1
|
Juillard S, Karakeussian-Rimbaud A, Normand MH, Turgeon J, Veilleux-Trinh C, C Robitaille A, Rauch J, Chruscinski A, Grandvaux N, Boilard É, Hébert MJ, Dieudé M. Vascular injury derived apoptotic exosome-like vesicles trigger autoimmunity. J Transl Autoimmun 2024; 9:100250. [PMID: 39286649 PMCID: PMC11402544 DOI: 10.1016/j.jtauto.2024.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
According to a central tenet of classical immune theory, a healthy immune system must avoid self-reactive lymphocyte clones but we now know that B cells repertoire exhibit some level of autoreactivity. These autoreactive B cells are thought to rely on self-ligands for their clonal selection and survival. Here, we confirm that healthy mice exhibit self-reactive B cell clones that can be stimulated in vitro by agonists of toll-like receptor (TLR) 1/2, TLR4, TLR7 and TLR9 to secrete anti-LG3/perlecan. LG3/perlecan is an antigen packaged in exosome-like structures released by apoptotic endothelial cells (ApoExos) upon vascular injury. We demonstrate that the injection of ApoExos in healthy animals activates the IL-23/IL-17 pro-inflammatory and autoimmune axis, and produces several autoantibodies, including anti-LG3 autoantibodies and hallmark autoantibodies found in systemic lupus erythematosus. We also identify γδT cells as key mediators of the maturation of ApoExos-induced autoantibodies in healthy mice. Altogether we show that ApoExos released by apoptotic endothelial cells display immune-mediating functions that can stimulate the B cells in the normal repertoire to produce autoantibodies. Our work also identifies TLR activation and γδT cells as important modulators of the humoral autoimmune response induced by ApoExos.
Collapse
Affiliation(s)
- Sandrine Juillard
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Annie Karakeussian-Rimbaud
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
| | - Marie-Hélène Normand
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Julie Turgeon
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Charlotte Veilleux-Trinh
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
| | - Alexa C Robitaille
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Joyce Rauch
- Division of Rheumatology, Research Institute of the McGill University Health Centre (RI MUHC), 1001 Bd Décarie, Montréal, QC, H4A 3J1, Canada
| | | | - Nathalie Grandvaux
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Éric Boilard
- Centre de Recherche Du CHU de Québec, Université Laval, 2705 Bd Laurier, Québec, QC, G1V 4G2, Canada
| | - Marie-Josée Hébert
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Mélanie Dieudé
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Medical Affairs and Innovation, Héma-Québec, 1070 Avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| |
Collapse
|
2
|
Sarrigeorgiou I, Rouka E, Kotsiou OS, Perlepe G, Gerovasileiou ES, Gourgoulianis KI, Lymberi P, Zarogiannis SG. Natural antibodies targeting LPS in pleural effusions of various etiologies. Am J Physiol Lung Cell Mol Physiol 2024; 326:L727-L735. [PMID: 38591123 DOI: 10.1152/ajplung.00377.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Respiratory infection, cancer, and heart failure can cause abnormal accumulation of fluid in the pleural cavity. The immune responses within the cavity are orchestrated by leucocytes that reside in the serosal-associated lymphoid tissue. Natural antibodies (NAbs) are abundant in the serum (S) having a major role in systemic and mucosal immunity; however, their occurrence in pleural fluid (PF) remains an open question. Our aim herein was to detect and measure the levels of NAbs (IgM, IgG, IgA) targeting lipopolysaccharides (LPS) in both the pleural fluid and the serum of 78 patients with pleural effusions (PEs) of various etiologies. The values of anti-LPS NAb activity were extracted through a normalization step regarding the total IgM, IgG, and IgA levels, all determined by in-house ELISA. In addition, the ratios of PF/S values were analyzed further with other critical biochemical parameters from pleural fluids. Anti-LPS NAbs of all Ig classes were detected in most of the samples, while a significant increase of anti-LPS activity was observed in infectious and noninfectious compared with malignant PEs. Multivariate linear regression confirmed a negative correlation of IgM and IgA anti-LPS PF/S ratio with malignancy. Moreover, anti-LPS NAbs PF/S measurements led to increased positive and negative predictive power in ROC curves generated for the discrimination between benign and malignant PEs. Our results highlight the role of anti-LPS NAbs in the pleural cavity and demonstrate the potential translational impact that should be further explored.NEW & NOTEWORTHY Here we describe the detection and quantification of natural antibodies (NAbs) in the human pleural cavity. We show for the first time that IgM, IgG, and IgA anti-LPS natural antibodies are detected and measured in pleural effusions of infectious, noninfectious, and malignant etiologies and provide clinical correlates to demonstrate the translational impact of our findings.
Collapse
Affiliation(s)
- Ioannis Sarrigeorgiou
- Laboratory of Immunology, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Erasmia Rouka
- Department of Nursing, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Ourania S Kotsiou
- Department of Nursing, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Garyfallia Perlepe
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efrosini S Gerovasileiou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Peggy Lymberi
- Laboratory of Immunology, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
3
|
Arakawa T, Akuta T. Mechanistic Insight into Poly-Reactivity of Immune Antibodies upon Acid Denaturation or Arginine Mutation in Antigen-Binding Regions. Antibodies (Basel) 2023; 12:64. [PMID: 37873861 PMCID: PMC10594486 DOI: 10.3390/antib12040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
The poly-reactivity of antibodies is defined as their binding to specific antigens as well as to related proteins and also to unrelated targets. Poly-reactivity can occur in individual molecules of natural serum antibodies, likely due to their conformation flexibility, and, for therapeutic antibodies, it plays a critical role in their clinical development. On the one hand, it can enhance their binding to target antigens and cognate receptors, but, on the other hand, it may lead to a loss of antibody function by binding to off-target proteins. Notably, poly-reactivity has been observed in antibodies subjected to treatments with dissociating, destabilizing or denaturing agents, in particular acidic pH, a common step in the therapeutic antibody production process involving the elution of Protein-A bound antibodies and viral clearance using low pH buffers. Additionally, poly-reactivity can emerge during the affinity maturation in the immune system, such as the germinal center. This review delves into the underlying potential causes of poly-reactivity, highlighting the importance of conformational flexibility, which can be further augmented by the acid denaturation of antibodies and the introduction of arginine mutations into the complementary regions of antibody-variable domains. The focus is placed on a particular antibody's acid conformation, meticulously characterized through circular dichroism, differential scanning calorimetry, and sedimentation velocity analyses. By gaining a deeper understanding of these mechanisms, we aim to shed light on the complexities of antibody poly-reactivity and its implications for therapeutic applications.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA 92130, USA
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26 Aza-Asayama, Kamitezuna, Takahagi-shi 318-0004, Ibaraki, Japan;
| |
Collapse
|
4
|
Szinger D, Berki T, Németh P, Erdo-Bonyar S, Simon D, Drenjančević I, Samardzic S, Zelić M, Sikora M, Požgain A, Böröcz K. Following Natural Autoantibodies: Further Immunoserological Evidence Regarding Their Silent Plasticity and Engagement in Immune Activation. Int J Mol Sci 2023; 24:14961. [PMID: 37834409 PMCID: PMC10573785 DOI: 10.3390/ijms241914961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Contradictory reports are available on vaccine-associated hyperstimulation of the immune system, provoking the formation of pathological autoantibodies. Despite being interconnected within the same network, the role of the quieter, yet important non-pathological and natural autoantibodies (nAAbs) is less defined. We hypothesize that upon a prompt immunological trigger, physiological nAAbs also exhibit a moderate plasticity. We investigated their inducibility through aged and recent antigenic triggers. Anti-viral antibodies (anti-MMR n = 1739 and anti-SARS-CoV-2 IgG n = 330) and nAAbs (anti-citrate synthase IgG, IgM n = 1739) were measured by in-house and commercial ELISAs using Croatian (Osijek) anonymous samples with documented vaccination backgrounds. The results were subsequently compared for statistical evaluation. Interestingly, the IgM isotype nAAb showed a statistically significant connection with anti-MMR IgG seropositivity (p < 0.001 in all cases), while IgG isotype nAAb levels were elevated in association with anti-SARS CoV-2 specific seropositivity (p = 0.019) and in heterogeneous vaccine regimen recipients (unvaccinated controls vector/mRNA vaccines p = 0.002). Increasing evidence supports the interplay between immune activation and the dynamic expansion of nAAbs. Consequently, further questions may emerge regarding the ability of nAAbs silently shaping the effectiveness of immunization. We suggest re-evaluating the impact of nAAbs on the complex functioning of the immunological network.
Collapse
Affiliation(s)
- David Szinger
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| | - Timea Berki
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| | - Diana Simon
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Scientific Centre for Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Senka Samardzic
- Department of Public Health, Teaching Institute of Public Health for The Osijek-Baranja County, 31000 Osijek, Croatia
| | - Marija Zelić
- Department of Public Health, Teaching Institute of Public Health for The Osijek-Baranja County, 31000 Osijek, Croatia
| | - Magdalena Sikora
- Department of Public Health, Teaching Institute of Public Health for The Osijek-Baranja County, 31000 Osijek, Croatia
| | - Arlen Požgain
- Department of Public Health, Teaching Institute of Public Health for The Osijek-Baranja County, 31000 Osijek, Croatia
- Department of Microbiology, Parasitology, and Clinical Laboratory Diagnostics, Medical Faculty of Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Katalin Böröcz
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (D.S.)
| |
Collapse
|
5
|
Huber J, Schönthaler S, Hofner M, Gillitschka Y, Soldo R, Milchram L, Vierlinger K, Nöhammer C, Weinhäusel A. Accessing Antibody Reactivities in Serum or Plasma to (Auto-)antigens Using Multiplexed Bead-Based Protein Immunoassays. Methods Mol Biol 2023; 2628:413-438. [PMID: 36781800 DOI: 10.1007/978-1-0716-2978-9_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Antibody (AB) testing or serotesting for reactive ABs against antigenic proteins is broadly used. Parallel examination of many antigens is of high interest to identify autoantibodies (AAB) or differential antigenic reactivities in many biological settings like allergy and infectious autoimmune, cancerous, or systemic disease. The resulting AAB profiles can be used for diagnosis, prognosis, and monitoring of such conditions. Protein microarrays have been used for AB profiling over the past decade but show some significant limitations which make them unsuitable for clinical applications. Alternative multiplexing platforms such as bead arrays were shown to provide a versatile tool for the confirmation and efficient analysis of high numbers of biological samples. Luminex' bead-based xMAP technology combines advantages such as multiplexing and lower demand for sample volume and at the same time overcomes the challenges of microarrays. It works faster, shows better antigen stability, is more reproducible, and allows the analysis of up to 500 analytes in one sample well. In this chapter we introduce our established workflow for the use of the xMAP technology for AB profiling including an overview of the method principle and protocols for the covalent immobilization of proteins to the MagPlex beads, confirmation of protein coupling, the execution of a multiplexed bead-based protein immunoassay, and subsequent data handling.
