1
|
Duc Nguyen H, Ardeshir A, Fonseca VA, Kim WK. Cluster of differentiation molecules in the metabolic syndrome. Clin Chim Acta 2024; 561:119819. [PMID: 38901629 DOI: 10.1016/j.cca.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) represents a significant public health concern due to its association with an increased risk of cardiovascular disease, type 2 diabetes, and other serious health conditions. Despite extensive research, the underlying molecular mechanisms contributing to MetS pathogenesis remain elusive. This review aims to provide a comprehensive overview of the molecular mechanisms linking MetS and cluster of differentiation (CD) markers, which play critical roles in immune regulation and cellular signaling. Through an extensive literature review with a systematic approach, we examine the involvement of various CD markers in MetS development and progression, including their roles in adipose tissue inflammation, insulin resistance, dyslipidemia, and hypertension. Additionally, we discuss potential therapeutic strategies targeting CD markers for the management of MetS. By synthesizing current evidence, this review contributes to a deeper understanding of the complex interplay between immune dysregulation and metabolic dysfunction in MetS, paving the way for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Amir Ardeshir
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Vivian A Fonseca
- Department Endocrinology Metabolism & Diabetes, Tulane University School of Medicine, New Orleans, LA, USA
| | - Woong-Ki Kim
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
2
|
Rojas M, Heuer LS, Zhang W, Chen YG, Ridgway WM. The long and winding road: From mouse linkage studies to a novel human therapeutic pathway in type 1 diabetes. Front Immunol 2022; 13:918837. [PMID: 35935980 PMCID: PMC9353112 DOI: 10.3389/fimmu.2022.918837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmunity involves a loss of immune tolerance to self-proteins due to a combination of genetic susceptibility and environmental provocation, which generates autoreactive T and B cells. Genetic susceptibility affects lymphocyte autoreactivity at the level of central tolerance (e.g., defective, or incomplete MHC-mediated negative selection of self-reactive T cells) and peripheral tolerance (e.g., failure of mechanisms to control circulating self-reactive T cells). T regulatory cell (Treg) mediated suppression is essential for controlling peripheral autoreactive T cells. Understanding the genetic control of Treg development and function and Treg interaction with T effector and other immune cells is thus a key goal of autoimmunity research. Herein, we will review immunogenetic control of tolerance in one of the classic models of autoimmunity, the non-obese diabetic (NOD) mouse model of autoimmune Type 1 diabetes (T1D). We review the long (and still evolving) elucidation of how one susceptibility gene, Cd137, (identified originally via linkage studies) affects both the immune response and its regulation in a highly complex fashion. The CD137 (present in both membrane and soluble forms) and the CD137 ligand (CD137L) both signal into a variety of immune cells (bi-directional signaling). The overall outcome of these multitudinous effects (either tolerance or autoimmunity) depends upon the balance between the regulatory signals (predominantly mediated by soluble CD137 via the CD137L pathway) and the effector signals (mediated by both membrane-bound CD137 and CD137L). This immune balance/homeostasis can be decisively affected by genetic (susceptibility vs. resistant alleles) and environmental factors (stimulation of soluble CD137 production). The discovery of the homeostatic immune effect of soluble CD137 on the CD137-CD137L system makes it a promising candidate for immunotherapy to restore tolerance in autoimmune diseases.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- School of Medicine and Health Sciences, Doctoral Program in Biological and Biomedical Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S. Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Wisconsin, Milwaukee, WI, United States
- Division of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - William M. Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: William M. Ridgway,
| |
Collapse
|
3
|
Aubin AM, Lombard-Vadnais F, Collin R, Aliesky HA, McLachlan SM, Lesage S. The NOD Mouse Beyond Autoimmune Diabetes. Front Immunol 2022; 13:874769. [PMID: 35572553 PMCID: PMC9102607 DOI: 10.3389/fimmu.2022.874769] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Autoimmune diabetes arises spontaneously in Non-Obese Diabetic (NOD) mice, and the pathophysiology of this disease shares many similarities with human type 1 diabetes. Since its generation in 1980, the NOD mouse, derived from the Cataract Shinogi strain, has represented the gold standard of spontaneous disease models, allowing to investigate autoimmune diabetes disease progression and susceptibility traits, as well as to test a wide array of potential treatments and therapies. Beyond autoimmune diabetes, NOD mice also exhibit polyautoimmunity, presenting with a low incidence of autoimmune thyroiditis and Sjögren's syndrome. Genetic manipulation of the NOD strain has led to the generation of new mouse models facilitating the study of these and other autoimmune pathologies. For instance, following deletion of specific genes or via insertion of resistance alleles at genetic loci, NOD mice can become fully resistant to autoimmune diabetes; yet the newly generated diabetes-resistant NOD strains often show a high incidence of other autoimmune diseases. This suggests that the NOD genetic background is highly autoimmune-prone and that genetic manipulations can shift the autoimmune response from the pancreas to other organs. Overall, multiple NOD variant strains have become invaluable tools for understanding the pathophysiology of and for dissecting the genetic susceptibility of organ-specific autoimmune diseases. An interesting commonality to all autoimmune diseases developing in variant strains of the NOD mice is the presence of autoantibodies. This review will present the NOD mouse as a model for studying autoimmune diseases beyond autoimmune diabetes.
Collapse
Affiliation(s)
- Anne-Marie Aubin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Félix Lombard-Vadnais
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Roxanne Collin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- CellCarta, Montreal, QC, Canada
| | - Holly A. Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sylvie Lesage
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
Hu BS, Tang T, Jia JL, Xie BC, Wu TL, Sheng YY, Xue YZ, Tang HM. CD137 agonist induces gastric cancer cell apoptosis by enhancing the functions of CD8 + T cells via NF-κB signaling. Cancer Cell Int 2020; 20:513. [PMID: 33093811 PMCID: PMC7576737 DOI: 10.1186/s12935-020-01605-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Background CD137 is a target for tumor immunotherapy. However, the role of CD137 in gastric cancer (GC), especially in inducing GC cell apoptosis, has not been studied. Methods Foxp3+ and CD8+ T cells in GCs were investigated using immunohistochemistry (IHC). CD137 expression in GCs was detected using flow cytometry, IHC and immunofluorescence (IF). Peripheral blood mononuclear cells (PBMCs) and CD8+ T cells isolated from peripheral blood were stimulated with a CD137 agonist in vitro. CD8+ T cell proliferation and p65 expression was examined using flow cytometry. P65 nuclear translocation was analyzed using IF. IL-10, TGF-β, IFN-γ, perforin and granzyme B were detected using real-time quantitative PCR (real-time PCR). PBMCs and primary GC cells were cocultured and stimulated with a CD137 agonist in vitro. Apoptosis of primary GC cells was detected using flow cytometry. Results Our data demonstrated that GC tumors showed characteristics of an immunosuppressive microenvironment. CD137 was predominantly expressed in CD8+ T cells in GCs and had a positive correlation with tumor cell differentiation. The CD137 agonist promoted CD8+ T cell proliferation and increased the secretion of IFN-γ, perforin and granzyme B, which induced primary GC cell apoptosis. Mechanistically, this study found that the CD137 agonist induced NF-κB nuclear translocation in CD8+ T cells. Conclusion Our results demonstrated that a CD137 agonist induced primary GC cell apoptosis by enhancing CD8+ T cells via activation of NF-κB signaling.
Collapse
Affiliation(s)
- Ben-Shun Hu
- School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 People's Republic of China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Tian Tang
- School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 People's Republic of China
| | - Jun-Li Jia
- School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 People's Republic of China
| | - Bi-Chen Xie
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Tie-Long Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, 200 Huihe Rd, Binhu District, Wuxi, 214000 People's Republic of China
| | - Ying-Yue Sheng
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, 200 Huihe Rd, Binhu District, Wuxi, 214000 People's Republic of China
| | - Yu-Zheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, 200 Huihe Rd, Binhu District, Wuxi, 214000 People's Republic of China
| | - Hua-Min Tang
- School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166 People's Republic of China
| |
Collapse
|
5
|
Wong HY, Schwarz H. CD137 / CD137 ligand signalling regulates the immune balance: A potential target for novel immunotherapy of autoimmune diseases. J Autoimmun 2020; 112:102499. [PMID: 32505443 DOI: 10.1016/j.jaut.2020.102499] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
Abstract
CD137 (TNFRSF9, 4-1BB) is a potent co-stimulatory molecule of the tumour necrosis factor receptor superfamily (TNFRSF) that is expressed by activated T cells. CD137/CD137 ligand (CD137L) signalling primarily induces a potent cell-mediated immune response, while signalling of cell surface-expressed CD137L into antigen presenting cells enhances their activation, differentiation and migratory capacity. Studies have shown that bidirectional CD137/CD137L signalling plays an important role in the pathogenesis of autoimmune diseases. This review discusses the mechanisms how CD137/CD137L signalling contributes to immune deviation of helper T cell pathways in various murine models, and the potential of developing immunotherapies targeting CD137/CD137L signalling for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Hiu Yi Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore.
| |
Collapse
|
6
|
Foda BM, Ciecko AE, Serreze DV, Ridgway WM, Geurts AM, Chen YG. The CD137 Ligand Is Important for Type 1 Diabetes Development but Dispensable for the Homeostasis of Disease-Suppressive CD137 + FOXP3 + Regulatory CD4 T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2887-2899. [PMID: 32295876 PMCID: PMC7296588 DOI: 10.4049/jimmunol.1900485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 03/31/2020] [Indexed: 01/25/2023]
Abstract
CD137 modulates type 1 diabetes (T1D) progression in NOD mice. We previously showed that CD137 expression in CD4 T cells inhibits T1D, but its expression in CD8 T cells promotes disease development by intrinsically enhancing the accumulation of β-cell-autoreactive CD8 T cells. CD137 is expressed on a subset of FOXP3+ regulatory CD4 T cells (Tregs), and CD137+ Tregs are the main source of soluble CD137. Soluble CD137 suppresses T cells in vitro by binding to the CD137 ligand (CD137L) upregulated on activated T cells. To further study how the opposing functions of CD137 are regulated, we successfully targeted Tnfsf9 (encoding CD137L) in NOD mice using the CRISPR/Cas9 system (designated NOD.Tnfsf9 -/-). Relative to wild-type NOD mice, T1D development in the NOD.Tnfsf9 -/- strain was significantly delayed, and mice developed less insulitis and had reduced frequencies of β-cell-autoreactive CD8 T cells. Bone marrow chimera experiments showed that CD137L-deficient hematopoietic cells were able to confer T1D resistance. Adoptive T cell transfer experiments showed that CD137L deficiency on myeloid APCs was associated with T1D suppression. Conversely, lack of CD137L on T cells enhanced their diabetogenic activity. Furthermore, neither CD137 nor CD137L was required for the development and homeostasis of FOXP3+ Tregs. However, CD137 was critical for the in vivo T1D-suppressive activity of FOXP3+ Tregs, suggesting that the interaction between CD137 and CD137L regulates their function. Collectively, our results provide new insights into the complex roles of CD137-CD137L interaction in T1D.
