1
|
Lai H, Fan P, Wang H, Wang Z, Chen N. New perspective on central nervous system disorders: focus on mass spectrometry imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8080-8102. [PMID: 39508396 DOI: 10.1039/d4ay01205d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
An abnormally organized brain spatial network is linked to the development of various central nervous system (CNS) disorders, including neurodegenerative diseases and neuropsychiatric disorders. However, the complicated molecular mechanisms of these diseases remain unresolved, making the development of treatment strategies difficult. A novel molecular imaging technique, called mass spectrometry imaging (MSI), captures molecular information on the surface of samples in situ. With MSI, multiple compounds can be simultaneously visualized in a single experiment. The high spatial resolution enables the simultaneous visualization of the spatial distribution and relative content of various compounds. The wide application of MSI in biomedicine has facilitated extensive studies on CNS disorders in recent years. This review provides a concise overview of the processes, applications, advantages, and disadvantages, as well as mechanisms of the main types of MSI. Meanwhile, this review summarizes the main applications of MSI in studying CNS diseases, including Alzheimer's disease (AD), CNS tumors, stroke, depression, Huntington's disease (HD), and Parkinson's disease (PD). Finally, this review comprehensively discusses the synergistic application of MSI with other advanced imaging modalities, its utilization in organoid models, its integration with spatial omics techniques, and provides an outlook on its future potential in single-cell analysis.
Collapse
Affiliation(s)
- Huaqing Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Pinglong Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Huiqin Wang
- Hunan University of Chinese Medicine, Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Naihong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Liu Y, Herr AE. DropBlot: single-cell western blotting of chemically fixed cancer cells. Nat Commun 2024; 15:5888. [PMID: 39003254 PMCID: PMC11246512 DOI: 10.1038/s41467-024-50046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 06/27/2024] [Indexed: 07/15/2024] Open
Abstract
Archived patient-derived tissue specimens play a central role in understanding disease and developing therapies. To address specificity and sensitivity shortcomings of existing single-cell resolution proteoform analysis tools, we introduce a hybrid microfluidic platform (DropBlot) designed for proteoform analyses in chemically fixed single cells. DropBlot serially integrates droplet-based encapsulation and lysis of single fixed cells, with on-chip microwell-based antigen retrieval, with single-cell western blotting of target antigens. A water-in-oil droplet formulation withstands the harsh chemical (SDS, 6 M urea) and thermal conditions (98 °C, 1-2 hr) required for effective antigen retrieval, and supports analysis of retrieved protein targets by single-cell electrophoresis. We demonstrate protein-target retrieval from unfixed, paraformaldehyde-fixed (PFA), and methanol-fixed cells. Key protein targets (HER2, GAPDH, EpCAM, Vimentin) retrieved from PFA-fixed cells were resolved and immunoreactive. Relevant to biorepositories, DropBlot profiled targets retrieved from human-derived breast tumor specimens archived for six years, offering a workflow for single-cell protein-biomarker analysis of sparing biospecimens.
Collapse
Affiliation(s)
- Yang Liu
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, 30602, USA.
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
3
|
Castro DC, Chan-Andersen P, Romanova EV, Sweedler JV. Probe-based mass spectrometry approaches for single-cell and single-organelle measurements. MASS SPECTROMETRY REVIEWS 2024; 43:888-912. [PMID: 37010120 PMCID: PMC10545815 DOI: 10.1002/mas.21841] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Exploring the chemical content of individual cells not only reveals underlying cell-to-cell chemical heterogeneity but is also a key component in understanding how cells combine to form emergent properties of cellular networks and tissues. Recent technological advances in many analytical techniques including mass spectrometry (MS) have improved instrumental limits of detection and laser/ion probe dimensions, allowing the analysis of micron and submicron sized areas. In the case of MS, these improvements combined with MS's broad analyte detection capabilities have enabled the rise of single-cell and single-organelle chemical characterization. As the chemical coverage and throughput of single-cell measurements increase, more advanced statistical and data analysis methods have aided in data visualization and interpretation. This review focuses on secondary ion MS and matrix-assisted laser desorption/ionization MS approaches for single-cell and single-organelle characterization, which is followed by advances in mass spectral data visualization and analysis.
Collapse
Affiliation(s)
- Daniel C. Castro
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Peter Chan-Andersen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Elena V. Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Jonathan V. Sweedler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
4
|
Klein D, Rivera ES, Caprioli RM, Spraggins JM. Imaging Mass Spectrometry of Isotopically Resolved Intact Proteins on a Trapped Ion-Mobility Quadrupole Time-of-Flight Mass Spectrometer. Anal Chem 2024; 96:5065-5070. [PMID: 38517028 PMCID: PMC10993197 DOI: 10.1021/acs.analchem.3c05252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
In this work, we demonstrate rapid, high spatial, and high spectral resolution imaging of intact proteins by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) on a hybrid quadrupole-reflectron time-of-flight (qTOF) mass spectrometer equipped with trapped ion mobility spectrometry (TIMS). Historically, untargeted MALDI IMS of proteins has been performed on TOF mass spectrometers. While advances in TOF instrumentation have enabled rapid, high spatial resolution IMS of intact proteins, TOF mass spectrometers generate relatively low-resolution mass spectra with limited mass accuracy. Conversely, the implementation of MALDI sources on high-resolving power Fourier transform (FT) mass spectrometers has allowed IMS experiments to be conducted with high spectral resolution with the caveat of increasingly long data acquisition times. As illustrated here, qTOF mass spectrometers enable protein imaging with the combined advantages of TOF and FT mass spectrometers. Protein isotope distributions were resolved for both a protein standard mixture and proteins detected from a whole-body mouse pup tissue section. Rapid (∼10 pixels/s) 10 μm lateral spatial resolution IMS was performed on a rat brain tissue section while maintaining isotopic spectral resolution. Lastly, proof-of-concept MALDI-TIMS data was acquired from a protein mixture to demonstrate the ability to differentiate charge states by ion mobility. These experiments highlight the advantages of qTOF and timsTOF platforms for resolving and interpreting complex protein spectra generated from tissue by IMS.
Collapse
Affiliation(s)
- Dustin
R. Klein
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Emilio S. Rivera
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Richard M. Caprioli
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Medicine, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey M. Spraggins
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Liu Y, Herr AE. DropBlot: single-cell western blotting of chemically fixed cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556277. [PMID: 37732260 PMCID: PMC10508777 DOI: 10.1101/2023.09.04.556277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
To further realize proteomics of archived tissues for translational research, we introduce a hybrid microfluidic platform for high-specificity, high-sensitivity protein detection from individual chemically fixed cells. To streamline processing-to-analysis workflows and minimize signal loss, DropBlot serially integrates sample preparation using droplet-based antigen retrieval from single fixed cells with unified analysis-on-a-chip comprising microwell-based antigen extraction followed by chip-based single-cell western blotting. A water-in-oil droplet formulation proves robust to the harsh chemical (SDS, 6M urea) and thermal conditions (98°C, 1-2 hr.) required for sufficient antigen retrieval, and the electromechanical conditions required for electrotransfer of retrieved antigen from microwell-encapsulated droplets to single-cell electrophoresis. Protein-target retrieval was demonstrated for unfixed, paraformaldehyde-(PFA), and methanol-fixed cells. We observed higher protein electrophoresis separation resolution from PFA-fixed cells with sufficient immunoreactivity confirmed for key targets (HER2, GAPDH, EpCAM, Vimentin) from both fixation chemistries. Multiple forms of EpCAM and Vimentin were detected, a hallmark strength of western-blot analysis. DropBlot of PFA-fixed human-derived breast tumor specimens (n = 5) showed antigen retrieval from cells archived frozen for 6 yrs. DropBlot could provide a precision integrated workflow for single-cell resolution protein-biomarker mining of precious biospecimen repositories.
Collapse
|
6
|
Haugg S, Creydt M, Zierold R, Fischer M, Blick RH. Booster-microchannel plate (BMCP) detector for signal amplification in MALDI-TOF mass spectrometry for ions beyond m/ z 50 000. Phys Chem Chem Phys 2023; 25:7312-7322. [PMID: 36815547 DOI: 10.1039/d2cp02361j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Top-down proteomics deals with the characterization of intact biomolecules, which reduces the sample complexity and facilitates the detection of modifications at the protein level. The combination of the matrix-assisted laser desorption/ionization (MALDI) technique with time-of-flight (TOF) mass analysis allows for the generation of gaseous ions in low charge states from high-mass biomolecules, followed by their mass-to-charge ratio (m/z) separation, as high-mass ions drift down the flight tube more slowly than lighter ones. However, the detection efficiency of conventional microchannel plate (MCP) detectors is strongly reduced with decreasing ion velocity-corresponding to an increase in ion mass-which impedes the reliable detection of high-mass biomolecules. Herein, we present a simple modification of the MCP detector that allows for the amplification of the signal from ionized proteins of up to m/z 150 000. Two circular electrodes were assembled in front of the conventional detector and set to negative electrical voltages to affect the positively charged ions directly before they impinge on the MCP, possibly through a combination of a velocity boost and ion optical effects. In the present study, three booster electrode configurations were experimentally tested to maximize the signal intensification. Compared to the conventional MCP assembly, the signal intensity was amplified in a proof-of-concept experiment by a factor of 24.3 and of 10.7 for the singly charged BSA ion (m/z 66 400) and for the singly charged IgG ion (m/z 150 000), respectively, by applying the booster-MCP (BMCP) detector.