Collapse
Affiliation(s)
- Jasmin Huber
- Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Vienna, Austria.
| | - Silvia Schönthaler
- Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Vienna, Austria
| | - Manuela Hofner
- Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Vienna, Austria
| | - Yasmin Gillitschka
- Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Vienna, Austria
| | - Regina Soldo
- Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Vienna, Austria
| | - Lisa Milchram
- Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Vienna, Austria
| | - Klemens Vierlinger
- Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Vienna, Austria
| | - Christa Nöhammer
- Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Vienna, Austria
| | - Andreas Weinhäusel
- Austrian Institute of Technology GmbH, Center for Health and Bioresources, Competence Unit Molecular Diagnostics, Vienna, Austria
| |
Collapse
|
6
|
Denis HL, Alpaugh M, Alvarez CP, Fenyi A, Barker RA, Chouinard S, Arrowsmith CH, Melki R, Labib R, Harding RJ, Cicchetti F. Detection of antibodies against the huntingtin protein in human plasma. Cell Mol Life Sci 2023; 80:45. [PMID: 36651994 PMCID: PMC9849309 DOI: 10.1007/s00018-023-04687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder resulting from a CAG expansion in the huntingtin (HTT) gene, which leads to the production and accumulation of mutant huntingtin (mHTT). While primarily considered a disorder of the central nervous system, multiple changes have been described to occur throughout the body, including activation of the immune system. In other neurodegenerative disorders, activation of the immune system has been shown to include the production of antibodies against disease-associated pathological proteins. However, the existence of mHTT-targeted antibodies has never been reported. In this study, we assessed the presence and titer of antibodies recognizing HTT/mHTT in patients with HD (n = 66) and age- and gender-matched healthy controls (n = 66) using a combination of Western blotting and ELISA. Together, these analyses revealed that antibodies capable of recognizing HTT/mHTT were detectable in the plasma samples of all participants, including healthy controls. When antibody levels were monitored at different disease stages, it was observed that antibodies against full-length mHTT were highest in patients with severe disease while antibodies against HTTExon1 were elevated in patients with mild disease. Combined, these results suggest that antibodies detecting different forms of mHTT peak at different disease stages.
Collapse
Affiliation(s)
- Hélèna L Denis
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada
- Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| | - Melanie Alpaugh
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada
- Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| | - Claudia P Alvarez
- Structural Genomics Consortium, University of Toronto, MaRS Building Suite 700, 101 College Street, Toronto, ON, M5G1L7, Canada
| | - Alexis Fenyi
- Laboratory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-Aux-Roses, France
| | - Roger A Barker
- John van Geest Center for Brain Repair, University of Cambridge, Cambridge, UK
| | - Sylvain Chouinard
- Centre Hospitalier Universitaire de Montréal-Hôtel Dieu, Movement Disorders Unit, CHUM, Montréal, QC, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, MaRS Building Suite 700, 101 College Street, Toronto, ON, M5G1L7, Canada
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Ronald Melki
- Laboratory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-Aux-Roses, France
| | - Richard Labib
- Department of Mathematical and Industrial Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, MaRS Building Suite 700, 101 College Street, Toronto, ON, M5G1L7, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada.
- Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
7
|
Amendt T, Jumaa H. Adaptive tolerance: Protection through self-recognition. Bioessays 2022; 44:e2100236. [PMID: 34984705 DOI: 10.1002/bies.202100236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023]
Abstract
The random nature of immunoglobulin gene segment rearrangement inevitably leads to the generation of self-reactive B cells. Avoidance of destructive autoimmune reactions is necessary in order to maintain physiological homeostasis. However, current central and peripheral tolerance concepts fail to explain the massive number of autoantibody-borne autoimmune diseases. Moreover, recent studies have shown that in physiological mouse models autoreactive B cells were neither clonally deleted nor kept in an anergic state, but were instead able to mount autoantibody responses. We propose that activation of autoreactive B cells is induced by polyvalent autoantigen complexes that can occur under physiological conditions. Repeated encounter of autoantigen complexes leads to the production of affinity-matured autoreactive IgM that protects its respective self-targets from degradation. We refer to this novel mechanism as adaptive tolerance. This article discusses the discovery of adaptive tolerance and the unexpected role of high affinity IgM autoantibodies.
Collapse
Affiliation(s)
- Timm Amendt
- Institute of Immunology, University Hospital Ulm, Ulm, Germany
| | - Hassan Jumaa
- Institute of Immunology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
8
|
Liu X, He Z, Qu Y, Meng Q, Qin L, Hu Y. Circulating Natural Autoantibodies to HER2-Derived Peptides Performed Antitumor Effects on Oral Squamous Cell Carcinoma. Front Pharmacol 2021; 12:693989. [PMID: 34803666 PMCID: PMC8602057 DOI: 10.3389/fphar.2021.693989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Natural autoantibodies play a crucial role in destruction of malignant tumors due to immune surveillance function. Epidermal growth factor receptor 2 (HER2) has been found to be highly expressed in a variety of epithelial tumors including oral squamous cell carcinoma (OSCC). The present study was thus undertaken to investigate the effect of anti-HER2 natural autoantibodies on OSCC. Compared with cancer-adjacent tissues, cancer tissues from OSCC patients exhibited higher HER2 expression especially in those with middle & advanced stage OSCC. Plasma anti-HER2 IgG levels examined with an enzyme-linked immunosorbent assay (ELISA) developed in-house showed differences between control subjects, individuals with oral benign tumor and patients with OSCC. In addition, anti-HER2 IgG-abundant plasma was screened from healthy donors to treat OSCC cells and to prepare for anti-HER2 intravenous immunoglobulin (IVIg). Both anti-HER2 IgG-abundant plasma and anti-HER2 IVIg could significantly inhibit proliferation and invasion of OSCC cells by inducing the apoptosis, and also regulate apoptosis-associated factors and epithelial-mesenchymal transition (EMT), respectively. Besides, the complement-dependent cytotoxicity (CDC) pathway was likely to contribute to the anti-HER2 IgG mediated inhibition of OSCC cells. After the HER2 gene was knocked down with HER2-specific siRNAs, the inhibitory effects on OSCC cell proliferation and apoptotic induction faded away. In conclusion, human plasma IgG, or IVIg against HER2 may be a promising agent for anti-OSCC therapy.
Collapse
Affiliation(s)
- Xiu Liu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ziyi He
- Department of Transfusion Research, Dongguan Blood Center, Dongguan, China
| | - Yi Qu
- Department of Oral and Maxillofacial and Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Qingyong Meng
- Laboratory for Nursing Science and Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial and Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ying Hu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Kinneary JJ. Perspectives on Salinity, Immunity, and the Common Snapping Turtle. CHELONIAN CONSERVATION AND BIOLOGY 2021. [DOI: 10.2744/ccb-1469.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Joseph J. Kinneary
- 3 Penrose Path, East Northport, New York 11731 USA; Department of Biology, Farmingdale State College, Farmingdale, New York 11735 USA []
| |
Collapse
|
10
|
Mosaed M, Pourfathollah AA, Moghadam M, Jazayeri MH, Safdarian AR. Evaluation of serum natural autoantibodies reaction in different hematological disorders with prospective view to their probable utilization in predictive medicine. Asian J Transfus Sci 2021; 14:167-171. [PMID: 33767544 PMCID: PMC7983152 DOI: 10.4103/ajts.ajts_15_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 11/24/2017] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND There are some antibodies which are present in healthy individuals without any former exposure to foreign antigens; they are known as natural autoantibodies (NAAbs). In recent years, it was shown that they probably contribute to the homeostasis of the whole body and might be present before beginning of some diseases. Thus, as new biomarkers, they are promising factors to diagnose diseases. MATERIALS AND METHODS In this study, we drew upon samples of 924 individuals (600 controls and 324 cases) with underlying diseases of anemia, polycythemia, leukocytosis, thrombocytopenia, thrombocytosis, and pancytopenia. For detection of NAAbs against red blood cell, plasma samples were incubated with their own red cell suspension in 4°C for 18 h. Then, positive samples were evaluated for antibody screening and titration. RESULTS Fifty-two (8.6%) controls and 58 (17.9%) cases showed positive reaction (Pv < 0.001). The prevalence of positive antibody screens among auto-positive controls was 53% and 100% among cases; moreover, strength of antibody screen reaction had a mean rank of 22.5 in controls and a mean rank of 38.5 in cases (Pv < 0.001). A significant relation was also observed between ABO blood group and prevalence of NAAbs in controls but not in cases (Pv < 0.05). CONCLUSION The prevalence and potency of NAAbs increased along with hematological changes; moreover, the antibody reactions' pattern and titration showed significant differences between the two groups and these may be useful as biomarker for monitoring and prediction of some hematological diseases.
Collapse
Affiliation(s)
- Maryam Mosaed
- Iran Blood Transfusion Research Center, Tarbiat Modares University, Tehran, Iran
| | | | | | - Mir Hadi Jazayeri
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Safdarian
- Department of Immunology, Medical Faculty, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Živković I, Muhandes L, Petrušić V, Minić R, Dimitrijević L. The effect of influenza vaccine immunization on natural antibodies. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-31544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Natural, polyreactive, low-affinity antibodies are known to play an important role not only in the immediate defense against pathogens, but also in shaping the acquired immune response. On the other hand, antigen specific, high-affinity antibodies can affect the balance of natural antibodies and lead to autoimmune diseases. In this study, we have analyzed the changes that occur in the IgM and IgG pool of natural antibodies after immunization with split or whole virion influenza vaccine. For this purpose, "in-house" developed ELISAs were used. The subjects were divided, according to the vaccination status, into those who had been immunized with the influenza vaccine in previous years and those who had been immunized for the first time. The analysis indicated that the pool of natural antibodies was not impaired by the immunization, evidenced by the lack of changes in any of the groups, and that certain fluctuations were induced in order to maintain the homeostasis of the immune system.