Collapse
Affiliation(s)
- Bardees M Foda
- Department of Molecular Genetics and Enzymology, National Research Centre, Dokki, 12622, Egypt
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Ashley E Ciecko
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | - William M Ridgway
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA 95616
| | - Aron M Geurts
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226; and
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226;
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
7
|
Martinov T, Fife BT. Type 1 diabetes pathogenesis and the role of inhibitory receptors in islet tolerance. Ann N Y Acad Sci 2020; 1461:73-103. [PMID: 31025378 PMCID: PMC6994200 DOI: 10.1111/nyas.14106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) affects over a million Americans, and disease incidence is on the rise. Despite decades of research, there is still no cure for this disease. Exciting beta cell replacement strategies are being developed, but in order for such approaches to work, targeted immunotherapies must be designed. To selectively halt the autoimmune response, researchers must first understand how this response is regulated and which tolerance checkpoints fail during T1D development. Herein, we discuss the current understanding of T1D pathogenesis in humans, genetic and environmental risk factors, presumed roles of CD4+ and CD8+ T cells as well as B cells, and implicated autoantigens. We also highlight studies in non-obese diabetic mice that have demonstrated the requirement for CD4+ and CD8+ T cells and B cells in driving T1D pathology. We present an overview of central and peripheral tolerance mechanisms and comment on existing controversies in the field regarding central tolerance. Finally, we discuss T cell- and B cell-intrinsic tolerance mechanisms, with an emphasis on the roles of inhibitory receptors in maintaining islet tolerance in humans and in diabetes-prone mice, and strategies employed to date to harness inhibitory receptor signaling to prevent or reverse T1D.
Collapse
Affiliation(s)
- Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
8
|
Itoh A, Ortiz L, Kachapati K, Wu Y, Adams D, Bednar K, Mukherjee S, Chougnet C, Mittler RS, Chen YG, Dolan L, Ridgway WM. Soluble CD137 Ameliorates Acute Type 1 Diabetes by Inducing T Cell Anergy. Front Immunol 2019; 10:2566. [PMID: 31787971 PMCID: PMC6853870 DOI: 10.3389/fimmu.2019.02566] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
We show here that soluble CD137 (sCD137), the alternately spliced gene product of Tnfsfr9, effectively treats acute type 1 diabetes (T1D) in nonobese diabetic (NOD) mice. sCD137 significantly delayed development of end-stage disease, preserved insulin+ islet beta cells, and prevented progression to end-stage T1D in some mice. We demonstrate that sCD137 induces CD4+ T cell anergy, suppressing antigen-specific T cell proliferation and IL-2/IFN-γ secretion. Exogenous IL-2 reversed the sCD137 anergy effect. sCD137 greatly reduces inflammatory cytokine production by CD8 effector memory T cells, critical mediators of beta cell damage. We demonstrate that human T1D patients have decreased serum sCD137 compared to age-matched controls (as do NOD mice compared to NOD congenic mice expressing a protective Tnfsfr9 allele), that human sCD137 is secreted by regulatory T cells (Tregs; as in mice), and that human sCD137 induces T cell suppression in human T cells. These findings provide a rationale for further investigation of sCD137 as a treatment for T1D and other T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Arata Itoh
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lorenzo Ortiz
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kritika Kachapati
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Yuehong Wu
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David Adams
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kyle Bednar
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Shibabrata Mukherjee
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Claire Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Robert S Mittler
- Department of Surgery, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Atlanta, GA, United States
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Laurence Dolan
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
9
|
Forsberg MH, Foda B, Serreze DV, Chen YG. Combined congenic mapping and nuclease-based gene targeting for studying allele-specific effects of Tnfrsf9 within the Idd9.3 autoimmune diabetes locus. Sci Rep 2019; 9:4316. [PMID: 30867509 PMCID: PMC6416332 DOI: 10.1038/s41598-019-40898-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/25/2019] [Indexed: 01/26/2023] Open
Abstract
Rodent complex trait genetic studies involving a cross between two inbred strains are usually followed by congenic mapping to refine the loci responsible for the phenotype. However, progressing from a chromosomal region to the actual causal gene remains challenging because multiple polymorphic genes are often closely linked. The goal of this study was to develop a strategy that allows candidate gene testing by allele-specific expression without prior knowledge of the credible causal variant. Tnfrsf9 (encoding CD137) is a candidate gene for the Idd9.3 type 1 diabetes (T1D) susceptibility locus in the nonobese diabetic (NOD) mouse model. A C57BL/10Sn (B10)-derived diabetes resistance Idd9.3 congenic region has been shown to enhance accumulation of CD137+ regulatory T cells and serum soluble CD137 in NOD mice. By combining the power of congenic mapping and nuclease-based gene targeting, we established a system where a pair of F1 hybrids expressed either the B10 or NOD Tnfrsf9 allele mimicking coisogenic strains. Using this approach, we demonstrated that the allelic difference in B10 and NOD Tnfrsf9 alone was sufficient to cause differential accumulation of CD137+ regulatory T cells and serum soluble CD137 levels. This strategy can be broadly applied to other rodent genetic mapping studies.
Collapse
Affiliation(s)
- Matthew H Forsberg
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Bardees Foda
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Molecular Genetics and Enzymology, National Research Centre, Dokki, Egypt
| | | | - Yi-Guang Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
10
|
Chen YG, Mathews CE, Driver JP. The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Front Endocrinol (Lausanne) 2018; 9:51. [PMID: 29527189 PMCID: PMC5829040 DOI: 10.3389/fendo.2018.00051] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For more than 35 years, the NOD mouse has been the primary animal model for studying autoimmune diabetes. During this time, striking similarities to the human disease have been uncovered. In both species, unusual polymorphisms in a major histocompatibility complex (MHC) class II molecule confer the most disease risk, disease is caused by perturbations by the same genes or different genes in the same biological pathways and that diabetes onset is preceded by the presence of circulating autoreactive T cells and autoantibodies that recognize many of the same islet antigens. However, the relevance of the NOD model is frequently challenged due to past failures translating therapies from NOD mice to humans and because the appearance of insulitis in mice and some patients is different. Nevertheless, the NOD mouse remains a pillar of autoimmune diabetes research for its usefulness as a preclinical model and because it provides access to invasive procedures as well as tissues that are rarely procured from patients or controls. The current article is focused on approaches to improve the NOD mouse by addressing reasons why immune therapies have failed to translate from mice to humans. We also propose new strategies for mixing and editing the NOD genome to improve the model in ways that will better advance our understanding of human diabetes. As proof of concept, we report that diabetes is completely suppressed in a knock-in NOD strain with a serine to aspartic acid substitution at position 57 in the MHC class II Aβ. This supports that similar non-aspartic acid substitutions at residue 57 of variants of the human class II HLA-DQβ homolog confer diabetes risk.
Collapse
Affiliation(s)
- Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - John P. Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- *Correspondence: John P. Driver,
| |
Collapse
|
11
|
Abstract
The immune system is guided by a series of checks and balances, a major component of which is a large array of co-stimulatory and co-inhibitory pathways that modulate the host response. Although co-stimulation is essential for boosting and shaping the initial response following signaling through the antigen receptor, inhibitory pathways are also critical for modulating the immune response. Excessive co-stimulation and/or insufficient co-inhibition can lead to a breakdown of self-tolerance and thus to autoimmunity. In this review, we will focus on the role of co-stimulatory and co-inhibitory pathways in two systemic (systemic lupus erythematosus and rheumatoid arthritis) and two organ-specific (multiple sclerosis and type 1 diabetes) emblematic autoimmune diseases. We will also discuss how mechanistic analysis of these pathways has led to the identification of potential therapeutic targets and initiation of clinical trials for autoimmune diseases, as well as outline some of the challenges that lie ahead.
Collapse
Affiliation(s)
- Qianxia Zhang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA.
| |
Collapse
|
12
|
Rahman MM, Badruzzaman ATM, Altaf Hossain FM, Husna A, Bari AM, Eo SK. The promise of 4-1BB (CD137) mediated immunomodulation and immunotherapy for viral diseases. Future Virol 2017. [DOI: 10.2217/fvl-2016-0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The T-cell surface receptor, 4-1BB (CD137), has been of increasing interest to immunologists as a co-stimulatory immune checkpoint molecule over the last two decades. Ligation of 4-1BB can activate signals in CD8+ T cells and NK cells, resulting in increased proinflammatory cytokine secretion, cytolytic function and antibody-dependent cell-mediated cytotoxicity. Targeting 4-1BB, using a 4-1BB ligand (4-1BBL) or agonistic monoclonal antibodies, has delivered a new strategy to fight against cancer, autoimmune diseases and viral infections. In this review, different aspects of 4-1BB mediated antiviral responses, the mechanistic basis of such responses and future directions are discussed.