Collapse
Affiliation(s)
- Stefanie Haugg
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761 Hamburg, Germany.
| | - Marina Creydt
- HAMBURG SCHOOL OF FOOD SCIENCE - Institute of Food Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| | - Robert Zierold
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761 Hamburg, Germany.
| | - Markus Fischer
- HAMBURG SCHOOL OF FOOD SCIENCE - Institute of Food Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| | - Robert H Blick
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22761 Hamburg, Germany.
| |
Collapse
|
7
|
Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. MASS SPECTROMETRY REVIEWS 2023; 42:706-750. [PMID: 34558119 PMCID: PMC9067165 DOI: 10.1002/mas.21734] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/08/2023]
Abstract
Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
8
|
Zemaitis KJ, Veličković D, Kew W, Fort KL, Reinhardt-Szyba M, Pamreddy A, Ding Y, Kaushik D, Sharma K, Makarov AA, Zhou M, Paša-Tolić L. Enhanced Spatial Mapping of Histone Proteoforms in Human Kidney Through MALDI-MSI by High-Field UHMR-Orbitrap Detection. Anal Chem 2022; 94:12604-12613. [PMID: 36067026 PMCID: PMC10064997 DOI: 10.1021/acs.analchem.2c01034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Core histones including H2A, H2B, H3, and H4 are key modulators of cellular repair, transcription, and replication within eukaryotic cells, playing vital roles in the pathogenesis of disease and cellular responses to environmental stimuli. Traditional mass spectrometry (MS)-based bottom-up and top-down proteomics allows for the comprehensive identification of proteins and of post-translational modification (PTM) harboring proteoforms. However, these methodologies have difficulties preserving near-cellular spatial distributions because they typically require laser capture microdissection (LCM) and advanced sample preparation techniques. Herein, we coupled a matrix-assisted laser desorption/ionization (MALDI) source with a Thermo Scientific Q Exactive HF Orbitrap MS upgraded with ultrahigh mass range (UHMR) boards for the first demonstration of complementary high-resolution accurate mass (HR/AM) measurements of proteoforms up to 16.5 kDa directly from tissues using this benchtop mass spectrometer. The platform achieved isotopic resolution throughout the detected mass range, providing confident assignments of proteoforms with low ppm mass error and a considerable increase in duty cycle over other Fourier transform mass analyzers. Proteoform mapping of core histones was demonstrated on sections of human kidney at near-cellular spatial resolution, with several key distributions of histone and other proteoforms noted within both healthy biopsy and a section from a renal cell carcinoma (RCC) containing nephrectomy. The use of MALDI-MS imaging (MSI) for proteoform mapping demonstrates several steps toward high-throughput accurate identification of proteoforms and provides a new tool for mapping biomolecule distributions throughout tissue sections in extended mass ranges.
Collapse
Affiliation(s)
- Kevin J Zemaitis
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - William Kew
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kyle L Fort
- Thermo Fisher Scientific (Bremen) GmbH, 28199 Bremen, Germany
| | | | - Annapurna Pamreddy
- Center for Renal Precision Medicine, Department of Medicine, University of Texas Health, San Antonio, Texas 78284, United States
| | - Yanli Ding
- Department of Pathology and Laboratory Medicine, University of Texas Health, San Antonio, Texas 78284, United States
| | - Dharam Kaushik
- Department of Urology, University of Texas Health, San Antonio, Texas 78284, United States
| | - Kumar Sharma
- Center for Renal Precision Medicine, Department of Medicine, University of Texas Health, San Antonio, Texas 78284, United States.,Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78284, United States
| | - Alexander A Makarov
- Thermo Fisher Scientific (Bremen) GmbH, 28199 Bremen, Germany.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht 3584, The Netherlands
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
9
|
Su P, McGee JP, Durbin KR, Hollas MAR, Yang M, Neumann EK, Allen JL, Drown BS, Butun FA, Greer JB, Early BP, Fellers RT, Spraggins JM, Laskin J, Camarillo JM, Kafader JO, Kelleher NL. Highly multiplexed, label-free proteoform imaging of tissues by individual ion mass spectrometry. SCIENCE ADVANCES 2022; 8:eabp9929. [PMID: 35947651 PMCID: PMC9365283 DOI: 10.1126/sciadv.abp9929] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/24/2022] [Indexed: 05/25/2023]
Abstract
Imaging of proteoforms in human tissues is hindered by low molecular specificity and limited proteome coverage. Here, we introduce proteoform imaging mass spectrometry (PiMS), which increases the size limit for proteoform detection and identification by fourfold compared to reported methods and reveals tissue localization of proteoforms at <80-μm spatial resolution. PiMS advances proteoform imaging by combining ambient nanospray desorption electrospray ionization with ion detection using individual ion mass spectrometry. We demonstrate highly multiplexed proteoform imaging of human kidney, annotating 169 of 400 proteoforms of <70 kDa using top-down MS and a database lookup of ~1000 kidney candidate proteoforms, including dozens of key enzymes in primary metabolism. PiMS images reveal distinct spatial localizations of proteoforms to both anatomical structures and cellular neighborhoods in the vasculature, medulla, and cortex regions of the human kidney. The benefits of PiMS are poised to increase proteome coverage for label-free protein imaging of tissues.
Collapse
Affiliation(s)
- Pei Su
- Departments of Molecular Biosciences, Chemistry, and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - John P. McGee
- Departments of Molecular Biosciences, Chemistry, and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Kenneth R. Durbin
- Departments of Molecular Biosciences, Chemistry, and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Michael A. R. Hollas
- Departments of Molecular Biosciences, Chemistry, and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Manxi Yang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Elizabeth K. Neumann
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Jamie L. Allen
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Bryon S. Drown
- Departments of Molecular Biosciences, Chemistry, and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | | | - Joseph B. Greer
- Departments of Molecular Biosciences, Chemistry, and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Bryan P. Early
- Departments of Molecular Biosciences, Chemistry, and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Ryan T. Fellers
- Departments of Molecular Biosciences, Chemistry, and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Jeffrey M. Spraggins
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
- Departments of Chemistry and Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Jeannie M. Camarillo
- Departments of Molecular Biosciences, Chemistry, and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Jared O. Kafader
- Departments of Molecular Biosciences, Chemistry, and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Neil L. Kelleher
- Departments of Molecular Biosciences, Chemistry, and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
10
|
Huang L, Nie L, Dai Z, Dong J, Jia X, Yang X, Yao L, Ma SC. The application of mass spectrometry imaging in traditional Chinese medicine: a review. Chin Med 2022; 17:35. [PMID: 35248086 PMCID: PMC8898510 DOI: 10.1186/s13020-022-00586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2025] Open
Abstract
AbstractMass spectrometry imaging is a frontier technique which connects classical mass spectrometry with ion imaging. Various types of chemicals could be visualized in their native tissues using mass spectrometry imaging. Up to now, the most commonly applied mass spectrometry imaging techniques are matrix assisted laser desorption ionization mass spectrometry imaging, desorption electrospray ionization mass spectrometry imaging and secondary ion mass spectrometry imaging. This review gives an introduction to the principles, development and applications of commonly applied mass spectrometry imaging techniques, and then illustrates the application of mass spectrometry imaging in the investigation of traditional Chinese medicine. Recently, mass spectrometry imaging has been adopted to explore the spatial distribution of endogenous metabolites in traditional Chinese medicine. Data collected from mass spectrometry imaging can be further utilized to search for marker components of traditional Chinese medicine, discover new compounds from traditional herbs, and differentiate between medicinal plants that are similar in botanical features. Moreover, mass spectrometry imaging also plays a role in revealing the pharmacological and toxicological mechanisms of traditional Chinese medicine.
Collapse
|
11
|
Molecular Histology Analysis of Cryopreserved Tissue Using Peptide/Protein MALDI-TOF Imaging Mass Spectrometry (MALDI-IMS). METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2420:177-190. [PMID: 34905174 DOI: 10.1007/978-1-0716-1936-0_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) has emerged as a powerful tool for analyzing the spatial distribution of peptides, small proteins, and other molecules within biological tissues. The obtained signals can be correlated with underlying tissue architecture, without any geometrical distortion, enabling the so-called molecular histology. Here, we analyzed cryopreserved tissue samples employing the MALDI-IMS for proteins and peptides. We used a nonstandard OCT-free cryo-slicing protocol, followed by Carnoy delipidation. Automated matrix spray was utilized to circumvent some of MALDI-IMS technology drawbacks in protein and peptide analysis.
Collapse
|
12
|
Luu GT, Sanchez LM. Toward improvement of screening through mass spectrometry-based proteomics: ovarian cancer as a case study. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 469:116679. [PMID: 34744497 PMCID: PMC8570641 DOI: 10.1016/j.ijms.2021.116679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ovarian cancer is one of the leading causes of cancer related deaths affecting United States women. Early-stage detection of ovarian cancer has been linked to increased survival, however, current screening methods, such as biomarker testing, have proven to be ineffective in doing so. Therefore, further developments are necessary to be able to achieve positive patient prognosis. Ongoing efforts are being made in biomarker discovery towards clinical applications in screening for early-stage ovarian cancer. In this perspective, we discuss and provide examples for several workflows employing mass spectrometry-based proteomics towards protein biomarker discovery and characterization in the context of ovarian cancer; workflows include protein identification and characterization as well as intact protein profiling. We also discuss the opportunities to merge these workflows for a multiplexed approach for biomarkers. Lastly, we provide our insight as to future developments that may serve to enhance biomarker discovery workflows while also considering translational potential.
