTPN22), an intracellular nonreceptor-like protein tyrosine phosphatase, is involved in several chronic inflammatory diseases, including rheumatoid arthritis and diabetes. However, it is unclear whether PTPN22 is involved in the pathogenesis of CAVD. METHODS We obtained the aortic valve tissue from human and cultured AVICs from aortic valve. We established CAVD mice model by wire injury. Transcriptome sequencing, western bolt, qPCR, and immunofluorescence were performed to elucidate the molecular mechanisms. RESULTS Here, we determined that PTPN22 expression was upregulated in calcific aortic valve tissue, AVICs treated with osteogenic medium, and a mouse model of CAVD. In vitro, overexpression of PTPN22 induced osteogenic responses, whereas siRNA-mediated PTPN22 knockdown abolished osteogenic responses and mitochondrial stress in the presence of osteogenic medium. In vivo, PTPN22 ablation ameliorated aortic valve lesions in a wire injury-induced CAVD mouse model, validating the pathogenic role of PTPN22 in CAVD. Additionally, we discovered a novel compound, 13-hydroxypiericidin A 10-O-α-D-glucose (1 → 6)-β-D-glucoside (S18), in a marine-derived Streptomyces strain that bound to PTPN22 with high affinity and acted as a novel inhibitor. Incubation with S18 suppressed osteogenic responses and mitochondrial stress in human AVICs induced by osteogenic medium. In mice with aortic valve injury, S18 administration markedly alleviated aortic valve lesions. CONCLUSION PTPN22 plays an essential role in the progression of CAVD, and inhibition of PTPN22 with S18 is a novel option for the further development of potent anti-CAVD drugs. Therapeutic inhibition of PTPN22 retards aortic valve calcification through modulating mitochondrial dysfunction in AVICs.
Collapse
Affiliation(s)
- Shunyi Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Zichao Luo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Shuwen Su
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Liming Wen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Gaopeng Xian
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August-University, Göttingen, Germany
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China.
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, Gasanov M. The Role of Hydrogen Sulfide in Regulation of Cell Death following Neurotrauma and Related Neurodegenerative and Psychiatric Diseases. Int J Mol Sci 2023; 24:10742. [PMID: 37445920 DOI: 10.3390/ijms241310742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Injuries of the central (CNS) and peripheral nervous system (PNS) are a serious problem of the modern healthcare system. The situation is complicated by the lack of clinically effective neuroprotective drugs that can protect damaged neurons and glial cells from death. In addition, people who have undergone neurotrauma often develop mental disorders and neurodegenerative diseases that worsen the quality of life up to severe disability and death. Hydrogen sulfide (H2S) is a gaseous signaling molecule that performs various cellular functions in normal and pathological conditions. However, the role of H2S in neurotrauma and mental disorders remains unexplored and sometimes controversial. In this large-scale review study, we examined the various biological effects of H2S associated with survival and cell death in trauma to the brain, spinal cord, and PNS, and the signaling mechanisms underlying the pathogenesis of mental illnesses, such as cognitive impairment, encephalopathy, depression and anxiety disorders, epilepsy and chronic pain. We also studied the role of H2S in the pathogenesis of neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, we reviewed the current state of the art study of H2S donors as neuroprotectors and the possibility of their therapeutic uses in medicine. Our study showed that H2S has great neuroprotective potential. H2S reduces oxidative stress, lipid peroxidation, and neuroinflammation; inhibits processes associated with apoptosis, autophagy, ferroptosis and pyroptosis; prevents the destruction of the blood-brain barrier; increases the expression of neurotrophic factors; and models the activity of Ca2+ channels in neurotrauma. In addition, H2S activates neuroprotective signaling pathways in psychiatric and neurodegenerative diseases. However, high levels of H2S can cause cytotoxic effects. Thus, the development of H2S-associated neuroprotectors seems to be especially relevant. However, so far, all H2S modulators are at the stage of preclinical trials. Nevertheless, many of them show a high neuroprotective effect in various animal models of neurotrauma and related disorders. Despite the fact that our review is very extensive and detailed, it is well structured right down to the conclusions, which will allow researchers to quickly find the proper information they are interested in.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Tushev
- Neurosurgical Department, Rostov State Medical University Clinic, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinic Therapy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| |
Collapse
|
21
|
Geng B, Chen X, Chi J, Li F, Yim WY, Wang K, Li C, Xie M, Zhu P, Fan Z, Shi J, Hu Z, Zhang Y, Dong N. Platelet membrane-coated alterbrassicene A nanoparticle inhibits calcification of the aortic valve by suppressing phosphorylation P65 NF-κB. Theranostics 2023; 13:3781-3793. [PMID: 37441596 PMCID: PMC10334836 DOI: 10.7150/thno.85323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Rationale: Calcific aortic valve disease (CAVD) is a leading cause of cardiovascular mortality and morbidity with increasing prevalence and incidence. The pathobiology of CAVD involves valvular fibrocalcification, and osteogenic and fibrogenic activities are elevated in aortic valve interstitial cells (VICs) from diseased valves. It has been demonstrated that activated NF-κB pathway was present in the early stage of CAVD process. There is currently no effective clinical drugs targeting NF-κB pathway for CAVD treatment. Therefore, it is of great clinical significance to seek effective treatments for valve calcification. Methods: In this study, we established immortal human valve interstitial cells (im-hVICs) with pGMLV-SV40T-puro lentivirus. Alizarin red staining and western blotting were performed to evaluate the calcification of immortal VICs supplemented with different compounds. The natural fusicoccane diterpenoid alterbrassicene A (ABA) was found to have potential therapeutic functions. Ribonucleic acid sequencing was used to identify the potential target of ABA. Platelet membrane-coated nanoparticle of ABA (PNP-ABA) was fabricated and the IBIDI pump was used to evaluate the adhesion ability of PNP-ABA. Murine wire-induced aortic valve stenosis model was conducted for in vivo study of PNP-ABA. Results: The natural fusicoccane diterpenoid ABA was found to significantly reduce the calcification of human VICs during osteogenic induction via inhibiting the phosphorylation P65. Runt-related transcription factor 2 (Runx2) and bone morphogenetic protein-2 (BMP2) were down regulated with the treatment of ABA in human VICs. Additionally, molecular docking results revealed that ABA bound to RelA (P65) protein. Phosphorylation of P65 (Ser536) was alleviated by ABA treatment, as well as the nuclear translocation of P65 during osteogenic induction in human VICs. Alizarin red staining showed that ABA inhibited osteogenic differentiation of VICs in a dose-dependent manner. PNP-ABA attenuated aortic valve calcification in murine wire-induced aortic valve stenosis model in vivo. Conclusions: The establishment of im-hVICs provides a convenient cell line for the study of CAVD. Moreover, our current research highlights a novel natural compound, ABA, as a promising candidate to prevent the progression of CAVD.