Collapse
Affiliation(s)
- Md Masudur Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - ATM Badruzzaman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Ferdaus Mohd Altaf Hossain
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- College of Veterinary Medicine & Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Asmaul Husna
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Abusaleh Mahfuzul Bari
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Seong Kug Eo
- College of Veterinary Medicine & Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
13
|
Forsberg MH, Ciecko AE, Bednar KJ, Itoh A, Kachapati K, Ridgway WM, Chen YG. CD137 Plays Both Pathogenic and Protective Roles in Type 1 Diabetes Development in NOD Mice. THE JOURNAL OF IMMUNOLOGY 2017; 198:3857-3868. [PMID: 28363905 DOI: 10.4049/jimmunol.1601851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
We previously reported that CD137 (encoded by Tnfrsf9) deficiency suppressed type 1 diabetes (T1D) progression in NOD mice. We also demonstrated that soluble CD137 produced by regulatory T cells contributed to their autoimmune-suppressive function in this model. These results suggest that CD137 can either promote or suppress T1D development in NOD mice depending on where it is expressed. In this study, we show that NOD.Tnfrsf9-/- CD8 T cells had significantly reduced diabetogenic capacity, whereas absence of CD137 in non-T and non-B cells had a limited impact on T1D progression. In contrast, NOD.Tnfrsf9-/- CD4 T cells highly promoted T1D development. We further demonstrated that CD137 was important for the accumulation of β cell-autoreactive CD8 T cells but was dispensable for their activation in pancreatic lymph nodes. The frequency of islet-infiltrating CD8 T cells was reduced in NOD.Tnfrsf9-/- mice in part because of their decreased proliferation. Furthermore, CD137 deficiency did not suppress T1D development in NOD mice expressing the transgenic NY8.3 CD8 TCR. This suggests that increased precursor frequency of β cell-autoreactive CD8 T cells in NY8.3 mice obviated a role for CD137 in diabetogenesis. Finally, blocking CD137-CD137 ligand interaction significantly delayed T1D onset in NOD mice. Collectively, our results indicate that one important diabetogenic function of CD137 is to promote the expansion and accumulation of β cell-autoreactive CD8 T cells, and in the absence of CD137 or its interaction with CD137 ligand, T1D progression is suppressed.
Collapse
Affiliation(s)
- Matthew H Forsberg
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Ashley E Ciecko
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Kyle J Bednar
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45221
| | - Arata Itoh
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45221
| | - Kritika Kachapati
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45221
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45221
| | - Yi-Guang Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226; .,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI 53226; and.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
14
|
Wagner DH. Overlooked Mechanisms in Type 1 Diabetes Etiology: How Unique Costimulatory Molecules Contribute to Diabetogenesis. Front Endocrinol (Lausanne) 2017; 8:208. [PMID: 28878738 PMCID: PMC5572340 DOI: 10.3389/fendo.2017.00208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/08/2017] [Indexed: 01/16/2023] Open
Abstract
Type 1 Diabetes (T1D) develops when immune cells invade the pancreatic islets resulting in loss of insulin production in beta cells. T cells have been proven to be central players in that process. What is surprising, however, is that classic mechanisms of tolerance cannot explain diabetogenesis; alternate mechanisms must now be considered. T cell receptor (TCR) revision is the process whereby T cells in the periphery alter TCR expression, outside the safety-net of thymic selection pressures. This process results in an expanded T cell repertoire, capable of responding to a universe of pathogens, but limitations are that increased risk for autoimmune disease development occurs. Classic T cell costimulators including the CD28 family have long been thought to be the major drivers for full T cell activation. In actuality, CD28 and its family member counterparts, ICOS and CTLA-4, all drive regulatory responses. Inflammation is driven by CD40, not CD28. CD40 as a costimulus has been largely overlooked. When naïve T cells interact with antigen presenting cell CD154, the major ligand for CD40, is induced. This creates a milieu for T cell (CD40)-T cell (CD154) interaction, leading to inflammation. Finally, defined pathogenic effector cells including TH40 (CD4+CD40+) cells can express FOXP3 but are not Tregs. The cells loose FOXP3 to become pathogenic effector cells. Each of these mechanisms creates novel options to better understand diabetogenesis and create new therapeutic targets for T1D.
Collapse
Affiliation(s)
- David H. Wagner
- The Program in Integrated Immunology, Department of Medicine, Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: David H. Wagner Jr.,
| |
Collapse
|
15
|
T‐cell exhaustion: understanding the interface of chronic viral and autoinflammatory diseases. Immunol Cell Biol 2016; 94:935-942. [DOI: 10.1038/icb.2016.81] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 12/19/2022]
|
16
|
Lin B, Ciecko AE, MacKinney E, Serreze DV, Chen YG. Congenic mapping identifies a novel Idd9 subregion regulating type 1 diabetes in NOD mice. Immunogenetics 2016; 69:193-198. [PMID: 27796442 DOI: 10.1007/s00251-016-0957-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
Type 1 diabetes (T1D) results from complex interactions between genetic and environmental factors. The nonobese diabetic (NOD) mouse develops spontaneous T1D and has been used extensively to study the genetic control of this disease. T1D is suppressed in NOD mice congenic for the C57BL/10 (B10)-derived Idd9 resistance region on chromosome 4. Previous studies conducted by other investigators have identified four subregions (Idd9.1, Idd9.2, Idd9.3, and Idd9.4) where B10-derived genes suppress T1D development in NOD mice. We independently generated and characterized six congenic strains containing B10-derived intervals that partially overlap with the Idd9.1 and Idd9.4 regions. T1D incidence studies have revealed a new B10-derived resistance region proximal to Idd9.1. Our results also indicated that a B10-derived gene(s) within the Idd9.4 region suppressed the diabetogenic activity of CD4 T cells and promoted CD103 expression on regulatory T cells indicative of an activated phenotype. In addition, we suggest the presence of a B10-derived susceptibility gene(s) in the Idd9.1/Idd9.4 region. These results provide additional information to improve our understanding of the complex genetic control by the Idd9 region.
Collapse
Affiliation(s)
- Bixuan Lin
- Department of Pediatrics, Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ashley E Ciecko
- Department of Pediatrics, Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Erin MacKinney
- Department of Pediatrics, Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | | | - Yi-Guang Chen
- Department of Pediatrics, Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
17
|
Abstract
INTRODUCTION 4-1BB (CD137) is an important T-cell stimulating molecule. The 4-1BB mAb or its variants have shown remarkable therapeutic activity against autoimmunity, viral infections, and cancer. Antibodies to 4-1BB have recently entered clinical trials for the treatment of cancer with favorable toxicity profile. In this article, we present a review documenting the efficacy and pitfalls of 4-1BB therapy. AREAS COVERED An extensive literature search has been made on 4-1BB, spanning two decades, and a comprehensive report is presented here highlighting the origins, biological effects, therapeutic potential, and mechanistic basis of targeting 4-1BB as well as the side effects associated with such therapy. EXPERT OPINION Research so far indicates that 4-1BB is highly protective against various pathological conditions including cancer. However, a few important side effects of 4-1BB therapy such as liver toxicity, thrombocytopenia, anemia, and suppressive effects on certain immune competent cells should be taken into consideration before it is used for human therapy.
Collapse
Affiliation(s)
- Dass S Vinay
- a 1 Tulane University, Section of Clinical Immunology, Allergy and Rheumatology, Department of Medicine , New Orleans, LA 70112, USA
| | - Byoung S Kwon
- a 1 Tulane University, Section of Clinical Immunology, Allergy and Rheumatology, Department of Medicine , New Orleans, LA 70112, USA.,b 2 Cell and Immunobiology, and R & D Center for Cancer Therapeutics, National Cancer Center , Goyang 410-769, Korea ;
| |
Collapse
|
18
|
Bartkowiak T, Curran MA. 4-1BB Agonists: Multi-Potent Potentiators of Tumor Immunity. Front Oncol 2015; 5:117. [PMID: 26106583 PMCID: PMC4459101 DOI: 10.3389/fonc.2015.00117] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/11/2015] [Indexed: 01/12/2023] Open
Abstract
Immunotherapy is a rapidly expanding field of oncology aimed at targeting, not the tumor itself, but the immune system combating the cancerous lesion. Of the many approaches currently under study to boost anti-tumor immune responses; modulation of immune co-receptors on lymphocytes in the tumor microenvironment has thus far proven to be the most effective. Antibody blockade of the T cell co-inhibitory receptor cytotoxic T lymphocyte antigen-4 (CTLA-4) has become the first FDA approved immune checkpoint blockade; however, tumor infiltrating lymphocytes express a diverse array of additional stimulatory and inhibitory co-receptors, which can be targeted to boost tumor immunity. Among these, the co-stimulatory receptor 4-1BB (CD137/TNFSF9) possesses an unequaled capacity for both activation and pro-inflammatory polarization of anti-tumor lymphocytes. While functional studies of 4-1BB have focused on its prominent role in augmenting cytotoxic CD8 T cells, 4-1BB can also modulate the activity of CD4 T cells, B cells, natural killer cells, monocytes, macrophages, and dendritic cells. 4-1BB’s expression on both T cells and antigen presenting cells, coupled with its capacity to promote survival, expansion, and enhanced effector function of activated T cells, has made it an alluring target for tumor immunotherapy. In contrast to immune checkpoint blocking antibodies, 4-1BB agonists can both potentiate anti-tumor and anti-viral immunity, while at the same time ameliorating autoimmune disease. Despite this, 4-1BB agonists can trigger high grade liver inflammation which has slowed their clinical development. In this review, we discuss how the underlying immunobiology of 4-1BB activation suggests the potential for therapeutically synergistic combination strategies in which immune adverse events can be minimized.
Collapse
Affiliation(s)
- Todd Bartkowiak
- Department of Immunology, University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences at Houston , Houston, TX , USA
| | - Michael A Curran
- Department of Immunology, University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences at Houston , Houston, TX , USA
| |
Collapse
|
19
|
Berry GJ, Frielle C, Luu T, Salzberg AC, Rainbow DB, Wicker LS, Waldner H. Genome-wide transcriptional analyses of islet-specific CD4+ T cells identify Idd9 genes controlling diabetogenic T cell function. THE JOURNAL OF IMMUNOLOGY 2015; 194:2654-63. [PMID: 25672752 DOI: 10.4049/jimmunol.1401288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 1 diabetes (T1D) is a polygenic disease with multiple insulin-dependent diabetes (Idd) loci predisposing humans and NOD mice to disease. NOD.B10 Idd9 congenic mice, in which the NOD Idd9 chromosomal region is replaced by the Idd9 from T1D-resistant C57BL/10 mice, are significantly protected from T1D development. However, the genes and pathways conferring T1D development or protection by Idd9 remain to be fully elucidated. We have developed novel NOD.B10-Idd9 (line 905) congenic mice that predominantly harbor islet-reactive CD4(+) T cells expressing the BDC2.5 TCR (BDC-Idd9.905 mice). To establish functional links between the Idd9 genotype and its phenotype, we used microarray analyses to investigate the gene expression profiles of ex vivo and Ag-activated CD4(+) T cells from these mice and BDC2.5 (BDC) NOD controls. Among the differentially expressed genes, those located within the Idd9 region were greatly enriched in islet-specific CD4(+) T cells. Bioinformatics analyses of differentially expressed genes between BDC-Idd9.905 and BDC CD4(+) T cells identified Eno1, Rbbp4, and Mtor, all of which are encoded by Idd9 and part of gene networks involved in cellular growth and development. As predicted, proliferation and Th1/Th17 responses of islet-specific CD4(+) T cells from BDC-Idd9.905 mice following Ag stimulation in vitro were reduced compared with BDC mice. Furthermore, proliferative responses to endogenous autoantigen and diabetogenic function were impaired in BDC-Idd9.905 CD4(+) T cells. These findings suggest that differential expression of the identified Idd9 genes contributed to Idd9-dependent T1D susceptibility by controlling the diabetogenic function of islet-specific CD4(+) T cells.
