1
|
Zhang Y, Xu T, Li T, Chen H, Xu G, Hu W, Li Y, Dong Y, Liu Z, Han B. A three-phase strategy of bionic drug reservoir scaffold by 3D printing and layer-by-layer modification for chronic relapse management in traumatic osteomyelitis. Mater Today Bio 2024; 29:101356. [PMID: 39687799 PMCID: PMC11648807 DOI: 10.1016/j.mtbio.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
We have developed a novel three-phase strategy for osteomyelitis treatment, structured into three distinct phases: the "strong antimicrobial" phase, the "monitoring and osteogenesis" phase and the "bone repair" phase. To implement this staged therapeutic strategy, we engineered a bionic drug reservoir scaffold carrying a dual-drug combination of antimicrobial peptides (AMPs) and simvastatin (SV). The scaffold integrated a bilayer gel drug-carrying structure, based on an induced membrane and combined with a 3D-printed rigid bone graft using a layer-by-layer modification strategy. The mechanical strength of the composite scaffold (73.40 ± 22.44 MPa) is comparable to that of cancellous bone. This scaffold enables controlled, sequential drug release through a spatial structure design and nanoparticle drug-carrying strategy. AMPs are released rapidly, with the release efficiency of 74.90 ± 8.19 % at 14 days (pH = 7.2), thus enabling rapid antimicrobial therapy. Meanwhile, SV is released over a prolonged period, with a release efficiency of 98.98 ± 0.05 % over 40 days in vitro simulations, promoting sustained osteogenesis and facilitating the treatment of intracellular infections by activating macrophage extracellular traps (METs). The antimicrobial, osteogenic and immunomodulatory effects of the scaffolds were verified through in vitro and in vivo experiments. It was demonstrated that composite scaffolds were able to combat the chronic recurrence of osteomyelitis after debridement, by providing rapid sterilization, stimulating METs formation, and supporting osteogenic repair.
Collapse
Affiliation(s)
- Yutong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Tongtong Xu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Tieshu Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
- Changchun University of Chinese Medicine, Changchun, 130117, China
- Affiliated Hospital of Yangzhou University, Yangzhou, 225009, China
| | - Hening Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Guangzhe Xu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wenxin Hu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yongting Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yue Dong
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Zhihui Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Bing Han
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
2
|
Zhao M, Chen Y, Bao X, Wang Z, Yuan N, Jin Z, Huang Y, Yang L, Yang Y, Zeng L. HuoXueTongFu formula induces M2c macrophages via the MerTK/PI3K/AKT pathway to eliminate NETs in intraperitoneal adhesion in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118290. [PMID: 38703872 DOI: 10.1016/j.jep.2024.118290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE HuoXueTongFu Formula (HXTF) is a traditional Chinese herbal formula that has been used as a supplement and alternative therapy for intraperitoneal adhesion (IA). However, its specific mechanism of action has not been fully understood. AIM OF THE STUDY In surgery, IA presents an inevitable challenge, significantly impacting patients' physical and mental well-being and increasing the financial burden. Our previous research has confirmed the preventive effects of HXTF on IA formation. However, the precise mechanism of its action still needs to be understood. METHODS In this study, the IA model was successfully established by using the Ischemic buttons and treated with HXTF for one week with or without Mer Tyrosine Kinase (MerTK) inhibitor. We evaluated the pharmacodynamic effect of HXTF on IA mice. The MerTK/phosphoinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway-associated proteins were detected by Western blotting. Neutrophil extracellular traps (NETs) were detected by immunofluorescence. Macrophage phenotype was assessed by immunohistochemistry and flow cytometry. Inflammatory cytokines were detected by Real Time Quantitative PCR and Western blotting. RESULTS HXTF reduced inflammatory response and alleviated IA. HXTF significantly enhanced MerTK expression, increased the number of M2c macrophages, and decreased the formation of NETs. In addition, the MerTK/PI3K/AKT pathway was significantly activated by HXTF. However, after using MerTK inhibitors, the role of HXTF in inducing M2c macrophage through activation of the PI3K/AKT pathway was suppressed and there was no inhibitory effect on NETs formation and inflammatory responses, resulting in diminished inhibition of adhesion. CONCLUSION HXTF may improve IA by activating the MerTK/PI3K/AKT pathway to induce M2c polarization, which removes excess NETs and attenuates the inflammatory response.
Collapse
Affiliation(s)
- Min Zhao
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China
| | - Yanqi Chen
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaojiang Bao
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhongda Wang
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ningning Yuan
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zixiang Jin
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuqiu Huang
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Yang
- Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yousheng Yang
- Department of General Surgery, Suzhou Integrated Traditional Chinese and Western Medicine Hospital, Suzhou, 215101, China.
| | - Li Zeng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing 210023, China.
| |
Collapse
|
3
|
Whitaker R, Sung S, Tylek T, Risser G, O'Brien E, Chua PE, Li T, Petrie RJ, Han L, Binder-Markey B, Spiller KL. Effects of injury size on local and systemic immune cell dynamics in volumetric muscle loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609702. [PMID: 39253495 PMCID: PMC11383310 DOI: 10.1101/2024.08.26.609702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
We took a systems approach to the analysis of macrophage phenotype in regenerative and fibrotic volumetric muscle loss outcomes in mice together with analysis of systemic inflammation and of other leukocytes in the muscle, spleen, and bone marrow. Macrophage dysfunction in the fibrotic group occurred as early as day 1, persisted to at least day 28, and was associated with increased numbers of leukocytes in the muscle and bone marrow, increased pro-inflammatory marker expression in splenic macrophages, and changes in the levels of pro-inflammatory cytokines in the blood. The most prominent differences were in muscle neutrophils, which were much more abundant in fibrotic outcomes compared to regenerative outcomes at day 1 after injury. However, neutrophil depletion had little to no effect on macrophage phenotype or on muscle repair outcomes. Together, these results suggest that the entire system of immune cell interactions must be considered to improve muscle repair outcomes.
Collapse
Affiliation(s)
- Ricardo Whitaker
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Samuel Sung
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Tina Tylek
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Gregory Risser
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Erin O'Brien
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Phoebe Ellin Chua
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Thomas Li
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Ryan J Petrie
- Department of Biology, College of Arts & Sciences, Drexel University, Philadelphia, PA
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| | - Benjamin Binder-Markey
- Department of Physical Therapy & Rehabilitation Sciences, College of Nursing and Health Professions, Drexel University, Philadelphia, PA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA
| |
Collapse
|
4
|
Li Z, Li L, Yue M, Peng Q, Pu X, Zhou Y. Tracing Immunological Interaction in Trimethylamine N-Oxide Hydrogel-Derived Zwitterionic Microenvironment During Promoted Diabetic Wound Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402738. [PMID: 38885961 DOI: 10.1002/adma.202402738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/30/2024] [Indexed: 06/20/2024]
Abstract
The diabetic wound healing is challenging due to the sabotaged delicate balance of immune regulation via an undetermined pathophysiological mechanism, so it is crucial to decipher multicellular signatures underlying diabetic wound healing and seek therapeutic strategies. Here, this work develops a strategy using novel trimethylamine N-oxide (TMAO)-derived zwitterionic hydrogel to promote diabetic wound healing, and explore the multi-cellular ecosystem around zwitterionic hydrogel, mapping out an overview of different cells in the zwitterionic microenvironment by single-cell RNA sequencing. The diverse cellular heterogeneity is revealed, highlighting the critical role of macrophage and neutrophils in managing diabetic wound healing. It is found that polyzwitterionic hydrogel can upregulate Ccl3+ macrophages and downregulate S100a9+ neutrophils and facilitate their interactions compared with polyanionic and polycationic hydrogels, validating the underlying effect of zwitterionic microenvironment on the activation of adaptive immune system. Moreover, zwitterionic hydrogel inhibits the formation of neutrophil extracellular traps (NETs) and promotes angiogenesis, thus improving diabetic wound healing. These findings expand the horizons of the sophisticated orchestration of immune systems in zwitterion-directed diabetic wound repair and uncover new strategies of novel immunoregulatory biomaterials.
Collapse
Affiliation(s)
- Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Longwei Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Qingyu Peng
- School of Mechanical and Material Engineering, North China University of Technology, Beijing, 100144, P. R. China
| | - Xiong Pu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| |
Collapse
|
5
|
Yu J, Fu Y, Gao J, Zhang Q, Zhang N, Zhang Z, Jiang X, Chen C, Wen Z. Cathepsin C from extracellular histone-induced M1 alveolar macrophages promotes NETosis during lung ischemia-reperfusion injury. Redox Biol 2024; 74:103231. [PMID: 38861835 PMCID: PMC11209641 DOI: 10.1016/j.redox.2024.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
Primary graft dysfunction (PGD) is a severe form of acute lung injury resulting from lung ischemia/reperfusion injury (I/R) in lung transplantation (LTx), associated with elevated post-transplant morbidity and mortality rates. Neutrophils infiltrating during reperfusion are identified as pivotal contributors to lung I/R injury by releasing excessive neutrophil extracellular traps (NETs) via NETosis. While alveolar macrophages (AMs) are involved in regulating neutrophil chemotaxis and infiltration, their role in NETosis during lung I/R remains inadequately elucidated. Extracellular histones constitute the main structure of NETs and can activate AMs. In this study, we confirmed the significant involvement of extracellular histone-induced M1 phenotype of AMs (M1-AMs) in driving NETosis during lung I/R. Using secretome analysis, public protein databases, and transwell co-culture models of AMs and neutrophils, we identified Cathepsin C (CTSC) derived from AMs as a major mediator in NETosis. Further elucidating the molecular mechanisms, we found that CTSC induced NETosis through a pathway dependent on NADPH oxidase-mediated production of reactive oxygen species (ROS). CTSC could significantly activate p38 MAPK, resulting in the phosphorylation of the NADPH oxidase subunit p47phox, thereby facilitating the trafficking of cytoplasmic subunits to the cell membrane and activating NADPH oxidase. Moreover, CTSC up-regulated and activated its substrate membrane proteinase 3 (mPR3), resulting in an increased release of NETosis-related inflammatory factors. Inhibiting CTSC revealed great potential in mitigating NETosis-related injury during lung I/R. These findings suggests that CTSC from AMs may be a crucial factor in mediating NETosis during lung I/R, and targeting CTSC inhition may represent a novel intervention for PGD in LTx.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Yu Fu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiameng Gao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qingqing Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiyuan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuemei Jiang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Gu W, Huang C, Chen G, Kong W, Zhao L, Jie H, Zhen G. The role of extracellular traps released by neutrophils, eosinophils, and macrophages in asthma. Respir Res 2024; 25:290. [PMID: 39080638 PMCID: PMC11290210 DOI: 10.1186/s12931-024-02923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Extracellular traps (ETs) are a specialized form of innate immune defense in which leukocytes release ETs composed of chromatin and active proteins to eliminate pathogenic microorganisms. In addition to the anti-infection effect of ETs, researchers have also discovered their involvement in the pathogenesis of inflammatory disease, tumors, autoimmune disease, and allergic disease. Asthma is a chronic airway inflammatory disease involving multiple immune cells. The increased level of ETs in asthma patients suggests that ETs play an important role in the pathogenesis of asthma. Here we review the research work on the formation mechanism, roles, and therapeutic strategies of ETs released by neutrophils, eosinophils, and macrophages in asthma.