Collapse
Affiliation(s)
- Bingchuan Geng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiangyang Chi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fengli Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wai Yen Yim
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenghao Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Minghui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengfeng Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
22
|
Deng XS, Meng X, Fullerton D, Stone M, Iguidbashian J, Jaggers J. Complement Cross Talks With H-K-ATPase to Upregulate Runx2 in Human Aortic Valve Interstitial Cells. J Surg Res 2023; 286:118-126. [PMID: 36822134 PMCID: PMC10120867 DOI: 10.1016/j.jss.2022.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/16/2022] [Accepted: 12/25/2022] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Calcific aortic valve disease (CAVD) is a slowly progressive fibro-calcific valve leaflet disorder. The underlying pathophysiology is complex and not yet well understood. Complement is known to play a role in the pathogenesis of CAVD by upregulating Runx2 to induce profibrogenic change in human aortic valve interstitial cells (AVICs). Furthermore, H-K-ATPase has independently been shown to induce tissue calcification. Therefore, we hypothesized that complement cross talks with H-K-ATPase to upregulate Runx2 in human AVICs. MATERIALS AND METHODS Human AVICs were isolated from normal and calcified aortic valves. Cells were treated with a variation of complement, H-K-ATPase, or ERK1/2 inhibitors. H-K-ATPase and its association with complement in AVICs were investigated by reverse transcriptase-polymerase chain reaction, immunofluorescence, and Western blot. RESULTS Calcified human AVICs expressed significantly higher H-K-ATPase level than normal human AVICs. Presence of complement C3 with H-K-ATPase is found in AVICs after complement treatment. Complement induced both H-K-ATPase and Runx2 expression in AVICs, which was associated with increased phosphorylation of ERK1/2 and its downstream molecule p-70 S6. Pharmacological inhibition of either H-K-ATPase or Erk1/2 abolished complement-induced Runx2 expression. CONCLUSIONS These findings indicate that complement cross talks with H-K-ATPase to upregulate Runx2 in human AVICs by activation of ERK1/2 signaling pathways. The study revealed the potential role of H-K-ATPase in the pathogenesis of CAVD and therapeutically targeting either complement system or H-K-ATPase may limit the development of CAVD.
Collapse
Affiliation(s)
- Xin-Sheng Deng
- Cardiothoracic Surgery, University of Colorado, Children's Hospital Colorado, Aurora, Colorado; Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xianzhong Meng
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David Fullerton
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew Stone
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - John Iguidbashian
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James Jaggers
- Cardiothoracic Surgery, University of Colorado, Children's Hospital Colorado, Aurora, Colorado; Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
23
|
Yang Z, Zhang J, Zhu Y, Zhang C, Li G, Liu S, Du J, Han Y, You B. IL-17A induces valvular endothelial inflammation and aggravates calcific aortic valve disease. Biochem Biophys Res Commun 2023; 672:145-153. [PMID: 37354607 DOI: 10.1016/j.bbrc.2023.04.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 06/26/2023]
Abstract
Calcific aortic valve disease (CAVD) is an aging related disease characterized by inflammation and fibrocalcific remodeling. IL-17A is a key cytokine associated with pathophysiology of inflammatory and fibrotic disease. Previous studies showed accumulation of IL-17A-producing T helper lymphocytes in human calcified aortic valves and significantly elevated IL-17RA expression in calcified valves. However, the role of IL-17A signaling in the initiation and development of CAVD is still unclear. In this study, by analyzing public transcriptome databases, we found that IL-17A-IL-17RA signaling is activated in calcified valves. Gene expression analysis revealed significantly increased IL-17A, IL-17RA, and RUNX2 expression in calcified human aortic valves compared to in non-calcified valves, and the expression of IL-17A and IL-17RA were positively correlated with RUNX2 expression. A 5/6 nephrectomy was performed in Apoe-/- (Apoe knockout) mice to establish a CAVD mouse model. IL-17A-neutralizing antibodies significantly reduced valve calcium deposition and decreased expression of RUNX2 in aortic valves. Immunofluorescence staining of human aortic valves and qRT-PCR analysis of primary aortic valve cells revealed abundant expression of IL-17RA in valvular endothelial cells (VECs). RNA sequencing indicated that IL-17A promoted the activation of inflammatory signaling pathways in VECs. Furthermore, qRT-PCR and cytometric bead array analysis confirmed that IL-17A promoted the expression or secretion of inflammatory cytokines IL-6 and IL-1β, chemokines CXCL2 and CXCL8, and fibrosis-related gene COL16A1. Our findings indicate that elevated IL-17A in CAVD may promote valve inflammation, fibrosis, and calcification by inducing endothelial activation and inflammation. Targeting IL-17A-IL-17RA signaling may be a potential therapeutic strategy for CAVD.
Collapse
Affiliation(s)
- Zhao Yang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Jichao Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yuexin Zhu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Congcong Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Guang Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Shuo Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yingchun Han
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China.
| | - Bin You
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China.
| |
Collapse
|
24
|
Combi Z, Potor L, Nagy P, Sikura KÉ, Ditrói T, Jurányi EP, Galambos K, Szerafin T, Gergely P, Whiteman M, Torregrossa R, Ding Y, Beke L, Hendrik Z, Méhes G, Balla G, Balla J. Hydrogen sulfide as an anti-calcification stratagem in human aortic valve: Altered biogenesis and mitochondrial metabolism of H 2S lead to H 2S deficiency in calcific aortic valve disease. Redox Biol 2023; 60:102629. [PMID: 36780769 PMCID: PMC9947110 DOI: 10.1016/j.redox.2023.102629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Hydrogen sulfide (H2S) was previously revealed to inhibit osteoblastic differentiation of valvular interstitial cells (VICs), a pathological feature in calcific aortic valve disease (CAVD). This study aimed to explore the metabolic control of H2S levels in human aortic valves. Lower levels of bioavailable H2S and higher levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were detected in aortic valves of CAVD patients compared to healthy individuals, accompanied by higher expression of cystathionine γ-lyase (CSE) and same expression of cystathionine β-synthase (CBS). Increased biogenesis of H2S by CSE was found in the aortic valves of CAVD patients which is supported by increased production of lanthionine. In accordance, healthy human aortic VICs mimic human pathology under calcifying conditions, as elevated CSE expression is associated with low levels of H2S. The expression of mitochondrial enzymes involved in H2S catabolism including sulfide quinone oxidoreductase (SQR), the key enzyme in mitochondrial H2S oxidation, persulfide dioxygenase (ETHE1), sulfite oxidase (SO) and thiosulfate sulfurtransferase (TST) were up-regulated in calcific aortic valve tissues, and a similar expression pattern was observed in response to high phosphate levels in VICs. AP39, a mitochondria-targeting H2S donor, rescued VICs from an osteoblastic phenotype switch and reduced the expression of IL-1β and TNF-α in VICs. Both pro-inflammatory cytokines aggravated calcification and osteoblastic differentiation of VICs derived from the calcific aortic valves. In contrast, IL-1β and TNF-α provided an early and transient inhibition of VICs calcification and osteoblastic differentiation in healthy cells and that effect was lost as H2S levels decreased. The benefit was mediated via CSE induction and H2S generation. We conclude that decreased levels of bioavailable H2S in human calcific aortic valves result from an increased H2S metabolism that facilitates the development of CAVD. CSE/H2S represent a pathway that reverses the action of calcifying stimuli.