Collapse
Affiliation(s)
- Gregory J Berry
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Christine Frielle
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Thaiphi Luu
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Anna C Salzberg
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033; and
| | - Daniel B Rainbow
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Linda S Wicker
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Hanspeter Waldner
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033;
| |
Collapse
|
20
|
Berry GJ, Budgeon LR, Cooper TK, Christensen ND, Waldner H. The type 1 diabetes resistance locus B10 Idd9.3 mediates impaired B-cell lymphopoiesis and implicates microRNA-34a in diabetes protection. Eur J Immunol 2014; 44:1716-27. [PMID: 24752729 DOI: 10.1002/eji.201344116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/27/2014] [Accepted: 03/11/2014] [Indexed: 01/07/2023]
Abstract
NOD.B10 Idd9.3 mice are congenic for the insulin-dependent diabetes (Idd) Idd9.3 locus, which confers significant type 1 diabetes (T1D) protection and encodes 19 genes, including microRNA (miR)-34a, from T1D-resistant C57BL/10 mice. B cells have been shown to play a critical role in the priming of autoantigen-specific CD4(+) T cells in T1D pathogenesis in non-obese diabetic (NOD) mice. We show that early B-cell development is impaired in NOD.B10 Idd9.3 mice, resulting in the profound reduction of transitional and mature splenic B cells as compared with NOD mice. Molecular analysis revealed that miR-34a expression was significantly higher in B-cell progenitors and marginal zone B cells from NOD.B10 Idd9.3 mice than in NOD mice. Furthermore, miR-34a expression in these cell populations inversely correlated with levels of Foxp1, an essential regulator of B-cell lymphopoiesis, which is directly repressed by miR-34a. In addition, we show that islet-specific CD4(+) T cells proliferated inefficiently when primed by NOD.B10 Idd9.3 B cells in vitro or in response to endogenous autoantigen in NOD.B10 Idd9.3 mice. Thus, Idd9.3-encoded miR-34a is a likely candidate in negatively regulating B-cell lymphopoiesis, which may contribute to inefficient expansion of islet-specific CD4(+) T cells and to T1D protection in NOD.B10 Idd9.3 mice.
Collapse
Affiliation(s)
- Gregory J Berry
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | | | | | | | | |
Collapse
|
21
|
Ferreira C, Palmer D, Blake K, Garden OA, Dyson J. Reduced regulatory T cell diversity in NOD mice is linked to early events in the thymus. THE JOURNAL OF IMMUNOLOGY 2014; 192:4145-52. [PMID: 24663675 DOI: 10.4049/jimmunol.1301600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The thymic natural regulatory T cell (Treg) compartment of NOD mice is unusual in having reduced TCR diversity despite normal cellularity. In this study, we show that this phenotype is attributable to perturbations in early and late stages of thymocyte development and is controlled, at least in part, by the NOD Idd9 region on chromosome 4. Progression from double negative 1 to double negative 2 stage thymocytes in NOD mice is inefficient; however, this defect is compensated by increased proliferation of natural Tregs (nTregs) within the single positive CD4 thymocyte compartment, accounting for recovery of cellularity accompanied by loss of TCR diversity. This region also underlies the known attenuation of ERK-MAPK signaling, which may preferentially disadvantage nTreg selection. Interestingly, the same genetic region also regulates the rate of thymic involution that is accelerated in NOD mice. These findings highlight further complexity in the control of nTreg repertoire diversity.
Collapse
Affiliation(s)
- Cristina Ferreira
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Szypowska A, Stelmaszczyk-Emmel A, Demkow U, Luczyński W. High expression of OX40 (CD134) and 4-1BB (CD137) molecules on CD4(+)CD25(high) cells in children with type 1 diabetes. Adv Med Sci 2014; 59:39-43. [PMID: 24797972 DOI: 10.1016/j.advms.2013.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 07/05/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE Despite the rapidly rising incidence of diabetes in children, with the highest rise in children<5 years of age, data on mechanisms that trigger severe beta-cells damage are limited. The aim of the study was to assess the frequency of OX40 (CD134) or 4-1BB (CD137) positive cells in the peripheral blood of children with newly diagnosed type 1 diabetes (T1D) in comparison to healthy controls. MATERIAL/METHODS The study included 33 children (mean age 7.3 ± 5.4 years) with newly diagnosed T1D and 39 age-matched healthy controls. Separate analysis was performed in children<5 years. Flow cytometric analysis was performed using the following markers: CD4, CD25, CD137, and CD134. Fasting C-peptide level was assessed as well. RESULTS The frequency of CD4(+)CD25(high)OX40(+) was higher in T1D children than in controls (median value 3.58% vs. 1.1%, respectively; p=0.003). Moreover, T1D children had higher frequency of CD4(+)CD25(high)4-1BB(+) cells than healthy subjects (median value 5.76% vs. 3.74%, respectively; p=0.037). A significant correlation was noted between the age of diabetic children and the C-peptide level (r=0.54, 95% CI [0.19-0.77], p=0.004). In comparison with age-matched controls, children<5 years had higher frequency of CD4(+)CD25(high)OX40(+) (p=0.004) and CD4(+)CD25(high)4-1BB(+) cells (p=0.079). CONCLUSIONS Our study showed higher frequency of both OX40 and 4-1BB positive cells in T1D children in comparison to controls. It seems that observed differences might be more pronounced in children<5 years of age than in older subjects. Further clinical studies are needed to determine the age-related differences in the immune system, in the pathogenesis of T1D.
Collapse
Affiliation(s)
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Włodzimierz Luczyński
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
23
|
Kochupurakkal NM, Kruger AJ, Tripathi S, Zhu B, Adams LT, Rainbow DB, Rossini A, Greiner DL, Sayegh MH, Wicker LS, Guleria I. Blockade of the programmed death-1 (PD1) pathway undermines potent genetic protection from type 1 diabetes. PLoS One 2014; 9:e89561. [PMID: 24586872 PMCID: PMC3938467 DOI: 10.1371/journal.pone.0089561] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/22/2014] [Indexed: 01/07/2023] Open
Abstract
Aims/Hypothesis Inhibition of PD1-PDL1 signaling in NOD mice accelerates onset of type 1 diabetes implicating this pathway in suppressing the emergence of pancreatic beta cell reactive T-cells. However, the molecular mechanism by which PD1 signaling protects from type 1 diabetes is not clear. We hypothesized that differential susceptibility of Idd mouse strains to type 1 diabetes when challenged with anti PDL1 will identify genomic loci that collaborate with PD1 signaling in suppressing type 1 diabetes. Methods Anti PDL1 was administered to NOD and various Idd mouse strains at 10 weeks of age and onset of disease was monitored by measuring blood glucose levels. Additionally, histological evaluation of the pancreas was performed to determine degree of insulitis. Statistical analysis of the data was performed using Log-Rank and Student's t-test. Results Blockade of PDL1 rapidly precipitated type 1 diabetes in nearly all NOD Idd congenic strains tested, despite the fact that all are moderately (Idd5, Idd3 and Idd10/18) or highly (Idd3/10/18 and Idd9) protected from spontaneous type 1 diabetes by virtue of their protective Idd genes. Only the Idd3/5 strain, which is nearly 100% protected from spontaneous disease, remained normoglycemic following PDL1 blockade. Conclusions These results indicate that multiple Idd loci collaborate with PD1 signaling. Anti PDL1 treatment undermines a large portion of the genetic protection mediated by Idd genes in the NOD model of type 1 diabetes. Basal insulitis correlated with higher susceptibility to type 1 diabetes. These findings have important implications since the PD1 pathway is a target for immunotherapy.
Collapse
Affiliation(s)
- Nora M. Kochupurakkal
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School Renal Division, Boston, Massachusetts, United States of America
| | - Annie J. Kruger
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sudipta Tripathi
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School Renal Division, Boston, Massachusetts, United States of America
| | - Bing Zhu
- Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - La Tonya Adams
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School Renal Division, Boston, Massachusetts, United States of America
| | - Daniel B. Rainbow
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Aldo Rossini
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Dale L. Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Mohamed H. Sayegh
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School Renal Division, Boston, Massachusetts, United States of America
| | - Linda S. Wicker
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Indira Guleria
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital Boston, Harvard Medical School Renal Division, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Affiliation(s)
- William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
25
|
Chen YG, Forsberg MH, Khaja S, Ciecko AE, Hessner MJ, Geurts AM. Gene targeting in NOD mouse embryos using zinc-finger nucleases. Diabetes 2014; 63:68-74. [PMID: 23974926 PMCID: PMC3868049 DOI: 10.2337/db13-0192] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Studies in NOD mice have provided important insight into the genetics and pathogenesis of type 1 diabetes (T1D). Our goal was to further explore novel methods of genetic manipulation in this mouse model. We tested the feasibility of using zinc-finger nucleases (ZFNs) to knock out a gene directly in a pure NOD background, bypassing the need of embryonic stem cells. We report here the successful application of ZFN pairs to specifically and efficiently knock out Tnfrsf9 (encoding CD137/4-1BB) directly in the NOD mouse by embryo microinjection. Histology and T1D incidence studies indicated that CD137 was dispensable for the development of insulitis but played a role to promote progression to overt diabetes in NOD mice. We also demonstrated that CD137-deficient T-cells were less diabetogenic than their wild-type counterpart when adoptively transferred into NOD.Rag1(-/-) recipients, even when CD25(+) cells were predepleted. In vitro assays suggested that CD137 deficiency had a limited effect on the suppressive function of CD4(+)CD25(+) regulatory T-cells (Tregs). Therefore, CD137 deficiency predominately affected effector T-cells rather than Tregs. Our study demonstrates the ability to generate gene-targeted knockouts in a pure NOD background by using ZFNs without potential confounding factors introduced by contaminating genetic materials obtained from other strains.