Collapse
|
12
|
Reyneveld GIJ, Savelkoul HFJ, Parmentier HK. Current Understanding of Natural Antibodies and Exploring the Possibilities of Modulation Using Veterinary Models. A Review. Front Immunol 2020; 11:2139. [PMID: 33013904 PMCID: PMC7511776 DOI: 10.3389/fimmu.2020.02139] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
Natural antibodies (NAb) are defined as germline encoded immunoglobulins found in individuals without (known) prior antigenic experience. NAb bind exogenous (e.g., bacterial) and self-components and have been found in every vertebrate species tested. NAb likely act as a first-line immune defense against infections. A large part of NAb, so called natural autoantibodies (NAAb) bind to and clear (self) neo-epitopes, apoptotic, and necrotic cells. Such self-binding antibodies cannot, however, be considered as pathogenic autoantibodies in the classical sense. IgM and IgG NAb and NAAb and their implications in health and disease are relatively well-described in humans and mice. NAb are present in veterinary (and wildlife) species, but their relation with diseases and disorders in veterinary species are much less known. Also, there is little known of IgA NAb. IgA is the most abundant immunoglobulin with essential pro-inflammatory and homeostatic properties urging for more research on the importance of IgA NAb. Since NAb in humans were indicated to fulfill important functions in health and disease, their role in health of veterinary species should be investigated more often. Furthermore, it is unknown whether levels of NAb-isotypes and/or idiotypes can and should be modulated. Veterinary species as models of choice fill in a niche between mice and (non-human) primates, and the study of NAb in veterinary species may provide valuable new insights that will likely improve health management. Below, examples of the involvement of NAb in several diseases in mostly humans are shown. Possibilities of intravenous immunoglobulin administration, targeted immunotherapy, immunization, diet, and genetic modulation are discussed, all of which could be well-studied using animal models. Arguments are given why veterinary immunology should obtain inspiration from human studies and why human immunology would benefit from veterinary models. Within the One Health concept, findings from veterinary (and wildlife) studies can be related to human studies and vice versa so that both fields will mutually benefit. This will lead to a better understanding of NAb: their origin, activation mechanisms, and their implications in health and disease, and will lead to novel health management strategies for both human and veterinary species.
Collapse
Affiliation(s)
- G. IJsbrand Reyneveld
- Faculty of Science, VU University, Amsterdam, Netherlands
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Henk K. Parmentier
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
13
|
Arevalo-Martin A, Grassner L, Garcia-Ovejero D, Paniagua-Torija B, Barroso-Garcia G, Arandilla AG, Mach O, Turrero A, Vargas E, Alcobendas M, Rosell C, Alcaraz MA, Ceruelo S, Casado R, Talavera F, Palazón R, Sanchez-Blanco N, Maier D, Esclarin A, Molina-Holgado E. Elevated Autoantibodies in Subacute Human Spinal Cord Injury Are Naturally Occurring Antibodies. Front Immunol 2018; 9:2365. [PMID: 30364218 PMCID: PMC6193075 DOI: 10.3389/fimmu.2018.02365] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023] Open
Abstract
Spinal cord injury (SCI) results in long-term neurological and systemic consequences, including antibody-mediated autoimmunity, which has been related to impaired functional recovery. Here we show that autoantibodies that increase at the subacute phase of human SCI, 1 month after lesion, are already present in healthy subjects and directed against non-native proteins rarely present in the normal spinal cord. The increase of these autoantibodies is a fast phenomenon–their levels are already elevated before 5 days after lesion–characteristic of secondary immune responses, further supporting their origin as natural antibodies. By proteomics studies we have identified that the increased autoantibodies are directed against 16 different nervous system and systemic self-antigens related to changes known to occur after SCI, including alterations in neural cell cytoskeleton, metabolism and bone remodeling. Overall, in the context of previous studies, our results offer an explanation to why autoimmunity develops after SCI and identify novel targets involved in SCI pathology that warrant further investigation.
Collapse
Affiliation(s)
- Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Lukas Grassner
- Center for Spinal Cord Injuries, Trauma Center, Murnau, Germany.,Department of Neurosurgery, Trauma Center, Murnau, Germany.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | | | - Gemma Barroso-Garcia
- Proteomics Core Facility, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Alba G Arandilla
- Proteomics Core Facility, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Orpheus Mach
- Center for Spinal Cord Injuries, Trauma Center, Murnau, Germany
| | - Angela Turrero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Eduardo Vargas
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Monica Alcobendas
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Carmen Rosell
- Department of Occupational Health, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Maria A Alcaraz
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Silvia Ceruelo
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Rosa Casado
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Francisco Talavera
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Ramiro Palazón
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | | | - Doris Maier
- Center for Spinal Cord Injuries, Trauma Center, Murnau, Germany
| | - Ana Esclarin
- Department of Physical Rehabilitation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| |
Collapse
|
14
|
Avrameas S, Alexopoulos H, Moutsopoulos HM. Natural Autoantibodies: An Undersugn Hero of the Immune System and Autoimmune Disorders-A Point of View. Front Immunol 2018; 9:1320. [PMID: 29946320 PMCID: PMC6005843 DOI: 10.3389/fimmu.2018.01320] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/28/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Stratis Avrameas
- Laboratory of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Haris Alexopoulos
- Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Harry M Moutsopoulos
- Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Academy of Athens, Athens, Greece
| |
Collapse
|
15
|
Kuret T, Lakota K, Mali P, Čučnik S, Praprotnik S, Tomšič M, Sodin-Semrl S. Naturally occurring antibodies against serum amyloid A reduce IL-6 release from peripheral blood mononuclear cells. PLoS One 2018; 13:e0195346. [PMID: 29617422 PMCID: PMC5884545 DOI: 10.1371/journal.pone.0195346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
Serum amyloid A (SAA) is a sensitive inflammatory marker rapidly increased in response to infection, injury or trauma during the acute phase. Resolution of the acute phase and SAA reduction are well documented, however the exact mechanism remains elusive. Two inducible SAA proteins, SAA1 and SAA2, with their variants could contribute to systemic inflammation. While unconjugated human variant SAA1α is already commercially available, the variants of SAA2 are not. Antibodies against SAA have been identified in apparently healthy blood donors (HBDs) in smaller, preliminary studies. So, our objective was to detect anti-SAA and anti-SAA1α autoantibodies in the sera of 300 HBDs using ELISA, characterize their specificity and avidity. Additionally, we aimed to determine the presence of anti-SAA and anti-SAA1α autoantibodies in intravenous immunoglobulin (IVIg) preparations and examine their effects on released IL-6 from SAA/SAA1α-treated peripheral blood mononuclear cells (PBMCs). Autoantibodies against SAA and SAA1α had a median (IQR) absorbance OD (A450) of 0.655 (0.262–1.293) and 0.493 (0.284–0.713), respectively. Both anti-SAA and anti-SAA1α exhibited heterogeneous to high avidity and reached peak levels between 41–50 years, then diminished with age in the oldest group (51–67 years). Women consistently exhibited significantly higher levels than men. Good positive correlation was observed between anti-SAA and anti-SAA1α. Both anti-SAA and anti-SAA1α were detected in IVIg, their fractions subsequently isolated, and shown to decrease IL-6 protein levels released from SAA/SAA1α-treated PBMCs. In conclusion, naturally occurring antibodies against SAA and anti-SAA1α could play a physiological role in down-regulating their antigen and proinflammatory cytokines leading to the resolution of the acute phase and could be an important therapeutic option in patients with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Tadeja Kuret
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technologies, University of Primorska, Koper, Slovenia
| | - Polonca Mali
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sonja Praprotnik
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Snezna Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technologies, University of Primorska, Koper, Slovenia
- * E-mail:
| |
Collapse
|
16
|
Thomas F, Kareva I, Raven N, Hamede R, Pujol P, Roche B, Ujvari B. Evolved Dependence in Response to Cancer. Trends Ecol Evol 2018; 33:269-276. [DOI: 10.1016/j.tree.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
|
17
|
Kunbaz A, Warrington AE, Perwein MK, Fereidan-Esfahani M, Rodriguez M. A natural human monoclonal antibody protects from axonal injury in different CNS degenerative disease models. FUTURE NEUROLOGY 2018. [DOI: 10.2217/fnl-2017-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Axon regeneration after CNS injury is incomplete. This is partially due to the presence of multiple growth inhibitory molecules within myelin that prevent axonal extension. These inhibitors include myelin-associated glycoprotein, Nogo and oligodendrocyte myelin glycoprotein. A natural human recombinant antibody, rHIgM12, was identified by its ability to promote neurite outgrowth in vitro. rHIgM12 overrides the neurite outgrowth inhibition of myelin by binding with high affinity to neuronal PSA-NCAM and gangliosides. This neurite outgrowth is accompanied by increased α-tubulin tyrosination and decreased acetylation which occurs after treatment with rHIgM12. rHIgM12 is efficacious in murine models of human multiple sclerosis and amyotrophic lateral sclerosis, improving axon survival and neurologic function. rHIgM12 has great promise as a therapeutic molecule in a number of CNS disorders characterized by neuronal loss and axonal transection including multiple sclerosis. This review will focus on rHIgM12 discovery, effects in preclinical models and potential applications as a therapeutic reagent for CNS disease.