Collapse
Affiliation(s)
- Zsolt Combi
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, University of Debrecen, 11003, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - László Potor
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, University of Debrecen, 11003, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Institute of Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary; Department of Anatomy and Histology, ELKH Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary
| | - Katalin Éva Sikura
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, University of Debrecen, 11003, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Eszter Petra Jurányi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Doctoral School of Molecular Medicine, Semmelweis University, Budapest, Hungary
| | - Klaudia Galambos
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary; Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Tamás Szerafin
- Department of Cardiac Surgery, Faculty of Medicine, University of Debrecen, Hungary
| | - Péter Gergely
- Institute of Forensic Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Matthew Whiteman
- University of Exeter Medical School, St. Luke's Campus, Magdalen Road, Exeter, EX1 2LU, UK
| | - Roberta Torregrossa
- University of Exeter Medical School, St. Luke's Campus, Magdalen Road, Exeter, EX1 2LU, UK
| | - Yuchao Ding
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Lívia Beke
- Institute of Pathology, Faculty of Medicine, University of Debrecen, Hungary
| | - Zoltán Hendrik
- Institute of Forensic Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Gábor Méhes
- Institute of Pathology, Faculty of Medicine, University of Debrecen, Hungary
| | - György Balla
- ELKH-UD Vascular Pathophysiology Research Group, University of Debrecen, 11003, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary; Department of Pediatrics, Faculty of Medicine, University of Debrecen, Hungary
| | - József Balla
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, University of Debrecen, 11003, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
25
|
Zhou Y, Chen Y, Yin G, Xie Q. Calciphylaxis and its co-occurrence with connective tissue diseases. Int Wound J 2023; 20:1316-1327. [PMID: 36274216 PMCID: PMC10031236 DOI: 10.1111/iwj.13972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 03/23/2023] Open
Abstract
Calciphylaxis, also known as calcific uremic arteriopathy, is a rare calcification syndrome that presents as ischemic skin necrosis and severe pain. It has a high mortality rate and is characterised by calcification of the small and medium arteries and micro-thrombosis. Calciphylaxis mainly occurs in patients with end-stage renal disease. In recent years, there have been an increasing number of cases of calciphylaxis associated with connective tissue diseases. Given the absence of clear diagnostic criteria for calciphylaxis thus far, an early diagnosis is crucial for designing an effective multidisciplinary treatment plan. In this article, we review the research progress on calciphylaxis and describe its characteristics in the context of connective tissue diseases.
Collapse
Affiliation(s)
- Yueyuan Zhou
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Candellier A, Issa N, Grissi M, Brouette T, Avondo C, Gomila C, Blot G, Gubler B, Touati G, Bennis Y, Caus T, Brazier M, Choukroun G, Tribouilloy C, Kamel S, Boudot C, Hénaut L. Indoxyl-sulfate activation of the AhR- NF-κB pathway promotes interleukin-6 secretion and the subsequent osteogenic differentiation of human valvular interstitial cells from the aortic valve. J Mol Cell Cardiol 2023; 179:18-29. [PMID: 36967106 DOI: 10.1016/j.yjmcc.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Calcific aortic stenosis (CAS) is more prevalent, occurs earlier, progresses faster and has worse outcomes in patients with chronic kidney disease (CKD). The uremic toxin indoxyl sulfate (IS) is powerful predictor of cardiovascular mortality in these patients and a strong promoter of ectopic calcification whose role in CAS remains poorly studied. The objective of this study was to evaluate whether IS influences the mineralization of primary human valvular interstitial cells (hVICs) from the aortic valve. METHODS Primary hVICs were exposed to increasing concentrations of IS in osteogenic medium (OM). The hVICs' osteogenic transition was monitored by qRT-PCRs for BMP2 and RUNX2 mRNA. Cell mineralization was assayed using the o-cresolphthalein complexone method. Inflammation was assessed by monitoring NF-κB activation using Western blots as well as IL-1β, IL-6 and TNF-α secretion by ELISAs. Small interfering RNA (siRNA) approaches enabled us to determine which signaling pathways were involved. RESULTS Indoxyl-sulfate increased OM-induced hVICs osteogenic transition and calcification in a concentration-dependent manner. This effect was blocked by silencing the receptor for IS (the aryl hydrocarbon receptor, AhR). Exposure to IS promoted p65 phosphorylation, the blockade of which inhibited IS-induced mineralization. Exposure to IS promoted IL-6 secretion by hVICs, a phenomenon blocked by silencing AhR or p65. Incubation with an anti-IL-6 antibody neutralized IS's pro-calcific effects. CONCLUSION IS promotes hVIC mineralization through AhR-dependent activation of the NF-κB pathway and the subsequent release of IL-6. Further research should seek to determine whether targeting inflammatory pathways can reduce the onset and progression of CKD-related CAS.
Collapse
Affiliation(s)
- Alexandre Candellier
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Nephrology Dialysis and Transplantation, Amiens University Hospital, Amiens, France
| | - Nervana Issa
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Maria Grissi
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Théo Brouette
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Carine Avondo
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Cathy Gomila
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Gérémy Blot
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Brigitte Gubler
- Department of Immunology, Amiens University Hospital, Amiens, France; Department of Molecular Oncobiology, Amiens University Hospital, 80054, France; EA4666 - HEMATIM, CURS, Picardie Jules Verne University, Amiens 80054, France
| | - Gilles Touati
- Department of Cardiac Surgery, Amiens University Hospital, Amiens, France
| | - Youssef Bennis
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Thierry Caus
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Cardiac Surgery, Amiens University Hospital, Amiens, France
| | - Michel Brazier
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Biochemistry, Amiens University Hospital, Amiens, France
| | - Gabriel Choukroun
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Nephrology Dialysis and Transplantation, Amiens University Hospital, Amiens, France
| | - Christophe Tribouilloy
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Cardiology, Amiens University Hospital, Amiens, France
| | - Saïd Kamel
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France; Department of Biochemistry, Amiens University Hospital, Amiens, France
| | - Cédric Boudot
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Lucie Hénaut
- UR UPJV 7517, MP3CV, CURS, Université de Picardie Jules Verne, Amiens, France.
| |
Collapse
|
27
|
Huang H, Sun Q, Huang Y, Wang H, Ju L, Peng M, Wu J, Chen L, Gong Y. Clinical and Experimental Study of High Mobility Group Box-2 and Valvular Calcification in Elderly Patients with Degenerative Heart Valve Disease. Cardiology 2023; 148:271-277. [PMID: 36958298 DOI: 10.1159/000529973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
INTRODUCTION The aim of this study was to investigate the relationship between the high mobility group box-2 (HMGB2) and valve calcification in senile degenerative heart valve disease (SDHVD). METHODS According to the echocardiographic results, patients with calcified heart valves were used as the experimental group and patients without calcified heart valves were used as the control group; blood was drawn for testing, and serum levels of HMGB2 were measured by an enzyme-linked immunosorbent assay. Human heart valve interstitial cells (hVICs) cultured in vitro were randomly divided into two groups. The calcification group was cultured with a medium containing calcification induction solution and cells were induced on days 1, 3, and 5, and the control group was cultured with a standard medium. Expression of bone morphogenetic protein 4 (BMP-4) and HMGB2 in both groups was detected by Western blot. RT-PCR was performed to detect the expression of the HMGB2 gene during calcification. The hVICs were cultured in vitro for 4 days with different concentrations of exogenous HMGB2 (0.01 μg/mL, 0.1 μg/mL, 1 μg/mL, 2 μg/mL), while the control group was cultured with a standard medium and the expression of BMP-4 and NF-κB P65 was detected by Western blot. RESULTS The serum level of HMGB2 was 7.90 (5.92, 12.39) μg/L, higher than that of 7.06 (5.06, 9.73) μg/L in the valve calcification group in elderly patients with degenerative valve disease (p = 0.005); the differences were statistically significant. In in vitro experiments, the cellular calcification protein BMP-4 and the HMGB2 protein were higher in the calcification group compared to the control group (p < 0.05). Exogenous stimulation of hVICs with HMGB2 was able to upregulate the expression of BMP-4 and NF-κB P65 (p < 0.05). CONCLUSIONS HMGB2 is correlated with valvular calcification in senile degenerative heart valve disease. The HMGB2 protein may promote the process of SDHVD valve calcification by activating the NF-κB pathway and upregulating the expression of BMP-4.