Collapse
Affiliation(s)
- Yi-Guang Chen
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
- Corresponding author: Yi-Guang Chen,
| | - Matthew H. Forsberg
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
| | - Shamim Khaja
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Ashley E. Ciecko
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Martin J. Hessner
- Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI
| | - Aron M. Geurts
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
26
|
Kachapati K, Bednar KJ, Adams DE, Wu Y, Mittler RS, Jordan MB, Hinerman JM, Herr AB, Ridgway WM. Recombinant soluble CD137 prevents type one diabetes in nonobese diabetic mice. J Autoimmun 2013; 47:94-103. [DOI: 10.1016/j.jaut.2013.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/26/2013] [Accepted: 09/28/2013] [Indexed: 11/28/2022]
|
27
|
Hamilton-Williams EE, Rainbow DB, Cheung J, Christensen M, Lyons PA, Peterson LB, Steward CA, Sherman LA, Wicker LS. Fine mapping of type 1 diabetes regions Idd9.1 and Idd9.2 reveals genetic complexity. Mamm Genome 2013; 24:358-75. [PMID: 23934554 PMCID: PMC3824839 DOI: 10.1007/s00335-013-9466-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/02/2013] [Indexed: 12/01/2022]
Abstract
Nonobese diabetic (NOD) mice congenic for C57BL/10 (B10)-derived genes in the Idd9 region of chromosome 4 are highly protected from type 1 diabetes (T1D). Idd9 has been divided into three protective subregions (Idd9.1, 9.2, and 9.3), each of which partially prevents disease. In this study we have fine-mapped the Idd9.1 and Idd9.2 regions, revealing further genetic complexity with at least two additional subregions contributing to protection from T1D. Using the NOD sequence from bacterial artificial chromosome clones of the Idd9.1 and Idd9.2 regions as well as whole-genome sequence data recently made available, sequence polymorphisms within the regions highlight a high degree of polymorphism between the NOD and B10 strains in the Idd9 regions. Among numerous candidate genes are several with immunological importance. The Idd9.1 region has been separated into Idd9.1 and Idd9.4, with Lck remaining a candidate gene within Idd9.1. One of the Idd9.2 regions contains the candidate genes Masp2 (encoding mannan-binding lectin serine peptidase 2) and Mtor (encoding mammalian target of rapamycin). From mRNA expression analyses, we have also identified several other differentially expressed candidate genes within the Idd9.1 and Idd9.2 regions. These findings highlight that multiple, relatively small genetic effects combine and interact to produce significant changes in immune tolerance and diabetes onset.
Collapse
Affiliation(s)
- Emma E Hamilton-Williams
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bour-Jordan H, Thompson HL, Giampaolo JR, Davini D, Rosenthal W, Bluestone JA. Distinct genetic control of autoimmune neuropathy and diabetes in the non-obese diabetic background. J Autoimmun 2013; 45:58-67. [PMID: 23850635 PMCID: PMC4156399 DOI: 10.1016/j.jaut.2013.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 02/01/2023]
Abstract
The non-obese diabetic (NOD) mouse is susceptible to the development of autoimmune diabetes but also multiple other autoimmune diseases. Over twenty susceptibility loci linked to diabetes have been identified in NOD mice and progress has been made in the definition of candidate genes at many of these loci (termed Idd for insulin-dependent diabetes). The susceptibility to multiple autoimmune diseases in the NOD background is a unique opportunity to examine susceptibility genes that confer a general propensity for autoimmunity versus susceptibility genes that control individual autoimmune diseases. We previously showed that NOD mice deficient for the costimulatory molecule B7-2 (NOD-B7-2KO mice) were protected from diabetes but spontaneously developed an autoimmune peripheral neuropathy. Here, we took advantage of multiple NOD mouse strains congenic for Idd loci to test the role of these Idd loci the development of neuropathy and determine if B6 alleles at Idd loci that are protective for diabetes will also be for neuropathy. Thus, we generated NOD-B7-2KO strains congenic at Idd loci and examined the development of neuritis and clinical neuropathy. We found that the NOD-H-2(g7) MHC region is necessary for development of neuropathy in NOD-B7-2KO mice. In contrast, other Idd loci that significantly protect from diabetes did not affect neuropathy when considered individually. However, we found potent genetic interactions of some Idd loci that provided almost complete protection from neuritis and clinical neuropathy. In addition, defective immunoregulation by Tregs could supersede protection by some, but not other, Idd loci in a tissue-specific manner in a model where neuropathy and diabetes occurred concomitantly. Thus, our study helps identify Idd loci that control tissue-specific disease or confer general susceptibility to autoimmunity, and brings insight to the Treg-dependence of autoimmune processes influenced by given Idd region in the NOD background.
Collapse
Affiliation(s)
- Hélène Bour-Jordan
- University of California in San Francisco, 513 Parnassus Avenue, Box 0400, San Francisco, CA 94143-0400, USA
| | | | | | | | | | | |
Collapse
|
29
|
Driver JP, Chen YG, Mathews CE. Comparative genetics: synergizing human and NOD mouse studies for identifying genetic causation of type 1 diabetes. Rev Diabet Stud 2012; 9:169-87. [PMID: 23804259 DOI: 10.1900/rds.2012.9.169] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although once widely anticipated to unlock how human type 1 diabetes (T1D) develops, extensive study of the nonobese diabetic (NOD) mouse has failed to yield effective treatments for patients with the disease. This has led many to question the usefulness of this animal model. While criticism about the differences between NOD and human T1D is legitimate, in many cases disease in both species results from perturbations modulated by the same genes or different genes that function within the same biological pathways. Like in humans, unusual polymorphisms within an MHC class II molecule contributes the most T1D risk in NOD mice. This insight supports the validity of this model and suggests the NOD has been improperly utilized to study how to cure or prevent disease in patients. Indeed, clinical trials are far from administering T1D therapeutics to humans at the same concentration ranges and pathological states that inhibit disease in NOD mice. Until these obstacles are overcome it is premature to label the NOD mouse a poor surrogate to test agents that cure or prevent T1D. An additional criticism of the NOD mouse is the past difficulty in identifying genes underlying T1D using conventional mapping studies. However, most of the few diabetogenic alleles identified to date appear relevant to the human disorder. This suggests that rather than abandoning genetic studies in NOD mice, future efforts should focus on improving the efficiency with which diabetes susceptibility genes are detected. The current review highlights why the NOD mouse remains a relevant and valuable tool to understand the genes and their interactions that promote autoimmune diabetes and therapeutics that inhibit this disease. It also describes a new range of technologies that will likely transform how the NOD mouse is used to uncover the genetic causes of T1D for years to come.
Collapse
Affiliation(s)
- John P Driver
- Department of Animal Science, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
30
|
Kachapati K, Adams DE, Wu Y, Steward CA, Rainbow DB, Wicker LS, Mittler RS, Ridgway WM. The B10 Idd9.3 locus mediates accumulation of functionally superior CD137(+) regulatory T cells in the nonobese diabetic type 1 diabetes model. THE JOURNAL OF IMMUNOLOGY 2012; 189:5001-15. [PMID: 23066155 DOI: 10.4049/jimmunol.1101013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD137 is a T cell costimulatory molecule encoded by the prime candidate gene (designated Tnfrsf9) in NOD.B10 Idd9.3 congenic mice protected from type 1 diabetes (T1D). NOD T cells show decreased CD137-mediated T cell signaling compared with NOD.B10 Idd9.3 T cells, but it has been unclear how this decreased CD137 T cell signaling could mediate susceptibility to T1D. We and others have shown that a subset of regulatory T cells (Tregs) constitutively expresses CD137 (whereas effector T cells do not, and only express CD137 briefly after activation). In this study, we show that the B10 Idd9.3 region intrinsically contributes to accumulation of CD137(+) Tregs with age. NOD.B10 Idd9.3 mice showed significantly increased percentages and numbers of CD137(+) peripheral Tregs compared with NOD mice. Moreover, Tregs expressing the B10 Idd9.3 region preferentially accumulated in mixed bone marrow chimeric mice reconstituted with allotypically marked NOD and NOD.B10 Idd9.3 bone marrow. We demonstrate a possible significance of increased numbers of CD137(+) Tregs by showing functional superiority of FACS-purified CD137(+) Tregs in vitro compared with CD137(-) Tregs in T cell-suppression assays. Increased functional suppression was also associated with increased production of the alternatively spliced CD137 isoform, soluble CD137, which has been shown to suppress T cell proliferation. We show for the first time, to our knowledge, that CD137(+) Tregs are the primary cellular source of soluble CD137. NOD.B10 Idd9.3 mice showed significantly increased serum soluble CD137 compared with NOD mice with age, consistent with their increased numbers of CD137(+) Tregs with age. These studies demonstrate the importance of CD137(+) Tregs in T1D and offer a new hypothesis for how the NOD Idd9.3 region could act to increase T1D susceptibility.
Collapse
Affiliation(s)
- Kritika Kachapati
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The non-obese diabetic (NOD) mouse spontaneously develops type 1 diabetes (T1D) and has thus served as a model for understanding the genetic and immunological basis, and treatment, of T1D. Since its initial description in 1980, however, the field has matured and recognized that prevention of diabetes in NOD mice (i.e., preventing the disease from occurring by an intervention prior to frank diabetes) is relatively easy to achieve and does not correlate well with curing the disease (after the onset of frank hyperglycemia). Hundreds of papers have described the prevention of diabetes in NOD mice but only a handful have described its actual reversal. The paradoxical conclusion is that preventing the disease in NOD mice does not necessarily tell us what caused the disease nor how to reverse it. The NOD mouse model is therefore best used now, with respect to human disease, as a way to understand the genetic and immunologic causes of and as a model for trying to reverse disease once hyperglycemia occurs. We describe how genetic approaches to identifying causative gene variants can be adapted to identify novel therapeutic agents for reversing new-onset T1D.
Collapse
|
32
|
Gao P, Jiao Y, Xiong Q, Wang CY, Gerling I, Gu W. Genetic and Molecular Basis of QTL of Diabetes in Mouse: Genes and Polymorphisms. Curr Genomics 2011; 9:324-37. [PMID: 19471607 PMCID: PMC2685644 DOI: 10.2174/138920208785133253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 04/14/2008] [Accepted: 04/17/2008] [Indexed: 12/14/2022] Open
Abstract
A systematic study has been conducted of all available reports in PubMed and OMIM (Online Mendelian Inheritance in Man) to examine the genetic and molecular basis of quantitative genetic loci (QTL) of diabetes with the main focus on genes and polymorphisms. The major question is, What can the QTL tell us? Specifically, we want to know whether those genome regions differ from other regions in terms of genes relevant to diabetes. Which genes are within those QTL regions, and, among them, which genes have already been linked to diabetes? whether more polymorphisms have been associated with diabetes in the QTL regions than in the non-QTL regions. Our search revealed a total of 9038 genes from 26 type 1 diabetes QTL, which cover 667,096,006 bp of the mouse genomic sequence. On one hand, a large number of candidate genes are in each of these QTL; on the other hand, we found that some obvious candidate genes of QTL have not yet been investigated. Thus, the comprehensive search of candidate genes for known QTL may provide unexpected benefit for identifying QTL genes for diabetes.
