1
|
Javidan M, Amiri AM, Koohi N, Joudaki N, Bashirrohelleh MA, Pirsadeghi A, Biregani AF, Rashno M, Dehcheshmeh MG, Sharifat M, Khodadadi A, Mafakher L. Restoring immune balance with Tregitopes: A new approach to treating immunological disorders. Biomed Pharmacother 2024; 177:116983. [PMID: 38908205 DOI: 10.1016/j.biopha.2024.116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
The induction of immunological tolerance is a promising strategy for managing autoimmune diseases, allergies, and transplant rejection. Tregitopes, a class of peptides, have emerged as potential agents for this purpose. They activate regulatory T cells, which are pivotal in reducing inflammation and promoting tolerance, by binding to MHC II molecules and facilitating their processing and presentation to Treg cells, thereby encouraging their proliferation. Moreover, Tregitopes influence the phenotype of antigen-presenting cells by attenuating the expression of CD80, CD86, and MHC class II while enhancing ILT3, resulting in the inhibition of NF-kappa B signaling pathways. Various techniques, including in vitro and in silico methods, are applied to identify Tregitope candidates. Currently, Tregitopes play a vital role in balancing immune activation and tolerance in clinical applications such as Pompe disease, diabetes-related antigens, and the prevention of spontaneous abortions in autoimmune diseases. Similarly, Tregitopes can induce antigen-specific regulatory T cells. Their anti-inflammatory effects are significant in conditions such as autoimmune encephalomyelitis, inflammatory bowel disease, and Guillain-Barré syndrome. Additionally, Tregitopes have been leveraged to enhance vaccine design and efficacy. Recent advancements in understanding the potential benefits and drawbacks of IVIG and the discovery of the function and mechanism of Tregitopes have introduced Tregitopes as a popular option for immune system modulation. It is expected that they will bring about a significant revolution in the management and treatment of autoimmune and immunological diseases. This article is a comprehensive review of Tregitopes, concluding with the potential of these epitopes as a therapeutic avenue for immunological disorders.
Collapse
Affiliation(s)
- Moslem Javidan
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Mohamad Amiri
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Koohi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nazanin Joudaki
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Bashirrohelleh
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Pirsadeghi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Farhadi Biregani
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Moosa Sharifat
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum, and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Pandey SP, Bhaskar R, Han SS, Narayanan KB. Autoimmune Responses and Therapeutic Interventions for Systemic Lupus Erythematosus: A Comprehensive Review. Endocr Metab Immune Disord Drug Targets 2024; 24:499-518. [PMID: 37718519 DOI: 10.2174/1871530323666230915112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/05/2023] [Accepted: 07/22/2023] [Indexed: 09/19/2023]
Abstract
Systemic Lupus Erythematosus (SLE) or Lupus is a multifactorial autoimmune disease of multiorgan malfunctioning of extremely heterogeneous and unclear etiology that affects multiple organs and physiological systems. Some racial groups and women of childbearing age are more susceptible to SLE pathogenesis. Impressive progress has been made towards a better understanding of different immune components contributing to SLE pathogenesis. Recent investigations have uncovered the detailed mechanisms of inflammatory responses and organ damage. Various environmental factors, pathogens, and toxicants, including ultraviolet light, drugs, viral pathogens, gut microbiome metabolites, and sex hormones trigger the onset of SLE pathogenesis in genetically susceptible individuals and result in the disruption of immune homeostasis of cytokines, macrophages, T cells, and B cells. Diagnosis and clinical investigations of SLE remain challenging due to its clinical heterogeneity and hitherto only a few approved antimalarials, glucocorticoids, immunosuppressants, and some nonsteroidal anti-inflammatory drugs (NSAIDs) are available for treatment. However, the adverse effects of renal and neuropsychiatric lupus and late diagnosis make therapy challenging. Additionally, SLE is also linked to an increased risk of cardiovascular diseases due to inflammatory responses and the risk of infection from immunosuppressive treatment. Due to the diversity of symptoms and treatment-resistant diseases, SLE management remains a challenging issue. Nevertheless, the use of next-generation therapeutics with stem cell and gene therapy may bring better outcomes to SLE treatment in the future. This review highlights the autoimmune responses as well as potential therapeutic interventions for SLE particularly focusing on the recent therapeutic advancements and challenges.
Collapse
Affiliation(s)
- Surya Prakash Pandey
- Aarogya Institute of Healthcare and Research, Jaipur, Rajasthan, 302033, India
- Department of Zoology, School of Science, IFTM University, Moradabad, Uttar Pradesh, 244102, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| |
Collapse
|
3
|
Talotta R, Atzeni F, Laska MJ. Therapeutic peptides for the treatment of systemic lupus erythematosus: a place in therapy. Expert Opin Investig Drugs 2020; 29:845-867. [PMID: 32500750 DOI: 10.1080/13543784.2020.1777983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Studies in vitro and in vivo have identified several peptides that are potentially useful in treating systemic lupus erythematosus (SLE). The rationale for their use lies in the cost-effective production, high potency, target selectivity, low toxicity, and a peculiar mechanism of action that is mainly based on the induction of immune tolerance. Three therapeutic peptides have entered clinical development, but they have yielded disappointing results. However, some subsets of patients, such as those with the positivity of anti-dsDNA antibodies, appear more likely to respond to these medications. AREAS COVERED This review evaluates the potential use of therapeutic peptides for SLE and gives an opinion on how they may offer advantages for SLE treatment. EXPERT OPINION Given their acceptable safety profile, therapeutic peptides could be added to agents traditionally used to treat SLE and this may offer a synergistic and drug-sparing effect, especially in selected patient populations. Moreover, they could temporarily be utilized to manage SLE flares, or be administered as a vaccine in subjects at risk. Efforts to ameliorate bioavailability, increase the half-life and prevent immunogenicity are ongoing. The formulation of hybrid compounds, like peptibodies or peptidomimetic small molecules, is expected to yield renewed treatments with a better pharmacologic profile and increased efficacy.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, Azienda Ospedaliera "Gaetano Martino", University of Messina , Messina, Italy
| | - Fabiola Atzeni
- Department of Clinical and Experimental Medicine, Rheumatology Unit, Azienda Ospedaliera "Gaetano Martino", University of Messina , Messina, Italy
| | | |
Collapse
|
4
|
Peptide-Based Vaccination Therapy for Rheumatic Diseases. J Immunol Res 2020; 2020:8060375. [PMID: 32258176 PMCID: PMC7104265 DOI: 10.1155/2020/8060375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Rheumatic diseases are extremely heterogeneous diseases with substantial risks of morbidity and mortality, and there is a pressing need in developing more safe and cost-effective treatment strategies. Peptide-based vaccination is a highly desirable strategy in treating noninfection diseases, such as cancer and autoimmune diseases, and has gained increasing attentions. This review is aimed at providing a brief overview of the recent advances in peptide-based vaccination therapy for rheumatic diseases. Tremendous efforts have been made to develop effective peptide-based vaccinations against rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), while studies in other rheumatic diseases are still limited. Peptide-based active vaccination against pathogenic cytokines such as TNF-α and interferon-α (IFN-α) is shown to be promising in treating RA or SLE. Moreover, peptide-based tolerogenic vaccinations also have encouraging results in treating RA or SLE. However, most studies available now have been mainly based on animal models, while evidence from clinical studies is still lacking. The translation of these advances from experimental studies into clinical therapy remains impeded by some obstacles such as species difference in immunity, disease heterogeneity, and lack of safe delivery carriers or adjuvants. Nevertheless, advances in high-throughput technology, bioinformatics, and nanotechnology may help overcome these impediments and facilitate the successful development of peptide-based vaccination therapy for rheumatic diseases.