Collapse
Affiliation(s)
| | - Qingpiao Sun
- Nantong University Medical School, Nantong, China
| | - Yu Huang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huixuan Wang
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Linling Ju
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Meidi Peng
- Nantong University Medical School, Nantong, China
| | - Jing Wu
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Lin Chen
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Yachi Gong
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| |
Collapse
|
28
|
Song X, Nie L, Long J, Zhao J, Liu X, Wang L, Liu D, Wang S, Liu S, Yang J. Hydrogen sulfide alleviates hypothyroidism-induced myocardial fibrosis in rats through stimulating autophagy and inhibiting TGF-β1/Smad2 pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:1-8. [PMID: 36575928 PMCID: PMC9806643 DOI: 10.4196/kjpp.2023.27.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Hypothyroidism alone can lead to myocardial fibrosis and result in heart failure, but traditional hormone replacement therapy does not improve the fibrotic situation. Hydrogen sulfide (H2S), a new gas signaling molecule, possesses anti-inflammatory, antioxidant, and anti-fibrotic capabilities. Whether H2S could improve hypothyroidism-induced myocardial fibrosis are not yet studied. In our study, H2S could decrease collagen deposition in the myocardial tissue of rats caused by hypothyroidism. Furthermore, in hypothyroidism-induced rats, we found that H2S could enhance cystathionine-gamma-lyase (CSE), not cystathionine β-synthase (CBS), protein expressions. Finally, we noticed that H2S could elevate autophagy levels and inhibit the transforming growth factor-β1 (TGF-β1) signal transduction pathway. In conclusion, our experiments not only suggest that H2S could alleviate hypothyroidism-induced myocardial fibrosis by activating autophagy and suppressing TGF-β1/SMAD family member 2 (Smad 2) signal transduction pathway, but also show that it can be used as a complementary treatment to conventional hormone therapy.
Collapse
Affiliation(s)
- Xiong Song
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liangui Nie
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Junrong Long
- Department of Cardiology, The People's Hospital of Shuangfeng County, Loudi, Hunan 417700, China
| | - Junxiong Zhao
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xing Liu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Da Liu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sen Wang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shengquan Liu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China,Correspondence Shengquan Liu, E-mail: , Jun Yang, E-mail:
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China,Correspondence Shengquan Liu, E-mail: , Jun Yang, E-mail:
| |
Collapse
|
29
|
Lv X, Wang X, Liu J, Wang F, Sun M, Fan X, Ye Z, Liu P, Wen J. Potential biomarkers and immune cell infiltration involved in aortic valve calcification identified through integrated bioinformatics analysis. Front Physiol 2022; 13:944551. [PMID: 36589450 PMCID: PMC9797982 DOI: 10.3389/fphys.2022.944551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Calcific aortic valve disease (CAVD) is the most common valvular heart disease in the aging population, resulting in a significant health and economic burden worldwide, but its underlying diagnostic biomarkers and pathophysiological mechanisms are not fully understood. Methods: Three publicly available gene expression profiles (GSE12644, GSE51472, and GSE77287) from human Calcific aortic valve disease (CAVD) and normal aortic valve samples were downloaded from the Gene Expression Omnibus database for combined analysis. R software was used to identify differentially expressed genes (DEGs) and conduct functional investigations. Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), were applied to identify key feature genes as potential biomarkers for Calcific aortic valve disease (CAVD). Receiver operating characteristic (ROC) curves were used to evaluate the discriminatory ability of key genes. The CIBERSORT deconvolution algorithm was used to determine differential immune cell infiltration and the relationship between key genes and immune cell types. Finally, the Expression level and diagnostic ability of the identified biomarkers were further validated in an external dataset (GSE83453), a single-cell sequencing dataset (SRP222100), and immunohistochemical staining of human clinical tissue samples, respectively. Results: In total, 34 identified DEGs included 21 upregulated and 13 downregulated genes. DEGs were mainly involved in immune-related pathways such as leukocyte migration, granulocyte chemotaxis, cytokine activity, and IL-17 signaling. The machine learning algorithm identified SCG2 and CCL19 as key feature genes [area under the ROC curve (AUC) = 0.940 and 0.913, respectively; validation AUC = 0.917 and 0.903, respectively]. CIBERSORT analysis indicated that the proportion of immune cells in Calcific aortic valve disease (CAVD) was different from that in normal aortic valve tissues, specifically M2 and M0 macrophages. Key genes SCG2 and CCL19 were significantly positively correlated with M0 macrophages. Single-cell sequencing analysis and immunohistochemical staining of human aortic valve tissue samples showed that SCG2 and CCL19 were increased in Calcific aortic valve disease (CAVD) valves. Conclusion: SCG2 and CCL19 are potential novel biomarkers of Calcific aortic valve disease (CAVD) and may play important roles in the biological process of Calcific aortic valve disease (CAVD). Our findings advance understanding of the underlying mechanisms of Calcific aortic valve disease (CAVD) pathogenesis and provide valuable information for future research into novel diagnostic and immunotherapeutic targets for Calcific aortic valve disease (CAVD).
Collapse
Affiliation(s)
- Xiaoshuo Lv
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China,Graduate School of Peking Union Medical College, Beijing, China
| | - Xiaohui Wang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Jingwen Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Feng Wang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China,Graduate School of Peking Union Medical College, Beijing, China
| | - Mingsheng Sun
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xueqiang Fan
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jianyan Wen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Jianyan Wen,
| |
Collapse
|
30
|
Gáll T, Nagy P, Garai D, Potor L, Balla GJ, Balla G, Balla J. Overview on hydrogen sulfide-mediated suppression of vascular calcification and hemoglobin/heme-mediated vascular damage in atherosclerosis. Redox Biol 2022; 57:102504. [PMID: 36240620 PMCID: PMC9576974 DOI: 10.1016/j.redox.2022.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/04/2022] Open
Abstract
Vulnerable atherosclerotic plaques with hemorrhage considerably contribute to cardiovascular morbidity and mortality. Calcification is the main characteristic of advanced atherosclerotic lesions and calcified aortic valve disease (CAVD). Lyses of red blood cells and hemoglobin (Hb) release occur in human hemorrhagic complicated lesions. During the interaction of cell-free Hb with plaque constituents, Hb is oxidized to ferric and ferryl states accompanied by oxidative changes of the globin moieties and heme release. Accumulation of both ferryl-Hb and metHb has been observed in atherosclerotic plaques. The oxidation hotspots in the globin chain are the cysteine and tyrosine amino acids associated with the generation of Hb dimers, tetramers and polymers. Moreover, fragmentation of Hb occurs leading to the formation of globin-derived peptides. A series of these pro-atherogenic cellular responses can be suppressed by hydrogen sulfide (H2S). Since H2S has been explored to exhibit a wide range of physiologic functions to maintain vascular homeostasis, it is not surprising that H2S may play beneficial effects in the progression of atherosclerosis. In the present review, we summarize the findings about the effects of H2S on atherosclerosis and CAVD with a special emphasis on the oxidation of Hb/heme in atherosclerotic plaque development and vascular calcification.