Collapse
Affiliation(s)
- Peng Gao
- Departments of Orthopaedic Surgery, Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
33
|
Lee SW, Croft M. 4-1BB as a therapeutic target for human disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 647:120-9. [PMID: 19760070 DOI: 10.1007/978-0-387-89520-8_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
4-1BB (CD137) is being thought of as an attractive target for immunotherapy of many human immune diseases based on encouraging results with 4-1BB agonistic antibody treatment in mouse models of cancer, autoimmune disease, asthma and additionally as a means to improve vaccination. In this review, we will summarize the results of basic research on 4-1BB and 4-1BB immunotherapy of disease and provide some potential mechanistic insights into the many stimulatory and regulatory functions of 4-1BB.
Collapse
Affiliation(s)
- Seung-Woo Lee
- Molecular Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California, 92037, USA
| | | |
Collapse
|
34
|
Hamilton-Williams EE, Wong SJ, Martinez X, Rainbow DB, Hunter KM, Wicker LS, Sherman LA. Idd9.2 and Idd9.3 protective alleles function in CD4+ T-cells and nonlymphoid cells to prevent expansion of pathogenic islet-specific CD8+ T-cells. Diabetes 2010; 59:1478-86. [PMID: 20299469 PMCID: PMC2874709 DOI: 10.2337/db09-1801] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Multiple type 1 diabetes susceptibility genes have now been identified in both humans and mice, yet mechanistic understanding of how they impact disease pathogenesis is still minimal. We have sought to dissect the cellular basis for how the highly protective mouse Idd9 region limits the expansion of autoreactive CD8(+) T-cells, a key cell type in destruction of the islets. RESEARCH DESIGN AND METHODS We assess the endogenous CD8(+) T-cell repertoire for reactivity to the islet antigen glucose-6-phosphatase-related protein (IGRP). Through the use of adoptively transferred T-cells, bone marrow chimeras, and reconstituted severe combined immunodeficient mice, we identify the protective cell types involved. RESULTS IGRP-specific CD8(+) T-cells are present at low frequency in the insulitic lesions of Idd9 mice and could not be recalled in the periphery by viral expansion. We show that Idd9 genes act extrinsically to the CD8(+) T-cell to prevent the massive expansion of pathogenic effectors near the time of disease onset that occurs in NOD mice. The subregions Idd9.2 and Idd9.3 mediated this effect. Interestingly, the Idd9.1 region, which provides significant protection from disease, did not prevent the expansion of autoreactive CD8(+) T-cells. Expression of Idd9 genes was required by both CD4(+) T-cells and a nonlymphoid cell to induce optimal tolerance. CONCLUSIONS Idd9 protective alleles are associated with reduced expansion of IGRP-specific CD8(+) T-cells. Intrinsic expression of protective Idd9 alleles in CD4(+) T-cells and nonlymphoid cells is required to achieve an optimal level of tolerance. Protective alleles in the Idd9.2 congenic subregion are required for the maximal reduction of islet-specific CD8(+) T-cells.
Collapse
Affiliation(s)
- Emma E. Hamilton-Williams
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California; and
| | - S.B. Justin Wong
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California; and
| | - Xavier Martinez
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California; and
| | - Daniel B. Rainbow
- Juveniles Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Kara M. Hunter
- Juveniles Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Linda S. Wicker
- Juveniles Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Linda A. Sherman
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California; and
- Corresponding author: Linda A. Sherman,
| |
Collapse
|
35
|
Driver JP, Serreze DV, Chen YG. Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 2010; 33:67-87. [DOI: 10.1007/s00281-010-0204-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/18/2010] [Indexed: 01/12/2023]
|
36
|
Yamanouchi J, Puertas MC, Verdaguer J, Lyons PA, Rainbow DB, Chamberlain G, Hunter KM, Peterson LB, Wicker LS, Santamaria P. Idd9.1 locus controls the suppressive activity of FoxP3+CD4+CD25+ regulatory T-cells. Diabetes 2010; 59:272-81. [PMID: 19833887 PMCID: PMC2797933 DOI: 10.2337/db09-0648] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The approximately 45-cM insulin-dependent diabetes 9 (Idd9) region on mouse chromosome 4 harbors several different type 1 diabetes-associated loci. Nonobese diabetic (NOD) mice congenic for the Idd9 region of C57BL/10 (B10) mice, carrying antidiabetogenic alleles in three different Idd9 subregions (Idd9.1, Idd9.2, and Idd9.3), are strongly resistant to type 1 diabetes. However, the mechanisms remain unclear. This study aimed to define mechanisms underlying the type 1 diabetes resistance afforded by B10 Idd9.1, Idd9.2, and/or Idd9.3. RESEARCH DESIGN AND METHODS We used a reductionist approach that involves comparing the fate of a type 1 diabetes-relevant autoreactive CD8(+) T-cell population, specific for residues 206-214 of islet-specific glucose 6 phosphatase catalytic subunit-related protein (IGRP(206-214)), in noncongenic versus B10 Idd9-congenic (Idd9.1 + Idd9.2 + Idd9.3, Idd9.2 + Idd9.3, Idd9.1, Idd9.2, and Idd9.3) T-cell receptor (TCR)-transgenic (8.3) NOD mice. RESULTS Most of the protective effect of Idd9 against 8.3-CD8(+) T-cell-enhanced type 1 diabetes was mediated by Idd9.1. Although Idd9.2 and Idd9.3 afforded some protection, the effects were small and did not enhance the greater protective effect of Idd9.1. B10 Idd9.1 afforded type 1 diabetes resistance without impairing the developmental biology or intrinsic diabetogenic potential of autoreactive CD8(+) T-cells. Studies in T- and B-cell-deficient 8.3-NOD.B10 Idd9.1 mice revealed that this antidiabetogenic effect was mediated by endogenous, nontransgenic T-cells in a B-cell-independent manner. Consistent with this, B10 Idd9.1 increased the suppressive function and antidiabetogenic activity of the FoxP3(+)CD4(+)CD25(+) T-cell subset in both TCR-transgenic and nontransgenic mice. CONCLUSIONS A gene(s) within Idd9.1 regulates the development and function of FoxP3(+)CD4(+)CD25(+) regulatory T-cells and, in turn, the activation of CD8(+) effector T-cells in the pancreatic draining lymph nodes, without affecting their development or intrinsic diabetogenic potential.
Collapse
Affiliation(s)
- Jun Yamanouchi
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology and Infectious Diseases, Institute for Infection, Immunity and Inflammation, Faculty of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Maria-Carmen Puertas
- Unitat d'Immunologia, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida & IRB Lleida, Lleida, Spain
| | - Joan Verdaguer
- Unitat d'Immunologia, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida & IRB Lleida, Lleida, Spain
| | - Paul A. Lyons
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Daniel B. Rainbow
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Giselle Chamberlain
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Kara M. Hunter
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | | | - Linda S. Wicker
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology and Infectious Diseases, Institute for Infection, Immunity and Inflammation, Faculty of Medicine, The University of Calgary, Calgary, Alberta, Canada
- Corresponding author: Pere Santamaria,
| |
Collapse
|
37
|
Lin GHY, Sedgmen BJ, Moraes TJ, Snell LM, Topham DJ, Watts TH. Endogenous 4-1BB ligand plays a critical role in protection from influenza-induced disease. THE JOURNAL OF IMMUNOLOGY 2009; 182:934-47. [PMID: 19124736 DOI: 10.4049/jimmunol.182.2.934] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A critical issue during severe respiratory infection is whether it is the virus or the host response that does the most damage. In this study, we show that endogenous 4-1BBL plays a critical role in protecting mice from severe effects of influenza disease. During mild respiratory influenza infection in which virus is rapidly cleared, the inducible costimulatory receptor 4-1BB is only transiently induced on lung T cells and 4-1BB ligand (4-1BBL) is completely dispensable for the initial CD8 T cell response and mouse survival. In contrast, during more severe respiratory influenza infection with prolonged viral load, 4-1BB expression on lung CD8 T cells is sustained, and 4-1BBL-deficient mice show decreased CD8 T cell accumulation in the lungs, decreased viral clearance, impaired lung function, and increased mortality. Transfer of an optimal number of naive Ag-specific T cells before infection protects wild-type but not 4-1BBL-deficient mice from an otherwise lethal dose of influenza virus. Transfer of T cells lacking the proapoptotic molecule Bim extends the lifespan of 4-1BBL-deficient mice by one to three days, suggesting that at least part of the role of 4-1BB/4-1BBL is to prolong effector cell survival long enough to clear virus. Intranasal delivery of 4-1BBL by recombinant adenovirus marginally improves survival of 4-1BBL-deficient mice at low dose, but exacerbates disease at high dose. These findings suggest a rationale for the evolutionary accumulation of inducible costimulatory molecules, thereby allowing the immune system to sustain the expression of molecules such as 4-1BB to a level commensurate with severity of infection.
Collapse
Affiliation(s)
- Gloria H Y Lin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Ridgway WM, Peterson LB, Todd JA, Rainbow DB, Healy B, Burren OS, Wicker LS. Gene-gene interactions in the NOD mouse model of type 1 diabetes. Adv Immunol 2009; 100:151-75. [PMID: 19111166 DOI: 10.1016/s0065-2776(08)00806-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human genome wide association studies (GWAS) have recently identified at least four new, non-MHC-linked candidate genes or gene regions causing type one diabetes (T1D), highlighting the need for functional models to investigate how susceptibility alleles at multiple common genes interact to mediate disease. Progress in localizing genes in congenic strains of the nonobese diabetic (NOD) mouse has allowed the reproducible testing of gene functions and gene-gene interactions that can be reflected biologically as intrapathway interactions, for example, IL-2 and its receptor CD25, pathway-pathway interactions such as two signaling pathways within a cell, or cell-cell interactions. Recent studies have identified likely causal genes in two congenic intervals associated with T1D, Idd3, and Idd5, and have documented the occurrence of gene-gene interactions, including "genetic masking", involving the genes encoding the critical immune molecules IL-2 and CTLA-4. The demonstration of gene-gene interactions in congenic mouse models of T1D has major implications for the understanding of human T1D since such biological interactions are highly likely to exist for human T1D genes. Although it is difficult to detect most gene-gene interactions in a population in which susceptibility and protective alleles at many loci are randomly segregating, their existence as revealed in congenic mice reinforces the hypothesis that T1D alleles can have strong biological effects and that such genes highlight pathways to consider as targets for immune intervention.