Collapse
Affiliation(s)
- Gordon T Luu
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St. Santa Cruz, CA, 95064
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St. Santa Cruz, CA, 95064
| |
Collapse
|
13
|
Vu NQ, DeLaney K, Li L. Neuropeptidomics: Improvements in Mass Spectrometry Imaging Analysis and Recent Advancements. Curr Protein Pept Sci 2021; 22:158-169. [PMID: 33200705 PMCID: PMC8330971 DOI: 10.2174/1389203721666201116115708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022]
Abstract
Neuropeptides are an important class of endogenous peptides in the nervous system that regulate physiological functions such as feeding, glucose homeostasis, pain, memory, reproduction, and many others. In order to understand the functional role of neuropeptides in diseases or disorders, studies investigating their dysregulation in terms of changes in abundance and localization must be carried out. As multiple neuropeptides are believed to play a functional role in each physiological process, techniques capable of global profiling multiple neuropeptides simultaneously are desired. Mass spectrometry is well-suited for this goal due to its ability to perform untargeted measurements without prior comprehensive knowledge of the analytes of interest. Mass spectrometry imaging (MSI) is particularly useful because it has the capability to image a large variety of peptides in a single experiment without labeling. Like all analytical techniques, careful sample preparation is critical to successful MSI analysis. The first half of this review focuses on recent developments in MSI sample preparation and instrumentation for analyzing neuropeptides and other biomolecules in which the sample preparation technique may be directly applicable for neuropeptide analysis. The benefit offered by incorporating these techniques is shown as improvement in a number of observable neuropeptides, enhanced signal to noise, increased spatial resolution, or a combination of these aspects. The second half of this review focuses on recent biological discoveries about neuropeptides resulting from these improvements in MSI analysis. The recent progress in neuropeptide detection and analysis methods, including the incorporation of various tissue washes, matrices, instruments, ionization sources, and computation approaches combined with the advancements in understanding neuropeptide function in a variety of model organisms, indicates the potential for the utilization of MSI analysis of neuropeptides in clinical settings.
Collapse
Affiliation(s)
- Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
14
|
Grist SM, Mourdoukoutas AP, Herr AE. 3D projection electrophoresis for single-cell immunoblotting. Nat Commun 2020; 11:6237. [PMID: 33277486 PMCID: PMC7718224 DOI: 10.1038/s41467-020-19738-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
Immunoassays and mass spectrometry are powerful single-cell protein analysis tools; however, interfacing and throughput bottlenecks remain. Here, we introduce three-dimensional single-cell immunoblots to detect both cytosolic and nuclear proteins. The 3D microfluidic device is a photoactive polyacrylamide gel with a microwell array-patterned face (xy) for cell isolation and lysis. Single-cell lysate in each microwell is "electrophoretically projected" into the 3rd dimension (z-axis), separated by size, and photo-captured in the gel for immunoprobing and confocal/light-sheet imaging. Design and analysis are informed by the physics of 3D diffusion. Electrophoresis throughput is > 2.5 cells/s (70× faster than published serial sampling), with 25 immunoblots/mm2 device area (>10× increase over previous immunoblots). The 3D microdevice design synchronizes analyses of hundreds of cells, compared to status quo serial analyses that impart hours-long delay between the first and last cells. Here, we introduce projection electrophoresis to augment the heavily genomic and transcriptomic single-cell atlases with protein-level profiling.
Collapse
Affiliation(s)
- Samantha M Grist
- Department of Bioengineering, University of California, Berkeley, USA
| | - Andoni P Mourdoukoutas
- Department of Bioengineering, University of California, Berkeley, USA
- UC Berkeley - UCSF Graduate Program in Bioengineering, Berkeley, USA
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, USA.
- UC Berkeley - UCSF Graduate Program in Bioengineering, Berkeley, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
15
|
Abstract
Analysis of intact proteins by native mass spectrometry has emerged as a powerful tool for obtaining insight into subunit diversity, post-translational modifications, stoichiometry, structural arrangement, stability, and overall architecture. Typically, such an analysis is performed following protein purification procedures, which are time consuming, costly, and labor intensive. As this technology continues to move forward, advances in sample handling and instrumentation have enabled the investigation of intact proteins in situ and in crude samples, offering rapid analysis and improved conservation of the biological context. This emerging field, which involves various ion source platforms such as matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) for both spatial imaging and solution-based analysis, is expected to impact many scientific fields, including biotechnology, pharmaceuticals, and clinical sciences. In this Perspective, we discuss the information that can be retrieved by such experiments as well as the current advantages and technical challenges associated with the different sampling strategies. Furthermore, we present future directions of these MS-based methods, including current limitations and efforts that should be made to make these approaches more accessible. Considering the vast progress we have witnessed in recent years, we anticipate that the advent of further innovations enabling minimal handling of MS samples will make this field more robust, user friendly, and widespread.
Collapse
Affiliation(s)
- Shay Vimer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Goodwin RJA, Takats Z, Bunch J. A Critical and Concise Review of Mass Spectrometry Applied to Imaging in Drug Discovery. SLAS DISCOVERY 2020; 25:963-976. [PMID: 32713279 DOI: 10.1177/2472555220941843] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the past decade, mass spectrometry imaging (MSI) has become a robust and versatile methodology to support modern pharmaceutical research and development. The technologies provide data on the biodistribution, metabolism, and delivery of drugs in tissues, while also providing molecular maps of endogenous metabolites, lipids, and proteins. This allows researchers to make both pharmacokinetic and pharmacodynamic measurements at cellular resolution in tissue sections or clinical biopsies. Despite drug imaging within samples now playing a vital role within research and development (R&D) in leading pharmaceutical companies, however, the challenges in turning compounds into medicines continue to evolve as rapidly as the technologies used to discover them. The increasing cost of development of new and emerging therapeutic modalities, along with the associated risks of late-stage program attrition, means there is still an unmet need in our ability to address an increasing array of challenging bioanalytical questions within drug discovery. We require new capabilities and strategies of integrated imaging to provide context for fundamental disease-related biological questions that can also offer insights into specific project challenges. Integrated molecular imaging and advanced image analysis have the opportunity to provide a world-class capability that can be deployed on projects in which we cannot answer the question with our battery of established assays. Therefore, here we will provide an updated concise review of the use of MSI for drug discovery; we will also critically consider what is required to embed MSI into a wider evolving R&D landscape and allow long-lasting impact in the industry.
Collapse
Affiliation(s)
- Richard J A Goodwin
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.,Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK
| | - Zoltan Takats
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK.,The Rosalind Franklin Institute, Oxfordshire, UK
| | - Josephine Bunch
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK.,The Rosalind Franklin Institute, Oxfordshire, UK.,National Physical Laboratory, Teddington, London, UK
| |
Collapse
|
17
|
Stewart TJ. Across the spectrum: integrating multidimensional metal analytics for in situ metallomic imaging. Metallomics 2020; 11:29-49. [PMID: 30499574 PMCID: PMC6350628 DOI: 10.1039/c8mt00235e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To know how much of a metal species is in a particular location within a biological context at any given time is essential for understanding the intricate roles of metals in biology and is the fundamental question upon which the field of metallomics was born. Simply put, seeing is powerful. With the combination of spectroscopy and microscopy, we can now see metals within complex biological matrices complemented by information about associated molecules and their structures. With the addition of mass spectrometry and particle beam based techniques, the field of view grows to cover greater sensitivities and spatial resolutions, addressing structural, functional and quantitative metallomic questions from the atomic level to whole body processes. In this perspective, I present a paradigm shift in the way we relate to and integrate current and developing metallomic analytics, highlighting both familiar and perhaps less well-known state of the art techniques for in situ metallomic imaging, specific biological applications, and their use in correlative studies. There is a genuine need to abandon scientific silos and, through the establishment of a metallomic scientific platform for further development of multidimensional analytics for in situ metallomic imaging, we have an incredible opportunity to enhance the field of metallomics and demonstrate how discovery research can be done more effectively.
Collapse
Affiliation(s)
- Theodora J Stewart
- King's College London, Mass Spectrometry, London Metallomics Facility, 4th Floor Franklin-Wilkins Building, 150 Stamford St., London SE1 9NH, UK.
| |
Collapse
|
18
|
Claes BSR, Takeo E, Fukusaki E, Shimma S, Heeren RMA. Imaging Isomers on a Biological Surface: A Review. Mass Spectrom (Tokyo) 2019; 8:A0078. [PMID: 32158629 PMCID: PMC7035452 DOI: 10.5702/massspectrometry.a0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022] Open
Abstract
Mass spectrometry imaging is an imaging technology that allows the localization and identification of molecules on (biological) sample surfaces. Obtaining the localization of a compound in tissue is of great value in biological research. Yet, the identification of compounds remains a challenge. Mass spectrometry alone, even with high-mass resolution, cannot always distinguish between the subtle structural differences of isomeric compounds. This review discusses recent advances in mass spectrometry imaging of lipids, steroid hormones, amino acids and proteins that allow imaging with isomeric resolution. These improvements in detailed identification can give new insights into the local biological activity of isomers.