Collapse
Affiliation(s)
- Tamás Gáll
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary; Institute of Oncochemistry, University of Debrecen, Hungary
| | - Dorottya Garai
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | - László Potor
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | | | - György Balla
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - József Balla
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
31
|
Zhao H, Xian G, Zeng J, Zhong G, An D, Peng Y, Hu D, Lin Y, Li J, Su S, Ning Y, Xu D, Zeng Q. Hesperetin, a Promising Dietary Supplement for Preventing the Development of Calcific Aortic Valve Disease. Antioxidants (Basel) 2022; 11:2093. [PMID: 36358465 PMCID: PMC9687039 DOI: 10.3390/antiox11112093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND No effective therapeutic agents for calcific aortic valve disease (CAVD) are available currently. Dietary supplementation has been proposed as a novel treatment modality for various diseases. As a flavanone, hesperetin is widely abundant in citrus fruits and has been proven to exert protective effects in multiple diseases. However, the role of hesperetin in CAVD remains unclear. METHODS Human aortic valve interstitial cells (VICs) were isolated from aortic valve leaflets. A mouse model of aortic valve stenosis was constructed by direct wire injury (DWI). Immunoblotting, immunofluorescence staining, and flow cytometry were used to investigate the roles of sirtuin 7 (Sirt7) and nuclear factor erythroid 2-related factor 2 (Nrf2) in hesperetin-mediated protective effects in VICs. RESULTS Hesperetin supplementation protected the mice from wire-injury-induced aortic valve stenosis; in vitro, hesperetin inhibited the lipopolysaccharide (LPS)-induced activation of NF-κB inflammatory cytokine secretion and osteogenic factors expression, reduced ROS production and apoptosis, and abrogated LPS-mediated injury to the mitochondrial membrane potential and the decline in the antioxidant levels in VICs. These benefits of hesperetin may have been obtained by activating Nrf2-ARE signaling, which corrected the dysfunctional mitochondria. Furthermore, we found that hesperetin could directly bind to Sirt7 and that the silencing of Sirt7 decreased the effects of hesperetin in VICs and potently abolished the ability of hesperetin to increase Nrf2 transcriptional activation. CONCLUSIONS Our work demonstrates that hesperetin plays protective roles in the aortic valve through the Sirt7-Nrf2-ARE axis; thus, hesperetin might be a potential dietary supplement that could prevent the development of CAVD.
Collapse
Affiliation(s)
- Hengli Zhao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Gaopeng Xian
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Jingxin Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Guoheng Zhong
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Dongqi An
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - You Peng
- Division of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dongtu Hu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Yingwen Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Juncong Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Shuwen Su
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| |
Collapse
|
32
|
Li H, Wei Y, Xi Y, Jiao L, Wen X, Wu R, Chang G, Sun F, Hao J. DR1-CSE/H 2S pathway upregulates autophagy and inhibits H9C2 cells damage induced by high glucose. Acta Cardiol 2022:1-13. [PMID: 36197015 DOI: 10.1080/00015385.2022.2119663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the cardiovascular system, long-term high glucose (HG) can lead to cardiomyocyte damage. Hydrogen sulfide (H2S) reduces cell autophagy in cardiomyocytes. Dopamine 1 receptors (DR1), a specific binding receptor for dopamine, which has a significant regulatory effect on cardiomyocytes. However, it is unclear whether DR1 inhibits HG-induced cardiomyocyte damage by regulating endogenous H2S production and the level of cell autophagy. The present data indicated that the expression of DR1 and cystathionine-γ-lyase (CSE, a key enzyme for endogenous H2S production) and H2S content were significantly reduced in HG-induced cardiomyocytes, which was reversed by SKF38393 (an agonist of DR1). NaHS (an exogenous H2S donor) only increased H2S content and the expression of CSE with no effect on DR1 expression. HG reduced cell viability, the expression of Bcl-2 and Beclin1, the production of autophagosomes and LC3 II/I ratio and increased the cell apoptotic ratio, the expression of cleaved caspase-3, cleaved caspase-9, cytochrome c, P62, and p-mTOR/t-mTOR ratio. SKF38393 and NaHS reversed the effects of HG. PPG (an inhibitor of CSE) and 3MA (an inhibitor of autophagy) abolished the beneficial effect of SKF38393. In addition, AICAR (an agonist of AMPK) and Rapamycin (an inhibitor of mTOR) increased the production of autophagosomes but decreased the p-mTOR/t-mTOR ratio, which was similar to the effects of SKF38393 and 3MA. Our findings suggest that DR1 reduces the HG-induced cardiomyocyte damage via up-regulating the CSE/H2S pathway, which increases cell autophagy by inhibiting the activation of mTOR.
Collapse
Affiliation(s)
- Hongzhu Li
- School of Medicine, Xiamen University, Xiamen, China.,Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yaxin Wei
- Department of Pathophysiology, Harbin Medical University, Harbin, China.,Department of Pathology, Northeast Yunnan Regional Central Hospital, Zhaotong, China
| | - Yuxin Xi
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Lijie Jiao
- School of Medicine, Xiamen University, Xiamen, China
| | - Xin Wen
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ren Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Guiquan Chang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Fengqi Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jinghui Hao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Wu LD, Xiao F, Sun JY, Li F, Chen YJ, Chen JY, Zhang J, Qian LL, Wang RX. Integrated identification of key immune related genes and patterns of immune infiltration in calcified aortic valvular disease: A network based meta-analysis. Front Genet 2022; 13:971808. [PMID: 36212153 PMCID: PMC9532575 DOI: 10.3389/fgene.2022.971808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: As the most prevalent valvular heart disease, calcific aortic valve disease (CAVD) has become a primary cause of aortic valve stenosis and insufficiency. We aim to illustrate the roles of immune related genes (IRGs) and immune cells infiltration in the occurrence of CAVD.Methods: Integrative meta-analysis of expression data (INMEX) was adopted to incorporate multiple gene expression datasets of CAVD from Gene Expression Omnibus (GEO) database. By matching the differentially expressed genes (DEGs) to IRGs from “ImmPort” database, differentially expressed immune related genes (DEIRGs) were screened out. We performed enrichment analysis and found that DEIRGs in CAVD were closely related to inflammatory response and immune cells infiltration. We also constructed protein–protein interaction (PPI) network of DEIRGs and identified 5 key DEIRGs in CAVD according to the mixed character calculation results. Moreover, CIBERSORT algorithm was used to explore the profile of infiltrating immune cells in CAVD. Based on Spearman’s rank correlation method, correlation analysis between key DEIRGs and infiltrating immune cells was performed.Results: A total of 220 DEIRGs were identified and the enrichment analysis of DEIRGs showed that they were significantly enriched in inflammatory responses. PPI network was constructed and PTPN11, GRB2, SYK, PTPN6 and SHC1 were identified as key DEIRGs. Compared with normal aortic valve tissue samples, the proportion of neutrophils, T cells CD4 memory activated and macrophages M0 was elevated in calcified aortic valves tissue samples, as well as reduced infiltration of macrophages M2 and NK cells activated. Furthermore, key DEIRGs identified in the present study, including PTPN11, GRB2, PTPN6, SYK, and SHC1, were all significantly correlated with infiltration of various immune cells.Conclusion: This meta-analysis suggested that PTPN11, GRB2, PTPN6, SYK, and SHC1 might be key DEIRGs associated with immune cells infiltration, which play a pivotal role in pathogenesis of CAVD.
Collapse
Affiliation(s)
- Li-Da Wu
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Feng Xiao
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jin-Yu Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Li
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yu-Jia Chen
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jia-Yi Chen
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jie Zhang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
- *Correspondence: Ru-Xing Wang,
| |
Collapse
|
34
|
Hydrogen Sulfide Attenuates Neuroinflammation by Inhibiting the NLRP3/Caspase-1/GSDMD Pathway in Retina or Brain Neuron following Rat Ischemia/Reperfusion. Brain Sci 2022; 12:brainsci12091245. [PMID: 36138981 PMCID: PMC9497235 DOI: 10.3390/brainsci12091245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Gasdermin D-executing pyroptosis mediated by NLRP3 inflammasomes has been recognized as a key pathogenesis during stroke. Hydrogen sulfide (H2S) could protect CNS against ischemia/reperfusion (I/R)-induced neuroinflammation, while the underlying mechanism remains unclear. The study applied the middle cerebral artery occlusion/reperfusion (MCAO/R) model to investigate how the brain and the retinal injuries were alleviated in sodium hydrogen sulfide (NaHS)-treated rats. The rats were assigned to four groups and received an intraperitoneal injection of 50 μmol/kg NaHS or NaCl 15 min after surgery. Neurological deficits were evaluated using the modified neurologic severity score. The quantification of pro-inflammatory cytokines, NLRP3, caspase-1, and GSDMD were determined by ELISA and Western blot. Cortical and retinal neurodegeneration and cell pyroptosis were determined by histopathologic examination. Results showed that NaHS rescued post-stroke neurological deficits and infarct progression, improved retina injury, and attenuated neuroinflammation in the brain cortexes and the retinae. NaHS administration inhibits inflammation by blocking the NLRP3/caspase-1/GSDMD pathway and further suppressing neuronal pyroptosis. This is supported by the fact that it reversed the high-level of NLRP3, caspase-1, and GSDMD following I/R. Our findings suggest that compounds with the ability to donate H2S could constitute a novel therapeutic strategy for ischemic stroke.