Collapse
Affiliation(s)
- Ahmad Kunbaz
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Maria K Perwein
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Moses Rodriguez
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Brudek T, Winge K, Folke J, Christensen S, Fog K, Pakkenberg B, Pedersen LØ. Autoimmune antibody decline in Parkinson's disease and Multiple System Atrophy; a step towards immunotherapeutic strategies. Mol Neurodegener 2017; 12:44. [PMID: 28592329 PMCID: PMC5463400 DOI: 10.1186/s13024-017-0187-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/02/2017] [Indexed: 12/13/2022] Open
Abstract
Background Parkinson’s’ disease (PD) and Multiple System Atrophy (MSA) are progressive brain disorders characterized by intracellular accumulations of α-synuclein and nerve cell loss in specific brain areas. This loss causes problems with movement, balance and/or autonomic functions. Naturally occurring autoantibodies (NAbs) play potentially an important role in clearing or/and blocking circulating pathological proteins. Little is known about the functional properties of anti-α-synuclein NAbs in PD and MSA, and there have been opposing reports regarding their plasma concentrations in these disorders. Methods We have investigated the apparent affinity of anti-α-synuclein NAbs in plasma samples from 46 PD patients, 18 MSA patients and 41 controls using competitive enzyme-linked immunosorbent assay (ELISA) and Meso Scale Discovery (MSD) set-ups. Results We found that the occurrence of high affinity anti-α-synuclein NAbs in plasma from PD patients is reduced compared to healthy controls, and nearly absent in plasma from MSA patients. Also, levels of α-synuclein/NAbs immunocomplexes is substantially reduced in plasma from both patient groups. Further, cross binding of anti-α-synuclein NAbs with β- and γ-synuclein monomers suggest, the high affinity anti-α-synuclein plasma component, seen in healthy individuals, is directed mainly against C-terminal epitopes. Furthermore, we also observed reduced occurrence of high affinity anti-phosphorylated-α-synuclein NAbs in plasma from PD and MSA patients. Conclusions One interpretation implies that these patients may have impaired ability to clear and/or block the effects of pathological α-synuclein due to insufficient/absent concentration of NAbs and as such provides a rationale for testing immune-based therapeutic strategies directed against pathological α-synuclein. Following this interpretation, we can hypothesize that high affinity autoantibodies efficiently bind and clear potentially pathological species of α-synuclein in healthy brain, and that this mechanism is impaired or absent in PD and MSA patients.
Collapse
Affiliation(s)
- Tomasz Brudek
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark. .,Bispebjerg Movement Disorders Biobank, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark.
| | - Kristian Winge
- Department of Neurology, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark.,Bispebjerg Movement Disorders Biobank, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark
| | - Jonas Folke
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark
| | | | - Karina Fog
- , H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Copenhagen, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Bispebjerg, Bispebjerg Bakke 23, DK-2400, Copenhagen N, Denmark.,Institute of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
19
|
Avrameas S. Autopolyreactivity Confers a Holistic Role in the Immune System. Scand J Immunol 2016; 83:227-34. [PMID: 26808310 DOI: 10.1111/sji.12414] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/10/2016] [Indexed: 12/20/2022]
Abstract
In this review, we summarize and discuss some key findings from the study of naturally occurring autoantibodies. The B-cell compartment of the immune system appears to recognize almost all endogenous and environmental antigens. This ability is accomplished principally through autopolyreactive humoral and cellular immune receptors. This extended autopolyreactivity (1) along immunoglobulin gene recombination contributes to the immune system's ability to recognize a very large number of self and non-self constituents; and (2) generates a vast immune network that creates communication channels between the organism's interior and exterior. Thus, the immune system continuously evolves depending on the internal and external stimuli it encounters. Furthermore, this far-reaching network's existence implies activities resembling those of classical biological factors or activities that modulate the function of other classical biological factors. A few such antibodies have already been found. Another important concept is that natural autoantibodies are highly dependent on the presence or absence of commensal microbes in the organism. These results are in line with past and recent findings showing the fundamental influence of the microbiota on proper immune system development, and necessitate the existence of a host-microbe homeostasis. This homeostasis requires that the participating humoral and cellular receptors are able to recognize self-antigens and commensal microbes without damaging them. Autopolyreactive immune receptors expressing low affinity for both types of antigens fulfil this role. The immune system appears to play a holistic role similar to that of the nervous system.
Collapse
Affiliation(s)
- S Avrameas
- Laboratory of Immunology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
20
|
Muraille E. The Unspecific Side of Acquired Immunity Against Infectious Disease: Causes and Consequences. Front Microbiol 2016; 6:1525. [PMID: 26793171 PMCID: PMC4707229 DOI: 10.3389/fmicb.2015.01525] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/18/2015] [Indexed: 11/13/2022] Open
Abstract
Acquired immunity against infectious disease (AIID) has long been considered as strictly dependent on the B and T lymphocytes of the adaptive immune system. Consequently, AIID has been viewed as highly specific to the antigens expressed by pathogens. However, a growing body of data motivates revision of this central paradigm of immunology. Unrelated past infection, vaccination, and chronic infection have been found to induce cross-protection against numerous pathogens. These observations can be partially explained by the poly-specificity of antigenic T and B receptors, the Mackaness effect and trained immunity. In addition, numerous studies highlight the importance of microbiota composition on resistance to infectious disease via direct competition or modulation of the immune response. All of these data support the idea that a non-negligible part of AIID in nature can be nonspecific to the pathogens encountered and even of the antigens expressed by pathogens. As this protection may be dependent on the private T and B repertoires produced by the random rearrangement of genes, past immune history, chronic infection, and microbiota composition, it is largely unpredictable at the individual level. However, we can reasonably expect that a better understanding of the underlying mechanisms will allow us to statistically predict cross-protection at the population level. From an evolutionary perspective, selection of immune mechanisms allowing for partially nonspecific AIID would appear to be advantageous against highly polymorphic and rapidly evolving pathogens. This new emerging paradigm may have several important consequences on our understanding of individual infectious disease susceptibility and our conception of tolerance, vaccination and therapeutic strategies against infection and cancer. It also underscores the importance of viewing the microbiota and persisting infectious agents as integral parts of the immune system.
Collapse
Affiliation(s)
- Eric Muraille
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de BruxellesBruxelles, Belgium
| |
Collapse
|
21
|
Sali AD, Karakasiliotis I, Evangelidou M, Avrameas S, Lymberi P. Immunological evidence and regulatory potential for cell-penetrating antibodies in intravenous immunoglobulin. Clin Transl Immunology 2015; 4:e42. [PMID: 26682050 PMCID: PMC4673440 DOI: 10.1038/cti.2015.18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 12/26/2022] Open
Abstract
Anti-DNA cell-penetrating autoantibodies have been extensively studied in autoimmune but not in normal sera. We investigated herein the presence and properties of cell-penetrating antibodies (CPAbs) in intravenous immunoglobulin (IVIg), a blood product of pooled normal human IgG. IVIg cell penetration was observed into various cell lines, as well as cells from several organs of mice injected intravenously with IVIg therapeutic dose. In all cell types examined in vitro and in vivo, intracellular IgG localized in the cytoplasm, in contrast to the nuclear accumulation of disease-related CPAbs. IVIg was found to rapidly enter cells via an energy-independent mode. The CPAb-fraction was isolated and found to be polyreactive to nuclear and cytoplasmic components; although it corresponded to ~2% of IVIg, it accounted for its inhibitory effect on splenocyte activation. Investigation of IVIg cell penetration capacity provides insight into its mechanisms of action and may account for some of its beneficial effects in numerous diseases.
Collapse
Affiliation(s)
- Aggeliki D Sali
- Department of Immunology, Immunology Laboratory, Hellenic Pasteur Institute , Athens, Greece
| | - Ioannis Karakasiliotis
- Department of Microbiology, Molecular Virology Laboratory, Hellenic Pasteur Institute , Athens, Greece
| | - Maria Evangelidou
- Department of Immunology, Molecular Genetics Laboratory, Hellenic Pasteur Institute , Athens, Greece
| | - Stratis Avrameas
- Department of Immunology, Immunology Laboratory, Hellenic Pasteur Institute , Athens, Greece
| | - Peggy Lymberi
- Department of Immunology, Immunology Laboratory, Hellenic Pasteur Institute , Athens, Greece
| |
Collapse
|
22
|
Corcos D. Food-Nonfood Discrimination in Ancestral Vertebrates: Gamete Cannibalism and the Origin of the Adaptive Immune System. Scand J Immunol 2015; 82:409-17. [PMID: 26286030 DOI: 10.1111/sji.12348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/29/2015] [Indexed: 01/21/2023]
Abstract
Adaptive immunity is a complex system that appeared twice in vertebrates (in gnathostomes and in jawless fish) although it is not required for invertebrate defence. The adaptive immune system is tightly associated with self-non-self discrimination, and it is now clear that this interplay is not limited to the prevention of autoreactivity. Micro-organisms are usually considered for their pathogenicity or symbiotic ability, but, for most small metazoans, they mainly constitute food. Vertebrates are characterized by feeding by predation on larger preys, when compared to their ancestors who were filter feeders and ate micro-organisms. Predation gives a strong selective advantage, not only due to the availability of new food resources but also by the ability to eliminate competitors for environmental resources (intraguild predation (IGP)). Unlike size-structured IGP, intraspecific predation of juveniles, zygotes or gametes can be detrimental for species fitness in some circumstances. The ability of individuals to recognize highly polymorphic molecules on the surface of gametes present in the plankton and so distinguish self versus non-self gametes might have constituted a strong selective advantage in intraspecific competition. Here, I propose the theory that the capacity to rearrange receptors has been selected in ancestral vertebrates as a consequence of this strong need for discriminating between hetero-cannibalism versus filial cannibalism. This evolutionary origin sheds light on presently unexplained features of the immune system, including the existence of regulatory T cells and of non-pathogenic natural autoimmunity.
Collapse
Affiliation(s)
- D Corcos
- U1021 INSERM, Institut Curie, Centre National de la Recherche Scientifique (CNRS) UMR3347, Institut National de la Santé et de Recherche Médicale (INSERM) U1021, Université Paris-Sud 11, Centre Universitaire, Orsay, France
| |
Collapse
|
23
|
de Koning D, Damen E, Nieuwland M, van Grevenhof E, Hazeleger W, Kemp B, Parmentier H. Association of natural (auto-) antibodies in young gilts with osteochondrosis at slaughter. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Kimura A, Yoshikura N, Koumura A, Hayashi Y, Kobayashi Y, Kobayashi I, Yano T, Inuzuka T. Identification of target antigens of naturally occurring autoantibodies in cerebrospinal fluid. J Proteomics 2015; 128:450-7. [PMID: 25979775 DOI: 10.1016/j.jprot.2015.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/20/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Naturally occurring autoantibodies have natural physiologic functions related to normal cell processes. However, the repertoire of naturally occurring autoantibodies against neuronal antigens in CSF is unclear. The purpose of this study was to identify naturally occurring autoantibodies against neuronal antigens in CSF from patients with various neurologic diseases by proteomics-based analysis. The CSF samples were collected from 77 patients with various neurologic disorders. The antigen source for 2-dimensional immunoblotting was the SH-SY5Y human neuroblastoma cell line. There were 8 spots recognized in CSF from more than one-fourth of the 77 patients including all patient groups and these spots were recognized in intravenous immunoglobulin preparations. These antigen spots were identified as heat shock 105-kDa/110-kDa protein 1, isoform CRA_b, 78-kDa glucose-regulated protein, heat shock cognate 71-kDa protein, tubulin beta chain, vimentin (2 spots), and 60-kDa heat shock protein, mitochondrial; we could not identify the protein name corresponding to 1 of the 8 spots. In summary, there were 6 proteins identified that were main target antigens that reacted with naturally occurring autoantibodies in CSF from patients with varied neurologic disorders; the functions of autoantibodies against the identified antigens are unknown and may be clarified with further studies. BIOLOGICAL SIGNIFICANCE Naturally occurring autoantibodies may have important functions in tissue homeostasis. In this study, we identified 6 common target antigens that reacted with autoantibodies in cerebrospinal fluid (CSF) from patients, independent of disease type. These findings may clarify the importance of naturally occurring autoantibodies in CSF and the use of these antibodies potentially may be a novel therapy for various neurologic disorders.