Collapse
Affiliation(s)
- Britt S. R. Claes
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University
| | - Emi Takeo
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University
| |
Collapse
|
19
|
Optimization of MALDI-TOF mass spectrometry imaging for the visualization and comparison of peptide distributions in dry-cured ham muscle fibers. Food Chem 2019; 283:275-286. [DOI: 10.1016/j.foodchem.2018.12.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/29/2018] [Accepted: 12/29/2018] [Indexed: 01/02/2023]
|
20
|
Cao Q, Wang Y, Chen B, Ma F, Hao L, Li G, Ouyang C, Li L. Visualization and Identification of Neurotransmitters in Crustacean Brain via Multifaceted Mass Spectrometric Approaches. ACS Chem Neurosci 2019; 10:1222-1229. [PMID: 30721026 PMCID: PMC6436947 DOI: 10.1021/acschemneuro.8b00730] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has emerged as a label-free analytical tool for fast biomolecule profiling on tissue sections. Among various functional molecules, mapping neurotransmitters and related metabolites is of tremendous significance, as these compounds are critical to signaling in the central nervous system. Here, we demonstrated the use of both derivatization and reaction-free approaches that greatly reduced signal complexity and thus enabled complementary signaling molecule visualization on crab brain sections via MALDI-LTQ-Orbitrap XL platform. Pyrylium salt served as a primary amine derivatization reagent and produced prominent signal enhancement of multiple neurotransmitters, including dopamine, serotonin, γ-aminobutyric acid, and histamine that were not detected in underivatized tissues. Molecules with other functional groups, such as acetylcholine and phosphocholine, were directly imaged after matrix application. The identities of discovered neurotransmitters were verified by standards using LC-MS/MS. This study broadens our understanding of metabolic signaling in the crustacean nervous system and highlights potential of multifaceted MS techniques for unambiguous neurotransmitter characterization.
Collapse
Affiliation(s)
- Qinjingwen Cao
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yijia Wang
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Bingming Chen
- School of Pharmacy, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Fengfei Ma
- School of Pharmacy, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Ling Hao
- School of Pharmacy, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Gongyu Li
- School of Pharmacy, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Chuanzi Ouyang
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
21
|
Schmitt ND, Rawlins CM, Randall EC, Wang X, Koller A, Auclair JR, Kowalski JM, Kowalski PJ, Luther E, Ivanov AR, Agar NY, Agar JN. Genetically Encoded Fluorescent Proteins Enable High-Throughput Assignment of Cell Cohorts Directly from MALDI-MS Images. Anal Chem 2019; 91:3810-3817. [PMID: 30839199 PMCID: PMC6827431 DOI: 10.1021/acs.analchem.8b03454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) provides a unique in situ chemical profile that can include drugs, nucleic acids, metabolites, lipids, and proteins. MSI of individual cells (of a known cell type) affords a unique insight into normal and disease-related processes and is a prerequisite for combining the results of MSI and other single-cell modalities (e.g. mass cytometry and next-generation sequencing). Technological barriers have prevented the high-throughput assignment of MSI spectra from solid tissue preparations to their cell type. These barriers include obtaining a suitable cell-identifying image (e.g. immunohistochemistry) and obtaining sufficiently accurate registration of the cell-identifying and MALDI-MS images. This study introduces a technique that overcame these barriers by assigning cell type directly from mass spectra. We hypothesized that, in MSI from mice with a defined fluorescent protein expression pattern, the fluorescent protein's molecular ion could be used to identify cell cohorts. A method was developed for the purification of enhanced yellow fluorescent protein (EYFP) from mice. To determine EYFP's molecular mass for MSI studies, we performed intact mass analysis and characterized the protein's primary structure and post-translational modifications through various techniques. MALDI-MSI methods were developed to enhance the detection of EYFP in situ, and by extraction of EYFP's molecular ion from MALDI-MS images, automated, whole-image assignment of cell cohorts was achieved. This method was validated using a well-characterized mouse line that expresses EYFP in motor and sensory neurons and should be applicable to hundreds of commercially available mice (and other animal) strains comprising a multitude of cell-specific fluorescent labels.
Collapse
Affiliation(s)
- Nicholas D. Schmitt
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- These authors contributed equally to this work
| | - Catherine M. Rawlins
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- These authors contributed equally to this work
| | - Elizabeth C. Randall
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xianzhe Wang
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Antonius Koller
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Jared R. Auclair
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- Biopharmaceutical Analysis Training Laboratory (BATL), Northeastern University Innovation Campus, Burlington, MA, 01803, USA
| | | | | | - Ed Luther
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alexander R. Ivanov
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Nathalie Y.R. Agar
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey N. Agar
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
22
|
Han J, Permentier H, Bischoff R, Groothuis G, Casini A, Horvatovich P. Imaging of protein distribution in tissues using mass spectrometry: An interdisciplinary challenge. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Luberto C, Haley JD, Del Poeta M. Imaging with mass spectrometry, the next frontier in sphingolipid research? A discussion on where we stand and the possibilities ahead. Chem Phys Lipids 2019; 219:1-14. [PMID: 30641043 DOI: 10.1016/j.chemphyslip.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
Abstract
In the last ten years, mass spectrometry (MS) has become the favored analytical technique for sphingolipid (SPL) analysis and measurements. Indeed MS has the unique ability to both acquire sensitive and quantitative measurements and to resolve the molecular complexity characteristic of SPL molecules, both across the different SPL families and within the same SPL family. Currently, two complementary MS-based approaches are used for lipid research: analysis of lipid extracts, mainly by infusion electrospray ionization (ESI), and mass spectrometry imaging (MSI) from a sample surface (i.e. intact tissue sections, cells, model membranes, thin layer chromatography plates) (Fig. 1). The first allows for sensitive and quantitative information about total lipid molecular species from a given specimen from which lipids have been extracted and chromatographically separated prior to the analysis; the second, albeit generally less quantitative and less specific in the identification of molecular species due to the complexity of the sample, allows for spatial information of lipid molecules from biological specimens. In the field of SPL research, MS analysis of lipid extracts from biological samples has been commonly utilized to implicate the role of these lipids in specific biological functions. On the other hand, the utilization of MSI in SPL research represents a more recent development that has started to provide interesting descriptive observations regarding the distribution of specific classes of SPLs within tissues. Thus, it is the aim of this review to discuss how MSI technology has been employed to extend the study of SPL metabolism and the type of information that has been obtained from model membranes, single cells and tissues. We envision this discussion as a complementary compendium to the excellent technical reviews recently published about the specifics of MSI technologies, including their application to SPL analysis (Fuchs et al., 2010; Berry et al., 2011; Ellis et al., 2013; Eberlin et al., 2011; Kraft and Klitzing, 2014).
Collapse
Affiliation(s)
- Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States.
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States; Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States; Veterans Administrations Medical Center, Northport, NY, United States
| |
Collapse
|
24
|
Neagu AN. Proteome Imaging: From Classic to Modern Mass Spectrometry-Based Molecular Histology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:55-98. [PMID: 31347042 DOI: 10.1007/978-3-030-15950-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In order to overcome the limitations of classic imaging in Histology during the actually era of multiomics, the multi-color "molecular microscope" by its emerging "molecular pictures" offers quantitative and spatial information about thousands of molecular profiles without labeling of potential targets. Healthy and diseased human tissues, as well as those of diverse invertebrate and vertebrate animal models, including genetically engineered species and cultured cells, can be easily analyzed by histology-directed MALDI imaging mass spectrometry. The aims of this review are to discuss a range of proteomic information emerging from MALDI mass spectrometry imaging comparative to classic histology, histochemistry and immunohistochemistry, with applications in biology and medicine, concerning the detection and distribution of structural proteins and biological active molecules, such as antimicrobial peptides and proteins, allergens, neurotransmitters and hormones, enzymes, growth factors, toxins and others. The molecular imaging is very well suited for discovery and validation of candidate protein biomarkers in neuroproteomics, oncoproteomics, aging and age-related diseases, parasitoproteomics, forensic, and ecotoxicology. Additionally, in situ proteome imaging may help to elucidate the physiological and pathological mechanisms involved in developmental biology, reproductive research, amyloidogenesis, tumorigenesis, wound healing, neural network regeneration, matrix mineralization, apoptosis and oxidative stress, pain tolerance, cell cycle and transformation under oncogenic stress, tumor heterogeneity, behavior and aggressiveness, drugs bioaccumulation and biotransformation, organism's reaction against environmental penetrating xenobiotics, immune signaling, assessment of integrity and functionality of tissue barriers, behavioral biology, and molecular origins of diseases. MALDI MSI is certainly a valuable tool for personalized medicine and "Eco-Evo-Devo" integrative biology in the current context of global environmental challenges.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania.