Collapse
|
35
|
Li SJ, Cheng WL, Kao YH, Chung CC, Trang NN, Chen YJ. Melatonin Inhibits NF-κB/CREB/Runx2 Signaling and Alleviates Aortic Valve Calcification. Front Cardiovasc Med 2022; 9:885293. [PMID: 35795373 PMCID: PMC9251177 DOI: 10.3389/fcvm.2022.885293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is linked to high mortality. Melatonin inhibits nuclear factor-kappa B (NF-κB)/cyclic AMP response element-binding protein (CREB), contributing to CAVD progression. This study determined the role of melatonin/MT1/MT2 signaling in valvular interstitial cell (VIC) calcification. Western blotting and Alizarin red staining were used to analyze NF-κB/CREB/runt-related transcription factor 2 (Runx2) signaling in porcine VICs treated with an osteogenic (OST) medium without (control) or with melatonin for 5 days. Chromatin immunoprecipitation (ChIP) assay was used to analyze NF-κB's transcription regulation of NF-κB on the Runx2 promoter. OST medium-treated VICs exhibited a greater expression of NF-κB, CREB, and Runx2 than control VICs. Melatonin treatment downregulated the effects of the OST medium and reduced VIC calcification. The MT1/MT2 antagonist (Luzindole) and MT1 receptor neutralized antibody blocked the anticalcification effect of melatonin, but an MT2-specific inhibitor (4-P-PDOT) did not. Besides, the NF-κB inhibitor (SC75741) reduced OST medium-induced VIC calcification to a similar extent to melatonin at 10 nmol/L. The ChIP assay demonstrated that melatonin attenuated OST media increased NF-κB binding activity to the promoter region of Runx2. Activation of the melatonin/MT1-axis significantly reduced VIC calcification by targeting the NF-κB/CREB/Runx2 pathway. Targeting melatonin/MT1 signaling may be a potential therapeutic strategy for CAVD.
Collapse
Affiliation(s)
- Shao-Jung Li
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Wan-Li Cheng
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chih Chung
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Yi-Jen Chen
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Yi-Jen Chen
| |
Collapse
|
36
|
Cao YC, Shan SK, Guo B, Li CC, Li FXZ, Zheng MH, Xu QS, Wang Y, Lei LM, Tang KX, Ou-Yang WL, Duan JY, Wu YY, Ullah MHE, Zhou ZA, Xu F, Lin X, Wu F, Liao XB, Yuan LQ. Histone Lysine Methylation Modification and Its Role in Vascular Calcification. Front Endocrinol (Lausanne) 2022; 13:863708. [PMID: 35784574 PMCID: PMC9243330 DOI: 10.3389/fendo.2022.863708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 01/10/2023] Open
Abstract
Histone methylation is an epigenetic change mediated by histone methyltransferase, and has been connected to the beginning and progression of several diseases. The most common ailments that affect the elderly are cardiovascular and cerebrovascular disorders. They are the leading causes of death, and their incidence is linked to vascular calcification (VC). The key mechanism of VC is the transformation of vascular smooth muscle cells (VSMCs) into osteoblast-like phenotypes, which is a highly adjustable process involving a variety of complex pathophysiological processes, such as metabolic abnormalities, apoptosis, oxidative stress and signalling pathways. Many researchers have investigated the mechanism of VC and related targets for the prevention and treatment of cardiovascular and cerebrovascular diseases. Their findings revealed that histone lysine methylation modification may play a key role in the various stages of VC. As a result, a thorough examination of the role and mechanism of lysine methylation modification in physiological and pathological states is critical, not only for identifying specific molecular markers of VC and new therapeutic targets, but also for directing the development of new related drugs. Finally, we provide this review to discover the association between histone methylation modification and VC, as well as diverse approaches with which to investigate the pathophysiology of VC and prospective treatment possibilities.
Collapse
Affiliation(s)
- Ye-Chi Cao
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yue Duan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Hasnain Ehsan Ullah
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Zhang Y, Lu Y, El Sayyed H, Bian J, Lin J, Li X. Transcription factor dynamics in plants: Insights and technologies for in vivo imaging. PLANT PHYSIOLOGY 2022; 189:23-36. [PMID: 35134239 PMCID: PMC9070795 DOI: 10.1093/plphys/kiac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Biochemical and genetic approaches have been extensively used to study transcription factor (TF) functions, but their dynamic behaviors and the complex ways in which they regulate transcription in plant cells remain unexplored, particularly behaviors such as translocation and binding to DNA. Recent developments in labeling and imaging techniques provide the necessary sensitivity and resolution to study these behaviors in living cells. In this review, we present an up-to-date portrait of the dynamics and regulation of TFs under physiologically relevant conditions and then summarize recent advances in fluorescent labeling strategies and imaging techniques. We then discuss future prospects and challenges associated with the application of these techniques to examine TFs' intricate dance in living plants.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Yuqing Lu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Hafez El Sayyed
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Jiahui Bian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | | |
Collapse
|
38
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
39
|
Li H, Wu R, Xi Y, Li H, Chang G, Sun F, Wei C, Jiao L, Wen X, Zhang G, Zaid A, Hao J. Dopamine 1 receptors inhibit apoptosis via activating CSE/H 2 S pathway in high glucose-induced vascular endothelial cells. Cell Biol Int 2022; 46:1098-1108. [PMID: 35293655 DOI: 10.1002/cbin.11794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/08/2022]
Abstract
High glucose (HG) induced dysfunction of vascular endothelial cells plays a crucial role in the development of diabetic vascular complications. Inhibition of cystathionine γ-synthase/hydrogen sulfide (CSE/H2 S) pathway is one of the causes of vascular endothelial cells injury induced by HG. Dopamine D1 receptors (DR1) are widely expressed and regulate important physiological functions in the vascular system. However, the effect of DR1 inhibition on HG-induced vascular endothelial apoptosis by regulating CSE/H2 S pathway is unclear. Therefore, we aimed to determine if DR1 can regulate the CSE/H2 S pathway and the effect of DR1 on HG-induced apoptosis in human umbilical vein endothelial cells (HUVECs). In this study, we found that HG treatment significantly decreased the expression of DR1 and CSE and the endogenous content of H2 S, DR1 agonist SKF 38393 reversed these effect, while NaHS only increased CSE expression and the endogenous H2 S production and had no effect on DR1 expression. Meanwhile, HG significantly raised intracellular calcium concentration ([Ca2+ ]i ), SKF 38393 further increased HG-induced [Ca2+ ]i . In addition, HG increased LDH activity, MDA and ROS contents, apoptotic rate, the expression of cleaved caspase-3, -9 and Cytochrome C and the activity of phosphorylated-IκBα (p-IκBα) and phosphorylated-NF-κB (p-NF-κB), reduced cell viability, SOD activity and Bcl-2 expressions. SKF 38393 and NaHS markedly reversed the effect of HG. The effect of SKF 38393 was similar to NAC (an inhibitor of oxidative stress) or PDTC (a NF-kB inhibitor). Taken together, DR1 up-regulate CSE/H2 S pathway by increasing [Ca2+ ]i , which inhibits HG-induced apoptosis via down-regulating NF-κB/IκBα pathway in vascular endothelial cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongzhu Li
- School of Medicine, Xiamen University, Xiamen, 361100, Fujian, China.,Department of Pathophysiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Ren Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Yuxin Xi
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Hongxia Li
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Guiquan Chang