Collapse
Affiliation(s)
- Wei Gu
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Chunli Huang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Gongqi Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Weiqiang Kong
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Lu Zhao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Huiru Jie
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Guohua Zhen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China.
| |
Collapse
|
7
|
Lu MJ, Zhang JQ, Nie ZY, Yan TH, Cao YB, Zhang LC, Li L. Monocyte/macrophage-mediated venous thrombus resolution. Front Immunol 2024; 15:1429523. [PMID: 39100675 PMCID: PMC11297357 DOI: 10.3389/fimmu.2024.1429523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Venous thromboembolism (VTE) poses a notable risk of morbidity and mortality. The natural resolution of the venous thrombus might be a potential alternative treatment strategy for VTE. Monocytes/macrophages merge as pivotal cell types in the gradual resolution of the thrombus. In this review, the vital role of macrophages in inducing inflammatory response, augmenting neovascularization, and facilitating the degradation of fibrin and collagen during thrombus resolution was described. The two phenotypes of macrophages involved in thrombus resolution and their dual functions were discussed. Macrophages expressing various factors, including cytokines and their receptors, adhesion molecules, chemokine receptors, vascular endothelial growth factor receptors, profibrinolytic- or antifibrinolytic-related enzymes, and other elements, are explored for their potential to promote or attenuate thrombus resolution. Furthermore, this review provides a comprehensive summary of new and promising therapeutic candidate drugs associated with monocytes/macrophages that have been demonstrated to promote or impair thrombus resolution. However, further clinical trials are essential to validate their efficacy in VTE therapy.
Collapse
Affiliation(s)
- Meng-Jiao Lu
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Jia-Qi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhou-Yu Nie
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Hua Yan
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Liao CY, Li G, Kang FP, Lin CF, Xie CK, Wu YD, Hu JF, Lin HY, Zhu SC, Huang XX, Lai JL, Chen LQ, Huang Y, Li QW, Huang L, Wang ZW, Tian YF, Chen S. Necroptosis enhances 'don't eat me' signal and induces macrophage extracellular traps to promote pancreatic cancer liver metastasis. Nat Commun 2024; 15:6043. [PMID: 39025845 PMCID: PMC11258255 DOI: 10.1038/s41467-024-50450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer with dismal prognosis due to distant metastasis, even in the early stage. Using RNA sequencing and multiplex immunofluorescence, here we find elevated expression of mixed lineage kinase domain-like pseudo-kinase (MLKL) and enhanced necroptosis pathway in PDAC from early liver metastasis T-stage (T1M1) patients comparing with non-metastatic (T1M0) patients. Mechanistically, MLKL-driven necroptosis recruits macrophages, enhances the tumor CD47 'don't eat me' signal, and induces macrophage extracellular traps (MET) formation for CXCL8 activation. CXCL8 further initiates epithelial-mesenchymal transition (EMT) and upregulates ICAM-1 expression to promote endothelial adhesion. METs also degrades extracellular matrix, that eventually supports PDAC liver metastasis. Meanwhile, targeting necroptosis and CD47 reduces liver metastasis in vivo. Our study thus reveals that necroptosis facilitates PDAC metastasis by evading immune surveillance, and also suggest that CD47 blockade, combined with MLKL inhibitor GW806742X, may be a promising neoadjuvant immunotherapy for overcoming the T1M1 dilemma and reviving the opportunity for radical surgery.
Collapse
Affiliation(s)
- Cheng-Yu Liao
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Ge Li
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 350001, Fuzhou, China
| | - Feng-Ping Kang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
| | - Cai-Feng Lin
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Cheng-Ke Xie
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Yong-Ding Wu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Jian-Fei Hu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Hong-Yi Lin
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Shun-Cang Zhu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Xiao-Xiao Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Jian-Lin Lai
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | | | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Qiao-Wei Li
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Fujian Provincial Center for Geriatrics, 350001, Fuzhou, China
- Fujian Key Laboratory of Geriatrics, 350001, Fuzhou, China
| | - Long Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Zu-Wei Wang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
| | - Yi-Feng Tian
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
- Fujian Provincial Center for Geriatrics, 350001, Fuzhou, China.
- Fujian Key Laboratory of Geriatrics, 350001, Fuzhou, China.
| |
Collapse
|
9
|
Wang C, Kaur K, Xu C, Abu-Amer Y, Mbalaviele G. Chemotherapy activates inflammasomes to cause inflammation-associated bone loss. eLife 2024; 13:RP92885. [PMID: 38602733 PMCID: PMC11008812 DOI: 10.7554/elife.92885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
Chemotherapy is a widely used treatment for a variety of solid and hematological malignancies. Despite its success in improving the survival rate of cancer patients, chemotherapy causes significant toxicity to multiple organs, including the skeleton, but the underlying mechanisms have yet to be elucidated. Using tumor-free mouse models, which are commonly used to assess direct off-target effects of anti-neoplastic therapies, we found that doxorubicin caused massive bone loss in wild-type mice, a phenotype associated with increased number of osteoclasts, leukopenia, elevated serum levels of danger-associated molecular patterns (DAMPs; e.g. cell-free DNA and ATP) and cytokines (e.g. IL-1β and IL-18). Accordingly, doxorubicin activated the absent in melanoma (AIM2) and NLR family pyrin domain containing 3 (NLRP3) inflammasomes in macrophages and neutrophils, causing inflammatory cell death pyroptosis and NETosis, which correlated with its leukopenic effects. Moreover, the effects of this chemotherapeutic agent on cytokine secretion, cell demise, and bone loss were attenuated to various extent in conditions of AIM2 and/or NLRP3 insufficiency. Thus, we found that inflammasomes are key players in bone loss caused by doxorubicin, a finding that may inspire the development of a tailored adjuvant therapy that preserves the quality of this tissue in patients treated with this class of drugs.
Collapse
Affiliation(s)
- Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of MedicineSt. LouisUnited States
| | - Khushpreet Kaur
- Division of Bone and Mineral Diseases, Washington University School of MedicineSt. LouisUnited States
| | - Canxin Xu
- Aclaris Therapeutics, IncSt. LouisUnited States
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, Washington University School of MedicineSt. LouisUnited States
- Shriners Hospitals for ChildrenSt. LouisUnited States
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
10
|
Yang W, Hong SA, Kim JM, Jeong HB, Nam TK, Choi HH, Kim SM, Park KY, Kim HR. The immunologic phenotype of thrombi is associated with future vascular events after cerebral infarction. J Neurointerv Surg 2024; 16:352-358. [PMID: 37197936 DOI: 10.1136/jnis-2023-020155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Thrombi retrieved from patients with acute ischemic stroke may contain prognostic information. OBJECTIVE To investigate the relationship between the immunologic phenotype of thrombi and future vascular events in patients with a stroke. METHODS This study included patients with acute ischemic stroke who underwent endovascular thrombectomy at Chung-Ang University Hospital in Seoul, Korea, between February 2017 and January 2020. Laboratory and histological variables were compared between patients with and without recurrent vascular events (RVEs). Kaplan-Meier analysis followed by the Cox proportional hazards model was used to identify factors related to RVE. Receiver operating characteristic (ROC) analysis was conducted to evaluate the performance of the immunologic score by combining immunohistochemical phenotypes to predict RVE. RESULTS A total of 46 patients were included in the study with 13 RVEs (mean±SD age, 72.8±11.3 years; 26 (56.5%) men). Thrombi with a lower percentage of programmed death ligand-1 expression (HR=11.64; 95% CI 1.60 to 84.82) and a higher number of citrullinated histone H3 positive cells (HR=4.19; 95% CI 0.81 to 21.75) were associated with RVE. The presence of high-mobility group box 1 positive cell was associated with reduced risk of RVE, but the association was lost after adjustment for stroke severity. The immunologic score, which consists of the three immunohistochemical phenotypes, showed good performance in predicting RVE (area under the ROC curve, 0.858; 95% CI 0.758 to 0.958). CONCLUSIONS The immunological phenotype of thrombi could provide prognostic information after stroke.
Collapse
Affiliation(s)
- Wookjin Yang
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Soon Auck Hong
- Department of Pathology, Chung-Ang University Hospital, Seoul, Korea
| | - Jeong-Min Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Hae-Bong Jeong
- Department of Neurology, Chung-Ang University Hospital, Seoul, Korea
| | - Taek-Kyun Nam
- Department of Neurosurgery, Chung-Ang University Hospital, Seoul, Korea
| | - Hyun Ho Choi
- Department of Neurosurgery, Chung-Ang University Hospital, Seoul, Korea
| | - Suh Min Kim
- Department of Surgery, Chung-Ang University College of Medicine and Graduate School of Medicine, Seoul, Korea
| | - Kwang-Yeol Park
- Department of Neurology, Chung-Ang University Hospital, Seoul, Korea
| | - Hye Ryoun Kim
- Department of Laboratory Medicine, Chung-Ang University Hospital, Seoul, Korea
| |
Collapse
|
11
|
Xia J, Zhang Z, Huang Y, Wang Y, Liu G. Regulation of neutrophil extracellular traps in cancer. Int J Cancer 2024; 154:773-785. [PMID: 37815294 DOI: 10.1002/ijc.34750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/22/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Neutrophil extracellular trap (NET) is one of the defense functions of neutrophils, which has a rapid ability to kill infections and is also crucial in a variety of immune-associated diseases including infections, tumors and autoimmune diseases. Recent studies have shown that NETs are closely related to the development of tumors. The regulatory role of NETs in tumors has been of interest to researchers. In addition to awakening latent tumor cells, NETs can also promote the proliferation and development of tumor cells and their metastasis to other sites. At the same time, NETs also have the effect of inhibiting tumors. At present, there are some new advances in the impact of NETs on tumor development, which will provide a more theoretical basis for developing NET-targeted drugs. Therefore, this review just summarized the formation process of NETs, the regulation of tumor development and the treatment methods based on NETs.