Collapse
Affiliation(s)
- Akio Kimura
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu City, Gifu, Japan.
| | - Nobuaki Yoshikura
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu City, Gifu, Japan
| | - Akihiro Koumura
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu City, Gifu, Japan
| | - Yuichi Hayashi
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu City, Gifu, Japan
| | - Yuko Kobayashi
- Life Science Research Center, Center for Molecular Biology and Genetics, Mie University, Tsu City, Mie, Japan
| | - Issei Kobayashi
- Life Science Research Center, Center for Molecular Biology and Genetics, Mie University, Tsu City, Mie, Japan
| | - Takeo Yano
- Graduate School of Regional Innovation Studies, Mie University, Tsu City, Mie, Japan
| | - Takashi Inuzuka
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu City, Gifu, Japan
| |
Collapse
|
25
|
Inui M, Hirota S, Hirano K, Fujii H, Sugahara-Tobinai A, Ishii T, Harigae H, Takai T. Human CD43+ B cells are closely related not only to memory B cells phenotypically but also to plasmablasts developmentally in healthy individuals. Int Immunol 2015; 27:345-55. [PMID: 25744616 DOI: 10.1093/intimm/dxv009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/02/2015] [Indexed: 01/02/2023] Open
Abstract
CD20(+)CD27(+)CD43(+) B (CD43(+) B) cells have been newly defined among PBMCs and proposed to be human B1 cells. However, it is controversial as to whether they are orthologs of murine B1 cells and how they are related to other B-cell populations, particularly CD20(+)CD27(+)CD43(-) memory B cells and CD20(low)CD27(high)CD43(high) plasmablasts. Our objective is to identify phenotypically the position of CD43(+) B cells among peripheral B-lineage cell compartments in healthy donors, with reference to B-cell subsets from patients with systemic lupus erythematosus (SLE). We found that CD43(+) B cells among PBMCs from healthy subjects were indistinguishable phenotypically from memory B cells in terms of surface markers, and spontaneous in vitro Ig and IL-10 secretion capability, but quite different from plasmablasts. However, a moderate correlation was found in the frequency of CD43(+) B cells with that of plasmablasts in healthy donors but not in SLE patients. An in vitro differentiation experiment indicated that CD43(+) B cells give rise to plasmablasts more efficiently than do memory B cells, suggesting that they are more closely related to plasmablasts developmentally than are memory B cells, which is also supported by quantitative PCR analysis of mRNA expression of B-cell and plasma cell signature genes. Thus, we conclude that, in healthy individuals, CD43(+) B cells are closely related not only to memory B cells phenotypically but also to plasmablasts developmentally, although the developmental origin of CD43(+) B cells is not necessarily the same as that of plasmablasts.
Collapse
Affiliation(s)
- Masanori Inui
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Saeko Hirota
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kumiko Hirano
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Hiroshi Fujii
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akiko Sugahara-Tobinai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Tomonori Ishii
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
26
|
Kitabatake M, Soma M, Zhang T, Kuwahara K, Fukushima Y, Nojima T, Kitamura D, Sakaguchi N. JNK regulatory molecule G5PR induces IgG autoantibody-producing plasmablasts from peritoneal B1a cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:1480-8. [PMID: 25601926 DOI: 10.4049/jimmunol.1401127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Peritoneal B1a cells expressing CD5 and CD11b generate autoantibody-producing precursors in autoimmune-prone mice. Previous studies show reduced JNK signaling in peritoneal B1a cells of female New Zealand Black mice and an abnormal increase of protein phosphatase 2A subunit G5PR that regulates BCR-mediated JNK signaling as a cause of autoimmunity. To investigate the mechanism regulating B1a differentiation into autoantibody-secreting plasmablasts (PBs), we applied an in vitro culture system that supports long-term growth of germinal center (GC) B cells (iGB) with IL-4, CD40L, and BAFF. Compared with spleen B2 cells, B1a cells differentiated into GC-like B cells, but more markedly into PBs, and underwent class switching toward IgG1. During iGB culture, B1a cells expressed GC-associated aicda, g5pr, and bcl6, and markedly PB-associated prdm1, irf4, and xbp1. B1a-derived iGB cells from New Zealand Black × New Zealand White F1 mice highly differentiated into autoantibody-secreting PBs in vitro and localized to the GC area in vivo. In iGB culture, JNK inhibitor SP600125 augmented the differentiation of C57BL/6 B1a cells into PBs. Furthermore, B1a cells from G5PR transgenic mice markedly differentiated into IgM and IgG autoantibody-secreting PBs. In conclusion, JNK regulation is critical to suppress autoantibody-secreting PBs from peritoneal B1a cells.
Collapse
Affiliation(s)
- Masahiro Kitabatake
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Miho Soma
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tianli Zhang
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazuhiko Kuwahara
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshimi Fukushima
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takuya Nojima
- Division of Molecular Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; and
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; and
| | - Nobuo Sakaguchi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| |
Collapse
|
27
|
A DeMarshall C, Sarkar A, G Nagele R. Serum Autoantibodies as Biomarkers for Parkinsons Disease: Background and Utility. AIMS MEDICAL SCIENCE 2015. [DOI: 10.3934/medsci.2015.4.316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
28
|
Utility of Autoantibodies as Biomarkers for Diagnosis and Staging of Neurodegenerative Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 122:1-51. [DOI: 10.1016/bs.irn.2015.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Petrušić V, Todorović N, Živković I, Dimitrijević R, Muhandes L, Rajnpreht I, Dimitrijević L. Autoantibody response and pregnancy-related pathology induced by combined LPS and tetanus toxoid hyperimmunization in BALB/c and C57BL/6 mice. Autoimmunity 2014; 48:87-99. [DOI: 10.3109/08916934.2014.961061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Owen JP, Waite JL, Holden KZ, Clayton DH. Does antibody binding to diverse antigens predict future infection? Parasite Immunol 2014; 36:573-84. [DOI: 10.1111/pim.12141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/21/2014] [Indexed: 12/22/2022]
Affiliation(s)
- J. P. Owen
- Department of Entomology; Washington State University; Pullman WA USA
| | - J. L. Waite
- Department of Biology; University of Utah; Salt Lake City UT USA
| | - K. Z. Holden
- Department of Entomology; Washington State University; Pullman WA USA
| | - D. H. Clayton
- Department of Biology; University of Utah; Salt Lake City UT USA
| |
Collapse
|
31
|
Muraille E. Generation of individual diversity: a too neglected fundamental property of adaptive immune system. Front Immunol 2014; 5:208. [PMID: 24860570 PMCID: PMC4026687 DOI: 10.3389/fimmu.2014.00208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/27/2014] [Indexed: 12/25/2022] Open
Abstract
The fitness gains resulting from development of the adaptive immune system (AIS) during evolution are still the subject of hot debate. A large random repertoire of antigenic receptors is costly to develop and could be the source of autoimmune reactions. And yet, despite their drawbacks, AIS-like systems seem to have been independently acquired in several phyla of metazoans with very different anatomies, longevities, and lifestyles. This article is a speculative attempt to explore the selective pressures, which favored this striking convergent evolution. It is well known that the AIS enables an organism to produce a specific immune response against all natural or artificial antigenic structures. However, it is frequently neglected that this response is highly variable among individuals. In practice, each individual possesses a "private" adaptive immune repertoire. This individualization of immune defenses implies that invasion and escape immune mechanisms developed by pathogens will certainly not always be successful as the specific targets and organization of the immune response are somewhat unpredictable. In a population, where individuals display heterogeneous immune responses to infection, the probability that a pathogen is able to infect all individuals could be reduced compared to a homogeneous population. This suggests that the individual diversity of the immune repertoire is not a by-product of the AIS but of its fundamental properties and could be in part responsible for repeated selection and conservation of the AIS during metazoan evolution. The capacity of the AIS to improve the management of cooperative or parasitic symbiotic relationships at the individual level could be a secondary development due to its progressive integration into the innate immune system. This hypothesis constitutes a new scenario for AIS emergence and explains the selection of MHC restriction and MHC diversification.
Collapse
Affiliation(s)
- Eric Muraille
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
32
|
Petrušiū V, Živkoviū I, Muhandes L, Dimitrijeviū R, Stojanoviū M, Dimitrijeviū L. Infection-induced autoantibodies and pregnancy related pathology: an animal model. Reprod Fertil Dev 2014; 26:578-86. [DOI: 10.1071/rd13057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/28/2013] [Indexed: 01/26/2023] Open
Abstract
In addition to being the main cause of mortality worldwide, bacterial and viral infections can be the cause of autoimmune and pregnancy disorders as well. The production of autoantibodies during infection can be explained by various mechanisms, including molecular mimicry, bystander cell activation and epitope spreading. Conversely, bacterial and viral infections during pregnancy are especially dangerous for the fetus. It is documented that infection-induced inflammatory processes mediated by Toll-like receptors (TLR) represent the main cause of preterm labour. We used two crucial bacterial components and TLR ligands, namely peptidoglycan and lipopolysaccharide, to stimulate BALB/c mice before immunisation with tetanus toxoid. Tetanus toxoid is an inactive form of the toxin produced by bacterium Clostridium tetani and shares structural similarity with plasma protein β2-glycoprotein I. Treatment with peptidoglycan and lipopolysaccharide in combination with tetanus toxoid induced the production of pathological autoantibodies, different fluctuations in natural autoantibodies and different types of reproductive pathology in treated animals, with peptidoglycan treatment being more deleterious. We propose that the production of pathological autoantibodies, TLR activation and changes in natural autoantibodies play crucial roles in infection-induced reproductive pathology in our animal model.