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Fengqi Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Can Wei
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Lijie Jiao
- School of Medicine, Xiamen University, Xiamen, 361100, Fujian, China
| | - Xin Wen
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Altaany Zaid
- Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Jinghui Hao
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| |
Collapse
|
40
|
Song S, Guo Y, Yang Y, Fu D. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol Ther 2022; 237:108168. [PMID: 35283172 DOI: 10.1016/j.pharmthera.2022.108168] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Osteoporosis, is the most common bone disorder worldwide characterized by low bone mineral density, leaving affected bones vulnerable to fracture. Bone homeostasis depends on the precise balance between bone resorption by osteoclasts and bone matrix formation by mesenchymal lineage osteoblasts, and involves a series of complex and highly regulated steps. Bone homeostasis will be disrupted when the speed of bone resorption is faster than bone formation. Based on various regulatory mechanisms of bone homeostasis, a series of drugs targeting osteoporosis have emerged in clinical practice, including bisphosphonates, selective estrogen receptor modulators, calcitonin, molecular-targeted drugs and so on. However, many drugs have major adverse effects or are unsuitable for long-term use. Therefore, it is very urgent to find more effective therapeutic drugs based on the new pathogenesis of osteoporosis. In this review, we summarize novel mechanisms involved in the pathological process of osteoporosis, including the roles of gut microbiome, autophagy, iron balance and cellular senescence. Based on the above pathological mechanism, we found promising drugs for osteoporosis treatment, such as: probiotics, alpha-ketoglutarate, senolytics and hydrogen sulfide. This new finding may provide an important basis for elucidating the complex pathological mechanisms of osteoporosis and provide promising drugs for clinical osteoporosis treatment.
Collapse
Affiliation(s)
- Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei 430077, PR China
| | - Yuehua Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Dehao Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China.
| |
Collapse
|
41
|
Metformin alleviates the calcification of aortic valve interstitial cells through activating the PI3K/AKT pathway in an AMPK dependent way. Mol Med 2021; 27:156. [PMID: 34895136 PMCID: PMC8666063 DOI: 10.1186/s10020-021-00416-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is the most prevalent valvular disease worldwide. However, no effective treatment could delay or prevent the progression of the disease due to the poor understanding of its pathological mechanism. Many studies showed that metformin exerted beneficial effects on multiple cardiovascular diseases by mediating multiple proteins such as AMPK, NF-κB, and AKT. This study aims to verify whether metformin can inhibit aortic calcification through the PI3K/AKT signaling pathway. METHODS We first analyzed four microarray datasets to screen differentially expressed genes (DEGs) and signaling pathways related to CAVD. Then aortic valve samples were used to verify selected genes and pathways through immunohistochemistry (IHC) and western blot (WB) assays. Aortic valve interstitial cells (AVICs) were isolated from non-calcific aortic valves and then cultured with phosphate medium (PM) with or without metformin to verify whether metformin can inhibit the osteogenic differentiation and calcification of AVICs. Finally, we used inhibitors and siRNA targeting AMPK, NF-κB, and AKT to study the mechanism of metformin. RESULTS We screened 227 DEGs; NF-κB and PI3K/AKT signaling pathways were implicated in the pathological mechanism of CAVD. IHC and WB experiments showed decreased AMPK and AKT and increased Bax in calcific aortic valves. PM treatment significantly reduced AMPK and PI3K/AKT signaling pathways, promoted Bax/Bcl2 ratio, and induced AVICs calcification. Metformin treatment ameliorated AVICs calcification and apoptosis by activating the PI3K/AKT signaling pathway. AMPK activation and NF-κB inhibition could inhibit AVICs calcification induced by PM treatment; however, AMPK and AKT inhibition reversed the protective effect of metformin. CONCLUSIONS This study, for the first time, demonstrates that metformin can inhibit AVICs in vitro calcification by activating the PI3K/AKT signaling pathway; this suggests that metformin may provide a potential target for the treatment of CAVD. And the PI3K/AKT signaling pathway emerges as an important regulatory axis in the pathological mechanism of CAVD.
Collapse
|
42
|
Xu H, Wei K, Tu J, Chen Y, He Y, Ding Y, Xu H, Bao X, Xie H, Fang H, Wang H. Reducing Inflammation and Vascular Invasion in Intervertebral Disc Degeneration via Cystathionine-γ-Lyase Inhibitory Effect on E-Selectin. Front Cell Dev Biol 2021; 9:741046. [PMID: 34869327 PMCID: PMC8634256 DOI: 10.3389/fcell.2021.741046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
The incidence of degenerative spinal diseases, such as cervical spondylosis and thoracic and lumbar disc herniation, is increasing. These health problems have adversely affected human life and work. Surgical intervention is effective when intervertebral disc degeneration (IDD) causes nerve compression and/or severely limits daily activity. Early IDD patients generally do not require surgery. However, there is no effective method of impeding IDD progression. Thus, novel approaches to alleviating IDD deterioration are urgently required. Cystathionine-γ-lyase (CSE) and E-selectin (CD62E) are vital factors regulating vascular function and inflammation. However, their effects on IDD and vascular invasion in intervertebral discs (IVDs) are pending further exploration. Here, bioinformatics and human nucleus pulposus (NP) tissues analyses revealed that CSE was significantly downregulated and CD62E was upregulated in the NP tissues of IDD patients. We demonstrated that CSE overexpression, CD62E downregulation, and NF-κB (P65) inhibition mitigate inflammation and recover metabolic function in NP cells. Similarly, CSE attenuated vascular invasion induced by inflammatory irritation. Using a rat IDD model, we showed that CSE improved degeneration, inflammation, and microvascular invasion in NP tissue, whereas CD62E had the opposite effect. Taken together, our results indicated that the CSE/CD62E pathway could effectively improve the inflammatory environment and vascular invasion in IVD. Hence, the findings of this study propose a promising and valuable strategy for the treatment of patients with early IDD as well as postoperative adjuvant therapy in patients with severe IDD.
Collapse
Affiliation(s)
- Haoran Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Wei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangmengfan Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Ding
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huanhuan Xu
- Department of Obstetrics and Gynecology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Bao
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Mazur P, Kopytek M, Ząbczyk M, Undas A, Natorska J. Towards Personalized Therapy of Aortic Stenosis. J Pers Med 2021; 11:1292. [PMID: 34945764 PMCID: PMC8708539 DOI: 10.3390/jpm11121292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Calcific aortic stenosis (CAS) is the most common cause of acquired valvular heart disease in adults with no available pharmacological treatment to inhibit the disease progression to date. This review provides an up-to-date overview of current knowledge of molecular mechanisms underlying CAS pathobiology and the related treatment pathways. Particular attention is paid to current randomized trials investigating medical treatment of CAS, including strategies based on lipid-lowering and antihypertensive therapies, phosphate and calcium metabolism, and novel therapeutic targets such as valvular oxidative stress, coagulation proteins, matrix metalloproteinases, and accumulation of advanced glycation end products.