Collapse
Affiliation(s)
- Jingxuan Xia
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Zhiyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
12
|
Ma H, Yao W, Peng B, Liu X, Chen J, Lin Y, Di T, Li P, He X. Mercury-containing preparations attenuate neutrophil extracellular trap formation in mice and humans through inhibiting the ERK1/2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117421. [PMID: 37979820 DOI: 10.1016/j.jep.2023.117421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neutrophil extracellular trap (NET) formation plays a crucial role in wound healing disorders, including chronic skin ulcers and diabetic foot ulcers (DFUs). Over the years, traditional Chinese topical medications, such as Cinnabar (composed of HgS and soluble mercury salt) and hydrargyria oxydum rubrum (containing HgO and soluble mercury salt), have been utilized for treating these ailments. Nevertheless, the fundamental processes remain mostly ambiguous. AIM OF THE STUDY This study sought to investigate the potential effects of topical mercury-containing preparations on the process of NET formation. MATERIALS AND METHODS Neutrophils isolated from healthy individuals and mouse models of type 1 and type 2 diabetes were cultured with phorbol 12-myristate 13-acetate (PMA), both with and without the mercury-containing preparations (MCP). The formation of NETs was monitored using confocal and scanning electron microscopes. Immunofluorescence and fluorescent probes were employed to assess the levels of citrulline histone H3 (Cit-H3) and intracellular reactive oxygen species (ROS), respectively. The impact of MCP extracts on cytokine expression, peptidylarginine deiminase 4 (PAD4), and myeloperoxidase (MPO) was measured through Luminex and ELISA assays. Phagocytosis of human neutrophils was analyzed using Flow Cytometry. Finally, the phosphorylation levels of ERK were detected by western blotting. RESULTS Treatment with MCP led to a reduction in PAD4, Cit-H3, and MPO expressions in neutrophils, consequently inhibiting PMA-induced NET formation. MCP treatment also dampened ERK1/2 activation in neutrophils. Furthermore, MCP exhibited inhibitory effects on the secretion of the cytokine IL-8 and ROS production while enhancing neutrophil phagocytosis. CONCLUSION Our findings suggest that MCP can mitigate the release of NETs, likely by suppressing the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Huike Ma
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Wentao Yao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Bing Peng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Xin Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Jia Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Yan Lin
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Tingting Di
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China.
| | - Xiujuan He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100010, China.
| |
Collapse
|
13
|
Huang Y, Ding Y, Wang B, Ji Q, Peng C, Tan Q. Neutrophils extracellular traps and ferroptosis in diabetic wounds. Int Wound J 2023; 20:3840-3854. [PMID: 37199077 PMCID: PMC10588347 DOI: 10.1111/iwj.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Wound healing is an extremely complex process involving multiple levels of cells and tissues. It is mainly completed through four stages: haemostasis, inflammation, proliferation, and remodelling. When any one of these stages is impaired, it may lead to delayed healing or even transformation into chronic refractory wounds. Diabetes is a kind of common metabolic disease that affects approximately 500 million people worldwide, 25% of whom develop skin ulcers that break down repeatedly and are difficult to heal, making it a growing public health problem. Neutrophils extracellular traps and ferroptosis are new types of programmed cell death identified in recent years and have been found to interact with diabetic wounds. In this paper, the normal wound healing and interfering factors of the diabetic refractory wound were outlined. The mechanism of two kinds of programmed cell death was also described, and the interaction mechanism between different types of programmed cell death and diabetic refractory wounds was discussed.
Collapse
Affiliation(s)
- Yumeng Huang
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
| | - Youjun Ding
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Department of Emergency SurgeryThe Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Fourth People's Hospital)ZhenjiangChina
| | - Beizhi Wang
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Qian Ji
- Department of OncologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Chen Peng
- Department of OncologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Qian Tan
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Department of Burns and Plastic Surgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Burns and Plastic SurgeryAnqing Shihua Hospital of Nanjing Drum Tower Hospital GroupAnqingChina
| |
Collapse
|
14
|
Liu X, Qian N, Zhu L, Fan L, Fu G, Ma M, Bao J, Cao C, Liang X. Geniposide ameliorates acute kidney injury via enhancing the phagocytic ability of macrophages towards neutrophil extracellular traps. Eur J Pharmacol 2023; 957:176018. [PMID: 37634840 DOI: 10.1016/j.ejphar.2023.176018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Acute kidney injury (AKI) is a clinically serious disorder associated with high mortality rates and an increased risk of progression to end-stage renal disease. As an essential supportive treatment for patients with respiratory failure, mechanical ventilation not only save many critically ill patients, but also affect glomerular filtration function by changing renal hemodynamics, neurohumoral and positive end-expiratory pressure, eventually leading to AKI. AMP-activated protein kinase (AMPK), a crucial energy homeostasis regulator, could enhance macrophage phagocytic ability and inhibit inflammation, but whether it can engulf neutrophil extracellular traps (NETs) and alleviate mechanical ventilation-associated AKI is still unclear. In this study, we found that geniposide significantly ameliorated histopathological damage, reduced serum Cre and BUN levels. Besides, geniposide can also induce AMPK activation and enhance macrophage phagocytic ability toward NETs. Moreover, geniposide can markedly reduce the levels of high mobility group box 1 (HMGB1), and these effects were dependent on AMPK-PI3K/Akt signaling. Altogether, these results indicated that geniposide promoted macrophage efferocytosis by inducing AMPK-PI3K/Akt signaling activation, clearing NETs and ameliorating AKI.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China; The Second People's Hospital of Lianyungang, Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222006, Jiangsu, China
| | - Na Qian
- The Second People's Hospital of Lianyungang, Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222006, Jiangsu, China
| | - Li Zhu
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Li Fan
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China; Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Guanghao Fu
- The Second People's Hospital of Lianyungang, Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222006, Jiangsu, China
| | - Mengqing Ma
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Jiaxin Bao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
15
|
Ou L, Tan X, Qiao S, Wu J, Su Y, Xie W, Jin N, He J, Luo R, Lai X, Liu W, Zhang Y, Zhao F, Liu J, Kang Y, Shao L. Graphene-Based Material-Mediated Immunomodulation in Tissue Engineering and Regeneration: Mechanism and Significance. ACS NANO 2023; 17:18669-18687. [PMID: 37768738 DOI: 10.1021/acsnano.3c03857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Tissue engineering and regenerative medicine hold promise for improving or even restoring the function of damaged organs. Graphene-based materials (GBMs) have become a key player in biomaterials applied to tissue engineering and regenerative medicine. A series of cellular and molecular events, which affect the outcome of tissue regeneration, occur after GBMs are implanted into the body. The immunomodulatory function of GBMs is considered to be a key factor influencing tissue regeneration. This review introduces the applications of GBMs in bone, neural, skin, and cardiovascular tissue engineering, emphasizing that the immunomodulatory functions of GBMs significantly improve tissue regeneration. This review focuses on summarizing and discussing the mechanisms by which GBMs mediate the sequential regulation of the innate immune cell inflammatory response. During the process of tissue healing, multiple immune responses, such as the inflammatory response, foreign body reaction, tissue fibrosis, and biodegradation of GBMs, are interrelated and influential. We discuss the regulation of these immune responses by GBMs, as well as the immune cells and related immunomodulatory mechanisms involved. Finally, we summarize the limitations in the immunomodulatory strategies of GBMs and ideas for optimizing GBM applications in tissue engineering. This review demonstrates the significance and related mechanism of the immunomodulatory function of GBM application in tissue engineering; more importantly, it contributes insights into the design of GBMs to enhance wound healing and tissue regeneration in tissue engineering.
Collapse
Affiliation(s)
- Lingling Ou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuan Su
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528399, China
| | - Wenqiang Xie
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Nianqiang Jin
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiankang He
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ruhui Luo
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xuan Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
16
|
Shu Q, Zhang N, Liu Y, Wang X, Chen J, Xie H, Pan F, Zhao L, Ding X, Wen Y, Wang L, Xie W, Lu J, Su G, Peng H, Yang P. IL-8 Triggers Neutrophil Extracellular Trap Formation Through an Nicotinamide Adenine Dinucleotide Phosphate Oxidase- and Mitogen-Activated Protein Kinase Pathway-Dependent Mechanism in Uveitis. Invest Ophthalmol Vis Sci 2023; 64:19. [PMID: 37824136 PMCID: PMC10587853 DOI: 10.1167/iovs.64.13.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Purpose To explore the mechanism underlying IL-8-induced neutrophil extracellular trap (NET) formation in patients with ocular-active Behçet's disease (BD) and the effect of inhibiting NET formation on the severity of inflammation in experimental autoimmune uveitis (EAU) mice. Methods The serum extracellular DNA and neutrophil elastase (NE) and IL-8 levels in patients with ocular-active BD, the expression of myeloperoxidase, NE, and histone H3Cit in IL-8-induced neutrophils isolated from healthy controls, and the effects of NETs on HMC3 cells were detected. Female C57BL/6J mice were immunized with IRBP651-670 to induce EAU and EAU mice received intravitreal injection of the CXCR2 (IL-8 receptor) antagonist SB225002 or PBS. The serum levels of extracellular DNA, NE, and keratinocyte-derived chemokine (the mouse ortholog of human IL-8) and expression of myeloperoxidase, NE, and histone H3Cit in mouse retinas were detected. Disease severity was evaluated by clinical and histopathological scores. Results Serum keratinocyte-derived chemokine expression levels in EAU mice and IL-8 expression levels in patients with ocular-active BD increased. IL-8 notably increased NET formation in a dose-dependent manner through an nicotinamide adenine dinucleotide phosphate oxidase and mitogen-activated protein kinase pathway dependent mechanism. IL-8-induced NET formation damaged HMC3 cells in vitro. Pretreatment with SB225002 notably ameliorated the production of NETs in EAU mice. Conclusions Our data confirm that NET formation is induced by IL-8. IL-8-induced NET formation was found to be related to mitogen-activated protein kinase and nicotinamide adenine dinucleotide phosphate pathways. Pretreatment with the CXCR2 antagonist SB225002 alleviated neutrophil infiltration and suppressed NET formation in EAU mice.
Collapse
Affiliation(s)
- Qinxin Shu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Ni Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Yanyao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xing Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jinquan Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hao Xie
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Fuying Pan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Long Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xuanheng Ding
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Yan Wen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Lingda Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Wenxi Xie
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jing Lu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hui Peng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
17
|
Du C, Cai N, Dong J, Xu C, Wang Q, Zhang Z, Li J, Huang C, Ma T. Uncovering the role of cytoskeleton proteins in the formation of neutrophil extracellular traps. Int Immunopharmacol 2023; 123:110607. [PMID: 37506501 DOI: 10.1016/j.intimp.2023.110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Neutrophils are a type of lymphocyte involved in innate immune defense. In response to specific stimuli, these phagocytic cells undergo a unique form of cell death, NETosis, during which they release neutrophil extracellular traps (NETs) composed of modified chromatin structures decorated with cytoplasmic and granular proteins. Multiple proteins and pathways have been implicated in the formation of NETs. The cytoskeleton, an interconnected network of filamentous polymers and regulatory proteins, plays a crucial role in resisting deformation, transporting intracellular cargo, and changing shape during movement of eukaryotic cells. It may also have evolved to defend eukaryotic organisms against infection. Recent research focuses on understanding the mechanisms underlying NETs formation and how cytoskeletal networks contribute to this process, by identifying enzymes that trigger NETosis or interact with NETs and influence cellular behavior through cytoskeletal dynamics. An enhanced understanding of the complex relationship between the cytoskeleton and NET formation will provide a framework for future research and the development of targeted therapeutic strategies, and supports the notion that the long-lived cytoskeleton structures may have a lasting impact on this area of research.
Collapse
Affiliation(s)
- Changlin Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Na Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jiahui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chuanting Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qi Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhenming Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
18
|
Manda-Handzlik A, Cieloch A, Kuźmicka W, Mroczek A, Stelmaszczyk-Emmel A, Demkow U, Wachowska M. Secretomes of M1 and M2 macrophages decrease the release of neutrophil extracellular traps. Sci Rep 2023; 13:15633. [PMID: 37730741 PMCID: PMC10511515 DOI: 10.1038/s41598-023-42167-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
The release of neutrophil extracellular traps (NETs) can be either beneficial or detrimental for the host, thus it is necessary to maintain a balance between formation and clearance of NETs. Multiple physiological factors eliciting NET release have been identified, yet the studies on natural signals limiting NET formation have been scarce. Accordingly, our aim was to analyze whether cytokines or immune cells can inhibit NET formation. To that end, human granulocytes were incubated with interleukin (IL)-4, IL-10, transforming growth factor beta-2 or adenosine and then stimulated to release NETs. Additionally, neutrophils were cultured in the presence of natural killer (NK) cells, regulatory T cells (Tregs), pro-inflammatory or anti-inflammatory macrophages (M1 or M2 macrophages), or in the presence of NK/Tregs/M1 macrophages or M2 macrophages-conditioned medium and subsequently stimulated to release NETs. Our studies showed that secretome of M1 and M2 macrophages, but not of NK cells and Tregs, diminishes NET formation. Co-culture experiments did not reveal any effect of immune cells on NET release. No effect of cytokines or adenosine on NET release was found. This study highlights the importance of paracrine signaling at the site of infection and is the first to show that macrophage secretome can regulate NET formation.