| |
Collapse
|
25
|
Liu X, Lukowski JK, Flinders C, Kim S, Georgiadis RA, Mumenthaler SM, Hummon AB. MALDI-MSI of Immunotherapy: Mapping the EGFR-Targeting Antibody Cetuximab in 3D Colon-Cancer Cell Cultures. Anal Chem 2018; 90:14156-14164. [PMID: 30479121 DOI: 10.1021/acs.analchem.8b02151] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immunotherapies are treatments that use a patient's immune system to combat disease. One important type of immunotherapy employed in cancer treatments is the delivery of monoclonal antibodies to block growth receptors. In this manuscript, we develop a methodology that enables accurate and simple evaluation of antibody-type drug delivery using MALDI-MSI. To overcome the mass-range limitation that prevents the detection of large therapeutic antibodies, we used in situ reduction and alkylation to break disulfide bonds to generate smaller fragments. These smaller fragments are more readily ionized and detected by MALDI-MSI without loss of spatial information on the parent drug. As a proof of concept study, we evaluated the distribution of cetuximab in 3D colon cell cultures. Cetuximab is a monoclonal antibody that binds to the extracellular domain of epidermal-growth-factor receptor (EGFR), which is often overexpressed in colorectal cancer (CRC) and mediates cell differentiation, proliferation, migration, and angiogenesis. Cetuximab directly inhibits tumor growth and metastasis and induces apoptosis. By performing on-tissue reduction followed by MALDI-MSI analysis, we successfully mapped the time-dependent penetration and distribution of cetuximab in spheroids derived from two different colon-cancer cell lines (HT-29 and DLD-1). The localization patterns were further confirmed with IF staining of the drug. Changes in other biomolecules following drug treatment were also observed, including the elevation of ATP in spheroids. The developed method has also been applied to map cetuximab distribution in patient-derived colorectal-tumor organoids (CTOs). Overall, we believe this powerful label-free approach will be useful for visualizing the heterogeneous distribution of antibody drugs in tissues and tumors and will help to monitor and optimize their use in the clinic.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute , University of Notre Dame , 152 McCourtney Hall , Notre Dame , Indiana 46556 , United States
| | - Jessica K Lukowski
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute , University of Notre Dame , 152 McCourtney Hall , Notre Dame , Indiana 46556 , United States.,Department of Chemistry and Biochemistry and Comprehensive Cancer Center , The Ohio State University , 414 Biomedical Research Tower , Columbus , Ohio 43210 , United States
| | - Colin Flinders
- Lawrence J. Ellison Institute for Transformative Medicine , University of Southern California , 2250 Alcazar Street, CSC 240 , Los Angeles , California 90033 , United States
| | - Seungil Kim
- Lawrence J. Ellison Institute for Transformative Medicine , University of Southern California , 2250 Alcazar Street, CSC 240 , Los Angeles , California 90033 , United States
| | - Rebecca A Georgiadis
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute , University of Notre Dame , 152 McCourtney Hall , Notre Dame , Indiana 46556 , United States
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine , University of Southern California , 2250 Alcazar Street, CSC 240 , Los Angeles , California 90033 , United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry and Comprehensive Cancer Center , The Ohio State University , 414 Biomedical Research Tower , Columbus , Ohio 43210 , United States
| |
Collapse
|
26
|
Michno W, Wehrli PM, Blennow K, Zetterberg H, Hanrieder J. Molecular imaging mass spectrometry for probing protein dynamics in neurodegenerative disease pathology. J Neurochem 2018; 151:488-506. [PMID: 30040875 DOI: 10.1111/jnc.14559] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022]
Abstract
Recent advances in the understanding of basic pathological mechanisms in various neurological diseases depend directly on the development of novel bioanalytical technologies that allow sensitive and specific chemical imaging at high resolution in cells and tissues. Mass spectrometry-based molecular imaging (IMS) has gained increasing popularity in biomedical research for mapping the spatial distribution of molecular species in situ. The technology allows for comprehensive, untargeted delineation of in situ distribution profiles of metabolites, lipids, peptides and proteins. A major advantage of IMS over conventional histochemical techniques is its superior molecular specificity. Imaging mass spectrometry has therefore great potential for probing molecular regulations in CNS-derived tissues and cells for understanding neurodegenerative disease mechanism. The goal of this review is to familiarize the reader with the experimental workflow, instrumental developments and methodological challenges as well as to give a concise overview of the major advances and recent developments and applications of IMS-based protein and peptide profiling with particular focus on neurodegenerative diseases. This article is part of the Special Issue "Proteomics".
Collapse
Affiliation(s)
- Wojciech Michno
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Patrick M Wehrli
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK.,Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
27
|
Kinoshita M, Suzuki KG, Murata M, Matsumori N. Evidence of lipid rafts based on the partition and dynamic behavior of sphingomyelins. Chem Phys Lipids 2018; 215:84-95. [DOI: 10.1016/j.chemphyslip.2018.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/13/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023]
|
28
|
Using MALDI-TOF MS coupled with a high-mass detector to directly analyze intact proteins in thyroid tissues. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9230-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Swales JG, Dexter A, Hamm G, Nilsson A, Strittmatter N, Michopoulos F, Hardy C, Morentin-Gutierrez P, Mellor M, Andren PE, Clench MR, Bunch J, Critchlow SE, Goodwin RJA. Quantitation of Endogenous Metabolites in Mouse Tumors Using Mass-Spectrometry Imaging. Anal Chem 2018; 90:6051-6058. [PMID: 29668267 DOI: 10.1021/acs.analchem.7b05239] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Described is a quantitative-mass-spectrometry-imaging (qMSI) methodology for the analysis of lactate and glutamate distributions in order to delineate heterogeneity among mouse tumor models used to support drug-discovery efficacy testing. We evaluate and report on preanalysis-stabilization methods aimed at improving the reproducibility and efficiency of quantitative assessments of endogenous molecules in tissues. Stability experiments demonstrate that optimum stabilization protocols consist of frozen-tissue embedding, post-tissue-sectioning desiccation, and storage at -80 °C of tissue sections sealed in vacuum-tight containers. Optimized stabilization protocols are used in combination with qMSI methodology for the absolute quantitation of lactate and glutamate in tumors, incorporating the use of two different stable-isotope-labeled versions of each analyte and spectral-clustering performed on each tissue section using k-means clustering to allow region-specific, pixel-by-pixel quantitation. Region-specific qMSI was used to screen different tumor models and identify a phenotype that has low lactate heterogeneity, which will enable accurate measurements of lactate modulation in future drug-discovery studies. We conclude that using optimized qMSI protocols, it is possible to quantify endogenous metabolites within tumors, and region-specific quantitation can provide valuable insight into tissue heterogeneity and the tumor microenvironment.
Collapse
Affiliation(s)
- John G Swales
- Pathology, Drug Safety & Metabolism, IMED Biotech Unit , AstraZeneca , Darwin Building, Cambridge Science Park, Milton Road , Cambridge , Cambridgeshire CB4 0WG , U.K.,Centre for Mass Spectrometry Imaging, Biomolecular Research Centre , Sheffield Hallam University , Sheffield S1 1WB , U.K
| | - Alex Dexter
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI) , National Physical Laboratory , Teddington TW11 0LW , U.K
| | - Gregory Hamm
- Pathology, Drug Safety & Metabolism, IMED Biotech Unit , AstraZeneca , Darwin Building, Cambridge Science Park, Milton Road , Cambridge , Cambridgeshire CB4 0WG , U.K
| | - Anna Nilsson
- Biomolecular Mass Spectrometry Imaging, National Resource for MSI, Science for Life Laboratory, Department of Pharmaceutical Biosciences , Uppsala University , Uppsala 752 37 , Sweden
| | - Nicole Strittmatter
- Pathology, Drug Safety & Metabolism, IMED Biotech Unit , AstraZeneca , Darwin Building, Cambridge Science Park, Milton Road , Cambridge , Cambridgeshire CB4 0WG , U.K
| | | | - Christopher Hardy
- Pathology, Drug Safety & Metabolism, IMED Biotech Unit , AstraZeneca , Darwin Building, Cambridge Science Park, Milton Road , Cambridge , Cambridgeshire CB4 0WG , U.K
| | | | - Martine Mellor
- Bioscience, Oncology, IMED Biotech Unit , AstraZeneca , Cambridge CB4 0WG , U.K
| | - Per E Andren
- Biomolecular Mass Spectrometry Imaging, National Resource for MSI, Science for Life Laboratory, Department of Pharmaceutical Biosciences , Uppsala University , Uppsala 752 37 , Sweden
| | - Malcolm R Clench
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre , Sheffield Hallam University , Sheffield S1 1WB , U.K
| | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI) , National Physical Laboratory , Teddington TW11 0LW , U.K
| | - Susan E Critchlow
- Bioscience, Oncology, IMED Biotech Unit , AstraZeneca , Cambridge CB4 0WG , U.K
| | - Richard J A Goodwin
- Pathology, Drug Safety & Metabolism, IMED Biotech Unit , AstraZeneca , Darwin Building, Cambridge Science Park, Milton Road , Cambridge , Cambridgeshire CB4 0WG , U.K
| |
Collapse
|
30
|
Kurreck A, Vandergrift LA, Fuss TL, Habbel P, Agar NYR, Cheng LL. Prostate cancer diagnosis and characterization with mass spectrometry imaging. Prostate Cancer Prostatic Dis 2017; 21:297-305. [PMID: 29209003 PMCID: PMC5988647 DOI: 10.1038/s41391-017-0011-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
Background Prostate cancer (PCa), the most common cancer and second leading cause of cancer death in American men, presents the clinical challenge of distinguishing between indolent and aggressive tumors for proper treatment. PCa presents significant alterations in metabolic pathways that can potentially be measured using techniques like mass spectrometry (MS) or mass spectrometry imaging (MSI) and used to characterize PCa aggressiveness. MS quantifies metabolomic, proteomic, and lipidomic profiles of biological systems that can be further visualized for their spatial distributions through MSI. Methods PubMed was queried for all publications relating to MS and MSI in human prostate cancer from April 2007 to April 2017. With the goal of reviewing the utility of MSI in diagnosis and prognostication of human PCa, MSI articles that reported investigations of PCa-specific metabolites or metabolites indicating PCa aggressiveness were selected for inclusion. Articles were included that covered MS and MSI principles, limitations, and applications in PCa. Results We identified nine key studies on MSI in intact human prostate tissue specimens that determined metabolites which could either differentiate between benign and malignant prostate tissue or indicate prostate cancer aggressiveness. These MSI-detected biomarkers show promise in reliably identifying PCa and determining disease aggressiveness. Conclusions MSI represents an innovative technique with the ability to interrogate cancer biomarkers in relation to tissue pathologies and investigate tumor aggressiveness. We propose MSI as a powerful adjuvant histopathology imaging tool for prostate tissue evaluations, where clinical translation of this ex vivo technique could make possible the use of MSI for personalized medicine in diagnosis and prognosis of prostate cancer. Moreover, the knowledge provided from this technique can majorly contribute to the understanding of molecular pathogenesis of PCa and other malignant diseases.