Collapse
|
5
|
Ritprajak P, Kaewraemruaen C, Hirankarn N. Current Paradigms of Tolerogenic Dendritic Cells and Clinical Implications for Systemic Lupus Erythematosus. Cells 2019; 8:cells8101291. [PMID: 31640263 PMCID: PMC6830089 DOI: 10.3390/cells8101291] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/05/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are central players in the initiation and maintenance of immune tolerance and subsequent prevention of autoimmunity. Recent advances in treatment of autoimmune diseases including systemic lupus erythematosus (SLE) have focused on inducing specific tolerance to avoid long-term use of immunosuppressive drugs. Therefore, DC-targeted therapies to either suppress DC immunogenicity or to promote DC tolerogenicity are of high interest. This review describes details of the typical characteristics of in vivo and ex vivo tolDC, which will help to select a protocol that can generate tolDC with high functional quality for clinical treatment of autoimmune disease in individual patients. In addition, we discuss the recent studies uncovering metabolic pathways and their interrelation intertwined with DC tolerogenicity. This review also highlights the clinical implications of tolDC-based therapy for SLE treatment, examines the current clinical therapeutics in patients with SLE, which can generate tolDC in vivo, and further discusses on possibility and limitation on each strategy. This synthesis provides new perspectives on development of novel therapeutic approaches for SLE and other autoimmune diseases.
Collapse
Affiliation(s)
- Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Chamraj Kaewraemruaen
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Wang X, Xia Y. Anti-double Stranded DNA Antibodies: Origin, Pathogenicity, and Targeted Therapies. Front Immunol 2019; 10:1667. [PMID: 31379858 PMCID: PMC6650533 DOI: 10.3389/fimmu.2019.01667] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/03/2019] [Indexed: 01/02/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by high-titer serological autoantibodies, including antibodies that bind to double-stranded DNA (dsDNA). The origin, specificity, and pathogenicity of anti-dsDNA antibodies have been studied from a wider perspective. These autoantibodies have been suggested to contribute to multiple end-organ injuries, especially to lupus nephritis, in patients with SLE. Moreover, serum levels of anti-DNA antibodies fluctuate with disease activity in patients with SLE. By directly binding to self-antigens or indirectly forming immune complexes, anti-dsDNA antibodies can accumulate in the glomerular and tubular basement membrane. These autoantibodies can also trigger the complement cascade, penetrate into living cells, modulate gene expression, and even induce profibrotic phenotypes of renal cells. In addition, the expression of suppressor of cytokine signaling 1 is reduced by anti-DNA antibodies simultaneously with upregulation of profibrotic genes. Anti-dsDNA antibodies may even participate in the pathogenesis of SLE by catalyzing hydrolysis of certain DNA molecules or peptides in cells. Recently, anti-dsDNA antibodies have been explored in greater depth as a therapeutic target in the management of SLE. A substantial amount of data indicates that blockade of pathogenic anti-dsDNA antibodies can prevent or even reverse organ damage in murine models of SLE. This review focuses on the recent research advances regarding the origin, specificity, classification, and pathogenicity of anti-dsDNA antibodies and highlights the emerging therapies associated with them.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Sharabi A, Tsokos MG, Ding Y, Malek TR, Klatzmann D, Tsokos GC. Regulatory T cells in the treatment of disease. Nat Rev Drug Discov 2018; 17:823-844. [DOI: 10.1038/nrd.2018.148] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Sthoeger Z, Sharabi A, Zinger H, Asher I, Mozes E. Indoleamine-2,3-dioxygenase in murine and human systemic lupus erythematosus: Down-regulation by the tolerogeneic peptide hCDR1. Clin Immunol 2018; 197:34-39. [PMID: 30170030 DOI: 10.1016/j.clim.2018.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/26/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022]
Abstract
וֹndoleamine-2,3-dioxygenase (IDO) plays a role in immune regulation. Increased IDO activity was reported in systemic lupus erythematosus (SLE). We investigated the effects of the tolerogenic peptide hCDR1, shown to ameliorate lupus manifestations, on IDO gene expression. mRNA was prepared from splenocytes of hCDR1- treated SLE-afflicted (NZBxNZW)F1 mice, from blood samples of lupus patients, collected before and after their in vivo treatment with hCDR1 and from peripheral blood mononuclear cells (PBMC) of patients incubated with hCDR1. IDO gene expression was determined by real-time RT-PCR. hCDR1 significantly down-regulated IDO expression in SLE-affected mice and in lupus patients (treated in vivo and in vitro). No effects were observed in healthy donors or following treatment with a control peptide. Diminished IDO gene expression was associated with hCDR1 beneficial effects. Our results suggest that the hCDR1-induced FOXP3 expressing regulatory T cells in lupus are not driven by IDO but rather by other hCDR1 regulated pathways.
Collapse
Affiliation(s)
- Zev Sthoeger
- Allergy and Clinical Immunology, Kaplan Medical Center, Rehovot, Israel; Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Amir Sharabi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Heidy Zinger
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ilan Asher
- Allergy and Clinical Immunology, Kaplan Medical Center, Rehovot, Israel
| | - Edna Mozes
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Sthoeger Z, Sharabi A, Asher I, Zinger H, Segal R, Shearer G, Elkayam O, Mozes E. The tolerogenic peptide hCDR1 immunomodulates cytokine and regulatory molecule gene expression in blood mononuclear cells of primary Sjogren's syndrome patients. Clin Immunol 2018; 192:85-91. [DOI: 10.1016/j.clim.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
|
10
|
Sciascia S, Radin M, Roccatello D, Sanna G, Bertolaccini ML. Recent advances in the management of systemic lupus erythematosus. F1000Res 2018; 7:F1000 Faculty Rev-970. [PMID: 30026918 PMCID: PMC6039948 DOI: 10.12688/f1000research.13941.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2018] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease presenting highly heterogeneous clinical manifestations and multi-systemic involvement. Patients are susceptible to relapse- and remission, thus making management challenging. Moreover, a considerable number of side effects may occur with conventional therapies; therefore, there is clearly a need for new therapeutic strategies. Since the pathogenesis of SLE is highly complex, it is far from being fully understood. However, greater understanding of the pathways and of the cellular and molecular mediators involved in SLE is being achieved. Emerging evidence has allowed the development of new biological therapeutic options targeting crucial molecular mediators involved in the pathogenesis of SLE. This literature review analyzes the availability of biological and target-directed treatments, phase II and III trials, and new therapies that are being developed for the treatment of SLE.