Collapse
Affiliation(s)
- Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland.
| | - Adrianna Cieloch
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091, Warsaw, Poland
| | - Weronika Kuźmicka
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Agnieszka Mroczek
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| | - Małgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091, Warsaw, Poland
| |
Collapse
|
19
|
Shiratori-Aso S, Nakazawa D. The involvement of NETs in ANCA-associated vasculitis. Front Immunol 2023; 14:1261151. [PMID: 37781373 PMCID: PMC10539550 DOI: 10.3389/fimmu.2023.1261151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is a serious autoimmune disease that is characterized by vascular necrosis. The pathogenesis of AAV includes ANCA-mediated neutrophil activation, subsequent release of inflammatory cytokines and reactive oxygen species (ROS), and formation of neutrophil extracellular traps (NETs). Excessive NETs could participate not only in ANCA-mediated vascular injury but also in the production of ANCAs per se as autoantigens. Thus, a vicious cycle of NET formation and ANCA production is critical for AAV pathogenesis. Elucidating the molecular signaling pathways in aberrant neutrophil activation and NETs clearance systems will allow specific therapeutics to regulate these pathways. Currently, standard therapy with high doses of glucocorticoids and immunosuppressants has improved outcomes in patients with AAV. However, AAV frequently develops in elderly people, and adverse effects such as severe infections in the standard regimens might contribute to the mortality. Mechanistically, cytokines or complement factors activate and prime neutrophils for ANCA-binding; thus, C5a receptor blocker has garnered attention as potential replacement for glucocorticoids in clinical settings. Recent studies have demonstrated that receptor-interacting protein kinases (RIPK3) and cyclophilin D (CypD), which regulate cell necrosis, may be involved in ANCA-induced NETs formation. Meanwhile, targeting NETs clearance, including the addition of deoxyribonuclease I (DNase I) and macrophage engulfment, may improve vasculitis. In this review, we focus on the pathogenesis of NETs and discuss potential targeted therapies for AAV based on recent experimental evidence.
Collapse
Affiliation(s)
| | - Daigo Nakazawa
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Juha M, Molnár A, Jakus Z, Ledó N. NETosis: an emerging therapeutic target in renal diseases. Front Immunol 2023; 14:1253667. [PMID: 37744367 PMCID: PMC10514582 DOI: 10.3389/fimmu.2023.1253667] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) are web-like structures composed of nuclear and granular components. The primary role of NETS is to prevent the dissemination of microbes and facilitate their elimination. However, this process is accompanied by collateral proinflammatory adverse effects when the NET release becomes uncontrollable, or clearance is impaired. Although NET-induced organ damage is conducted primarily and indirectly via immune complexes and the subsequent release of cytokines, their direct effects on cells are also remarkable. NETosis plays a critical pathogenic role in several renal disorders, such as the early phase of acute tubular necrosis, anti-neutrophil cytoplasmic antibody-mediated renal vasculitis, lupus nephritis, thrombotic microangiopathies, anti-glomerular basement membrane disease, and diabetic nephropathy. Their substantial contribution in the course of these disorders makes them a desirable target in the therapeutic armamentarium. This article gives an in-depth review of the heterogeneous pathogenesis and physiological regulations of NETosis and its pivotal role in renal diseases. Based on the pathogenesis, the article also outlines the current therapeutic options and possible molecular targets in the treatment of NET-related renal disorders. Methods We carried out thorough literature research published in PubMed and Google Scholar, including a comprehensive review and analysis of the classification, pathomechanisms, and a broad spectrum of NET-related kidney disorders. Conclusions NETosis plays a pivotal role in certain renal diseases. It initiates and maintains inflammatory and autoimmune disorders, thus making it a desirable target for improving patient and renal outcomes. Better understanding and clinical translation of the pathogenesis are crucial aspects to treatment, for improving patient, and renal outcomes.
Collapse
Affiliation(s)
- Márk Juha
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Adél Molnár
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Nóra Ledó
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
21
|
Shiratori-Aso S, Nakazawa D, Kudo T, Kanda M, Ueda Y, Watanabe-Kusunoki K, Nishio S, Iwasaki S, Tsuji T, Masuda S, Tomaru U, Ishizu A, Atsumi T. CD47 blockade ameliorates autoimmune vasculitis via efferocytosis of neutrophil extracellular traps. JCI Insight 2023; 8:e167486. [PMID: 37368493 PMCID: PMC10445685 DOI: 10.1172/jci.insight.167486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/23/2023] [Indexed: 06/29/2023] Open
Abstract
Neutrophil extracellular trap (NET) formation contributes to immune defense and is a distinct form of cell death. Excessive NET formation is found in patients with anti-neutrophil cytoplasmic antibody-associated (ANCA-associated) vasculitis (AAV), contributing to disease progression. The clearance of dead cells by macrophages, a process known as efferocytosis, is regulated by the CD47-mediated "don't eat me" signal. Hence, we hypothesized that pathogenic NETs in AAV escape from efferocytosis via the CD47 signaling pathway, resulting in the development of necrotizing vasculitis. Immunostaining for CD47 in human renal tissues revealed high CD47 expression in crescentic glomerular lesions of patients with AAV. In ex vivo studies, ANCA-induced netting neutrophils increased the expression of CD47 with the reduction of efferocytosis. After efferocytosis, macrophages displayed proinflammatory phenotypes. The blockade of CD47 in spontaneous crescentic glomerulonephritis-forming/Kinjoh (SCG/Kj) mice ameliorated renal disease and reduced myeloperoxidase-ANCA (MPO-ANCA) titers with a reduction in NET formation. Thus, CD47 blockade would protect against developing glomerulonephritis in AAV via restored efferocytosis of ANCA-induced NETs.
Collapse
Affiliation(s)
- Satoka Shiratori-Aso
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daigo Nakazawa
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Kudo
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masatoshi Kanda
- Division of Rheumatology and Clinical Immunology, Sapporo Medical University, Sapporo, Japan
| | - Yusho Ueda
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kanako Watanabe-Kusunoki
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sari Iwasaki
- Department of Pathology, Sapporo City General Hospital, Sapporo, Japan
| | - Takahiro Tsuji
- Department of Pathology, Sapporo City General Hospital, Sapporo, Japan
| | - Sakiko Masuda
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Utano Tomaru
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Zhang X, Kang Z, Yin D, Gao J. Role of neutrophils in different stages of atherosclerosis. Innate Immun 2023; 29:97-109. [PMID: 37491844 PMCID: PMC10468622 DOI: 10.1177/17534259231189195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils constitute the first line of defense in human immunity and can be attracted to inflamed and infected sites by various chemokines. As essential players in immune processes, neutrophils theoretically play integral roles in the course of chronic inflammation-induced atherosclerosis. However, because neutrophils are rarely found in atherosclerotic lesions, their involvement in the pathophysiological progression of atherosclerosis has been largely underestimated or ignored. Recent research has revealed convincing evidence showing the presence of neutrophils in atherosclerotic lesions and has revealed neutrophil contributions to different atherosclerosis stages in mice and humans. This review describes the underlying mechanisms of neutrophils in different stages of atherosclerosis and highlights potential neutrophil-targeted therapeutic strategies relevant to atherosclerosis. An in-depth understanding of neutrophils' roles in atherosclerosis pathology will promote exploration of new methods for the prevention and treatment of atherogenesis and atherothrombosis.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zhanfang Kang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Dazhong Yin
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jun Gao
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| |
Collapse
|
23
|
Jung JY, Ahn MH, Kim JW, Suh CH, Han JH, Kim HA. Association between CCR2 and CCL2 expression and NET stimulation in adult-onset Still's disease. Sci Rep 2023; 13:12218. [PMID: 37500699 PMCID: PMC10374521 DOI: 10.1038/s41598-023-39517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
Adult-onset Still's disease (AOSD) is a systemic inflammatory disease characterized by the activation of monocyte-derived cells and the release of neutrophil extracellular traps (NET). C-C motif ligand (CCL) 2 is a chemoattractant that interacts with the C-C motif chemokine receptor (CCR) 2, resulting in monocyte recruitment and activation. CCL2 and CCR2 were measured with enzyme-linked immunosorbent assay (ELISA) at the serum level, and using immunohistochemical staining at the skin and lymph node tissues levels. THP-1 cell lysates were analyzed using western blot and ELISA after NET stimulation in patients with AOSD. Serum CCL2 level was higher in patients with AOSD than in patients with rheumatoid arthritis and healthy controls (HCs). In patients with AOSD, the percentage of CCL2-positive inflammatory cells in the skin tissues and CCR2-positive inflammatory cells in the lymph nodes increased, compared to that in HCs and in patients with reactive lymphadenopathy, respectively. NET induced in patients with AOSD enhanced the secretion of CCR2, higher CCR2 expression in monocytes, and the levels of interleukin (IL)-1β, IL-6, and IL-18 from THP-1 cells. Our findings suggest that upregulation of the CCL2-CCR2 axis may contribute to the clinical and inflammatory characteristics of AOSD.
Collapse
Affiliation(s)
- Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Mi-Hyun Ahn
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Ji-Won Kim
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Jae Ho Han
- Department of Pathology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
24
|
Koncz G, Jenei V, Tóth M, Váradi E, Kardos B, Bácsi A, Mázló A. Damage-mediated macrophage polarization in sterile inflammation. Front Immunol 2023; 14:1169560. [PMID: 37465676 PMCID: PMC10351389 DOI: 10.3389/fimmu.2023.1169560] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023] Open
Abstract
Most of the leading causes of death, such as cardiovascular diseases, cancer, dementia, neurodegenerative diseases, and many more, are associated with sterile inflammation, either as a cause or a consequence of these conditions. The ability to control the progression of inflammation toward tissue resolution before it becomes chronic holds significant clinical potential. During sterile inflammation, the initiation of inflammation occurs through damage-associated molecular patterns (DAMPs) in the absence of pathogen-associated molecules. Macrophages, which are primarily localized in the tissue, play a pivotal role in sensing DAMPs. Furthermore, macrophages can also detect and respond to resolution-associated molecular patterns (RAMPs) and specific pro-resolving mediators (SPMs) during sterile inflammation. Macrophages, being highly adaptable cells, are particularly influenced by changes in the microenvironment. In response to the tissue environment, monocytes, pro-inflammatory macrophages, and pro-resolution macrophages can modulate their differentiation state. Ultimately, DAMP and RAMP-primed macrophages, depending on the predominant subpopulation, regulate the balance between inflammatory and resolving processes. While sterile injury and pathogen-induced reactions may have distinct effects on macrophages, most studies have focused on macrophage responses induced by pathogens. In this review, which emphasizes available human data, we illustrate how macrophages sense these mediators by examining the expression of receptors for DAMPs, RAMPs, and SPMs. We also delve into the signaling pathways induced by DAMPs, RAMPs, and SPMs, which primarily contribute to the regulation of macrophage differentiation from a pro-inflammatory to a pro-resolution phenotype. Understanding the regulatory mechanisms behind the transition between macrophage subtypes can offer insights into manipulating the transition from inflammation to resolution in sterile inflammatory diseases.