Collapse
Affiliation(s)
- Annika Kurreck
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Hematology and Oncology, Charité Medical University of Berlin, Berlin, Germany
| | - Lindsey A Vandergrift
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Taylor L Fuss
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Piet Habbel
- Department of Hematology and Oncology, Charité Medical University of Berlin, Berlin, Germany
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leo L Cheng
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging in the Study of Gastric Cancer: A Mini Review. Int J Mol Sci 2017; 18:ijms18122588. [PMID: 29194417 PMCID: PMC5751191 DOI: 10.3390/ijms18122588] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide and the disease outcome commonly depends upon the tumour stage at the time of diagnosis. However, this cancer can often be asymptomatic during the early stages and remain undetected until the later stages of tumour development, having a significant impact on patient prognosis. However, our comprehension of the mechanisms underlying the development of gastric malignancies is still lacking. For these reasons, the search for new diagnostic and prognostic markers for gastric cancer is an ongoing pursuit. Modern mass spectrometry imaging (MSI) techniques, in particular matrix-assisted laser desorption/ionisation (MALDI), have emerged as a plausible tool in clinical pathology as a whole. More specifically, MALDI-MSI is being increasingly employed in the study of gastric cancer and has already elucidated some important disease checkpoints that may help us to better understand the molecular mechanisms underpinning this aggressive cancer. Here we report the state of the art of MALDI-MSI approaches, ranging from sample preparation to statistical analysis, and provide a complete review of the key findings that have been reported in the literature thus far.
Collapse
|
32
|
Zhou R, Basile F. Plasmonic Thermal Decomposition/Digestion of Proteins: A Rapid On-Surface Protein Digestion Technique for Mass Spectrometry Imaging. Anal Chem 2017; 89:8704-8712. [PMID: 28727443 DOI: 10.1021/acs.analchem.7b00430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A method based on plasmon surface resonance absorption and heating was developed to perform a rapid on-surface protein thermal decomposition and digestion suitable for imaging mass spectrometry (MS) and/or profiling. This photothermal process or plasmonic thermal decomposition/digestion (plasmonic-TDD) method incorporates a continuous wave (CW) laser excitation and gold nanoparticles (Au-NPs) to induce known thermal decomposition reactions that cleave peptides and proteins specifically at the C-terminus of aspartic acid and at the N-terminus of cysteine. These thermal decomposition reactions are induced by heating a solid protein sample to temperatures between 200 and 270 °C for a short period of time (10-50 s per 200 μm segment) and are reagentless and solventless, and thus are devoid of sample product delocalization. In the plasmonic-TDD setup the sample is coated with Au-NPs and irradiated with 532 nm laser radiation to induce thermoplasmonic heating and bring about site-specific thermal decomposition on solid peptide/protein samples. In this manner the Au-NPs act as nanoheaters that result in a highly localized thermal decomposition and digestion of the protein sample that is independent of the absorption properties of the protein, making the method universally applicable to all types of proteinaceous samples (e.g., tissues or protein arrays). Several experimental variables were optimized to maximize product yield, and they include heating time, laser intensity, size of Au-NPs, and surface coverage of Au-NPs. Using optimized parameters, proof-of-principle experiments confirmed the ability of the plasmonic-TDD method to induce both C-cleavage and D-cleavage on several peptide standards and the protein lysozyme by detecting their thermal decomposition products with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The high spatial specificity of the plasmonic-TDD method was demonstrated by using a mask to digest designated sections of the sample surface with the heating laser and MALDI-MS imaging to map the resulting products. The solventless nature of the plasmonic-TDD method enabled the nonenzymatic on-surface digestion of proteins to proceed with undetectable delocalization of the resulting products from their precursor protein location. The advantages of this novel plasmonic-TDD method include short reaction times (<30 s/200 μm), compatibility with MALDI, universal sample compatibility, high spatial specificity, and localization of the digestion products. These advantages point to potential applications of this method for on-tissue protein digestion and MS-imaging/profiling for the identification of proteins, high-fidelity MS imaging of high molecular weight (>30 kDa) proteins, and the rapid analysis of formalin-fixed paraffin-embedded (FFPE) tissue samples.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Chemistry, University of Wyoming , 1000 University Avenue, Laramie, Wyoming 82071, United States
| | - Franco Basile
- Department of Chemistry, University of Wyoming , 1000 University Avenue, Laramie, Wyoming 82071, United States
| |
Collapse
|
33
|
Systematic assessment of surfactants for matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chim Acta 2017; 963:76-82. [DOI: 10.1016/j.aca.2017.01.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 11/18/2022]
|
34
|
Optimization and evaluation of MALDI TOF mass spectrometric imaging for quantification of orally dosed octreotide in mouse tissues. Talanta 2017; 165:128-135. [DOI: 10.1016/j.talanta.2016.12.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/09/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023]
|
35
|
Quanico J, Franck J, Wisztorski M, Salzet M, Fournier I. Combined MALDI Mass Spectrometry Imaging and Parafilm-Assisted Microdissection-Based LC-MS/MS Workflows in the Study of the Brain. Methods Mol Biol 2017; 1598:269-283. [PMID: 28508367 DOI: 10.1007/978-1-4939-6952-4_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Proteins and other biomolecules such as lipids are significant players in the central nervous system and are implicated in various neurological disorders. Their identification, quantification, and distribution are thus important not only in understanding the disease but also in developing treatments. A combined workflow allowing the localized microextraction of discrete regions identified by a matrix-assisted laser desorption/ionization mass spectrometry (MSI) imaging experiment for proteomics analysis by liquid chromatography/tandem mass spectrometry (LC MS/MS) is described in this chapter. MSI was initially used to map lipid distributions allowing for the identification of regions of interest (ROIs) that are then subjected to microextraction in a consecutive tissue section. Mounting of consecutive tissue on parafilm allows microdissection of the ROIs, where proteins can then be recovered for processing and LC MS/MS analysis. The PAM method provides a fast and cheap means to perform further downstream analysis after an MSI experiment.
Collapse
Affiliation(s)
- Jusal Quanico
- Université de Lille 1, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000, Lille, France
| | - Julien Franck
- Université de Lille 1, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000, Lille, France
| | - Maxence Wisztorski
- Université de Lille 1, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000, Lille, France
| | - Michel Salzet
- Université de Lille 1, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000, Lille, France
| | - Isabelle Fournier
- Université de Lille 1, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000, Lille, France.
| |
Collapse
|
36
|
Rocha B, Cillero-Pastor B, Blanco FJ, Ruiz-Romero C. MALDI mass spectrometry imaging in rheumatic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:784-794. [PMID: 27742553 DOI: 10.1016/j.bbapap.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 01/15/2023]
Abstract
Mass spectrometry imaging (MSI) is a technique used to visualize the spatial distribution of biomolecules such as peptides, proteins, lipids or other organic compounds by their molecular masses. Among the different MSI strategies, MALDI-MSI provides a sensitive and label-free approach for imaging of a wide variety of protein or peptide biomarkers from the surface of tissue sections, being currently used in an increasing number of biomedical applications such as biomarker discovery and tissue classification. In the field of rheumatology, MALDI-MSI has been applied to date for the analysis of joint tissues such as synovial membrane or cartilage. This review summarizes the studies and key achievements obtained using MALDI-MSI to increase understanding on rheumatic pathologies and to describe potential diagnostic or prognostic biomarkers of these diseases. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Beatriz Rocha
- Proteomics Unit-ProteoRed/ISCIII, Rheumatology Group, INIBIC - Hospital Universitario de A Coruña, SERGAS, A Coruña, Spain
| | | | - Francisco J Blanco
- Proteomics Unit-ProteoRed/ISCIII, Rheumatology Group, INIBIC - Hospital Universitario de A Coruña, SERGAS, A Coruña, Spain; RIER-RED de Inflamación y Enfermedades Reumáticas, INIBIC-CHUAC, A Coruña, Spain.