Collapse
|
33
|
SPRi-based strategy to identify specific biomarkers in systemic lupus erythematosus, rheumatoid arthritis and autoimmune hepatitis. PLoS One 2013; 8:e84600. [PMID: 24376828 PMCID: PMC3869893 DOI: 10.1371/journal.pone.0084600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/16/2013] [Indexed: 11/24/2022] Open
Abstract
Background Heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 is a target for antinuclear autoantibodies in systemic Lupus erythematosus (SLE), rheumatoid arthritis (RA), and autoimmune hepatitis (AIH). Aim To monitor molecular interactions between peptides spanning the entire sequence of hnRNP A2/B1 and sera from patients and healthy controls. Methods Sera from 8 patients from each pathology and controls were passed across a surface plasmon resonance Imagery (SPRi) surface containing 39 overlapping peptides of 17 mers covering the human hnRNP B1. Interactions involving the immobilised peptides were followed in real time and dissociation rate constants koff for each interaction were calculated. Results Several significant interactions were observed: i) high stability (lower koff values) between P55-70 and the AIH sera compared to controls (p= 0.003); ii) lower stability (higher koff values) between P118-133 and P262-277 and SLE sera, P145-160 and RA sera compared to controls (p=0.006, p=0.002, p=0.007). The binding curves and koff values observed after the formation of complexes with anti-IgM and anti-IgG antibodies and after nuclease treatment of the serum indicate that i) IgM isotypes are prevalent and ii) nucleic acids participate in the interaction between anti-hnRNAP B1 and P55-70 and also between controls and the peptides studied. Conclusions These results indicate that P55-70 of hnRNP B1 is a potential biomarker for AIH in immunological tests and suggest the role of circulating nucleic acids, (eg miRNA), present or absent according to the autoimmune disorders and involved in antigen-antibody stability.
Collapse
|
34
|
Vukcevic M, Zorzato F, Keck S, Tsakiris DA, Keiser J, Maizels RM, Treves S. Gain of function in the immune system caused by a ryanodine receptor 1 mutation. J Cell Sci 2013; 126:3485-92. [PMID: 23704352 DOI: 10.1242/jcs.130310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in RYR1, the gene encoding ryanodine receptor 1, are linked to a variety of neuromuscular disorders including malignant hyperthermia (MH), a pharmacogenetic hypermetabolic disease caused by dysregulation of Ca(2+) in skeletal muscle. RYR1 encodes a Ca(2+) channel that is predominantly expressed in skeletal muscle sarcoplasmic reticulum, where it is involved in releasing the Ca(2+) necessary for muscle contraction. Other tissues, however, including cells of the immune system, have been shown to express ryanodine receptor 1; in dendritic cells its activation leads to increased surface expression of major histocompatibility complex II molecules and provides synergistic signals leading to cell maturation. In the present study, we investigated the impact of an MH mutation on the immune system by studying the RYR1Y522S knock-in mouse. Our results show that there are subtle but significant differences both in resting 'non-challenged' mice as well as in mice treated with antigenic stimuli, in particular the knock-in mice: (i) have dendritic cells that are more efficient at stimulating T cell proliferation, (ii) have higher levels of natural IgG1 and IgE antibodies, and (iii) are faster and more efficient at mounting a specific immune response in the early phases of immunization. We suggest that some gain-of-function MH-linked RYR1 mutations might offer selective immune advantages to their carriers. Furthermore, our results raise the intriguing possibility that pharmacological activation of RyR1 might be exploited for the development of new classes of vaccines and adjuvants.
Collapse
Affiliation(s)
- Mirko Vukcevic
- Departments of Anaesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
35
|
Davtyan TK, Poghosyan DA, Sukiasyan AG, Grant MD. The anti-idiotypic antibody 1F7 stimulates monocyte interleukin-10 production and induces endotoxin tolerance. JOURNAL OF INFLAMMATION-LONDON 2013; 10:14. [PMID: 23561395 PMCID: PMC3635981 DOI: 10.1186/1476-9255-10-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/03/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pathogens that establish chronic infection elicit immune responses with suppressive cytokines dominating over pro-inflammatory cytokines. Chronic hepatitis C virus (HCV) infection, human immunodeficiency virus (HIV) infection and simian immunodeficiency virus (SIV) infection are associated with high levels of antiviral antibodies expressing a common idiotype specifically recognized by the 1F7 monoclonal antibody (mAb). The 1F7 mAb is a murine IgMκ antibody raised against immunoglobulin pooled from the plasma of multiple HIV-infected individuals. In this study, we investigated direct effects of the 1F7 mAb itself on peripheral blood mononuclear cells (PBMC). METHODS Isolated monocytes or PBMC from healthy controls were incubated with the 1F7 mAb or IgMκ mAb control. Cytokine production was measured in cell culture supernatants by ELISA and cells producing interleukin-10 (IL-10) were identified by subset depletion and intracellular flow cytometry. Endotoxin tolerance was assessed by exposing monocytes to lipopolysaccharide (LPS) following 1F7 mAb or IgMκ mAb control pre-treatment and comparing tumor necrosis factor (TNF)-α levels in cell culture supernatants. RESULTS The 1F7 mAb stimulated monocytes and CD36+ lymphocytes to produce IL-10 in a time and dose-dependent manner. Treatment of monocytes with 1F7 mAb also reduced their subsequent responsiveness to LPS stimulation. CONCLUSIONS Induction of antibodies expressing the 1F7 idiotype by chronic pathogens may facilitate IL-10 production and progression to chronic infection. Direct effects of IL-10 from human monocytes stimulated by 1F7-like antibodies, followed by monocyte transition to an alternatively activated phenotype illustrated by endotoxin tolerance, are two complementary features favouring a tolerogenic or non-responsive immunological environment.
Collapse
Affiliation(s)
- Tigran K Davtyan
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St, John's, NL, Canada.
| | | | | | | |
Collapse
|
36
|
Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS One 2013; 8:e60726. [PMID: 23589757 PMCID: PMC3617628 DOI: 10.1371/journal.pone.0060726] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/01/2013] [Indexed: 11/20/2022] Open
Abstract
The presence of self-reactive IgG autoantibodies in human sera is largely thought to represent a breakdown in central tolerance and is typically regarded as a harbinger of autoimmune pathology. In the present study, immune-response profiling of human serum from 166 individuals via human protein microarrays demonstrates that IgG autoantibodies are abundant in all human serum, usually numbering in the thousands. These IgG autoantibodies bind to human antigens from organs and tissues all over the body and their serum diversity is strongly influenced by age, gender, and the presence of specific diseases. We also found that serum IgG autoantibody profiles are unique to an individual and remarkably stable over time. Similar profiles exist in rat and swine, suggesting conservation of this immunological feature among mammals. The number, diversity, and apparent evolutionary conservation of autoantibody profiles suggest that IgG autoantibodies have some important, as yet unrecognized, physiological function. We propose that IgG autoantibodies have evolved as an adaptive mechanism for debris-clearance, a function consistent with their apparent utility as diagnostic indicators of disease as already established for Alzheimer’s and Parkinson’s diseases.
Collapse
|
37
|
Toumi A, Saleh MA, Yamagami J, Abida O, Kallel M, Masmoudi A, Makni S, Turki H, Hachiya T, Kuroda K, Stanley JR, Masmoudi H, Amagai M. Autoimmune reactivity against precursor form of desmoglein 1 in healthy Tunisians in the area of endemic pemphigus foliaceus. J Dermatol Sci 2013; 70:19-25. [PMID: 23489520 DOI: 10.1016/j.jdermsci.2013.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/23/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Desmoglein 1 (Dsg1), the pemphigus foliaceus (PF) antigen, is produced as a precursor (preDsg1) and is transported to the cell surface as the mature form (matDsg1). Recent studies show that B cells from North American individuals without pemphigus can potentially produce anti-preDsg1 IgG antibodies, but ELISA screening of large numbers of normal people in North America and Japan hardly ever shows circulating antibodies against preDsg1 or matDsg1. In contrast, in Tunisia, where PF is endemic, anti-Dsg1 IgGs are frequently detected in healthy individuals. OBJECTIVE To characterize these anti-Dsg1 antibodies from normal individuals in Tunisia. METHODS Sera from 16 healthy individuals and 9 PF patients in the endemic PF area in Tunisia, and sera from Japanese non-endemic PF patients were analyzed by immunoprecipitation-immunoblotting using recombinant proteins of preDsg1, matDsg1, and domain-swapped Dsg1/Dsg2 molecules. RESULTS Sera from normal Tunisian individuals reacted to preDsg1 alone (8/16) or more strongly to preDsg1 than to matDsg1 (7/16), while those from all Tunisian PF patients and Japanese non-endemic PF patients reacted similarly to preDsg1 and matDsg1, or preferentially to matDsg1. The epitopes recognized by anti-Dsg1 IgGs from normal Tunisian individuals were more frequently found in the C-terminal extracellular domains (EC3 to EC5), while those in Tunisian endemic PF patients were more widely distributed throughout the extracellular domains, suggesting IgGs against EC1 and EC2 developed during disease progression. CONCLUSIONS These findings indicate that IgG autoantibodies against Dsg1 are mostly raised against preDsg1 and/or C-terminal domains of Dsg1 in healthy Tunisians in the endemic area of PF.
Collapse
Affiliation(s)
- Amina Toumi
- Department of Immunology, Habib Bourguiba Hospital, Sfax, Tunisia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Avrameas S, Selmi C. Natural autoantibodies in the physiology and pathophysiology of the immune system. J Autoimmun 2013; 41:46-9. [PMID: 23384670 DOI: 10.1016/j.jaut.2013.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/04/2013] [Indexed: 01/23/2023]
Abstract
Natural autoantibodies (autoNAb) recognize self antigens and are an important component of the immune system, as species ranging from invertebrates to vertebrates have polyreactive IgM NAbs. In higher vertebrates, different polyreactive autoNAbs isotypes are also frequently encountered and autopolyreactive IgG NAbs are largely predominant compared to low-titer monoreactive IgG NAbs specific for either self or non-self antigens. Autopolyreactive NAbs manifest the capacity to recognize three-dimensional structures and thus represent a fundamental feature of the immune system that has long been preserved during evolution. NAbs are produced in a continuum of functional and phenotypic tiers of B cells and are likely to derive from proteins initially selected to build the organism that were adapted through evolution to recognize environmental constituents, while preserving their capacity to recognize self antigens. The clonal selection is considered the predominant mechanism of the regulation of the immune system complexity but growing evidence suggests that autoNAbs are also actively implicated. In all species NAbs reacting with either self or non-self antigens constitute a vast network of infinite interactions providing high complexity, stability and plasticity. This evolutionary process was intended to allow the effective recognition of environmental antigens, immune memory, immunoregulatory phenomena, as well as tissue homeostasis. The present article is intended to illustrate the history and the current and future developments in our understanding of self and non-self recognizing NAbs to ultimately enlighten the complexity of the immune system regulation.