Collapse
Affiliation(s)
- Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktória Jenei
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márta Tóth
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Váradi
- Institute of Genetics, Biological Research Centre, Eotvos Lorand Research Network, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Balázs Kardos
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
25
|
Aendekerk JP, Ysermans R, Busch MH, Theunissen ROMFIH, Bijnens N, Potjewijd J, Damoiseaux JGMC, Reutelingsperger CP, van Paassen P. Assessment of longitudinal serum neutrophil extracellular trap-inducing activity in anti-neutrophil cytoplasmic antibody-associated vasculitis and glomerulonephritis in a prospective cohort using a novel bio-impedance technique. Kidney Int 2023; 104:151-162. [PMID: 37088424 DOI: 10.1016/j.kint.2023.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/23/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023]
Abstract
Neutrophil extracellular traps (NET) have been implicated in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). Here, we developed a novel, label-free, high-throughput bio-impedance technique to effectively measure serum NET-inducing activity. Using this technique, NET-inducing activity of serum derived from patients with AAV was assessed in a prospective cohort of 62 patients presenting with active AAV with major organ involvement. Thirty-five patients presented with new and 27 patients presented with relapsing AAV, of whom 38 had kidney and/or 31 had lung involvement. NET-inducing activity was assessed at diagnosis of active AAV (time zero), during the first 6 weeks of treatment, and after 6 months of treatment. Forty-seven patients revealed elevated NET-inducing activity at time zero. After initiation of immunosuppressive treatment, NET-inducing activity was reduced at six weeks. A subsequent increase at six months could potentially identify patients with relapsing disease (hazard ratio, 11.45 [interquartile range 1.36-96.74]). NET-inducing activity at time zero correlated with kidney function and proteinuria. Importantly, in kidney tissue, NETs co-localized with lesions typical of ANCA-associated glomerulonephritis and even correlated with systemic serum NET-inducing activity. Thus, our prospective data corroborate the importance of NET formation in AAV and ANCA-associated glomerulonephritis and the potential of longitudinal evaluation, as monitored by our novel bio-impedance assay and detailed histological evaluation.
Collapse
Affiliation(s)
- Joop P Aendekerk
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands; Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Renée Ysermans
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Matthias H Busch
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Ruud O M F I H Theunissen
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nele Bijnens
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Judith Potjewijd
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan G M C Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Pieter van Paassen
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands.
| |
Collapse
|
26
|
Yang X, Ma Y, Chen X, Zhu J, Xue W, Ning K. Mechanisms of neutrophil extracellular trap in chronic inflammation of endothelium in atherosclerosis. Life Sci 2023:121867. [PMID: 37348812 DOI: 10.1016/j.lfs.2023.121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Cardiovascular diseases are a primary cause of morbidity and mortality around the world. In addition, atherosclerosis (AS)-caused cardiovascular disease is the primary cause of death in human diseases, and almost two billion people suffer from carotid AS worldwide. AS is caused by chronic inflammation of the arterial vessel and is initiated by dysfunction of vascular endothelial cells. Neutrophils protect against pathogen invasion because they function as a component of the innate immune system. However, the contribution of neutrophils to cardiovascular disease has not yet been clarified. Neutrophil extracellular traps (NETs) represent an immune defense mechanism that is different from direct pathogen phagocytosis. NETs are extracellular web-like structures activated by neutrophils, and they play important roles in promoting endothelial inflammation via direct or indirect pathways. NETs consist of DNA, histones, myeloperoxidase, matrix metalloproteinases, proteinase 3, etc. Most of the components of NETs have no direct toxic effect on endothelial cells, such as DNA, but they can damage endothelial cells indirectly. In addition, NETs play a critical role in the process of AS; therefore, it is important to clarify the mechanisms of NETs in AS because NETs are a new potential therapeutic target AS. This review summarizes the possible mechanisms of NETs in AS.
Collapse
Affiliation(s)
- Xiaofan Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yupeng Ma
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Xin Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Jingjing Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Wenlong Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China.
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
27
|
Accipe L, Abadie A, Neviere R, Bercion S. Antioxidant Activities of Natural Compounds from Caribbean Plants to Enhance Diabetic Wound Healing. Antioxidants (Basel) 2023; 12:antiox12051079. [PMID: 37237945 DOI: 10.3390/antiox12051079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic wound healing is a global medical challenge. Several studies showed that delayed healing in diabetic patients is multifactorial. Nevertheless, there is evidence that excessive production of ROS and impaired ROS detoxification in diabetes are the main cause of chronic wounds. Indeed, increased ROS promotes the expression and activity of metalloproteinase, resulting in a high proteolytic state in the wound with significant destruction of the extracellular matrix, which leads to a stop in the repair process. In addition, ROS accumulation increases NLRP3 inflammasome activation and macrophage hyperpolarization in the M1 pro-inflammatory phenotype. Oxidative stress increases the activation of NETosis. This leads to an elevated pro-inflammatory state in the wound and prevents the resolution of inflammation, an essential step for wound healing. The use of medicinal plants and natural compounds can improve diabetic wound healing by directly targeting oxidative stress and the transcription factor Nrf2 involved in the antioxidant response or the mechanisms impacted by the elevation of ROS such as NLRP3 inflammasome, the polarization of macrophages, and expression or activation of metalloproteinases. This study of the diabetic pro-healing activity of nine plants found in the Caribbean highlights, more particularly, the role of five polyphenolic compounds. At the end of this review, research perspectives are presented.
Collapse
Affiliation(s)
- Laura Accipe
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| | - Alisson Abadie
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| | - Remi Neviere
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
- CHU Martinique, University Hospital of Martinique, 97200 Fort de France, France
| | - Sylvie Bercion
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| |
Collapse
|
28
|
Wu Y, Wei S, Wu X, Li Y, Han X. Neutrophil extracellular traps in acute coronary syndrome. J Inflamm (Lond) 2023; 20:17. [PMID: 37165396 PMCID: PMC10171160 DOI: 10.1186/s12950-023-00344-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Acute coronary syndrome (ACS) is a group of clinical syndromes caused by acute myocardial ischemia, which can cause heart failure, arrhythmia and even sudden death. It is the major cause of disability and death worldwide. Neutrophil extracellular traps (NETs) are reticular structures released by neutrophils activation and have various biological functions. NETs are closely related to the occurrence and development of ACS and also the subsequent damage after myocardial infarction. The mechanisms are complex and interdependent on various pathways, which require further exploration. This article reviewed the role and mechanism of NETs in ACS, thereby providing a valuable reference for the diagnosis and clinical treatment of ACS.
Collapse
Affiliation(s)
- Yawen Wu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shilin Wei
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiangyang Wu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80 Cuiyingmen, Chengguan District, Lanzhou, 730030, China.
| | - Xue Han
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80 Cuiyingmen, Chengguan District, Lanzhou, 730030, China.
| |
Collapse
|
29
|
Li J, Zhao C, Xu Y, Song L, Chen Y, Xu Y, Ma Y, Wang S, Xu A, He F. Remodeling of the osteoimmune microenvironment after biomaterials implantation in murine tibia: Single-cell transcriptome analysis. Bioact Mater 2023; 22:404-422. [PMID: 36311047 PMCID: PMC9588995 DOI: 10.1016/j.bioactmat.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022] Open
Abstract
Osseointegration seems to be a foreign body reaction equilibrium due to the complicated interactions between the immune and skeletal systems. The heterogeneity of the osteoimmune microenvironment in the osseointegration of implant materials remains elusive. Here, a single-cell study involving 40043 cells is conducted, and a total of 10 distinct cell clusters are identified from five different groups. A preliminary description of the osteoimmune microenvironment revealed the diverse cellular heterogeneity and dynamic changes modulated by implant properties. The increased immature neutrophils, Ly6C + CCR2hi monocytes, and S100a8hi macrophages induce an aggressive inflammatory response and eventually lead to the formation of fibrous capsule around the stainless steel implant. The enrichment of mature neutrophils, FcgR1hi and differentiated immunomodulatory macrophages around the titanium implant indicates favorable osseointegration under moderate immune response. Neutrophil-depletion mice are conducted to explore the role of neutrophils in osseointegration. Neutrophils may improve bone formation by enhancing the recruitment of BMSCs via the CXCL12/CXCR3 signal axis. These findings contribute to a better knowledge of osteoimmunology and are valuable for the design and modification of 'osteoimmune-smart' biomaterials in the bone regeneration field.
Collapse
Key Words
- BMP2, Bone Morphogenetic Proteins 2
- CXCL12, Chemokine (C-X-C mode) Ligand 12
- CXCR, CXC Chemokine Receptor
- FcgR, Fc Gamma Receptor
- IFN-γ, Interferon-gamma
- IL-1β, Interleukin-1 beta
- Implant
- MHC, Major Histocompatibility Complex
- MIP, Macrophage inflammatory cytokines
- MPO, Myeloperoxidase
- NE, Neutrophil Elastase
- NF-κB, Nuclear Factor Kappa-light-chain-enhancer of Activated B cells
- NOD, Nucleotide Binding Oligomerization Domain
- Neutrophil
- OPG, Osteoprotegerin
- Osseointegration
- Osteoimmunology
- RANKL, Nuclear Factor B receptor Activator Ligand
- RUNX2, Runt-related Transcription Factor 2
- S100a8, S100 Calcium Binding Protein A8
- SDF-1α, Stromal Cell-derived Factor-1 alpha
- STAT, Signal Transduction and Transcription Activator
- Single-cell transcriptomics
- TLR, Toll Like Receptor
- TNFα, Tumor Necrosis Factor-alpha
- TRAP, Tartrate Resistant Acid Phosphatase
Collapse
Affiliation(s)
- Jia Li
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Congrui Zhao
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yangbo Xu
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Lu Song
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yanqi Chen
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yuzi Xu
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yang Ma
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Siyuan Wang
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Antian Xu
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Fuming He
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Banos A, Thomas K, Garantziotis P, Filia A, Malissovas N, Pieta A, Nikolakis D, Panagiotopoulos AG, Chalkia A, Petras D, Bertsias G, Boumpas DT, Vassilopoulos D. The genomic landscape of ANCA-associated vasculitis: Distinct transcriptional signatures, molecular endotypes and comparison with systemic lupus erythematosus. Front Immunol 2023; 14:1072598. [PMID: 37051253 PMCID: PMC10083368 DOI: 10.3389/fimmu.2023.1072598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
IntroductionAnti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) present with a complex phenotype and are associated with high mortality and multi-organ involvement. We sought to define the transcriptional landscape and molecular endotypes of AAVs and compare it to systemic lupus erythematosus (SLE).MethodsWe performed whole blood mRNA sequencing from 30 patients with AAV (granulomatosis with polyangiitis/GPA and microscopic polyangiitis/MPA) combined with functional enrichment and network analysis for aberrant pathways. Key genes and pathways were validated in an independent cohort of 18 AAV patients. Co-expression network and hierarchical clustering analysis, identified molecular endotypes. Multi-level transcriptional overlap analysis to SLE was based on our published data from 142 patients.ResultsWe report here that “Pan-vasculitis” signature contained 1,982 differentially expressed genes, enriched in leukocyte differentiation, cytokine signaling, type I and type II IFN signaling and aberrant B-T cell immunity. Active disease was characterized by signatures linked to cell cycle checkpoints and metabolism pathways, whereas ANCA-positive patients exhibited a humoral immunity transcriptional fingerprint. Differential expression analysis of GPA and MPA yielded an IFN-g pathway (in addition to a type I IFN) in the former and aberrant expression of genes related to autophagy and mRNA splicing in the latter. Unsupervised molecular taxonomy analysis revealed four endotypes with neutrophil degranulation, aberrant metabolism and B-cell responses as potential mechanistic drivers. Transcriptional perturbations and molecular heterogeneity were more pronounced in SLE. Molecular analysis and data-driven clustering of AAV uncovered distinct transcriptional pathways that could be exploited for targeted therapy.DiscussionWe conclude that transcriptomic analysis of AAV reveals distinct endotypes and molecular pathways that could be targeted for therapy. The AAV transcriptome is more homogenous and less fragmented compared to the SLE which may account for its superior rates of response to therapy.