| | - Cristina Ruiz-Romero
- Proteomics Unit-ProteoRed/ISCIII, Rheumatology Group, INIBIC - Hospital Universitario de A Coruña, SERGAS, A Coruña, Spain; CIBER-BBN Instituto de Salud Carlos III, INIBIC-CHUAC, A Coruña, Spain.
| |
Collapse
|
37
|
Longuespée R, Casadonte R, Kriegsmann M, Pottier C, Picard de Muller G, Delvenne P, Kriegsmann J, De Pauw E. MALDI mass spectrometry imaging: A cutting-edge tool for fundamental and clinical histopathology. Proteomics Clin Appl 2016; 10:701-19. [PMID: 27188927 DOI: 10.1002/prca.201500140] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/07/2016] [Accepted: 05/13/2016] [Indexed: 01/16/2023]
Abstract
Histopathological diagnoses have been done in the last century based on hematoxylin and eosin staining. These methods were complemented by histochemistry, electron microscopy, immunohistochemistry (IHC), and molecular techniques. Mass spectrometry (MS) methods allow the thorough examination of various biocompounds in extracts and tissue sections. Today, mass spectrometry imaging (MSI), and especially matrix-assisted laser desorption ionization (MALDI) imaging links classical histology and molecular analyses. Direct mapping is a major advantage of the combination of molecular profiling and imaging. MSI can be considered as a cutting edge approach for molecular detection of proteins, peptides, carbohydrates, lipids, and small molecules in tissues. This review covers the detection of various biomolecules in histopathological sections by MSI. Proteomic methods will be introduced into clinical histopathology within the next few years.
Collapse
Affiliation(s)
- Rémi Longuespée
- Proteopath GmbH, Trier, Germany.,Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | | | - Mark Kriegsmann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Charles Pottier
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | | | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | - Jörg Kriegsmann
- Proteopath GmbH, Trier, Germany.,MVZ for Histology, Cytology and Molecular Diagnostics Trier, Trier, Germany
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| |
Collapse
|
38
|
Shariatgorji M, Strittmatter N, Nilsson A, Källback P, Alvarsson A, Zhang X, Vallianatou T, Svenningsson P, Goodwin RJA, Andren PE. Simultaneous imaging of multiple neurotransmitters and neuroactive substances in the brain by desorption electrospray ionization mass spectrometry. Neuroimage 2016; 136:129-38. [PMID: 27155126 DOI: 10.1016/j.neuroimage.2016.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 02/07/2023] Open
Abstract
With neurological processes involving multiple neurotransmitters and neuromodulators, it is important to have the ability to directly map and quantify multiple signaling molecules simultaneously in a single analysis. By utilizing a molecular-specific approach, namely desorption electrospray ionization mass spectrometry imaging (DESI-MSI), we demonstrated that the technique can be used to image multiple neurotransmitters and their metabolites (dopamine, dihydroxyphenylacetic acid, 3-methoxytyramine, serotonin, glutamate, glutamine, aspartate, γ-aminobutyric acid, adenosine) as well as neuroactive drugs (amphetamine, sibutramine, fluvoxamine) and drug metabolites in situ directly in brain tissue sections. The use of both positive and negative ionization modes increased the number of identified molecular targets. Chemical derivatization by charge-tagging the primary amines of molecules significantly increased the sensitivity, enabling the detection of low abundant neurotransmitters and other neuroactive substances previously undetectable by MSI. The sensitivity of the imaging approach of neurochemicals has a great potential in many diverse applications in fields such as neuroscience, pharmacology, drug discovery, neurochemistry, and medicine.
Collapse
Affiliation(s)
- Mohammadreza Shariatgorji
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | | | - Anna Nilsson
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | - Patrik Källback
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | - Alexandra Alvarsson
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Xiaoqun Zhang
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Theodosia Vallianatou
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | - Per Svenningsson
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | | | - Per E Andren
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden.
| |
Collapse
|
39
|
Källback P, Nilsson A, Shariatgorji M, Andrén PE. msIQuant--Quantitation Software for Mass Spectrometry Imaging Enabling Fast Access, Visualization, and Analysis of Large Data Sets. Anal Chem 2016; 88:4346-53. [PMID: 27014927 DOI: 10.1021/acs.analchem.5b04603] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This paper presents msIQuant, a novel instrument- and manufacturer-independent quantitative mass spectrometry imaging software suite that uses the standardized open access data format imzML. Its data processing structure enables rapid image display and the analysis of very large data sets (>50 GB) without any data reduction. In addition, msIQuant provides many tools for image visualization including multiple interpolation methods, low intensity transparency display, and image fusion. It also has a quantitation function that automatically generates calibration standard curves from series of standards that can be used to determine the concentrations of specific analytes. Regions-of-interest in a tissue section can be analyzed based on a number of quantities including the number of pixels, average intensity, standard deviation of intensity, and median and quartile intensities. Moreover, the suite's export functions enable simplified postprocessing of data and report creation. We demonstrate its potential through several applications including the quantitation of small molecules such as drugs and neurotransmitters. The msIQuant suite is a powerful tool for accessing and evaluating very large data sets, quantifying drugs and endogenous compounds in tissue areas of interest, and for processing mass spectra and images.
Collapse
Affiliation(s)
- Patrik Källback
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University , Box 591, SE-75124 Uppsala, Sweden
| | - Anna Nilsson
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University , Box 591, SE-75124 Uppsala, Sweden
| | - Mohammadreza Shariatgorji
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University , Box 591, SE-75124 Uppsala, Sweden
| | - Per E Andrén
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University , Box 591, SE-75124 Uppsala, Sweden
| |
Collapse
|
40
|
Lahiri S, Sun N, Buck A, Imhof A, Walch A. MALDI imaging mass spectrometry as a novel tool for detecting histone modifications in clinical tissue samples. Expert Rev Proteomics 2016; 13:275-84. [DOI: 10.1586/14789450.2016.1146598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Boellner S, Becker KF. Recent progress in protein profiling of clinical tissues for next-generation molecular diagnostics. Expert Rev Mol Diagn 2015. [DOI: 10.1586/14737159.2015.1070098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Buchberger A, Yu Q, Li L. Advances in Mass Spectrometric Tools for Probing Neuropeptides. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:485-509. [PMID: 26070718 PMCID: PMC6314846 DOI: 10.1146/annurev-anchem-071114-040210] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Neuropeptides are important mediators in the functionality of the brain and other neurological organs. Because neuropeptides exist in a wide range of concentrations, appropriate characterization methods are needed to provide dynamic, chemical, and spatial information. Mass spectrometry and compatible tools have been a popular choice in analyzing neuropeptides. There have been several advances and challenges, both of which are the focus of this review. Discussions range from sample collection to bioinformatic tools, although avenues such as quantitation and imaging are included. Further development of the presented methods for neuropeptidomic mass spectrometric analysis is inevitable, which will lead to a further understanding of the complex interplay of neuropeptides and other signaling molecules in the nervous system.
Collapse
Affiliation(s)
- Amanda Buchberger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322;
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222;
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322;
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222;
| |
Collapse
|
43
|
Flatley B, Quaye C, Johnson E, Freeman A, Muneer A, Minhas S, Paterson JC, Musa F, Malone P, Cramer R. Distribution analysis of the putative cancer marker S100A4 across invasive squamous cell carcinoma penile tissue. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Rankin K, Mabury SA. Matrix normalized MALDI-TOF quantification of a fluorotelomer-based acrylate polymer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6093-6101. [PMID: 25866313 DOI: 10.1021/es505931v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The degradation of fluorotelomer-based acrylate polymers (FTACPs) has been hypothesized to serve as a source of the environmental contaminants, perfluoroalkyl carboxylates (PFCAs). Studies have relied on indirect measurement of presumed degradation products to evaluate the environmental fate of FTACPs; however, this approach leaves a degree of uncertainty. The present study describes the development of a quantitative matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry method as the first direct analysis method for FTACPs. The model FTACP used in this study was poly(8:2 FTAC-co-HDA), a copolymer of 8:2 fluorotelomer acrylate (8:2 FTAC) and hexadecyl acrylate (HDA). Instead of relying on an internal standard polymer, the intensities of 40 poly(8:2 FTAC-co-HDA) signals (911-4612 Da) were normalized to the signal intensity of a matrix-sodium cluster (659 Da). We termed this value the normalized polymer response (P(N)). By using the same dithranol solution for the sample preparation of poly(8:2 FTAC-co-HDA) standards, calibration curves with coefficient of determinations (R(2)) typically >0.98 were produced. When poly(8:2 FTAC-co-HDA) samples were prepared with the same dithranol solution as the poly(8:2 FTAC-co-HDA) standards, quantification to within 25% of the theoretical concentration was achieved. This approach minimized the sample-to-sample variability that typically plagues MALDI-TOF, and is the first method developed to directly quantify FTACPs.