Collapse
Affiliation(s)
- Stratis Avrameas
- School of Medicine, University of Athens, Mikras Asias 75, 115 27 Athens, Greece.
| | | |
Collapse
|
39
|
Welzel AT, Williams AD, McWilliams-Koeppen HP, Acero L, Weber A, Blinder V, Mably A, Bunk S, Hermann C, Farrell MA, Ehrlich HJ, Schwarz HP, Walsh DM, Solomon A, O’Nuallain B. Human anti-Aβ IgGs target conformational epitopes on synthetic dimer assemblies and the AD brain-derived peptide. PLoS One 2012; 7:e50317. [PMID: 23209707 PMCID: PMC3507685 DOI: 10.1371/journal.pone.0050317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/18/2012] [Indexed: 01/08/2023] Open
Abstract
Soluble non-fibrillar assemblies of amyloid-beta (Aβ) and aggregated tau protein are the proximate synaptotoxic species associated with Alzheimer's disease (AD). Anti-Aβ immunotherapy is a promising and advanced therapeutic strategy, but the precise Aβ species to target is not yet known. Previously, we and others have shown that natural human IgGs (NAbs) target diverse Aβ conformers and have therapeutic potential. We now demonstrate that these antibodies bound with nM avidity to conformational epitopes on plate-immobilized synthetic Aβ dimer assemblies, including synaptotoxic protofibrils, and targeted these conformers in solution. Importantly, NAbs also recognized Aβ extracted from the water-soluble phase of human AD brain, including species that migrated on denaturing PAGE as SDS-stable dimers. The critical reliance on Aβ's conformational state for NAb binding, and not a linear sequence epitope, was confirmed by the antibody's nM reactivity with plate-immobilized protofibrills, and weak uM binding to synthetic Aβ monomers and peptide fragments. The antibody's lack of reactivity against a linear sequence epitope was confirmed by our ability to isolate anti-Aβ NAbs from intravenous immunoglobulin using affinity matrices, immunoglobulin light chain fibrils and Cibacron blue, which had no sequence similarity with the peptide. These findings suggest that further investigations on the molecular basis and the therapeutic/diagnostic potential of anti-Aβ NAbs are warranted.
Collapse
Affiliation(s)
- Alfred T. Welzel
- The Conway Institute, University College Dublin, Belfield, Dublin, Republic of Ireland
| | - Angela D. Williams
- Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Helen P. McWilliams-Koeppen
- Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Luis Acero
- Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | | | - Veronika Blinder
- The Laboratory of Neurodegenerative Research, Brigham and Women’s Hospital, Harvard Institutes of Medicine, Boston, Massachusetts, United States of America
| | - Alex Mably
- The Conway Institute, University College Dublin, Belfield, Dublin, Republic of Ireland
- The Laboratory of Neurodegenerative Research, Brigham and Women’s Hospital, Harvard Institutes of Medicine, Boston, Massachusetts, United States of America
| | | | | | - Michael A. Farrell
- Dublin Brain Bank, Pathology Department, Beaumont Hospital, Dublin, Ireland
| | | | | | - Dominic M. Walsh
- The Conway Institute, University College Dublin, Belfield, Dublin, Republic of Ireland
- The Laboratory of Neurodegenerative Research, Brigham and Women’s Hospital, Harvard Institutes of Medicine, Boston, Massachusetts, United States of America
| | - Alan Solomon
- Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Brian O’Nuallain
- The Conway Institute, University College Dublin, Belfield, Dublin, Republic of Ireland
- Human Immunology and Cancer Program, Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
- The Laboratory of Neurodegenerative Research, Brigham and Women’s Hospital, Harvard Institutes of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Barger TE, Wrona D, Goletz TJ, Mytych DT. A detailed examination of the antibody prevalence and characteristics of anti-ESA antibodies. Nephrol Dial Transplant 2012; 27:3892-9. [DOI: 10.1093/ndt/gfs392] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Gold M, Pul R, Bach JP, Stangel M, Dodel R. Pathogenic and physiological autoantibodies in the central nervous system. Immunol Rev 2012; 248:68-86. [PMID: 22725955 DOI: 10.1111/j.1600-065x.2012.01128.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this article, we review the current knowledge on pathological and physiological autoantibodies directed toward structures in the central nervous system (CNS) with an emphasis on their regulation and origin. Pathological autoantibodies in the CNS that are associated with autoimmunity often lead to severe neurological deficits via inflammatory processes such as encephalitis. In some instances, however, autoantibodies function as a marker for diagnostic purposes without contributing to the pathological process and/or disease progression. The existence of naturally occurring physiological autoantibodies has been known for a long time, and their role in maintaining homeostasis is well established. Within the brain, naturally occurring autoantibodies targeting aggregated proteins have been detected and might be promising candidates for new therapeutic approaches for neurodegenerative disorders. Further evidence has demonstrated the existence of naturally occurring antibodies targeting antigens on neurons and oligodendrocytes that promote axonal outgrowth and remyelination. The numerous actions of physiological autoantibodies as well as their regulation and origin are summarized in this review.
Collapse
Affiliation(s)
- Maike Gold
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|
42
|
Warrington AE, Van Keulen V, Pease LR, Rodriguez M. Naturally occurring antibodies as therapeutics for neurologic disease: can human monoclonal IgMs replace the limited resource IVIG? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 750:44-55. [PMID: 22903665 DOI: 10.1007/978-1-4614-3461-0_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Naturally occurring autoantibodies (NAbs) are common in normal humans. The majority of NAbs are IgMs, but a small proportion are IgGs. Therefore a certain portion of pooled whole human IgG (IVIG) can be considered NAbs. While the applications of IVIG to modulate human disease have increased dramatically, the use of IgMs as drugs has lagged. In fact, much of the contaminating IgM component of IVIG is disposed of as waste. However, a number of model studies, including those targeting Alzheimer and multiple sclerosis (MS) suggest that IgMs may better modulate disease at much lower doses than IVIG. Our own studies in a model of MS show that polyclonal human IgM promotes better remyelination than IVIG and that monoclonal IgMs promote greater remyelination than monoclonal IgGs containing identical variable region sequences. We propose that this difference is due to the ability of IgM to cross link cell surface antigens better than IgGs and induce signals in nervous system cells. Monoclonal antibodies (mAbs) that promote remyelination induce a transient Ca(2+) influx in myelin forming cells, whereas IgGs with identical variable sequences do not. MAbs that promote remyelination were identified in human serum and in EBV-immortalized human B-cell lines obtained from normal adults, fetal cord blood, and rheumatoid arthritis and MS patients. Therefore therapeutic mAbs are present and common in normal circulation. All therapeutic mAbs were IgMs and bound to nervous system cells, however, the tissue binding patterns suggest that binding any one of multiple antigens induces repair. An expression vector was constructed that can manufacture gram quantities of recombinant monoclonal human IgM. Therefore the technology exists to determine whether human monoclonal NAbs can modulate human disease. IVIG can modulate neurologic disease, but using IVIG to treat these chronic diseases is unsustainable. A long-term solution is to identify the functional component of IVIG and test whether a recombinant human monoclonal can replicate its efficacy.
Collapse
Affiliation(s)
- Arthur E Warrington
- Department of Neurology and Immunology, Mayo Clinic, Rochester, Minnesota, USA.
| | | | | | | |
Collapse
|
43
|
Zingaretti C, Arigò M, Cardaci A, Moro M, Crosti M, Sinisi A, Sugliano E, Cheroni C, Marabita F, Nogarotto R, Bonnal RJP, Marcatili P, Marconi M, Zignego A, Muratori P, Invernizzi P, Colombatto P, Brunetto M, Bonino F, De Francesco R, Geginat J, Pagani M, Muratori L, Abrignani S, Bombaci M. Identification of new autoantigens by protein array indicates a role for IL4 neutralization in autoimmune hepatitis. Mol Cell Proteomics 2012; 11:1885-97. [PMID: 22997428 DOI: 10.1074/mcp.m112.018713] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Autoimmune hepatitis (AIH) is an unresolving inflammation of the liver of unknown cause. Diagnosis requires the exclusion of other conditions and the presence of characteristic features such as specific autoantibodies. Presently, these autoantibodies have relatively low sensitivity and specificity and are identified via immunostaining of cells or tissues; therefore, there is a diagnostic need for better and easy-to-assess markers. To identify new AIH-specific autoantigens, we developed a protein microarray comprising 1626 human recombinant proteins, selected in silico for being secreted or membrane associated. We screened sera from AIH patients on this microarray and compared the reactivity with that of sera from healthy donors and patients with chronic viral hepatitis C. We identified six human proteins that are specifically recognized by AIH sera. Serum reactivity to a combination of four of these autoantigens allows identification of AIH patients with high sensitivity (82%) and specificity (92%). Of the six autoantigens, the interleukin-4 (IL4) receptor fibronectin type III domain of the IL4 receptor (CD124), which is expressed on the surface of both lymphocytes and hepatocytes, showed the highest individual sensitivity and specificity for AIH. Remarkably, patients' sera inhibited STAT6 phosphorylation induced by IL4 binding to CD124, demonstrating that these autoantibodies are functional and suggesting that IL4 neutralization has a pathogenetic role in AIH.