Collapse
Affiliation(s)
- Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Konstantinos Thomas
- Clinical Immunology- Rheumatology Unit, 2nd Department of Medicine and Laboratory, General Hospital of Athens Ippokrateio, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Garantziotis
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Anastasia Filia
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nikolaos Malissovas
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Antigone Pieta
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Rheumatology and Clinical Immunology Unit, 4th Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - Dimitrios Nikolakis
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Department of Gastroenterology, Academic Medical Center, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection & Immunity, Department of Experimental Immunology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Alexandros G. Panagiotopoulos
- Clinical Immunology- Rheumatology Unit, 2nd Department of Medicine and Laboratory, General Hospital of Athens Ippokrateio, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aglaia Chalkia
- Nephrology Department, General Hospital of Athens Ippokrateio, Athens, Greece
| | - Dimitrios Petras
- Nephrology Department, General Hospital of Athens Ippokrateio, Athens, Greece
| | - George Bertsias
- Department of Rheumatology and Clinical Immunology, University Hospital of Heraklion, Medical School, University of Crete, Heraklion, Greece
- Department of Immunity, Institute of Molecular Biology and Biotechnology-Foundation of Research and Technology-Hellas (FORTH), Heraklion, Greece
| | - Dimitrios T. Boumpas
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Rheumatology and Clinical Immunology Unit, 4th Department of Internal Medicine, Attikon University Hospital, Athens, Greece
- Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Vassilopoulos
- Clinical Immunology- Rheumatology Unit, 2nd Department of Medicine and Laboratory, General Hospital of Athens Ippokrateio, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Dimitrios Vassilopoulos,
| |
Collapse
|
31
|
Jensen M, Thorsen NW, Hallberg LAE, Hägglund P, Hawkins CL. New insight into the composition of extracellular traps released by macrophages exposed to different types of inducers. Free Radic Biol Med 2023; 202:97-109. [PMID: 36990299 DOI: 10.1016/j.freeradbiomed.2023.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Neutrophil extracellular trap (NET) release plays a key role in many chronic disease settings, including atherosclerosis. They are critical to innate immune defence, but also contribute to disease by promoting thrombosis and inflammation. Macrophages are known to release extracellular traps or "METs", but their composition and role in pathological processes are less well defined. In this study, we examined MET release from human THP-1 macrophages exposed to model inflammatory and pathogenic stimuli, including tumour necrosis factor α (TNFα), hypochlorous acid (HOCl) and nigericin. In each case, there was release of DNA from the macrophages, as visualized by fluorescence microscopy with the cell impermeable DNA binding dye SYTOX green, consistent with MET formation. Proteomic analysis on METs released from macrophages exposed to TNFα and nigericin reveals that they are composed of linker and core histones, together with a range of cytosolic and mitochondrial proteins. These include proteins involved in DNA binding, stress responses, cytoskeletal organisation, metabolism, inflammation, anti-microbial activity, and calcium binding. Quinone oxidoreductase in particular, was highly abundant in all METs but has not been reported previously in NETs. Moreover, there was an absence of proteases in METs in contrast to NETs. Some of the MET histones, contained post-translational modifications, including acetylation and methylation of Lys but not citrullination of Arg. These data provide new insight into the potential implications of MET formation in vivo and their contributions to immune defence and pathology.
Collapse
Affiliation(s)
- Mathias Jensen
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Nicoline W Thorsen
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Line A E Hallberg
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
32
|
Molecular Mechanisms of Neutrophil Extracellular Trap (NETs) Degradation. Int J Mol Sci 2023; 24:ijms24054896. [PMID: 36902325 PMCID: PMC10002918 DOI: 10.3390/ijms24054896] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Although many studies have been exploring the mechanisms driving NETs formation, much less attention has been paid to the degradation and elimination of these structures. The NETs clearance and the effective removal of extracellular DNA, enzymatic proteins (neutrophil elastase, proteinase 3, myeloperoxidase) or histones are necessary to maintain tissue homeostasis, to prevent inflammation and to avoid the presentation of self-antigens. The persistence and overabundance of DNA fibers in the circulation and tissues may have dramatic consequences for a host leading to the development of various systemic and local damage. NETs are cleaved by a concerted action of extracellular and secreted deoxyribonucleases (DNases) followed by intracellular degradation by macrophages. NETs accumulation depends on the ability of DNase I and DNAse II to hydrolyze DNA. Furthermore, the macrophages actively engulf NETs and this event is facilitated by the preprocessing of NETs by DNase I. The purpose of this review is to present and discuss the current knowledge about the mechanisms of NETs degradation and its role in the pathogenesis of thrombosis, autoimmune diseases, cancer and severe infections, as well as to discuss the possibilities for potential therapeutic interventions. Several anti-NETs approaches had therapeutic effects in animal models of cancer and autoimmune diseases; nevertheless, the development of new drugs for patients needs further study for an effective development of clinical compounds that are able to target NETs.
Collapse
|
33
|
Bettiol A, Alibaz-Oner F, Direskeneli H, Hatemi G, Saadoun D, Seyahi E, Prisco D, Emmi G. Vascular Behçet syndrome: from pathogenesis to treatment. Nat Rev Rheumatol 2023; 19:111-126. [PMID: 36544027 DOI: 10.1038/s41584-022-00880-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Behçet syndrome is a rare, chronic inflammatory disease of unknown aetiopathogenesis, most commonly presenting with mucocutaneous and ocular manifestations. Vascular involvement, most frequently superficial vein and deep vein thrombosis, can occur in up to 50% of patients with Behçet syndrome. Venous thrombosis at atypical sites (inferior and superior vena cava, suprahepatic veins with Budd-Chiari syndrome, portal vein, cerebral sinuses and right atrium and/or ventricle) and arterial involvement (mostly in situ thrombosis and aneurysms of the pulmonary arteries, as well as aneurysms of the abdominal aorta, and peripheral and visceral arteries) are also unique features of Behçet syndrome. Behçet syndrome is considered a natural model of inflammation-induced thrombosis in humans, with an impaired immune-inflammatory response rather than traditional cardiovascular risk factors contributing to thrombogenesis. Specifically, neutrophil hyperactivation and neutrophil-mediated mechanisms of damage directly promote endothelial dysfunction, platelet activation and thrombogenesis in Behçet syndrome. This unusual pathogenesis directly determines the treatment approach, which relies mostly on immunosuppressants rather than anticoagulants for treatment of thrombosis and for secondary prevention. This Review discusses the main histopathological, pathogenetic and clinical aspects of vascular Behçet syndrome, addressing their implications for therapeutic management. Future perspectives in terms of pathogenetic studies, disease monitoring and treatment strategies are also discussed.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy.,Internal Interdisciplinary Medicine Unit, Behçet Center, Careggi University Hospital, Firenze, Italy
| | - Fatma Alibaz-Oner
- Vasculitis Clinic, Marmara University, School of Medicine, Department of Internal Medicine, Division of Rheumatology, Istanbul, Turkey
| | - Haner Direskeneli
- Vasculitis Clinic, Marmara University, School of Medicine, Department of Internal Medicine, Division of Rheumatology, Istanbul, Turkey
| | - Gulen Hatemi
- Division of Rheumatology, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey.,Behçet's Disease Research Centre, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - David Saadoun
- Sorbonne Universités AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Département de Médecine Interne et Immunologie Clinique, F-75013, Paris, France.,Centre National de Références Maladies Autoimmunes Systémiques Rares, Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire; Inflammation-Immunopathology-Biotherapy Department (DMU 3iD); INSERM 959, Groupe Hospitalier Pitie-Salpetriere, AP-HP, Paris, France
| | - Emire Seyahi
- Division of Rheumatology, Department of Internal Medicine, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey.,Behçet's Disease Research Centre, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy.,Internal Interdisciplinary Medicine Unit, Behçet Center, Careggi University Hospital, Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy. .,Internal Interdisciplinary Medicine Unit, Behçet Center, Careggi University Hospital, Firenze, Italy. .,Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia.
| |
Collapse
|
34
|
Hurtado Gutiérrez MJ, Allard FL, Mosha HT, Dubois CM, McDonald PP. Human Neutrophils Generate Extracellular Vesicles That Modulate Their Functional Responses. Cells 2022; 12:cells12010136. [PMID: 36611930 PMCID: PMC9818892 DOI: 10.3390/cells12010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Neutrophils influence innate and adaptive immunity by releasing various cytokines and chemokines, by generating neutrophil extracellular traps (NETs), and by modulating their own survival. Neutrophils also produce extracellular vesicles (EVs) termed ectosomes, which influence the function of other immune cells. Here, we studied neutrophil-derived ectosomes (NDEs) and whether they can modulate autologous neutrophil responses. We first characterized EV production by neutrophils, following MISEV 2018 guidelines to facilitate comparisons with other studies. We found that such EVs are principally NDEs, that they are rapidly released in response to several (but not all) physiological stimuli, and that a number of signaling pathways are involved in the induction of this response. When co-incubated with autologous neutrophils, NDE constituents were rapidly incorporated into recipient cells and this triggered and/or modulated neutrophil responses. The pro-survival effect of GM-CSF, G-CSF, IFNγ, and dexamethasone was reversed; CXCL8 and NET formation were induced in otherwise unstimulated neutrophils; the induction of inflammatory chemokines by TNFα was modulated depending on the activation state of the NDEs' parent cells; and inducible NET generation was attenuated. Our data show that NDE generation modulates neutrophil responses in an autocrine and paracrine manner, and indicate that this probably represents an important aspect of how neutrophils shape their environment and cellular interactions.