Collapse
Affiliation(s)
- Keegan Rankin
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario Canada, M5S 3H6
| | - Scott A Mabury
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario Canada, M5S 3H6
| |
Collapse
|
45
|
MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. J Transl Med 2015; 95:422-31. [PMID: 25621874 DOI: 10.1038/labinvest.2014.156] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 01/14/2023] Open
Abstract
MALDI Imaging mass spectrometry has entered the field of tissue-based research by providing unique advantages for analyzing tissue specimen in an unprecedented detail. A broad spectrum of analytes ranging from proteins, peptides, protein modification over small molecules, drugs and their metabolites as well as pharmaceutical components, endogenous cell metabolites, lipids, and other analytes are made accessible by this in situ technique in tissue. Some of them were even not accessible in tissues within the histological context before. Thereby, the great advantage of MALDI Imaging is the correlation of molecular information with traditional histology by keeping the spatial localization information of the analytes after mass spectrometric measurement. This method is label-free and allows multiplex analysis of hundreds to thousands of molecules in the very same tissue section simultaneously. Imaging mass spectrometry brings a new quality of molecular data and links the expert discipline of pathology and deep molecular mass spectrometric analysis to tissue-based research. This review will focus on state-of-the-art of MALDI Imaging mass spectrometry, its recent applications by analyzing tissue specimen and the contributions in understanding the biology of disease as well as its perspectives for pathology research and practice.
Collapse
|
46
|
Kang MG, Byun K, Kim JH, Park NH, Heinsen H, Ravid R, Steinbusch HW, Lee B, Park YM. Proteogenomics of the human hippocampus: The road ahead. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:788-97. [PMID: 25770686 DOI: 10.1016/j.bbapap.2015.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 02/10/2015] [Accepted: 02/15/2015] [Indexed: 12/26/2022]
Abstract
The hippocampus is one of the most essential components of the human brain and plays an important role in learning and memory. The hippocampus has drawn great attention from scientists and clinicians due to its clinical importance in diseases such as Alzheimer's disease (AD), non-AD dementia, and epilepsy. Understanding the function of the hippocampus and related disease mechanisms requires comprehensive knowledge of the orchestration of the genome, epigenome, transcriptome, proteome, and post-translational modifications (PTMs) of proteins. The past decade has seen remarkable advances in the high-throughput sequencing techniques that are collectively called next generation sequencing (NGS). NGS enables the precise analysis of gene expression profiles in cells and tissues, allowing powerful and more feasible integration of expression data from the gene level to the protein level, even allowing "-omic" level assessment of PTMs. In addition, improved bioinformatics algorithms coupled with NGS technology are finally opening a new era for scientists to discover previously unidentified and elusive proteins. In the present review, we will focus mainly on the proteomics of the human hippocampus with an emphasis on the integrated analysis of genomics, epigenomics, transcriptomics, and proteomics. Finally, we will discuss our perspectives on the potential and future of proteomics in the field of hippocampal biology. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Myoung-Goo Kang
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 305-811, Republic of Korea; Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Kyunghee Byun
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Republic of Korea
| | - Jae Ho Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 305-811, Republic of Korea; Mass Spectrometry Research Center, Korea Basic Science Institute, Chungbuk 363-883, Republic of Korea
| | - Nam Hyun Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 305-811, Republic of Korea; Mass Spectrometry Research Center, Korea Basic Science Institute, Chungbuk 363-883, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Helmut Heinsen
- Morphological Brain Research Unit, Department of Psychiatry, Universität of Würzburg, Würzburg, Germany
| | - Rivka Ravid
- Brain Bank Consultant, Amsterdam, The Netherlands
| | - Harry W Steinbusch
- School for Mental Health and Neuroscience, Department of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Bonghee Lee
- Mass Spectrometry Research Center, Korea Basic Science Institute, Chungbuk 363-883, Republic of Korea.
| | - Young Mok Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 305-811, Republic of Korea; Mass Spectrometry Research Center, Korea Basic Science Institute, Chungbuk 363-883, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
47
|
Abstract
Enriched by a decade of remarkable developments, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has witnessed a phenomenal expansion. Initially introduced for the mapping of peptides and intact proteins from mammalian tissue sections, MALDI IMS applications now extend to a wide range of molecules including peptides, lipids, metabolites and xenobiotics. Technology and methodology are quickly evolving to push the limits of the technique forward. Within a short period of time, numerous protocols and concepts have been developed and introduced in tissue section preparation, nonexhaustively including in situ tissue chemistries and solvent-free matrix depositions. Considering the past progress and current capabilities, this Review aims to cover the different aspects and challenges of tissue section preparation for MALDI IMS.
Collapse
|
48
|
Torres OB, Jalah R, Rice KC, Li F, Antoline JFG, Iyer MR, Jacobson AE, Boutaghou MN, Alving CR, Matyas GR. Characterization and optimization of heroin hapten-BSA conjugates: method development for the synthesis of reproducible hapten-based vaccines. Anal Bioanal Chem 2014; 406:5927-37. [PMID: 25084736 PMCID: PMC4156789 DOI: 10.1007/s00216-014-8035-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 01/20/2023]
Abstract
A potential new treatment for drug addiction is immunization with vaccines that induce antibodies that can abrogate the addictive effects of the drug of abuse. One of the challenges in the development of a vaccine against drugs of abuse is the availability of an optimum procedure that gives reproducible and high yielding hapten-protein conjugates. In this study, a heroin/morphine surrogate hapten (MorHap) was coupled to bovine serum albumin (BSA) using maleimide-thiol chemistry. MorHap-BSA conjugates with 3, 5, 10, 15, 22, 28, and 34 haptens were obtained using different linker and hapten ratios. Using this optimized procedure, MorHap-BSA conjugates were synthesized with highly reproducible results and in high yields. The number of haptens attached to BSA was compared by 2,4,6-trinitrobenzenesulfonic acid (TNBS) assay, modified Ellman's test and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Among the three methods, MALDI-TOF MS discriminated subtle differences in hapten density. The effect of hapten density on enzyme-linked immunosorbent assay (ELISA) performance was evaluated with seven MorHap-BSA conjugates of varying hapten densities, which were used as coating antigens. The highest antibody binding was obtained with MorHap-BSA conjugates containing 3-5 haptens. This is the first report that rigorously analyzes, optimizes and characterizes the conjugation of haptens to proteins that can be used for vaccines against drugs of abuse. The effect of hapten density on the ELISA detection of antibodies against haptens demonstrates the importance of careful characterization of the hapten density by the analytical techniques described.
Collapse
Affiliation(s)
- Oscar B. Torres
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817 USA
| | - Rashmi Jalah
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817 USA
| | - Kenner C. Rice
- Department of Health and Human Services, Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse, National Institutes of Health, 9800 Medical Drive, Bethesda, MD 20892-9415 USA
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 9800 Medical Drive, Bethesda, MD 20892-9415 USA
| | - Fuying Li
- Department of Health and Human Services, Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse, National Institutes of Health, 9800 Medical Drive, Bethesda, MD 20892-9415 USA
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 9800 Medical Drive, Bethesda, MD 20892-9415 USA
| | - Joshua F. G. Antoline
- Department of Health and Human Services, Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse, National Institutes of Health, 9800 Medical Drive, Bethesda, MD 20892-9415 USA
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 9800 Medical Drive, Bethesda, MD 20892-9415 USA
| | - Malliga R. Iyer
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 9800 Medical Drive, Bethesda, MD 20892-9415 USA
| | - Arthur E. Jacobson
- Department of Health and Human Services, Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse, National Institutes of Health, 9800 Medical Drive, Bethesda, MD 20892-9415 USA
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 9800 Medical Drive, Bethesda, MD 20892-9415 USA
| | | | - Carl R. Alving
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| | - Gary R. Matyas
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| |
Collapse
|
49
|
Longuespée R, Fléron M, Pottier C, Quesada-Calvo F, Meuwis MA, Baiwir D, Smargiasso N, Mazzucchelli G, De Pauw-Gillet MC, Delvenne P, De Pauw E. Tissue Proteomics for the Next Decade? Towards a Molecular Dimension in Histology. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:539-52. [DOI: 10.1089/omi.2014.0033] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rémi Longuespée
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | - Maximilien Fléron
- Mammalian Cell Culture Laboratory, GIGA-Research, Department of Biomedical and Preclinical Sciences, University of Liège, Liège, Belgium
| | - Charles Pottier
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | - Florence Quesada-Calvo
- Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital, University of Liège, Liège, Belgium
| | - Marie-Alice Meuwis
- Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital, University of Liège, Liège, Belgium
| | - Dominique Baiwir
- GIGA-R, GIGA Proteomic Facilities, University of Liège, Liège, Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| | - Marie-Claire De Pauw-Gillet
- Mammalian Cell Culture Laboratory, GIGA-Research, Department of Biomedical and Preclinical Sciences, University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, Department of Pathology, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, Liège, Belgium
| |
Collapse
|
50
|
Emerging mass spectrometry techniques for the direct analysis of microbial colonies. Curr Opin Microbiol 2014; 19:120-129. [PMID: 25064218 DOI: 10.1016/j.mib.2014.06.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 12/22/2022]
Abstract
One of the emerging areas in microbiology is detecting specialized metabolites produced by microbial colonies and communities with mass spectrometry. In this review/perspective, we illustrate the emerging mass spectrometry methodologies that enable the interrogation of specialized metabolites directly from microbial colonies. Mass spectrometry techniques such as imaging mass spectrometry and real-time mass spectrometry allow two and three-dimensional visualization of the distribution of metabolites, often with minimal sample pretreatment. The speed in which molecules are captured using these methods requires the development of new molecular visualization tools such as molecular networking. Together, these tools are beginning to provide unprecedented insight into the chemical world that microbes experience.
Collapse
|