Collapse
Affiliation(s)
- Piotr Mazur
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN 55902, USA;
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
| | - Magdalena Kopytek
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
- Center for Research and Medical Technologies, John Paul II Hospital, 31-202 Kraków, Poland
| | - Michał Ząbczyk
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
- Center for Research and Medical Technologies, John Paul II Hospital, 31-202 Kraków, Poland
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
- Center for Research and Medical Technologies, John Paul II Hospital, 31-202 Kraków, Poland
| | - Joanna Natorska
- Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Kraków, Poland; (M.K.); (M.Z.); (A.U.)
- Center for Research and Medical Technologies, John Paul II Hospital, 31-202 Kraków, Poland
| |
Collapse
|
44
|
Driscoll K, Cruz AD, Butcher JT. Inflammatory and Biomechanical Drivers of Endothelial-Interstitial Interactions in Calcific Aortic Valve Disease. Circ Res 2021; 128:1344-1370. [PMID: 33914601 DOI: 10.1161/circresaha.121.318011] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Calcific aortic valve disease is dramatically increasing in global burden, yet no therapy exists outside of prosthetic replacement. The increasing proportion of younger and more active patients mandates alternative therapies. Studies suggest a window of opportunity for biologically based diagnostics and therapeutics to alleviate or delay calcific aortic valve disease progression. Advancement, however, has been hampered by limited understanding of the complex mechanisms driving calcific aortic valve disease initiation and progression towards clinically relevant interventions.
Collapse
Affiliation(s)
| | - Alexander D Cruz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca NY
| | | |
Collapse
|
45
|
Novel Insight into the Role of Endoplasmic Reticulum Stress in the Pathogenesis of Myocardial Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5529810. [PMID: 33854692 PMCID: PMC8019635 DOI: 10.1155/2021/5529810] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Impaired function of the endoplasmic reticulum (ER) is followed by evolutionarily conserved cell stress responses, which are employed by cells, including cardiomyocytes, to maintain and/or restore ER homeostasis. ER stress activates the unfolded protein response (UPR) to degrade and remove abnormal proteins from the ER lumen. Although the UPR is an intracellular defense mechanism to sustain cardiomyocyte viability and heart function, excessive activation initiates ER-dependent cardiomyocyte apoptosis. Myocardial ischemia/reperfusion (I/R) injury is a pathological process occurring during or after revascularization of ischemic myocardium. Several molecular mechanisms contribute to the pathogenesis of cardiac I/R injury. Due to the dual protective/degradative effects of ER stress on cardiomyocyte viability and function, it is of interest to understand the basic concepts, regulatory signals, and molecular processes involved in ER stress following myocardial I/R injury. In this review, therefore, we present recent findings related to the novel components of ER stress activation. The complex effects of ER stress and whether they mitigate or exacerbate myocardial I/R injury are summarized to serve as the basis for research into potential therapies for cardioprotection through control of ER homeostasis.
Collapse
|
46
|
Wang YZ, Ngowi EE, Wang D, Qi HW, Jing MR, Zhang YX, Cai CB, He QL, Khattak S, Khan NH, Jiang QY, Ji XY, Wu DD. The Potential of Hydrogen Sulfide Donors in Treating Cardiovascular Diseases. Int J Mol Sci 2021; 22:2194. [PMID: 33672103 PMCID: PMC7927090 DOI: 10.3390/ijms22042194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Hydrogen sulfide (H2S) has long been considered as a toxic gas, but as research progressed, the idea has been updated and it has now been shown to have potent protective effects at reasonable concentrations. H2S is an endogenous gas signaling molecule in mammals and is produced by specific enzymes in different cell types. An increasing number of studies indicate that H2S plays an important role in cardiovascular homeostasis, and in most cases, H2S has been reported to be downregulated in cardiovascular diseases (CVDs). Similarly, in preclinical studies, H2S has been shown to prevent CVDs and improve heart function after heart failure. Recently, many H2S donors have been synthesized and tested in cellular and animal models. Moreover, numerous molecular mechanisms have been proposed to demonstrate the effects of these donors. In this review, we will provide an update on the role of H2S in cardiovascular activities and its involvement in pathological states, with a special focus on the roles of exogenous H2S in cardiac protection.
Collapse
Affiliation(s)
- Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Di Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Hui-Wen Qi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Chun-Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Qing-Lin He
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng 475004, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng 475004, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
47
|
Chen HJ, Ngowi EE, Qian L, Li T, Qin YZ, Zhou JJ, Li K, Ji XY, Wu DD. Role of Hydrogen Sulfide in the Endocrine System. Front Endocrinol (Lausanne) 2021; 12:704620. [PMID: 34335475 PMCID: PMC8322845 DOI: 10.3389/fendo.2021.704620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2S), as one of the three known gaseous signal transduction molecules in organisms, has attracted a surging amount of attention. H2S is involved in a variety of physiological and pathological processes in the body, such as dilating blood vessels (regulating blood pressure), protecting tissue from ischemia-reperfusion injury, anti-inflammation, carcinogenesis, or inhibition of cancer, as well as acting on the hypothalamus and pancreas to regulate hormonal metabolism. The change of H2S concentration is related to a variety of endocrine disorders, and the change of hormone concentration also affects the synthesis of H2S. Understanding the effect of biosynthesis and the concentration of H2S on the endocrine system is useful to develop drugs for the treatment of hypertension, diabetes, and other diseases.
Collapse
Affiliation(s)
- Hao-Jie Chen
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ebenezeri Erasto Ngowi
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Lei Qian
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Tao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Yang-Zhe Qin
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Jing-Jing Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ke Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Dong-Dong Wu, ; Xin-Ying Ji,
| | - Dong-Dong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
- *Correspondence: Dong-Dong Wu, ; Xin-Ying Ji,
| |
Collapse
|
48
|
Choi B, Kim EY, Kim JE, Oh S, Park SO, Kim SM, Choi H, Song JK, Chang EJ. Evogliptin Suppresses Calcific Aortic Valve Disease by Attenuating Inflammation, Fibrosis, and Calcification. Cells 2021; 10:E57. [PMID: 33401457 PMCID: PMC7824080 DOI: 10.3390/cells10010057] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve disease (CAVD) accompanies inflammatory cell infiltration, fibrosis, and ultimately calcification of the valve leaflets. We previously demonstrated that dipeptidyl peptidase-4 (DPP-4) is responsible for the progression of aortic valvular calcification in CAVD animal models. As evogliptin, one of the DPP-4 inhibitors displays high specific accumulation in cardiac tissue, we here evaluated its therapeutic potency for attenuating valvular calcification in CAVD animal models. Evogliptin administration markedly reduced calcific deposition accompanied by a reduction in proinflammatory cytokine expression in endothelial nitric oxide synthase-deficient mice in vivo, and significantly ameliorated the mineralization of the primary human valvular interstitial cells (VICs), with a reduction in the mRNA expression of bone-associated and fibrosis-related genes in vitro. In addition, evogliptin ameliorated the rate of change in the transaortic peak velocity and mean pressure gradients in our rabbit model as assessed by echocardiography. Importantly, evogliptin administration in a rabbit model was found to suppress the effects of a high-cholesterol diet and of vitamin D2-driven fibrosis in association with a reduction in macrophage infiltration and calcific deposition in aortic valves. These results have indicated that evogliptin prohibits inflammatory cytokine expression, fibrosis, and calcification in a CAVD animal model, suggesting its potential as a selective therapeutic agent for the inhibition of valvular calcification during CAVD progression.
Collapse
Affiliation(s)
- Bongkun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun-Young Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ji-Eun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Soyoon Oh
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Si-On Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang-Min Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyuksu Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jae-Kwan Song
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Biochemistry, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|