Collapse
Affiliation(s)
- María José Hurtado Gutiérrez
- Department of Immunology and Cell Biology, Medicine Faculty, Université de Sherbrooke, CRCHUS, Sherbrooke, QC J1H5N4, Canada
| | - Frédérick L. Allard
- Department of Immunology and Cell Biology, Medicine Faculty, Université de Sherbrooke, CRCHUS, Sherbrooke, QC J1H5N4, Canada
| | - Hugo Tshivuadi Mosha
- Department of Immunology and Cell Biology, Medicine Faculty, Université de Sherbrooke, CRCHUS, Sherbrooke, QC J1H5N4, Canada
| | - Claire M. Dubois
- Department of Immunology and Cell Biology, Medicine Faculty, Université de Sherbrooke, CRCHUS, Sherbrooke, QC J1H5N4, Canada
| | - Patrick P. McDonald
- Pulmonary Division, Medicine Faculty, Université de Sherbrooke, CRCHUS, Sherbrooke, QC J1K2R1, Canada
- Correspondence:
| |
Collapse
|
35
|
Fang Q, Stehr AM, Naschberger E, Knopf J, Herrmann M, Stürzl M. No NETs no TIME: Crosstalk between neutrophil extracellular traps and the tumor immune microenvironment. Front Immunol 2022; 13:1075260. [PMID: 36618417 PMCID: PMC9816414 DOI: 10.3389/fimmu.2022.1075260] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor immune microenvironment (TIME) controls tumorigenesis. Neutrophils are important components of TIME and control tumor progression and therapy resistance. Neutrophil extracellular traps (NETs) ejected by activated neutrophils are net-like structures composed of decondensed extracellular chromatin filaments decorated with a plethora of granules as well as cytoplasmic proteins. Many of these harbour post translational modifications. Cancer cells reportedly trigger NET formation, and conversely, NETs alter the TIME and promote tumor cell proliferation and migration. The specific interactions between NETs and TIME and the respective effects on tumor progression are still elusive. In certain tumors, a CD4+ T helper (Th) 2 cell-associated TIME induces NETs and exerts immunosuppressive functions via programmed death 1 (PD-1)/PD-L1, both associated with poorer prognosis. In other cases, NETs induce the proliferation of Th1 cells, associated with an improved prognosis in cancer. In addition, NETs can drive macrophage polarization and often rely on macrophages to promote cancer cell invasion and metastasis. In turn, macrophages can swiftly clear NETs in an immunologically silent manner. The aim of this review is to summarize the knowledge about the mutual interaction between NETs and TIME and its impact on tumor growth and therapy.
Collapse
Affiliation(s)
- Qi Fang
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Antonia Margarethe Stehr
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
36
|
Eating the Enemy: Mycoplasma Strategies to Evade Neutrophil Extracellular Traps (NETs) Promoting Bacterial Nucleotides Uptake and Inflammatory Damage. Int J Mol Sci 2022; 23:ijms232315030. [PMID: 36499356 PMCID: PMC9740415 DOI: 10.3390/ijms232315030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Neutrophils are effector cells involved in the innate immune response against infection; they kill infectious agents in the intracellular compartment (phagocytosis) or in the extracellular milieu (degranulation). Moreover, neutrophils release neutrophil extracellular traps (NETs), complex structures composed of a scaffold of decondensed DNA associated with histones and antimicrobial compounds; NETs entrap infectious agents, preventing their spread and promoting their clearance. NET formation is triggered by microbial compounds, but many microorganisms have evolved several strategies for NET evasion. In addition, the dysregulated production of NETs is associated with chronic inflammatory diseases. Mycoplasmas are reduced genome bacteria, able to induce chronic infections with recurrent inflammatory symptoms. Mycoplasmas' parasitic lifestyle relies on metabolite uptake from the host. Mycoplasmas induce NET release, but their surface or secreted nucleases digest the NETs' DNA scaffold, allowing them to escape from entrapment and providing essential nucleotide precursors, thus promoting the infection. The presence of Mycoplasma species has been associated with chronic inflammatory disorders, such as systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, Crohn's disease, and cancer. The persistence of mycoplasma infection and prolonged NET release may contribute to the onset of chronic inflammatory diseases and needs further investigation and insights.
Collapse
|
37
|
Zhang C, Guo D, Qiao H, Li J, Li J, Yang Y, Chang S, Li F, Wang D, Li H, He X, Wang F. Macrophage Extracellular Traps Exacerbate Secondary Spinal Cord Injury by Modulating Macrophage/Microglia Polarization via LL37/P2X7R/NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9197940. [PMID: 36466087 PMCID: PMC9713475 DOI: 10.1155/2022/9197940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 03/31/2024]
Abstract
Persistent inflammation in the secondary spinal cord injury (SCI) is an important reason for the failure of nerve repair, which is partly due to the continuous activation of local M1-like macrophage/microglia. It is reported that extracellular trap (ET) has been a new way of cell death, which can be released by macrophages and named macrophage extracellular trap (Met). Furthermore, it exists widely in the pathophysiological process of many diseases, but it has been rarely studied in the field of SCI. In this study, we constructed a spinal cord contusion model and assessed the function outcome of SCI rats. We used immunofluorescence, flow cytometry, and transmission electron microscope (TEM) to demonstrate the existence of Mets. Besides, some related experiments had also been employed to explore the relationship between Mets and M1 polarization of macrophage/microglia. We also performed Co-IP and Western blotting to reveal a new extracellular proinflammatory signal pathway. Finally, we made a linear regression analysis between the concentrations of specific markers of Mets in human serum and ASIA scores. Briefly, our results suggested that macrophages infiltrated in SCI area could induce macrophage/microglia to differentiate into M1-like cells by releasing Mets, which may be achieved partly through LL37-P2X37-NF-κB signal pathway. However, limiting Mets could effectively inhibit M1 polarization and promote function recovery. In addition, the concentrations of Met related proteins in human serum showed high correlation with ASIA scores and could be applied to reflect the severity of SCI. In conclusion, Mets may be a new target for SCI therapy and a promising index for SCI assessment.
Collapse
Affiliation(s)
- Chengyi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Dong Guo
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hao Qiao
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jie Li
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jiaxi Li
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yubing Yang
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Su'e Chang
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Fengtao Li
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Dong Wang
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Haopeng Li
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xijing He
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, Xi'an International Medical Center Hospital, Xi'an, China
| | - Fang Wang
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
38
|
Schoen J, Euler M, Schauer C, Schett G, Herrmann M, Knopf J, Yaykasli KO. Neutrophils' Extracellular Trap Mechanisms: From Physiology to Pathology. Int J Mol Sci 2022; 23:12855. [PMID: 36361646 PMCID: PMC9653572 DOI: 10.3390/ijms232112855] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Neutrophils are an essential part of the innate immune system and the first line of defense against invading pathogens. They phagocytose, release granular contents, produce reactive oxygen species, and form neutrophil extracellular traps (NETs) to fight pathogens. With the characterization of NETs and their components, neutrophils were identified as players of the innate adaptive crosstalk. This has placed NETs at the center not only of physiological but also pathological processes. Aside from their role in pathogen uptake and clearance, NETs have been demonstrated to contribute to the resolution of inflammation by forming aggregated NETs able to degrade inflammatory mediators. On the other hand, NETs have the potential to foster severe pathological conditions. When homeostasis is disrupted, they occlude vessels and ducts, serve as sources of autoantigens and danger or damage associated molecular patterns, directly damage tissues, and exaggerate complement activity and inflammation. This review focusses on the understanding of NETs from their formation to their functions in both physiological and pathological processes.
Collapse
Affiliation(s)
- Janina Schoen
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Maximilien Euler
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Kursat Oguz Yaykasli
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
39
|
Yamamoto Y, Kadoya K, Terkawi MA, Endo T, Konno K, Watanabe M, Ichihara S, Hara A, Kaneko K, Iwasaki N, Ishijima M. Neutrophils delay repair process in Wallerian degeneration by releasing NETs outside the parenchyma. Life Sci Alliance 2022; 5:e202201399. [PMID: 35961782 PMCID: PMC9375156 DOI: 10.26508/lsa.202201399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/05/2022] Open
Abstract
Although inflammation is indispensable for the repair process in Wallerian degeneration (WD), the role of neutrophils in the WD repair process remains unclear. After peripheral nerve injury, neutrophils accumulate at the epineurium but not the parenchyma in the WD region because of the blood-nerve barrier. An increase or decrease in the number of neutrophils delayed or promoted macrophage infiltration from the epineurium into the parenchyma and the repair process in WD. Abundant neutrophil extracellular traps (NETs) were formed around neutrophils, and its inhibition dramatically increased macrophage infiltration into the parenchyma. Furthermore, inhibition of either MIF or its receptor, CXCR4, in neutrophils decreased NET formation, resulting in enhanced macrophage infiltration into the parenchyma. Moreover, inhibiting MIF for just 2 h after peripheral nerve injury promoted the repair process. These findings indicate that neutrophils delay the repair process in WD from outside the parenchyma by inhibiting macrophage infiltration via NET formation and that neutrophils, NETs, MIF, and CXCR4 are therapeutic targets for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yasuhiro Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Ichihara
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Akira Hara
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Kazuo Kaneko
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
40
|
Ma X, Niu X, Zhao J, Deng Z, Li J, Wu X, Wang B, Zhang M, Zhao Y, Guo X, Sun P, Huang T, Wang J, Song J. Downregulation of Sepina3n Aggravated Blood-Brain Barrier Disruption after Traumatic Brain Injury by Activating Neutrophil Elastase in Mice. Neuroscience 2022; 503:45-57. [PMID: 36089165 DOI: 10.1016/j.neuroscience.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young adults and the main cause of mortality and disability across all ages worldwide. We previously analyzed the expression profile data of TBI models obtained from the Gene Expression Omnibus (GEO) database and found that the seripina3n mRNA was markedly upregulated in the acute phase of TBI in four mRNA expression profile data sets, indicating that serpina3n may be involved in the pathophysiological process of TBI. Therefore, we further investigated the biological role and molecular mechanism of serpina3n in traumatic brain injury in this study. As a result, the endogenous level of sepina3n was markedly elevated in the cortex around the contusion sit in mice at day 1 and day 3 after TBI. Inhibiting the expression of serpina3n caused aggravation of neutrophil elastase (NE) expression, BBB disruption, and neurological deficit. With the inactivation of NE, even if serpina3n was silenced, the disruption of the BBB was not further aggravated. In vitro experiments further proved that recombinant serpina3n dose-dependently inhibited the activity of recombinant NE. Based on the above, this study demonstrated that the endogenous level of sepina3n was significantly elevated in the cortex around the contusion sit after TBI in mice, which reduced the secondary blood-brain barrier disruption by inhibiting the activity of neutrophil elastase.
Collapse
Affiliation(s)
- Xudong Ma
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaorong Niu
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Junjie Zhao
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhong Deng
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiaxi Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiang Wu
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Bo Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ming Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yonglin Zhao
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaoye Guo
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Peng Sun
- Department of Neurosurgery, Tangdu Hospital, Military Medical University of PLA Airforce, Xi'an, Shaanxi 710038, China
| | - Tingqin Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinning Song
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
41
|
Han T, Tang H, Lin C, Shen Y, Yan D, Tang X, Guo D. Extracellular traps and the role in thrombosis. Front Cardiovasc Med 2022; 9:951670. [PMID: 36093130 PMCID: PMC9452724 DOI: 10.3389/fcvm.2022.951670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombotic complications pose serious health risks worldwide. A significant change in our understanding of the pathophysiology of thrombosis has occurred since the discovery of extracellular traps (ETs) and their prothrombotic properties. As a result of immune cells decondensing chromatin into extracellular fibers, ETs promote thrombus formation by acting as a scaffold that activates platelets and coagulates them. The involvement of ETs in thrombosis has been reported in various thrombotic conditions including deep vein thrombosis (DVT), pulmonary emboli, acute myocardial infarction, aucte ischemic stroke, and abdominal aortic aneurysms. This review summarizes the existing evidence of ETs in human and animal model thrombi. The authors described studies showing the existence of ETs in venous or arterial thrombi. In addition, we studied potential novel therapeutic opportunities related to the resolution or prevention of thrombosis by targeting ETs.