Collapse
Affiliation(s)
- Savino Sciascia
- Center of Research of Immunopathology and Rare Diseases, Coordinating Center of Piemonte and Valle d’Aosta Network for Rare Diseases, Department of Clinical and Biological Sciences, and SCDU Nephrology and Dialysis, S. Giovanni Bosco Hospital, Turin, Italy
| | - Massimo Radin
- Center of Research of Immunopathology and Rare Diseases, Coordinating Center of Piemonte and Valle d’Aosta Network for Rare Diseases, Department of Clinical and Biological Sciences, and SCDU Nephrology and Dialysis, S. Giovanni Bosco Hospital, Turin, Italy
| | - Dario Roccatello
- Center of Research of Immunopathology and Rare Diseases, Coordinating Center of Piemonte and Valle d’Aosta Network for Rare Diseases, Department of Clinical and Biological Sciences, and SCDU Nephrology and Dialysis, S. Giovanni Bosco Hospital, Turin, Italy
| | - Giovanni Sanna
- Louise Coote Lupus Unit, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Maria Laura Bertolaccini
- Academic Department of Vascular Surgery, School of Cardiovascular Medicine & Sciences, King’s College London, London, UK
| |
Collapse
|
11
|
Borba HHL, Funke A, Wiens A, Utiyama SRDR, Perlin CM, Pontarolo R. Update on Biologic Therapies for Systemic Lupus Erythematosus. Curr Rheumatol Rep 2017; 18:44. [PMID: 27299782 DOI: 10.1007/s11926-016-0589-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multisystemic autoimmune disease driven by genetic, hormonal, and environmental factors. Despite the advances in diagnostic and therapeutic approaches in the last decades, SLE still leads to significant morbidity and increased mortality. Although a cure for SLE is still unknown, treatment is required to control acute disease exacerbation episodes (flares), decrease the frequency and severity of subsequent lupus flares, address comorbidities, and prevent end-organ damage. While conventional SLE pharmacotherapy may exhibit suboptimal efficacy and substantial toxicity, a growing knowledge of the disease pathogenesis enabled the research on novel therapeutic agents directed at specific disease-related targets. In this paper, we review the recent progress in the clinical investigation of biologic agents targeting B cells, T cells, cytokines, innate immunity, and other immunologic or inflammatory pathways. Although many investigational agents exhibited insufficient efficacy or inadequate safety in clinical trials, one of them, belimumab, fulfilled the efficacy and safety regulatory requirements and was approved for the treatment of SLE in Europe and the USA, which confirms that, despite all difficulties, advances in this field are possible.
Collapse
Affiliation(s)
- Helena Hiemisch Lobo Borba
- Department of Pharmacy, Pharmaceutical Sciences Postgraduate Research Program, Federal University of Parana, Campus III, Av. Pref. Lothario Meissner, 632, Jardim Botanico, Curitiba, PR, 80210-170, Brazil
| | - Andreas Funke
- Rheumatology Service, Hospital de Clinicas, Federal University of Parana, Curitiba, PR, Brazil
| | - Astrid Wiens
- Department of Pharmacy, Pharmaceutical Sciences Postgraduate Research Program, Federal University of Parana, Campus III, Av. Pref. Lothario Meissner, 632, Jardim Botanico, Curitiba, PR, 80210-170, Brazil
| | - Shirley Ramos da Rosa Utiyama
- Department of Pharmacy, Pharmaceutical Sciences Postgraduate Research Program, Federal University of Parana, Campus III, Av. Pref. Lothario Meissner, 632, Jardim Botanico, Curitiba, PR, 80210-170, Brazil
| | - Cássio Marques Perlin
- Department of Pharmacy, Pharmaceutical Sciences Postgraduate Research Program, Federal University of Parana, Campus III, Av. Pref. Lothario Meissner, 632, Jardim Botanico, Curitiba, PR, 80210-170, Brazil
| | - Roberto Pontarolo
- Department of Pharmacy, Pharmaceutical Sciences Postgraduate Research Program, Federal University of Parana, Campus III, Av. Pref. Lothario Meissner, 632, Jardim Botanico, Curitiba, PR, 80210-170, Brazil.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW With advancement in our understanding of pathogenic mechanisms in systemic lupus erythematosus (SLE), there is tremendous enthusiasm in examining drugs, old and new, to improve outcomes. This review highlights recent trials' successes and impasses that have come to fore. RECENT FINDINGS Among B-cell therapies, belimumab continues its run of successes with sustained safety and tolerability documented in a long-term extension as well as the likely approval of a subcutaneous formulation in the near future. With greater antibody-dependent cytotoxicity and less immunogenicity, there is hope for obinituzumab to succeed where its anti-CD 20 predecessors have failed. Drugs targeting type I interferons - sifalimumab and anifrolumab - have been efficacious albeit with an increase in incidence of Herpes zoster infections. There is also renewed interest in evaluating the efficacy of calcineurin inhibitors, specifically tacrolimus in the induction and maintenance of lupus nephritis. Introspection into clinical trial designs have highlighted the effects of entry criteria, end points, background medications and geographical differences on study outcomes. SUMMARY There are at least 50 drugs and targets being evaluated in SLE. In addition to developing new drugs to treat lupus, future trials have to focus on more effective study designs to improve chances of trial success.
Collapse
|
13
|
Radin M, Cecchi I, Schreiber K, Baldovino S, Rossi D, Menegatti E, Roccatello D, Sciascia S. Immunotherapies in phase II and III trials for the treatment of systemic lupus erythematosus. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2017.1257937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Massimo Radin
- Center of Research of Immunopathology and Rare Diseases- Coordinating Center of Piemonte and Valle d’Aosta Network for Rare Diseases, Department of Rare, Immunologic, Hematologic and Immunohematologic Diseases, and SCDU Nephrology and Dialysis, S. Giovanni Bosco Hospital
| | - Irene Cecchi
- Center of Research of Immunopathology and Rare Diseases- Coordinating Center of Piemonte and Valle d’Aosta Network for Rare Diseases, Department of Rare, Immunologic, Hematologic and Immunohematologic Diseases, and SCDU Nephrology and Dialysis, S. Giovanni Bosco Hospital
| | - Karen Schreiber
- Department of Thrombosis and Thrombophilia, Guy’s and St Thomas’ Hospital, London, UK
- Department of Rheumatology, Copenhagen University Hospital at Rigshospitalet, Copenhagen, Denmark
| | - Simone Baldovino
- Center of Research of Immunopathology and Rare Diseases- Coordinating Center of Piemonte and Valle d’Aosta Network for Rare Diseases, Department of Rare, Immunologic, Hematologic and Immunohematologic Diseases, and SCDU Nephrology and Dialysis, S. Giovanni Bosco Hospital
| | - Daniela Rossi
- Center of Research of Immunopathology and Rare Diseases- Coordinating Center of Piemonte and Valle d’Aosta Network for Rare Diseases, Department of Rare, Immunologic, Hematologic and Immunohematologic Diseases, and SCDU Nephrology and Dialysis, S. Giovanni Bosco Hospital
| | - Elisa Menegatti
- Center of Research of Immunopathology and Rare Diseases- Coordinating Center of Piemonte and Valle d’Aosta Network for Rare Diseases, Department of Rare, Immunologic, Hematologic and Immunohematologic Diseases, and SCDU Nephrology and Dialysis, S. Giovanni Bosco Hospital
| | - Dario Roccatello
- Center of Research of Immunopathology and Rare Diseases- Coordinating Center of Piemonte and Valle d’Aosta Network for Rare Diseases, Department of Rare, Immunologic, Hematologic and Immunohematologic Diseases, and SCDU Nephrology and Dialysis, S. Giovanni Bosco Hospital
| | - Savino Sciascia
- Center of Research of Immunopathology and Rare Diseases- Coordinating Center of Piemonte and Valle d’Aosta Network for Rare Diseases, Department of Rare, Immunologic, Hematologic and Immunohematologic Diseases, and SCDU Nephrology and Dialysis, S. Giovanni Bosco Hospital
| |
Collapse
|
14
|
Medina-Rosas J, Al-Rayes H, Moustafa AT, Touma Z. Recent advances in the biologic therapy of lupus: the 10 most important areas to look for common pitfalls in clinical trials. Expert Opin Biol Ther 2016; 16:1225-38. [PMID: 27429254 DOI: 10.1080/14712598.2016.1214263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is an autoimmune disease affecting different organs. The improved knowledge of the disease's pathogenesis has contributed to the emergence of immune targets and new biologic drugs directed at them. Although rheumatologists continue to use off-label biologics in SLE resistant to other immunosuppressants, only belimumab has been approved as a biological therapy since 2011. AREAS COVERED In this review, an overview is provided on: 1) the classification of the biologic drugs in clinical trials and of those under research; 2) the results of clinical trials of biologic therapy with an interpretation of pitfalls and syntheses of potential approaches to overcome these pitfalls and, 3) the commonly used disease activity metrics and composite indices for assessing response to drugs. EXPERT OPINION Some drugs that have failed in previous drug trials have shown to be efficacious in the treatment of lupus in observational studies. Moreover, the post-hoc analyses of the data of negative drug trials have shown that results of the same trials could be altered with the modification of some pitfalls. For future clinical trials, the consideration of these pitfalls is crucial when designing clinical trials. This could potentially enhance the approval of novel drugs for SLE.