Collapse
Affiliation(s)
- William M Ridgway
- University of Pittsburgh School of Medicine, 725 SBST, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Chen YG, Scheuplein F, Osborne MA, Tsaih SW, Chapman HD, Serreze DV. Idd9/11 genetic locus regulates diabetogenic activity of CD4 T-cells in nonobese diabetic (NOD) mice. Diabetes 2008; 57:3273-80. [PMID: 18776136 PMCID: PMC2584133 DOI: 10.2337/db08-0767] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Although the H2(g7) major histocompatibility complex (MHC) provides the primary pathogenic component, the development of T-cell-mediated autoimmune type 1 diabetes in NOD mice also requires contributions from other susceptibility (Idd) genes. Despite sharing the H2(g7) MHC, the closely NOD-related NOR strain remains type 1 diabetes resistant because of contributions of protective Idd5.2, Idd9/11, and Idd13 region alleles. To aid their eventual identification, we evaluated cell types in which non-MHC Idd resistance genes in NOR mice exert disease-protective effects. RESEARCH DESIGN AND METHODS Adoptive transfer and bone marrow chimerism approaches tested the diabetogenic activity of CD4 and CD8 T-cells from NOR mice and NOD stocks congenic for NOR-derived Idd resistance loci. Tetramer staining and mimotope stimulation tested the frequency and proliferative capacity of CD4 BDC2.5-like cells. Regulatory T-cells (Tregs) were identified by Foxp3 staining and functionally assessed by in vitro suppression assays. RESULTS NOR CD4 T-cells were less diabetogenic than those from NOD mice. The failure of NOR CD4 T-cells to induce type 1 diabetes was not due to decreased proliferative capacity of BDC2.5 clonotypic-like cells. The frequency and function of Tregs in NOD and NOR mice were also equivalent. However, bone marrow chimerism experiments demonstrated that intrinsic factors inhibited the pathogenic activity of NOR CD4 T-cells. The NOR Idd9/11 resistance region on chromosome 4 was found to diminish the diabetogenic activity of CD4 but not CD8 T-cells. CONCLUSIONS In conclusion, we demonstrated that a gene(s) within the Idd9/11 region regulates the diabetogenic activity of CD4 T-cells.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/pathology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD8 Antigens/genetics
- CD8 Antigens/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Chromosome Mapping
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Genetic Predisposition to Disease
- Major Histocompatibility Complex
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD/genetics
- Mice, SCID
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
|
40
|
Hunter K, Rainbow D, Plagnol V, Todd JA, Peterson LB, Wicker LS. Interactions between Idd5.1/Ctla4 and other type 1 diabetes genes. THE JOURNAL OF IMMUNOLOGY 2008; 179:8341-9. [PMID: 18056379 DOI: 10.4049/jimmunol.179.12.8341] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two loci, Idd5.1 and Idd5.2, that determine susceptibility to type 1 diabetes (T1D) in the NOD mouse are on chromosome 1. Idd5.1 is likely accounted for by a synonymous single nucleotide polymorphism in exon 2 of Ctla4: the B10-derived T1D-resistant allele increases the expression of the ligand-independent isoform of CTLA-4 (liCTLA-4), a molecule that mediates negative signaling in T cells. Idd5.2 is probably Nramp1 (Slc11a1), which encodes a phagosomal membrane protein that is a metal efflux pump and is important for host defense and Ag presentation. In this study, two additional loci, Idd5.3 and Idd5.4, have been defined to 3.553 and 78 Mb regions, respectively, on linked regions of chromosome 1. The most striking findings, however, concern the evidence we have obtained for strong interactions between these four disease loci that help explain the association of human CTLA4 with T1D. In the presence of a susceptibility allele at Idd5.4, the CTLA-4 resistance allele causes an 80% reduction in T1D, whereas in the presence of a protective allele at Idd5.4, the effects of the resistance allele at Ctla4 are modest or, as in the case in which resistance alleles at Idd5.2 and Idd5.3 are present, completely masked. This masking of CTLA-4 alleles by different genetic backgrounds provides an explanation for our observation that the human CTLA-4 gene is only associated with T1D in the subgroup of human T1D patients with anti-thyroid autoimmunity.
Collapse
Affiliation(s)
- Kara Hunter
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
Ardesjö B, Hansson CM, Bruder CEG, Rorsman F, Betterle C, Dumanski JP, Kämpe O, Ekwall O. Autoantibodies to glutathione S-transferase theta 1 in patients with primary sclerosing cholangitis and other autoimmune diseases. J Autoimmun 2008; 30:273-82. [PMID: 18242955 DOI: 10.1016/j.jaut.2007.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 11/13/2007] [Accepted: 11/14/2007] [Indexed: 01/06/2023]
Abstract
Primary sclerosing cholangitis (PSC) is an enigmatic disorder with a suggested autoimmune basis. A variety of autoantigens have been suggested but no specific or highly directed epitope has been identified. To address this issue, we constructed a cDNA library from normal human choledochus and screened expressing clones with serum from a patient with PSC and inflammatory bowel disease (IBD). Based on this screening, glutathione S-transferase theta 1 (GSTT1) was identified as a potential autoantigenic target. To study the specificity of GSTT1, we determined immunoreactivity using a panel of 58 patients with PSC, with and without IBD, 57 patients with IBD, 31 patients with Hashimoto's thyroiditis, 30 patients with primary biliary cirrhosis (PBC), 20 patients with insulin dependent diabetes mellitus, 22 patients with autoimmune polyendocrine syndrome type I, 10 patients with systemic lupus erythematosus (SLE), 20 patients with Sjögren's syndrome, 12 patients with autoimmune pancreatitis, 28 patients with Addison's disease, 27 patients with Grave's disease, 17 with myasthenia gravis, and 118 healthy controls. Reactivity against GSTT1 was found with PSC and IBD as well as some patients with other autoimmune pathology, indicating that this population of antibodies is neither specific nor a sensitive serologic marker for PSC, but the frequency was clearly higher in autoimmune patients than controls. GSTT1-antibodies have been described in persons with GSTT1-null genotype and are suggested to develop as an alloimmune response to blood transfusions from GSTT1-positive donors or pregnancies with GSTT1-positive children. Therefore, two IBD patients with and 15 PSC patients without GSTT1-antibodies were genotyped for GSTT1 to investigate if the presence of GSTT1-antibodies was associated with the GSTT1-null genotype and possibly caused by an alloimmune response. Both IBD patients and three of the PSC patients were of the GSTT1-null genotype. We note that the frequency of GSTT1-antibodies in this study is more than 100-fold higher than the frequency described earlier in patients with autoimmune diseases. We also observe an increased frequency of GSTT1-antibodies in patients with autoimmune diseases compared to healthy controls. This increased frequency can be explained by an autoimmune phenotype which increases susceptibility to such autoantibodies, or by a high frequency of the GSTT1-null genotype in autoimmune disease.
Collapse
Affiliation(s)
- Brita Ardesjö
- Department of Medical Sciences University Hospital, Research Department 2, Lab 21, Entrance 70, 3rd Floor, Uppsala University, SE-75185 Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wlodarski MW, Nearman Z, Jankowska A, Babel N, Powers J, Leahy P, Volk HD, Maciejewski JP. Phenotypic differences between healthy effector CTL and leukemic LGL cells support the notion of antigen-triggered clonal transformation in T-LGL leukemia. J Leukoc Biol 2007; 83:589-601. [PMID: 18086899 DOI: 10.1189/jlb.0107073] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
T cell large granular lymphocyte leukemia (T-LGL) is a chronic clonal lymphoproliferation of CTL. In many ways, T-LGL clones resemble terminal effector CTL, including down-modulation of CD28 and overexpression of perforin, granzymes, and CD57. We studied the transcriptome of T-LGL clones and compared it with healthy CD8+CD57+ effector cells as well as CD8+CD57- populations. T-LGL clones were sorted based on their TCR variable beta-chain restriction, and controls were obtained by pooling cell populations from 14 donors. Here, we focus our analysis on immunological networks, as immune mechanisms play a prominent role in the etiology of bone marrow failure in T-LGL. Informative genes identified by expression arrays were studied further in an independent cohort of patients using Taqman PCR, ELISA assays, and FACS analysis. Despite a strikingly similar gene expression profile between T-LGL clones and their healthy counterparts, important phenotypic differences were identified, including up-modulation of TNFRS9, myeloid cell leukemia sequence 1, IFN-gamma, and IFN-gamma-related genes, and several integrins/adhesion molecules. In addition, T-LGL clones were characterized by an overexpression of chemokines and chemokine receptors that are typically associated with viral infections (CXCL2, Hepatitis A virus cellular receptor 1, IL-18, CCR2). Our studies suggest that immunodominant LGL clones, although phenotypically similar to effector CTL, show significantly altered expression of a number of genes, including those associated with an ongoing viral infection or chronic, antigen-driven immune response.
Collapse
Affiliation(s)
- Marcin W Wlodarski
- Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ridgway WM, Healy B, Smink LJ, Rainbow D, Wicker LS. New tools for defining the 'genetic background' of inbred mouse strains. Nat Immunol 2007; 8:669-73. [PMID: 17579641 DOI: 10.1038/ni0707-669] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- William M Ridgway
- Division of Rheumatology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15218, USA. ridgway2+@pitt.edu
| | | | | | | | | |
Collapse
|
44
|
Ridgway WM. Dissecting genetic control of autoimmunity in NOD congenic mice. Immunol Res 2007; 36:189-95. [PMID: 17337779 PMCID: PMC3505680 DOI: 10.1385/ir:36:1:189] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/24/2022]
Abstract
My lab investigates genetic control of autoimmune disease and autoimmune phenotypes using a series of nonobese diabetic (NOD) congenic mice. NOD congenic mice have regions from B6/B10 introgressed onto the NOD genetic background, which reduces the severity/incidence of autoimmune diabetes. We have demonstrated, however, that while diabetes is reduced, other autoimmune phenotypes and diseases arise in NOD congenic mice. Mapping the genomic regions responsible for these phenotypes has produced novel insights into genetic control of autoimmunity. This review will illustrate some of the genetically controlled phenotypes we have investigated, which shed light upon autoimmune features relevant to human type 1 diabetes, systemic lupus erythematosus, and primary biliary cirrhosis.