Collapse
|
44
|
Therapeutics to promote CNS repair: a natural human neuron-binding IgM regulates membrane-raft dynamics and improves motility in a mouse model of multiple sclerosis. J Clin Immunol 2012; 33 Suppl 1:S50-6. [PMID: 22990667 DOI: 10.1007/s10875-012-9795-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
Abstract
We have discovered a role for natural autoantibodies in central nervous system repair, remyelination and axon protection. These natural human antibodies are of the immunoglobulin M (IgM) isotype, and they bind to the surface of neural cells. The epitope of the antibody includes sialic acid because treatment with sialidase disrupts the binding. A fully human recombinant form of one of these IgMs, rHIgM12, has the same properties as the serum-derived IgM. rHIgM12 enhanced polarized axonal outgrowth from primary neurons when presented as a substrate in vitro and improved motor functions in chronically Theiler's virus-infected SJL mice, a model of MS. rHIgM12 bound to neuronal surfaces and induced cholesterol and ganglioside (GM1) clustering, indicating that rHIgM12 functions through a mechanism of axonal membrane stabilization. Our work demonstrates that a natural human neuron-binding IgM can regulate membrane domain dynamics. This antibody has the potential to improve neurologic disease.
Collapse
|
45
|
Role of molecular mimicry and polyclonal cell activation in the induction of pathogenic β2-glycoprotein I-directed immune response in Balb/c mice upon hyperimmunization with tetanus toxoid. Immunol Res 2012; 56:20-31. [PMID: 22875539 DOI: 10.1007/s12026-012-8343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
It is known that tetanus toxoid (TTd)-hyperimmunization induces increased titer of sera β2-glycoprotein I (β2GPI)-specific antibodies (Abs) in Balb/c mice. The concentrations of such induced anti-β2GPI Abs as well as their pathogenic potential are strongly influenced by the context of TTd application. β2GPI-specific immune response is established as a part of TTd-specific immune response by molecular mimicry mechanism due to structural homology between TTd and β2GPI. This finding is supported by the following facts: (1) cross-reactive Abs that recognize both TTd and β2GPI epitopes are present in Balb/c mice sera; (2) anti-TTd Abs secretion in splenic cultures is induced after β2GPI stimulation and vice versa. However, analyses of (1) IL-10 production following in vitro stimulation of immunized Balb/c mice splenocytes by TTd, β2GPI or glutaraldehyde-treated β2GPI and (2) specific impact of ConA and agonists of TLR2, TLR4, and TLR9 on anti-TTd and autoreactive Abs secretion strongly imply that these two branches of the TTd-induced immune response do not use identical cell populations and are regulated in a different way. Results presented in this paper describe that structural homology between foreign and self-antigens could focus mounted autoreactive immune response toward specific self-structure, but the context of antigen application, including a history of previous immune stimulations and adjuvants applied together with the antigen, are the main factors which determine the outcome of the induced immune response.
Collapse
|
46
|
Stuchlová Horynová M, Raška M, Clausen H, Novak J. Aberrant O-glycosylation and anti-glycan antibodies in an autoimmune disease IgA nephropathy and breast adenocarcinoma. Cell Mol Life Sci 2012; 70:829-39. [PMID: 22864623 DOI: 10.1007/s00018-012-1082-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 11/30/2022]
Abstract
Glycosylation abnormalities have been observed in autoimmune diseases and cancer. Here, we compare mechanisms of aberrant O-glycosylation, i.e., formation of Tn and sialyl-Tn structures, on MUC1 in breast cancer, and on IgA1 in an autoimmune disease, IgA nephropathy. The pathways of aberrant O-glycosylation, although different for MUC1 and IgA1, include dysregulation in glycosyltransferase expression, stability, and/or intracellular localization. Moreover, these aberrant glycoproteins are recognized by antibodies, although with different consequences. In breast cancer, elevated levels of antibodies recognizing aberrant MUC1 are associated with better outcome, whereas in IgA nephropathy, the antibodies recognizing aberrant IgA1 are part of the pathogenetic process.
Collapse
Affiliation(s)
- Milada Stuchlová Horynová
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | | | | | | |
Collapse
|
47
|
Petrušić V, Zivković I, Stojanović M, Stojićević I, Marinković E, Inić-Kanada A, Dimitijević L. Antigenic specificity and expression of a natural idiotope on human pentameric and hexameric IgM polymers. Immunol Res 2012; 51:97-107. [PMID: 21786026 DOI: 10.1007/s12026-011-8236-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Natural antibodies (NAbs) are present in circulation even before the exposure to antigen and they exert various biological functions. They are polyreactive and mainly represented by immunoglobulin M (IgM), which is the first antibody produced in an ongoing immune response to infection and/or immunization. IgM is always secreted as a polymer with predominant pentameric structure, although other polymeric forms such as hexamer can be also formed. The biological functions of hexameric IgM are still not known and it is proposed that its existence as a NAb could be deleterious. However, the nature of IgM hexamers has not been investigated yet. In this paper, we have tested the expression of natural idiotope and antigenic specificities of pentameric and hexameric IgM polymers originating from sera of patients with Waldenström's macroglobulinemia, as well as patients suffering from recurrent urinary bacterial infections. We demonstrate that although pentameric IgM polymers can exist as natural and immune antibodies, IgM hexamers are exclusively immune and do not exist as NAbs.
Collapse
Affiliation(s)
- Vladimir Petrušić
- Department of Research and Development, Institute of Virology, Vaccines and Sera-Torlak, Vojvode Stepe 458, 11221 Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
48
|
Gertsch J, Viveros-Paredes JM, Taylor P. Plant immunostimulants--scientific paradigm or myth? JOURNAL OF ETHNOPHARMACOLOGY 2011; 136:385-391. [PMID: 20620205 DOI: 10.1016/j.jep.2010.06.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/19/2010] [Accepted: 06/23/2010] [Indexed: 05/29/2023]
Abstract
In traditional medicine, numerous plant preparations are used to treat inflammation both topically and systemically. Several anti-inflammatory plant extracts and a few natural product-based monosubstances have even found their way into the clinic. Unfortunately, a number of plant secondary metabolites have been shown to trigger detrimental pro-allergic immune reactions and are therefore considered to be toxic. In the phytotherapy research literature, numerous plants are also claimed to exert immunostimulatory effects. However, while the concepts of plant-derived anti-inflammatory agents and allergens are well established, the widespread notion of immunostimulatory plant natural products and their potential therapeutic use is rather obscure, often with the idea that the product is some sort of "tonic" for the immune system without actually specifying the mechanisms. In this commentary it is argued that the paradigm of oral plant immunostimulants lacks clinical evidence and may therefore be a myth, which has originated primarily from in vitro studies with plant extracts. The fact that no conclusive data on orally administered immunostimulants can be found in the scientific literature inevitably prompts us to challenge this paradigm.
Collapse
Affiliation(s)
- Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, Switzerland.
| | | | | |
Collapse
|
49
|
Antigen-specific enhancement of natural human IgG antibodies to phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol-4-phosphate, cholesterol, and lipid A by a liposomal vaccine containing lipid A. Vaccine 2011; 29:5137-44. [PMID: 21624414 DOI: 10.1016/j.vaccine.2011.05.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/06/2011] [Accepted: 05/13/2011] [Indexed: 01/23/2023]
Abstract
Natural IgG antibodies (NA) to lipids are ubiquitously distributed in sera of healthy humans and are believed to serve beneficial functions. Although NA to lipids generally exhibit germ line or near germ line binding specificities, the antibodies commonly increase transiently in the acute phases of most, if not all, infectious diseases and may serve as a first line of defense. In order to determine whether similar anti-lipid antibodies can be induced by a vaccine in humans, we examined stored sera obtained from volunteers who had previously received a candidate vaccine to Plasmodium falciparum. The vaccine had consisted of liposomes that contained both the recombinant protein antigen and also contained monophosphoryl lipid A (MPLA) as an adjuvant. All of the pre-immune sera contained NA to one or more of the liposomal lipids in the vaccine: dimyristol phosphatidylcholine (DMPC), dimyristoyl phosphatidylglycerol (DMPG), cholesterol, and MPLA. After initial immunization, followed by a boost, increased levels of IgG antibodies to all of the liposomal lipids, especially DMPG and MPLA, were observed by ELISA. Antibodies to phosphatidylinositol-4-phosphate (PIP) above the normal pre-immune NA to PIP were also observed. Although PIP was not present in the immunizing liposomes, based on the adsorption of anti-PIP antibodies by DMPG the anti-PIP antibodies were thought to represent cross-reacting anti-DMPG antibodies. The immune response was apparently antigen-specific in that NA to unrelated lipids, other than PIP, that were not present in the liposomes, galactosyl ceramide and ganglioside GM1, were not increased by the immunization. We conclude that antibodies to DMPC, DMPG, PIP, cholesterol, and MPLA can be induced in humans by immunization with liposomes containing MPLA.
Collapse
|
50
|
Sauerborn M, van de Vosse E, Delawi D, van Dissel JT, Brinks V, Schellekens H. Natural antibodies against bone morphogenic proteins and interferons in healthy donors and in patients with infections linked to type-1 cytokine responses. J Interferon Cytokine Res 2011; 31:661-9. [PMID: 21612442 DOI: 10.1089/jir.2010.0075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In patients receiving recombinant therapeutic proteins, the production of antibodies against the therapeutics is a rising problem. The antibodies can neutralize and interfere with the efficacy and safety of drugs and even cause severe side effects if they cross-react against the natural, endogenous protein. Various factors have been identified to influence the immunogenic potential of recombinant human therapeutics, including several patients' characteristics. In recent years, so-called naturally occurring antibodies against cytokines and growth factors have been detected in naive patients before start of treatment with recombinant human therapeutics. The role of naturally occurring antibodies is not well understood and their influence on production of anti-drug antibodies is not known. One might speculate that the presence of naturally occurring antibodies increases the likelihood of eliciting anti-drug antibodies once treatment with the corresponding recombinant therapeutic protein is started. We screened serum samples from 410 healthy controls and patients for auto-antibodies against bone morphogenetic proteins (BMPs) 2 and 7 and interferon (IFN)-α, -β, and -γ in a new 3-step approach: rough initial screening, followed by competition and protein A/G depletion. Naturally occurring antibodies against these proteins were detected in 2% to 4% of the tested sera. Individuals who are 65 years or older had a slightly higher occurrence of naturally occurring antibodies. Auto-antibodies against BMP-7 and IFN-α were mainly comprised of IgM isotypes, and natural antibodies against BMP-2, IFN-β, and -γ were mainly IgG. To ensure assay specificity, assays were also used to detect antibodies against BMP-7 in patients being treated with rhBMP-7 before and after surgical procedure. Fifty percent of the treated patients had persistent anti-BMP-7 antibodies over time. The 3-step approach provides an attractive tool to identify naturally occurring antibodies in naive patients.
Collapse
Affiliation(s)
- Melody Sauerborn
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|