Collapse
Affiliation(s)
- Jorge Medina-Rosas
- a Toronto Western Hospital, Centre for Prognosis Studies in the Rheumatic Diseases , University of Toronto Lupus Clinic , Toronto , Canada
| | - Hanan Al-Rayes
- a Toronto Western Hospital, Centre for Prognosis Studies in the Rheumatic Diseases , University of Toronto Lupus Clinic , Toronto , Canada
| | - Ahmed T Moustafa
- a Toronto Western Hospital, Centre for Prognosis Studies in the Rheumatic Diseases , University of Toronto Lupus Clinic , Toronto , Canada
| | - Zahi Touma
- a Toronto Western Hospital, Centre for Prognosis Studies in the Rheumatic Diseases , University of Toronto Lupus Clinic , Toronto , Canada
| |
Collapse
|
15
|
Urowitz MB, Isenberg DA, Wallace DJ. Safety and efficacy of hCDR1 (Edratide) in patients with active systemic lupus erythematosus: results of phase II study. Lupus Sci Med 2015; 2:e000104. [PMID: 26301100 PMCID: PMC4538379 DOI: 10.1136/lupus-2015-000104] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/06/2015] [Accepted: 07/10/2015] [Indexed: 01/13/2023]
Abstract
Objective To evaluate the safety and efficacy of hCDR1 (Edratide) in patients with systemic lupus erythematosus (SLE). Methods Patients (n=340) with SLE ≥4 ACR criteria (4–11, mean 7) with active disease (SLEDAI-2K of 6–12). Patients were on average 7.1 years post-diagnosis and their organ involvement was mainly musculoskeletal, mucocutaneous and haematologic. Placebo or Edratide was administered subcutaneously weekly at doses of 0.5, 1.0 or 2.5 mg. The co-primary endpoints were SLEDAI-2K SLE Disease Activity and Adjusted Mean SLEDAI (AMS) reduction in patients compared with controls using a landmark analysis. Secondary outcomes were improvement in British Isles Lupus Assessment Group (BILAG) Responder Index and medicinal flare analysis. Results Edratide was safe and well tolerated. The primary endpoints based solely on SLEDAI-2K and AMS were not met. The secondary predefined endpoint, BILAG, was met for the 0.5 mg Edratide arm in the intention to treat (ITT) cohort (N=316) (OR=2.09, p=0.03) with trends in the 1.0 and 2.5 mg doses. There was also a positive trend in the Composite SLE Responder Index of the ITT cohort. Post hoc analysis showed that the BILAG secondary endpoint was also met for the 0.5 mg Edratide for a number of subgroup dose levels, including low or no steroids, seropositivity and patients with 2 grade BILAG improvement. Conclusions The favourable safety profile and encouraging clinically significant effects noted in some of the endpoints support the need for additional longer term Edratide studies that incorporate recent advances in the understanding and treatment of SLE, including steroid treatment algorithms, and using a composite primary endpoint which is likely to include BILAG. Trial registration number NCT00203151.
Collapse
Affiliation(s)
- Murray B Urowitz
- Toronto Western Hospital, University of Toronto , Toronto, Ontario , Canada
| | | | - Daniel J Wallace
- UCLA & Cedars-Sinai Medical Center , Los Angeles, California , USA
| |
Collapse
|
16
|
Sthoeger Z, Sharabi A, Mozes E. Novel approaches to the development of targeted therapeutic agents for systemic lupus erythematosus. J Autoimmun 2014; 54:60-71. [PMID: 24958634 DOI: 10.1016/j.jaut.2014.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 01/29/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multisystem disease in which various cell types and immunological pathways are dysregulated. Current therapies for SLE are based mainly on the use of non-specific immunosuppressive drugs that cause serious side effects. There is, therefore, an unmet need for novel therapeutic means with improved efficacy and lower toxicity. Based on recent better understanding of the pathogenesis of SLE, targeted biological therapies are under different stages of development. The latter include B-cell targeted treatments, agents directed against the B lymphocyte stimulator (BLyS), inhibitors of T cell activation as well as cytokine blocking means. Out of the latter, Belimumab was the first drug approved by the FDA for the treatment of SLE patients. In addition to the non-antigen specific agents that may affect the normal immune system as well, SLE-specific therapeutic means are under development. These are synthetic peptides (e.g. pConsensus, nucleosomal peptides, P140 and hCDR1) that are sequences of conserved regions of molecules involved in the pathogenesis of lupus. The peptides are tolerogenic T-cell epitopes that immunomodulate only cell types and pathways that play a role in the pathogenesis of SLE without interfering with normal immune functions. Two of the peptides (P140 and hCDR1) were tested in clinical trials and were reported to be safe and well tolerated. Thus, synthetic peptides are attractive potential means for the specific treatment of lupus patients. In this review we discuss the various biological treatments that have been developed for lupus with a special focus on the tolerogenic peptides.
Collapse
Affiliation(s)
- Zev Sthoeger
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; Department of Internal Medicine B and Clinical Immunology, Kaplan Medical Center, Rehovot, Israel
| | - Amir Sharabi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Edna Mozes
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
17
|
Tregitope peptides: the active pharmaceutical ingredient of IVIG? Clin Dev Immunol 2013; 2013:493138. [PMID: 24454476 PMCID: PMC3886585 DOI: 10.1155/2013/493138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/17/2013] [Indexed: 11/17/2022]
Abstract
Five years ago, we reported the identification and characterization of several regulatory T-cell epitopes (now called Tregitopes) that were discovered in the heavy and light chains of IgG (De Groot et al. Blood, 2008). When added ex vivo to human PBMCs, these Tregitopes activated regulatory T cells (Tregs), increased expression of the transcription factor FoxP3, and induced IL-10 expression in CD4(+) T cells. We have now shown that coadministration of the Tregitopes in vivo, in a number of different murine models of autoimmune disease, can suppress immune responses to antigen in an antigen-specific manner, and that this response is mediated by Tregs. In addition we have shown that, although these are generally promiscuous epitopes, the activity of individual Tregitope peptides is restricted by HLA. In this brief report, we provide an overview of the effects of Tregitopes in vivo, discuss potential applications, and suggest that Tregitopes may represent one of the "active pharmaceutical ingredients" of IVIg. Tregitope applications may include any of the autoimmune diseases that are currently treated almost exclusively with intravenous immunoglobulin G (IVIG), such as Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) and Multifocal Motor Neuropathy (MMN), as well as gene therapy and allergy where Tregitopes may provide a means of inducing antigen-specific tolerance.