Collapse
|
45
|
Chamberlain G, Wållberg M, Rainbow D, Hunter K, Wicker LS, Green EA. A 20-Mb region of chromosome 4 controls TNF-alpha-mediated CD8+ T cell aggression toward beta cells in type 1 diabetes. THE JOURNAL OF IMMUNOLOGY 2007; 177:5105-14. [PMID: 17015694 DOI: 10.4049/jimmunol.177.8.5105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Identification of candidate genes and their immunological mechanisms that control autoaggressive T cells in inflamed environments, may lead to novel therapies for autoimmune diseases, like type 1 diabetes (T1D). In this study, we used transgenic NOD mice that constitutively express TNF-alpha in their islets from neonatal life (TNF-alpha-NOD) to identify protective alleles that control T1D in the presence of a proinflammatory environment. We show that TNF-alpha-mediated breakdown in T cell tolerance requires recessive NOD alleles. To identify some of these recessive alleles, we crossed TNF-alpha-NOD mice to diabetes-resistant congenic NOD mice having protective alleles at insulin-dependent diabetes (Idd) loci that control spontaneous T1D at either the preinsulitis (Idd3.Idd5) or postinsulitis (Idd9) phases. No protection from TNF-alpha-accelerated T1D was afforded by resistance alleles at Idd3.Idd5. Lack of protection was not at the level of T cell priming, the efficacy of islet-infiltrating APCs to present islet peptides, nor the ability of high levels of CD4+ Foxp3+ T cells to accumulate in the islets. In contrast, protective alleles at Idd9 significantly increased the age at which TNF-alpha-NOD mice developed T1D. Disease delay was associated with a decreased ability of CD8+ T cells to respond to islet Ags presented by islet-infiltrating APCs. Finally, we demonstrate that the protective region on chromosome 4 that controls T1D in TNF-alpha-Idd9 mice is restricted to the Idd9.1 region. These data provide new evidence of the mechanisms by which selective genetic loci control autoimmune diseases in the presence of a strong inflammatory assault.
Collapse
Affiliation(s)
- Giselle Chamberlain
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Hill NJ, Stotland A, Solomon M, Secrest P, Getzoff E, Sarvetnick N. Resistance of the target islet tissue to autoimmune destruction contributes to genetic susceptibility in Type 1 diabetes. Biol Direct 2007; 2:5. [PMID: 17254331 PMCID: PMC1797159 DOI: 10.1186/1745-6150-2-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 01/25/2007] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Type 1 diabetes occurs when self-reactive T lymphocytes destroy the insulin-producing islet beta cells of the pancreas. The defects causing this disease have often been assumed to occur exclusively in the immune system. We present evidence that genetic variation at the Idd9 diabetes susceptibility locus determines the resilience of the targets of autoimmunity, the islets, to destruction. Susceptible islets exhibit hyper-responsiveness to inflammatory cytokines resulting in enhanced cell death and increased expression of the death receptor Fas. Fas upregulation in beta cells is mediated by TNFR2, and colocalization of TNFR2 with the adaptor TRAF2 in NOD beta cells is altered. TNFR2 lies within the candidate Idd9 interval and the diabetes-associated variant contains a mutation adjacent to the TRAF2 binding site. A component of diabetes susceptibility may therefore be determined by the target of the autoimmune response, and protective TNFR2 signaling in islets inhibit early cytokine-induced damage required for the development of destructive autoimmunity. REVIEWERS This article was reviewed by Matthiasvon Herrath, HaraldVon Boehmer, and Ciriaco Piccirillo (nominated by Ethan Shevach).
Collapse
Affiliation(s)
- Natasha J Hill
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA
- Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Sciences, Barts and the London Queen Mary's School of Medicine and Dentistry, London, UK
| | - Aleksandr Stotland
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA
| | - Michelle Solomon
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA
| | - Patrick Secrest
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA
| | - Elizabeth Getzoff
- Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Nora Sarvetnick
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
47
|
Irie J, Wu Y, Kachapati K, Mittler RS, Ridgway WM. Modulating protective and pathogenic CD4+ subsets via CD137 in type 1 diabetes. Diabetes 2007; 56:186-96. [PMID: 17192481 DOI: 10.2337/db06-0793] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD137 (TNFRSF9) is an activation-inducible T-cell costimulatory molecule and a member of the tumor necrosis factor (TNF) receptor superfamily. Cd137 is also a candidate gene (in the Idd9.3 interval) for autoimmune diabetes in NOD mice. Here, we demonstrate that anti-CD137 treatment protects NOD mice from diabetes. Anti-CD137-treated mice are not protected from insulitis and still harbor pathogenic T-cells, as demonstrated by transfer studies. Transfer of CD4(+), but not CD8(+), cells from anti-CD137-treated pre-diabetic NOD mice into NOD-scid mice delayed diabetes onset. Anti-CD137 treatment significantly increased the number of CD4(+)CD25(+) cells, which demonstrated intracellular Foxp3 expression and in vitro suppressive activity. The CD4(+)CD25(+) cell subset from anti-CD137-treated mice transferred complete protection from diabetes, whereas the CD4(+)CD25(-) cell subset offered no significant protection. Anti-CD137 treatment of NOD-scid recipients of diabetic spleen cells, however, hastened the onset of disease, showing that the effect of anti-CD137 treatment depends on the balance of pathogenic and protective cells. These results support a critical role for CD137 acting in the early phase of autoimmune diabetes to enhance regulatory cell production. Disease-associated CD137 alleles are likely ineffectual at stimulating a regulatory T-cell population sufficient to prevent disease.
Collapse
Affiliation(s)
- Junichiro Irie
- Division of Rheumatology and Immunology, University of Pittsburgh School of Medicine, PA, USA
| | | | | | | | | |
Collapse
|
48
|
Irie J, Wu Y, Sass DA, Ridgway WM. Genetic control of anti-Sm autoantibody production in NOD congenic mice narrowed to the Idd9.3 region. Immunogenetics 2006; 58:9-14. [PMID: 16425035 DOI: 10.1007/s00251-005-0066-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 11/10/2005] [Indexed: 11/26/2022]
Abstract
Anti-Smith (anti-Sm) autoantibodies are directed to proteins in the small-nuclear ribonucleoprotein (snRNP) family and are considered specific for systemic lupus erythematosus (SLE) in both humans and mice. We previously established that NOD.c3c4 mice, carrying B6 and B10 congenic segments from chromosomes 3 to 4 on an nonobese diabetic (NOD) background, and NOD.Idd9R28 mice, carrying a B10 segment on c4 alone, developed significant penetrance of anti-Sm antibody production. Here we determine autoantibody incidence in additional NOD.Idd9 congenic strains and use a congenic mapping approach to narrow the interval necessary for enhanced autoantibody production to a approximately 5.6-Mb region containing insulin-dependent diabetes (Idd)9.3. The Idd9.3 interval contains the candidate molecule cluster of differentiation (CD)137, which is a member of the tumor necrosis factor (TNF) receptor superfamily, functions as an inducible costimulator of T cells, and controls T-B interactions. The NOD and B10 CD137 alleles have sequence polymorphisms and different functional effects on T cells; the NOD CD137 allele mediates weaker T cell proliferative responses and decreased interleukin (IL)-2 production after CD137-mediated costimulation. Our work establishes CD137 as a candidate gene for control of autoantibody production in NOD.Idd9.3 congenic mice.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Autoantibodies/biosynthesis
- Autoantibodies/genetics
- Autoantigens/immunology
- Chromosome Mapping
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Genetic Markers
- Genetic Variation
- Humans
- K562 Cells
- Lupus Erythematosus, Systemic/immunology
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/immunology
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/immunology
- Ribonucleoproteins, Small Nuclear/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9
- snRNP Core Proteins
Collapse
Affiliation(s)
- Junichiro Irie
- Division of Rheumatology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
49
|
Maier LM, Wicker LS. Genetic susceptibility to type 1 diabetes. Curr Opin Immunol 2005; 17:601-8. [PMID: 16226440 DOI: 10.1016/j.coi.2005.09.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 09/20/2005] [Indexed: 11/17/2022]
Abstract
The recent discovery of PTPN22 as a novel susceptibility gene in human type 1 diabetes and continued progress in defining genes in animal models of the disease mark a fruitful period in the field of type 1 diabetes genetics. In addition, the similarities of the genetic and functional aspects across species have been substantiated. Future genome-wide association studies will reveal more loci, each providing a piece to the genetic puzzle of autoimmune disease.
Collapse
Affiliation(s)
- Lisa M Maier
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, University of Cambridge, Cambridge, CB2 2XY, UK
| | | |
Collapse
|
50
|
Wicker LS, Clark J, Fraser HI, Garner VES, Gonzalez-Munoz A, Healy B, Howlett S, Hunter K, Rainbow D, Rosa RL, Smink LJ, Todd JA, Peterson LB. Type 1 diabetes genes and pathways shared by humans and NOD mice. J Autoimmun 2005; 25 Suppl:29-33. [PMID: 16257508 DOI: 10.1016/j.jaut.2005.09.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 07/05/2005] [Accepted: 09/07/2005] [Indexed: 01/15/2023]
Abstract
The identification of causative genes for the autoimmune disease type 1 diabetes (T1D) in humans and candidate genes in the NOD mouse has made significant progress in recent years. In addition to sharing structural aspects of the MHC class II molecules that confer susceptibility or resistance to T1D, genes and pathways contributing to autoimmune pathogenesis are held in common by the two species. There are data demonstrating a similar need to establish central tolerance to insulin. Gene variants for the interacting molecules IL2 and CD25, members of a pathway that is essential for immune homeostasis, are present in mice and humans, respectively. Variation of two molecules that negatively regulate T cells, CTLA-4 and the tyrosine phosphatase LYP/PEP, are associated with susceptibility to human and NOD T1D. These observations underscore the value of the NOD mouse model for mechanistic studies on human T1D-associated molecular and cellular pathways.
Collapse
Affiliation(s)
- Linda S Wicker
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 2XY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|