Collapse
|
42
|
Toyama C, Maeda A, Kogata S, Yamamoto R, Masahata K, Ueno T, Kamiyama M, Tazuke Y, Eguchi H, Okuyama H, Miyagawa S. Suppression of xenogeneic innate immune response by a membrane‑type human surfactant protein‑A. Exp Ther Med 2022; 24:590. [DOI: 10.3892/etm.2022.11527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/13/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Riho Yamamoto
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Takehisa Ueno
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Masafumi Kamiyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Yuko Tazuke
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan
| |
Collapse
|
43
|
Ham J, Kim J, Ko YG, Kim HY. The Dynamic Contribution of Neutrophils in the Chronic Respiratory Diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:361-378. [PMID: 35837821 PMCID: PMC9293600 DOI: 10.4168/aair.2022.14.4.361] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 01/13/2023]
Abstract
Asthma, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis are representative chronic respiratory diseases (CRDs). Although they differ in terms of disease presentation, they are all thought to arise from unresolved inflammation. Neutrophils are not only the first responders to acute inflammation, but they also help resolve the inflammation. Notably, emerging clinical studies show that CRDs are associated with systemic and local elevation of neutrophils. Moreover, murine studies suggest that airway-infiltrating neutrophils not only help initiate airway inflammation but also prolong the inflammation. Given this background, this review describes neutrophil-mediated immune responses in CRDs and summarizes the completed, ongoing, and potential clinical trials that test the therapeutic value of targeting neutrophils in CRDs. The review also clarifies the importance of understanding how neutrophils interact with other immune cells and how these interactions contribute to chronic inflammation in specific CRDs. This information may help identify future therapeutic strategies for CRDs.
Collapse
Affiliation(s)
- Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Jihyun Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Young Gyun Ko
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
44
|
Block H, Rossaint J, Zarbock A. The Fatal Circle of NETs and NET-Associated DAMPs Contributing to Organ Dysfunction. Cells 2022; 11:1919. [PMID: 35741047 PMCID: PMC9222025 DOI: 10.3390/cells11121919] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is the first line of defense against invading pathogens or sterile injuries. Pattern recognition receptors (PRR) sense molecules released from inflamed or damaged cells, or foreign molecules resulting from invading pathogens. PRRs can in turn induce inflammatory responses, comprising the generation of cytokines or chemokines, which further induce immune cell recruitment. Neutrophils represent an essential factor in the early immune response and fulfill numerous tasks to fight infection or heal injuries. The release of neutrophil extracellular traps (NETs) is part of it and was originally attributed to the capture and elimination of pathogens. In the last decade studies revealed a detrimental role of NETs during several diseases, often correlated with an exaggerated immune response. Overwhelming inflammation in single organs can induce remote organ damage, thereby further perpetuating release of inflammatory molecules. Here, we review recent findings regarding damage-associated molecular patterns (DAMPs) which are able to induce NET formation, as well as NET components known to act as DAMPs, generating a putative fatal circle of inflammation contributing to organ damage and sequentially occurring remote organ injury.
Collapse
Affiliation(s)
| | | | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (H.B.); (J.R.)
| |
Collapse
|
45
|
Aloul KM, Nielsen JE, Defensor EB, Lin JS, Fortkort JA, Shamloo M, Cirillo JD, Gombart AF, Barron AE. Upregulating Human Cathelicidin Antimicrobial Peptide LL-37 Expression May Prevent Severe COVID-19 Inflammatory Responses and Reduce Microthrombosis. Front Immunol 2022; 13:880961. [PMID: 35634307 PMCID: PMC9134243 DOI: 10.3389/fimmu.2022.880961] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is characterized by hyperactivation by inflammatory cytokines and recruitment of macrophages, neutrophils, and other immune cells, all hallmarks of a strong inflammatory response that can lead to severe complications and multi-organ damage. Mortality in COVID-19 patients is associated with a high prevalence of neutrophil extracellular trap (NET) formation and microthrombosis that are exacerbated by hyperglycemia, diabetes, and old age. SARS-CoV-2 infection in humans and non-human primates have revealed long-term neurological consequences of COVID-19, possibly concomitant with the formation of Lewy bodies in the brain and invasion of the nervous system via the olfactory bulb. In this paper, we review the relevance of the human cathelicidin LL-37 in SARS-CoV-2 infections. LL-37 is an immunomodulatory, host defense peptide with direct anti-SARS-CoV-2 activity, and pleiotropic effects on the inflammatory response, neovascularization, Lewy body formation, and pancreatic islet cell function. The bioactive form of vitamin D and a number of other compounds induce LL-37 expression and one might predict its upregulation, could reduce the prevalence of severe COVID-19. We hypothesize upregulation of LL-37 will act therapeutically, facilitating efficient NET clearance by macrophages, speeding endothelial repair after inflammatory tissue damage, preventing α-synuclein aggregation, and supporting blood-glucose level stabilization by facilitating insulin release and islet β-cell neogenesis. In addition, it has been postulated that LL-37 can directly bind the S1 domain of SARS-CoV-2, mask angiotensin converting enzyme 2 (ACE2) receptors, and limit SARS-CoV-2 infection. Purposeful upregulation of LL-37 could also serve as a preventative and therapeutic strategy for SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Karim M. Aloul
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Erwin B. Defensor
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jennifer S. Lin
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| | - John A. Fortkort
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| | - Mehrdad Shamloo
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jeffrey D. Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M College of Medicine, Bryan, TX, United States
| | - Adrian F. Gombart
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
- The Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Annelise E. Barron
- Department of Bioengineering, Schools of Medicine and of Engineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
46
|
Role of macrophage extracellular traps in innate immunity and inflammatory disease. Biochem Soc Trans 2022; 50:21-32. [PMID: 35191493 DOI: 10.1042/bst20210962] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
Macrophages play an integral role in initiating innate immune defences and regulating inflammation. They are also involved in maintaining homeostasis and the resolution of inflammation, by promoting tissue repair and wound healing. There is evidence that like neutrophils, macrophages can release extracellular traps following exposure to a range of pathogenic and pro-inflammatory stimuli. Extracellular traps are released by a specialised cell death pathway termed 'ETosis', and consist of a backbone of DNA and histones decorated with a range of other proteins. The composition of extracellular trap proteins can be influenced by both the cell type and the local environment in which the traps are released. In many cases, these proteins have an antimicrobial role and assist with pathogen killing. Therefore, the release of extracellular traps serves as a means to both immobilise and destroy invading pathogens. In addition to their protective role, extracellular traps are also implicated in disease pathology. The release of neutrophil extracellular traps (NETs) is causally linked to the development of wide range of human diseases. However, whether macrophage extracellular traps (METs) play a similar role in disease pathology is less well established. Moreover, macrophages are also involved in the clearance of extracellular traps, which could assist in the resolution of tissue damage associated with the presence of extracellular traps. In this review, we will provide an overview of the pathways responsible for macrophage extracellular trap release, and discuss the role of these structures in innate immunity and disease pathology and possible therapeutic strategies.
Collapse
|
47
|
Schultz BM, Acevedo OA, Kalergis AM, Bueno SM. Role of Extracellular Trap Release During Bacterial and Viral Infection. Front Microbiol 2022; 13:798853. [PMID: 35154050 PMCID: PMC8825568 DOI: 10.3389/fmicb.2022.798853] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are innate immune cells that play an essential role during the clearance of pathogens that can release chromatin structures coated by several cytoplasmatic and granular antibacterial proteins, called neutrophil extracellular traps (NETs). These supra-molecular structures are produced to kill or immobilize several types of microorganisms, including bacteria and viruses. The contribution of the NET release process (or NETosis) to acute inflammation or the prevention of pathogen spreading depends on the specific microorganism involved in triggering this response. Furthermore, studies highlight the role of innate cells different from neutrophils in triggering the release of extracellular traps during bacterial infection. This review summarizes the contribution of NETs during bacterial and viral infections, explaining the molecular mechanisms involved in their formation and the relationship with different components of such pathogens.
Collapse
Affiliation(s)
- Bárbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Orlando A Acevedo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
48
|
Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol 2022; 19:177-191. [PMID: 35039631 PMCID: PMC8803838 DOI: 10.1038/s41423-021-00832-3] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a component of many disease conditions that affect a large group of individuals worldwide. Chronic inflammation is characterized by persistent, low-grade inflammation and is increased in the aging population. Neutrophils are normally the first responders to acute inflammation and contribute to the resolution of inflammation. However, in chronic inflammation, the role of neutrophils is less well understood and has been described as either beneficial or detrimental, causing tissue damage and enhancing the immune response. Emerging evidence suggests that neutrophils are important players in several chronic diseases, such as atherosclerosis, diabetes mellitus, nonalcoholic fatty liver disease and autoimmune disorders. This review will highlight the interaction of neutrophils with other cells in the context of chronic inflammation, the contribution of neutrophils to selected chronic inflammatory diseases, and possible future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Herrero-Cervera
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ellinor Kenne
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
Box CD, Cronin O, Hauser B. The Impact of High Dose Glucocorticoids on Bone Health and Fracture Risk in Systemic Vasculitides. Front Endocrinol (Lausanne) 2022; 13:806361. [PMID: 35250864 PMCID: PMC8889574 DOI: 10.3389/fendo.2022.806361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/07/2022] [Indexed: 12/29/2022] Open
Abstract
Systemic vasculitides are a range of conditions characterized by inflammation of blood vessels which may manifest as single organ or life-threatening multisystem disease. The treatment of systemic vasculitis varies depending on the specific disease but historically has involved initial treatment with high dose glucocorticoids alone or in conjunction with other immunosuppressive agents. Prolonged glucocorticoid treatment is frequently required as maintenance treatment. Patients with small and large vessel vasculitis are at increased risk of fracture. Osteoporosis may occur due to intrinsic factors such as chronic inflammation, impaired renal function and to a large extent due to pharmacological therapy with high dose glucocorticoid or combination treatments. This review will outline the known mechanism of bone loss in vasculitis and will summarize factors attributing to fracture risk in different types of vasculitis. Osteoporosis treatment with specific consideration for patients with vasculitis will be discussed. The use of glucocorticoid sparing immunosuppressive agents in the treatment of systemic vasculitis is a significant area of ongoing research. Adjunctive treatments are used to reduce cumulative doses of glucocorticoids and therefore may significantly decrease the associated fracture risk in patients with vasculitis. Lastly, we will highlight the many unknowns in the relation between systemic vasculitis, its treatment and bone health and will outline key research priorities for this field.
Collapse
Affiliation(s)
| | - Owen Cronin
- Department of Rheumatology, Bon Secours Hospital Cork, Cork, Ireland
- School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Barbara Hauser
- Rheumatic Disease Unit, Western General Hospital, Edinburgh, United Kingdom
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Barbara Hauser,
| |
Collapse
|
50
|
The Immunogenetics of Vasculitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:299-334. [DOI: 10.1007/978-3-030-92616-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|