Collapse
|
18
|
Murphy G, Lisnevskaia L, Isenberg D. Systemic lupus erythematosus and other autoimmune rheumatic diseases: challenges to treatment. Lancet 2013; 382:809-18. [PMID: 23972423 DOI: 10.1016/s0140-6736(13)60889-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increased understanding of the molecular mechanisms underlying the pathogenenesis of autoimmune rheumatic diseases has led to targeted biological treatments that modulate various aspects of the immune response. These new treatments, together with more judicious use of other immunosuppressive drugs, have resulted in marked improvements in morbidity and mortality. Although belimumab, an agent that inhibits B-cell survival, is the first drug to be approved by the US Food and Drug Administration for the treatment of systemic lupus erythematosus in 50 years, many other immunological targets are under investigation. We discuss the recent advances in the biological treatment of autoimmune rheumatic diseases, with a particular focus on systemic lupus erythematosus.
Collapse
Affiliation(s)
- Grainne Murphy
- Centre for Rheumatology, Department of Medicine, University College London Hospital, London, UK
| | | | | |
Collapse
|
19
|
Modulation of CD8+ T cell responses to AAV vectors with IgG-derived MHC class II epitopes. Mol Ther 2013; 21:1727-37. [PMID: 23857231 PMCID: PMC3776637 DOI: 10.1038/mt.2013.166] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 07/08/2013] [Indexed: 02/03/2023] Open
Abstract
Immune responses directed against viral capsid proteins constitute a main safety concern in the use of adeno-associated virus (AAV) as gene transfer vectors in humans. Pharmacological immunosuppression has been proposed as a solution to the problem; however, the approach suffers from several potential limitations. Using MHC class II epitopes initially identified within human IgG, named Tregitopes, we showed that it is possible to modulate CD8+ T cell responses to several viral antigens in vitro. We showed that incubation of peripheral blood mononuclear cells with these epitopes triggers proliferation of CD4+CD25+FoxP3+ T cells that suppress killing of target cells loaded with MHC class I antigens in an antigen-specific fashion, through a mechanism that seems to require cell-to-cell contact. Expression of a construct encoding for the AAV capsid structural protein fused to Tregitopes resulted in reduction of CD8+ T cell reactivity against the AAV capsid following immunization with an adenoviral vector expressing capsid. This was accompanied by an increase in frequency of CD4+CD25+FoxP3+ T cells in spleens and lower levels of inflammatory infiltrates in injected tissues. This proof-of-concept study demonstrates modulation of CD8+ T cell reactivity to an antigen using regulatory T cell epitopes is possible.
Collapse
|
20
|
Wallace DJ. Ten developments in the use of biologicals for systemic lupus erythematosus. Curr Rheumatol Rep 2013; 15:337. [PMID: 23666467 DOI: 10.1007/s11926-013-0337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Belimumab has recently been approved, and several other types of biological therapy with different mechanisms of action are currently in phase II and III studies. This review puts these approaches in context, emphasizing mechanistic categories and clinical trial designs. Most of the promising approaches involve B cell depletion or modulation. Post-approval experience with belimumab is critically reviewed.
Collapse
Affiliation(s)
- Daniel J Wallace
- Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
21
|
16/6-idiotype expressing antibodies induce brain inflammation and cognitive impairment in mice: the mosaic of central nervous system involvement in lupus. BMC Med 2013; 11:90. [PMID: 23556432 PMCID: PMC3616817 DOI: 10.1186/1741-7015-11-90] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/13/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The 16/6-idiotype (16/6-Id) of the human anti-DNA antibody was found to induce experimental lupus in naïve mice, manifested by production of autoantibodies, leukopenia and elevated inflammatory markers, as well as kidney and brain involvement. We assessed behavior and brain pathology of naive mice injected intra-cerebra-ventricularly (ICV) with the 16/6-Id antibody. METHODS C3H female mice were injected ICV to the right hemisphere with the human 16/6-Id antibody or commercial human IgG antibodies (control). The mice were tested for depression by the forced swimming test (FST), locomotor and explorative activity by the staircase test, and cognitive functions were examined by the novel object recognition and Y-maze tests. Brain slices were stained for inflammatory processes. RESULTS 16/6-Id injected mice were cognitively impaired as shown by significant differences in the preference for a new object in the novel object recognition test compared to controls (P = 0.012). Similarly, the preference for spatial novelty in the Y-maze test was significantly higher in the control group compared to the 16/6-Id-injected mice (42% vs. 9%, respectively, P = 0.065). Depression-like behavior and locomotor activity were not significantly different between the16/6-Id-injected and the control mice. Immunohistochemistry analysis revealed an increase in astrocytes and microglial activation in the hippocampus and amygdala, in the 16/6-Id injected group compared to the control. CONCLUSIONS Passive transfer of 16/6-Id antibodies directly into mice brain resulted in cognitive impairments and histological evidence for brain inflammation. These findings shed additional light on the diverse mosaic pathophysiology of neuropsychiatric lupus.See related Commentary article: http://www.biomedcentral.com/1741-7015/11/91.
Collapse
|
22
|
Sthoeger Z, Zinger H, Sharabi A, Asher I, Mozes E. The tolerogenic peptide, hCDR1, down-regulates the expression of interferon-α in murine and human systemic lupus erythematosus. PLoS One 2013; 8:e60394. [PMID: 23555966 PMCID: PMC3610660 DOI: 10.1371/journal.pone.0060394] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/27/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The tolerogenic peptide, hCDR1, ameliorated manifestations of systemic lupus erythematosus (SLE) via the immunomodulation of pro-inflammatory and immunosuppressive cytokines and the induction of regulatory T cells. Because type I interferon (IFN-α) has been implicated to play a role in SLE pathogenesis, we investigated the effects of hCDR1 on IFN-α in a murine model of SLE and in human lupus. METHODOLOGY PRINCIPAL FINDINGS (NZBxNZW)F1 mice with established SLE were treated with hCDR1 (10 weekly injections). Splenocytes were obtained for gene expression studies by real-time RT-PCR. hCDR1 down-regulated significantly IFN-α gene expression (73% inhibition compared to vehicle treated mice, p = 0.002) in association with diminished clinical manifestations. Further, hCDR1 reduced, in vitro, IFN-α gene expression in peripheral blood mononuclear cells (PBMC) of 10 lupus patients (74% inhibition compared to medium, p = 0.002) but had no significant effects on the expression levels of IFN-α in PBMC of primary anti-phospholipid syndrome patients or of healthy controls. Lupus patients were treated for 24 weeks with hCDR1 (5) or placebo (4) by weekly subcutaneous injections. Blood samples collected, before and after treatment, were frozen until mRNA isolation. A significant reduction in IFN-α was determined in hCDR1 treated patients (64.4% inhibition compared to pretreatment expression levels, p = 0.015). No inhibition was observed in the placebo treated patients. In agreement, treatment with hCDR1 resulted in a significant decrease of disease activity. IFN-α appears to play a role in the mechanism of action of hCDR1 since recombinant IFN-α diminished the immunomodulating effects of hCDR1 on IL-1β, TGFβ and FoxP3 gene expression. CONCLUSIONS SIGNIFICANCE We reported previously that hCDR1 affected various cell types and immune pathways in correlation to disease amelioration. The present studies demonstrate that hCDR1 is also capable of down-regulating significantly (and specifically to lupus) IFN-α gene expression. Thus, hCDR1 has a potential role as a novel, disease specific treatment for lupus.
Collapse
Affiliation(s)
- Zev Sthoeger
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
- Department of Internal Medicine B and Clinical Immunology, Kaplan Medical Center, Rehovot, Israel
- * E-mail: (ZS); (EM)
| | - Heidy Zinger
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Amir Sharabi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ilan Asher
- Department of Internal Medicine B and Clinical Immunology, Kaplan Medical Center, Rehovot, Israel
| | - Edna Mozes
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (ZS); (EM)
| |
Collapse
|
23
|
Caza TN, Talaber G, Perl A. Metabolic regulation of organelle homeostasis in lupus T cells. Clin Immunol 2012; 144:200-13. [PMID: 22836085 PMCID: PMC3423541 DOI: 10.1016/j.clim.2012.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 12/23/2022]
Abstract
Abnormal T-cell signaling and activation are characteristic features in systemic lupus erythematosus (SLE). Lupus T cells are shifted toward an over-activated state, important signaling pathways are rewired, and signaling molecules are replaced. Disturbances in metabolic and organelle homeostasis, importantly within the mitochondrial, endosomal, and autophagosomal compartments, underlie the changes in signal transduction. Mitochondrial hyperpolarization, enhanced endosomal recycling, and dysregulated autophagy are hallmarks of pathologic organelle homeostasis in SLE. This review is focused on the metabolic checkpoints of endosomal traffic that control immunological synapse formation and mitophagy and may thus serve as targets for treatment in SLE.
Collapse
Affiliation(s)
- Tiffany N Caza
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, 13210, USA
| | | | | |
Collapse
|
24
|
Cousens LP, Tassone R, Mazer BD, Ramachandiran V, Scott DW, De Groot AS. Tregitope update: mechanism of action parallels IVIg. Autoimmun Rev 2012; 12:436-43. [PMID: 22944299 DOI: 10.1016/j.autrev.2012.08.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 08/22/2012] [Indexed: 12/12/2022]
Abstract
In the course of screening immunoglobulin G (IgG) sequences for T cell epitopes, we identified novel Treg epitope peptides, now called Tregitopes, contained in the highly conserved framework regions of Fab and Fc. Tregitopes may provide one explanation for the expansion and stimulation of Treg cells following intravenous immunoglobulin (IVIg) therapy. Their distinguishing characteristics include in silico signatures that suggest high-affinity binding to multiple human HLA class II DR and conservation across IgG isotypes and mammalian species with only minor amino acid modifications. Tregitopes induce expansion of CD4(+)/CD25(hi)/FoxP3(+) T cells and suppress immune responses to co-incubated antigens in vitro. By comparing the human IgG Tregitopes (hTregitopes 167 and 289, located in the IgG CH1 and CH2 domains) and Fab to murine sequences, we identified class II-restricted murine Tregitope homologs (mTregitopes). In vivo, mTregitopes suppress inflammation and reproducibly induce Tregs to expand. In vitro studies suggest that the Tregitope mechanism of action is to induce Tregs to respond, leading to production of regulatory signals, followed by modulation of dendritic cell phenotype. The identification of Treg epitopes in IgG suggests that additional Tregitopes may also be present in other autologous proteins; methods for identifying and validating such peptides are described here. The discovery of Tregitopes in IgG and other autologous proteins may lead to the development of new insights as to the role of Tregs in autoimmune diseases.
Collapse
|
25
|
New therapeutic targets in systemic lupus. ACTA ACUST UNITED AC 2012; 8:201-7. [PMID: 22483661 DOI: 10.1016/j.reuma.2012.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 01/04/2012] [Indexed: 12/21/2022]
Abstract
Glucocorticoids, aspirin, antimalarials and conventional immunosuppressants are the mainstay of treatment of Systemic Lupus Erythematosus (SLE). Until recently, the first three were the only agents approved for treatment. A better understanding of the pathophysiology of the immune system has identified new therapeutic targets. In fact, belimumab, a human monoclonal antibody to BLyS inhibitor has become, in recent months, the first drug approved for the treatment of SLE since 1957, underscoring difficulties of all kinds, including economic and organizational ones inherent to clinical trials on this disease. Many other molecules are in various stages of development and soon will have concrete results. In this review, we examined the mechanism of action and most relevant clinical data for these molecules.
Collapse
|
26
|
Lo MS, Tsokos GC. Treatment of systemic lupus erythematosus: new advances in targeted therapy. Ann N Y Acad Sci 2012; 1247:138-52. [PMID: 22236448 DOI: 10.1111/j.1749-6632.2011.06263.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Treatment for systemic lupus erythematosus (SLE) has traditionally been restricted to broad-based immunosuppression, with glucocorticoids being central to care. Recent insights into lupus pathogenesis promise new, selective therapies with more favorable side effect profiles. The best example of this is belimumab, which targets the B cell cytokine BLyS and has now received Food and Drug Administration (FDA) approval for its use in SLE. Strategies targeting other cytokines, such as interleukin 6 (IL-6) and interferon (IFN)-α, are also on the horizon. Blockade of costimulatory interactions between immune cells offers another opportunity for therapeutic intervention, as do small molecule inhibitors that interfere with cell signaling pathways. We review here the current strategies for SLE treatment, with particular focus on therapies now in active pharmaceutical development. We will also discuss new understandings in lupus pathogenesis that may lead to future advances in therapy.
Collapse
Affiliation(s)
- Mindy S Lo
- Division of Immunology, Children's Hospital Boston, Boston, Massachusetts, USA
| | | |
Collapse
|
27
|
Haftmann C, Stittrich AB, Sgouroudis E, Matz M, Chang HD, Radbruch A, Mashreghi MF. Lymphocyte signaling: regulation of FoxO transcription factors by microRNAs. Ann N Y Acad Sci 2012; 1247:46-55. [DOI: 10.1111/j.1749-6632.2011.06264.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
BAFF and innate immunity: new therapeutic targets for systemic lupus erythematosus. Immunol Cell Biol 2012; 90:293-303. [PMID: 22231653 DOI: 10.1038/icb.2011.111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, the B cell has emerged as a cornerstone of systemic lupus erythematosus (SLE) pathogenesis. This has been highlighted by studies of the cytokine B-cell-activating factor of the tumour necrosis factor (TNF) family (BAFF), a crucial factor regulating B-cell maturation, survival and function. Overexpression of BAFF in mice leads to the development of an SLE-like disease, independent of T cells but instead relying on innate immunity mechanisms. Moreover, BAFF has been shown to be elevated in the serum of patients suffering from autoimmune conditions, especially SLE, and may correlate with disease activity. These findings challenge the previous notion that T:B-cell collaboration is the sole driver of SLE. In recent years, controlled trials have for the first time tested targeted therapeutics for SLE. However, agents designed to target B cells failed to meet primary endpoints in clinical trials in SLE, suggesting that a more complex role for B cells in SLE awaited elucidation. By contrast, on 9 March 2011, the US Food and Drug Administration approved belimumab, a fully human anti-BAFF monoclonal antibody, as a new B-cell-specific treatment for SLE. This article will review over 10 years of research on the BAFF system, key findings that led to this recent positive clinical outcome and propose a model potentially explaining why this B-cell-specific therapy has yielded positive results in clinical trials. We will also review promising therapies presently in clinical trials targeting innate immunity, which are likely to revolutionize SLE management towards a personalized and targeted therapy approach.
Collapse
|
29
|
|
30
|
Skaggs BJ, Lourenço EV, Hahn BH. Oral administration of different forms of a tolerogenic peptide to define the preparations and doses that delay anti-DNA antibody production and nephritis and prolong survival in SLE-prone mice. Lupus 2011; 20:912-20. [PMID: 21562020 DOI: 10.1177/0961203311398509] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Therapeutic agents currently in use to treat systemic lupus erythematosus (SLE) are predominantly immunosuppressive agents with limited specificities. Multiple groups, including ours, have illustrated that inducing tolerance in SLE animal models ameliorates disease symptoms and increases survival. We examined if oral administration of a tolerogenic peptide could affect SLE disease progression. The pConsensus (pCons) peptide, based on protein sequences of anti-double stranded (anti-ds)DNA antibodies, induces tolerance through upregulation of regulatory T cells when administered intravenously. Six different forms of pCons, including multiple antigenic peptides (MAP) and cyclic peptides made up of L- and D-amino acids, at three different concentrations, were fed to BWF1 SLE-susceptible mice for 30 weeks. Mice fed 100 µg of L-MAP or D-MAP had less cumulative proteinuria and serum anti-dsDNA antibody levels than controls. In addition, animals in these groups also survived significantly longer than controls with a corresponding increase in serum transforming growth factor beta (TGFβ, implying a protective role for pCons-induced regulatory T cells. Oral administration of a tolerogenic peptide is a safe, effective method for ameliorating SLE disease manifestations and prolonging survival in SLE-prone mice. Induction of oral tolerance using modified pCons peptides could lead to a novel targeted therapy for human SLE.
Collapse
Affiliation(s)
- B J Skaggs
- University of California, Los Angeles, David Geffen School of Medicine, Division of Rheumatology, Los Angeles, CA, USA.
| | | | | |
Collapse
|
31
|
A novel tolerogenic peptide, hCDR1, for the specific treatment of systemic lupus erythematosus. Autoimmun Rev 2010; 10:22-6. [DOI: 10.1016/j.autrev.2010.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/15/2010] [Indexed: 11/23/2022]
|
32
|
Affiliation(s)
- L Arnaud
- Service de médecine interne-2, centre national de référence lupus systémique et syndrome des anticorps anti-phospholipides, hôpital Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | | |
Collapse
|
33
|
|
34
|
Abstract
The main goal in systemic lupus erythematosus (SLE) is to achieve remission, as this has a major impact on patient and renal survival. Furthermore, early treatment success has been shown to improve long-term prognosis. Treatment in severe SLE, especially in lupus nephritis, has traditionally been a standardized schematic therapy with cyclophosphamide and prednisolone followed by azathioprine. However, animal and human studies have increased our pathogenetic knowledge of this autoimmune disease with emerging new treatment targets. New and future therapeutic approaches are focused on B-cell depletion, T-cell downregulation and co-stimulatory blockade, cytokine inhibition, or the modulation of complement. Many different biological agents have been used in recent and ongoing studies, but up to now breakthroughs emerging from randomized Phase III trials have been rare. However, the future remains exciting with progress towards safe treatments with which to control the disease in the long run.
Collapse
Affiliation(s)
- Marion Haubitz
- Department of Nephrology, Medical School Hannover, Hanover, Germany
| |
Collapse
|
35
|
Doria A, Zen M, Canova M, Bettio S, Bassi N, Nalotto L, Rampudda M, Ghirardello A, Iaccarino L. SLE diagnosis and treatment: when early is early. Autoimmun Rev 2010; 10:55-60. [PMID: 20813207 DOI: 10.1016/j.autrev.2010.08.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Around 1980 antinuclear antibody testing became widely used in routine laboratory practice leading to a tapering in the lag time between SLE onset and diagnosis. Since then nothing relevant has been introduced which could help us in making the diagnosis of SLE earlier than now. Notably, there is increasing evidence that early diagnosis and treatment could increase SLE remission rate and improve patient prognosis. Although it has been shown that autoantibodies appear before clinical manifestations in SLE patients, currently we cannot predict which autoantibody positive subjects will eventually develop the disease. Thus, great effort should be made in order to identify new biomarkers able to improve our diagnostic potential. B lymphocyte stimulator (BLyS), anti-ribosomal P protein and anti-C1q antibodies are among the most promising. In recent years, some therapeutic options have emerged as appropriate interventions for early SLE treatment, including antimalarials, vitamin D, statins and vaccination with self-derived peptides. All these immune modulators seem to be particularly useful when introduced in an early stage of the disease.
Collapse
Affiliation(s)
- Andrea Doria
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Therapeutic strategies for SLE involving cytokines: mechanism-oriented therapies especially IFN-gamma targeting gene therapy. J Biomed Biotechnol 2010; 2010. [PMID: 20827419 PMCID: PMC2933908 DOI: 10.1155/2010/461641] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 06/25/2010] [Indexed: 01/22/2023] Open
Abstract
Systemic lupus erythematosus (SLE: lupus) is a chronic complicated autoimmune disease and pathogenesis is still unclear. However, key cytokines have been recognized. Interferon (IFN)-γ and also IFNalpha/beta are of particular importance. Depending on the concept that lupus is a helper T(Th)1 disease and that dendritic cells (DCs) determine the direction of lupus, balance shift of Th1/Th2 and immunogenic/tolerogenic DCs is reviewed for therapy. (IFN)-gamma- and IFN-alpha/beta-targeted (gene) therapies are introduced. These consist of Th1/Th2 balance shift and elimination of IFN-gamma and IFN-gamma-related cytokines such as (interleukin)IL-12 and IL-18. Other approaches include suppression of immunocompetent cells, normalization of abnormal T-cell function, costimulation blockade, B lymphocyte stimulator (Blys) blockade, and suppression of nephritic kidney inflammation. Moreover, balance shift of IFN-alpha/beta and tumor necrosis factor (TNF)-alpha together with regulatory T(Treg) cells are briefly introduced. Clinical application will be discussed.
Collapse
|
37
|
Becker-Merok A, Eilertsen GØ, Nossent JC. Levels of transforming growth factor-beta are low in systemic lupus erythematosus patients with active disease. J Rheumatol 2010; 37:2039-45. [PMID: 20682675 DOI: 10.3899/jrheum.100180] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Cytokines are central regulators of the immune response but the workings of this complex network in systemic lupus erythematosus (SLE) are not fully understood. We investigated a range of inflammatory and immune-modulating cytokines to determine their value as biomarkers for disease subsets in SLE. METHODS This was a cross-sectional study in 102 patients with SLE (87% women, disease duration 10.6 yrs). Circulating concentrations of interleukin 1β (IL-1β), IL-4, IL-6, IL-10, IL-12, IL-17, monocyte chemotactic protein 1 (MCP-1), macrophage inflammatory protein 1 (MIP-1α), MIP-1β, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and total transforming growth factor-β1 (TGF-β1) were related to disease activity (SLE Disease Activity Index; SLEDAI), lymphocyte subsets, autoantibody levels, accrued damage (Systemic Lupus International Collaborating Clinics/ACR Damage Index; SDI), and concomitant treatment. RESULTS Patients with SLE had lower levels of TGF-β1 (p = 0.01) and IL-1β (p = 0.0004) compared to controls. TGF-β1 levels were lower in patients with SLEDAI scores 1-10 and SDI > 3; and were correlated with CD4+, CD8+, and natural killer cell counts; and were independent of steroid or cytotoxic drug use. Treatment with cardiovascular drugs was associated with lower IL-12 levels. No consistent disease associations existed for the other cytokines investigated. CONCLUSION Lower TGF-β1 was the most consistent cytokine abnormality in patients with SLE. The associations with disease activity, lymphocyte subsets, and damage suggest that TGF-β1 may be a therapeutic target of interest in SLE.
Collapse
Affiliation(s)
- Andrea Becker-Merok
- Department of Rheumatology, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | | | | |
Collapse
|
38
|
Vadasz Z, Attias D, Kessel A, Toubi E. Neuropilins and semaphorins - from angiogenesis to autoimmunity. Autoimmun Rev 2010; 9:825-9. [PMID: 20678594 DOI: 10.1016/j.autrev.2010.07.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 07/23/2010] [Indexed: 01/13/2023]
Abstract
Angiogenesis, the growth of new blood vessels from preexisting ones, is an important process in health and disease. The persistence of neovascularization in inflammatory diseases, such as rheumatoid arthritis (RA), might facilitate the entrance of inflammatory cells into the synovium and stimulate pannus formation. Several potent pro-angiogenic cytokines have been implicated in inflammatory angiogenesis. Of these, vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) have been demonstrated to play a central role in RA, systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Increased serum levels of VEGF were found to correlate with disease activity and severity of these diseases whereas, remission was associated with decreased levels. In the last few years, other molecules, initially found in neurodevelopment, were found to be involved in angiogenesis and recently also in the immune system and autoimmunity. Neuropilins (NPs) are VEGF receptors, while some of the semaphorins (SEMAs) are neuropilins' ligands. Their involvement in the development of autoimmune diseases and the various mechanisms by which they may induce autoimmunity will be discussed in this review.
Collapse
Affiliation(s)
- Z Vadasz
- Bnai-Zion Medical Center, Technion Institute, Haifa, Israel
| | | | | | | |
Collapse
|
39
|
Abstract
Several new targeted biologic agents for treating lupus nephritis are on the horizon; however, it is important to determine the circumstances in which they should be used, and how to optimally combine these agents with current or other new therapies. Conventional immunosuppressive therapy has transformed survival in lupus nephritis, but its use is associated with considerable toxic effects and suboptimal efficacy. There is a clear need for new therapeutic agents that overcome these issues, and biologic agents offer exciting opportunities. B cells, T cells, cytokines and complement are potential targets for these therapies. It is anticipated that the role of B-cell depletion in lupus nephritis will be clarified and that other biologic agents will be developed. The complexities of clinical trials in lupus nephritis have impeded the demonstration of the efficacy of new agents, but if these difficulties can be overcome, there is a real chance that outcomes in lupus nephritis will improve.
Collapse
|
40
|
Hoffmann MH, Trembleau S, Muller S, Steiner G. Nucleic acid-associated autoantigens: pathogenic involvement and therapeutic potential. J Autoimmun 2009; 34:J178-206. [PMID: 20031372 DOI: 10.1016/j.jaut.2009.11.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Autoimmunity to ubiquitously expressed macromolecular nucleic acid-protein complexes such as the nucleosome or the spliceosome is a characteristic feature of systemic autoimmune diseases. Disease-specificity and/or association with clinical features of some of these autoimmune responses suggest pathogenic involvement which, however, has been proven in only a few cases so far. Although the mechanisms leading to autoimmunity against nucleic acid-containing complexes are still far from being fully understood, there is increasing experimental evidence that the nucleic acid component may act as a co-stimulator or adjuvans via activation of nucleic acid-binding receptor systems such as Toll-like receptors in antigen-presenting cells. Dysregulated apoptosis and inappropriate stimulation of nucleic acid-sensing receptors may lead to loss of tolerance against the protein components of such complexes, activation of autoreactive T cells and formation of autoantibodies. This has been demonstrated to occur in systemic lupus erythematosus and seems to represent a general mechanism that may be crucial for the development of systemic autoimmune diseases. This review provides a comprehensive overview of the most thoroughly-characterized nucleic acid-associated autoantigens, describing their structure and biological function, as well as the nature and pathogenic importance of the reactivities directed against them. Furthermore, recent advances in immunotherapy such as antigen-specific approaches targeted at nucleic acid-binding antigens are discussed.
Collapse
Affiliation(s)
- Markus H Hoffmann
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
41
|
The idiotype connection: linking infection and multiple sclerosis. Trends Immunol 2009; 31:56-62. [PMID: 19962346 DOI: 10.1016/j.it.2009.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/05/2009] [Accepted: 11/11/2009] [Indexed: 12/17/2022]
Abstract
B cells present idiotopes (Id) from their B cell receptor to Id-specific CD4(+) T cells. Chronic Id-driven T-B cell collaboration can cause autoimmune disease in mice. We propose that Id-driven T-B cell collaboration mediates the development of multiple sclerosis by perpetuating immune responses initiated against infectious agents. During germinal centre reactions, B cells express a multitude of mutated Ids. While most mutations lead to decreased affinity and deletion of the B cell, some B cells could be rescued by Id-specific T cells. Such Id-connected T-B cell pairs might initiate inflammatory foci in the central nervous system. This model may explain the intrathecal synthesis of low-avidity IgG against viruses, and the synthesis of oligoclonal IgG with unknown specificity in multiple sclerosis.
Collapse
|
42
|
A new model of induced experimental systemic lupus erythematosus (SLE) in pigs and its amelioration by treatment with a tolerogenic peptide. J Clin Immunol 2009; 30:34-44. [PMID: 19756988 DOI: 10.1007/s10875-009-9326-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 08/20/2009] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is characterized by a variety of autoantibodies and systemic clinical manifestations. A tolerogenic peptide, hCDR1, ameliorated lupus manifestations in mice models. The objectives of this study were to induce experimental SLE in pigs and to determine the ability of hCDR1 to immunomodulate the disease manifestations. RESULTS AND DISCUSSION We report here the successful induction, by a monoclonal anti-DNA antibody, of an SLE-like disease in pigs, manifested by autoantibody production and glomerular immune complex deposits. Treatment of pigs with hCDR1 ameliorated the lupus-related manifestations. Furthermore, the treatment downregulated the gene expression of the pathogenic cytokines, interleukin (IL)-1beta, tumor necrosis factor alpha, interferon gamma, and IL-10, and upregulated the expression of the immunosuppressive cytokine transforming growth factor beta, the antiapoptotic molecule Bcl-xL, and the suppressive master gene, Foxp3, hence restoring the expression of the latter to normal levels. Thus, hCDR1 is capable of ameliorating lupus in large animals and is a potential candidate for the treatment of SLE patients.
Collapse
|
43
|
Price S. Peptide modulates SLE gene expression. Nat Rev Rheumatol 2009. [DOI: 10.1038/nrrheum.2009.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|