1
|
Chen L, Huang R, Huang C, Nong G, Mo Y, Ye L, Lin K, Chen A. Cell therapy for scleroderma: progress in mesenchymal stem cells and CAR-T treatment. Front Med (Lausanne) 2025; 11:1530887. [PMID: 39882532 PMCID: PMC11774712 DOI: 10.3389/fmed.2024.1530887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Cell therapy is an emerging strategy for precision treatment of scleroderma. This review systematically summarizes the research progress of mesenchymal stem cell (MSC) and chimeric antigen receptor T cell (CAR-T) therapies in scleroderma and discusses the challenges and future directions for development. MSCs possess multiple functions, including immunomodulation, anti-fibrosis, and promotion of vascular regeneration, all of which can improve multiple pathological processes associated with scleroderma. Studies have demonstrated that MSCs can alleviate skin fibrosis by inhibiting CCL2 production and reducing the recruitment of pathological macrophages; their paracrine effects can exert extensive regulatory functions. CAR-T cell therapy ca specifically target and eliminate autoreactive immune cells, exhibiting enhanced specificity and personalized potential. Different cell therapies may have complementary and synergistic effects in treating scleroderma, such as MSCs exerting their effects through paracrine mechanisms while CAR-T cells specifically eliminate pathological cells. Furthermore, cell-free therapies derived from MSCs, such as extracellular vesicles or exosomes, may help circumvent the limitations of MSC therapy. Although cell therapy has opened new avenues for the precision treatment of scleroderma, it still faces numerous challenges. In the future, it is essential to strengthen integration of basic and clinical research, establish standardized protocols for cell preparation and quality control, develop personalized treatment plans, and rationally combine cell therapy with existing treatment methods to maximize its advantages and improve patient prognosis and quality of life.
Collapse
Affiliation(s)
- Liting Chen
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Rongshan Huang
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Chaoshuo Huang
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Guiming Nong
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Yuanyuan Mo
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Lvyin Ye
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Kunhong Lin
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
| | - Anping Chen
- Department of Rheumatology and Immunology, Qinzhou First People's Hospital, Qinzhou, Guangxi, China
- Minda Hospital of Hubei Minzu University, Enshi, China
| |
Collapse
|
2
|
Lescoat A, Ghosh M, Kadauke S, Khanna D. Innovative cell therapies for systemic sclerosis: available evidence and new perspectives. Expert Rev Clin Immunol 2025; 21:29-43. [PMID: 39279565 DOI: 10.1080/1744666x.2024.2402494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is the rheumatic disease with the highest individual mortality rate with a detrimental impact on quality of life. Cell-based therapies may offer new perspectives for this disease as recent phase I trials support the safety of IV infusion of allogeneic mesenchymal stromal cells in SSc and case reports highlight the potential use of Chimeric Antigen Receptor (CAR)-T cells targeting CD19 in active SSc patients who have not responded to conventional immunosuppressive therapies. AREAS COVERED This narrative review highlights the most recent evidence supporting the use of cellular therapies in SSc as well as their potential mechanisms of action and discusses future perspectives for cell-based therapies in SSc. Medline/PubMed was used to identify the articles of interest, using the keywords 'Cellular therapies,' 'Mesenchymal stromal cells,' 'Chimeric Antigen Receptor' AND 'systemic sclerosis.' Milestones articles reported by the authors were also used. EXPERT OPINION Cellular therapies may represent an opportunity for long-term remission/cure in patients with different autoimmune diseases, including SSc who have not responded to conventional therapies. Multiple ongoing phase I/II trials will provide greater insights into the efficacy and toxicity of cellular therapies.
Collapse
Affiliation(s)
- Alain Lescoat
- Inserm, EHESP, Irset -Institut de Recherche en Santé, Environnement et Travail-UMRS, University of Rennes CHU Rennes, Rennes, France
- Department of Internal Medicine and Clinical Immunology, CHU Rennes, Rennes, France
| | - Monalisa Ghosh
- Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, MI, USA
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Stephan Kadauke
- Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Zhang P, Pei H, Zhou G, Fu Q, Bai R, Lin P, Wu Q, Xu X, Chen M. Effectiveness and Safety of Micro-Plasma Radiofrequency Treatment Combined With Autologous Chyle Fat Grafting Treatment for Hypertrophic Scars: A Retrospective Study. J Cosmet Dermatol 2025; 24:e16728. [PMID: 39731280 DOI: 10.1111/jocd.16728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Hypertrophic scar (HS) is a fibroproliferative disorder resulting from abnormal healing of skin tissue after injury. Although various therapies are currently employed in clinical to treat HSs, there is no widely accepted standard therapy. Micro-plasma radiofrequency (MPR) and autologous chyle fat grafting are emerging treatments for this condition, and they have demonstrated promising therapeutic outcomes in clinical applications. The aim of this study is to investigate the effectiveness and safety of combining MPR with autologous chyle fat grafting for the treatment of HSs. METHODS We performed a retrospective study on patients diagnosed with HS in a single center between January 2020 and December 2023. According to the treatments, patients were divided into three groups, with 6 months follow-up. The single therapy group received MPR alone for two times. The combined therapy Group 1 first received the MPR treatment followed by the combined treatment. The combined therapy Group 2 first received the combined treatment and then received the MPR treatment. The effectiveness of treatment was evaluated using the Vancouver Scar Scale (VSS) and the Patient Scar Assessment Scale (PSAS). The Visual Analog Scale (VAS) was used to assess the patients' pain on the day of treatment and 1 day after treatment. Adverse events and complications were recorded to assess the safety of treatment. RESULTS A total of 73 patients diagnosed with HS were enrolled in this study, including 35 patients in the single therapy group, 18 patients in the combined therapy Group 1, and 20 patients in the combined therapy Group 2. After the treatments were completed, all three groups exhibited significant effectiveness. The two combined therapy groups scored lower after treatments in the VSS, which includes height, vascularity, pliability, and total scores, as well as in the PSAS, which includes color, stiffness, thickness, and total scores, compared to the single therapy group, with a statistically significant difference. Regarding pain response to treatment, there was no statistical difference in VAS among the three groups. No statistical difference in the overall incidence of adverse events was observed among the three groups, and no severe complications were recorded. CONCLUSIONS This study revealed the combination of MPR and autologous chyle fat grafting showed superior effectiveness compared to MPR alone in treating HSs, without any observed increase in overall adverse event frequency. For patients diagnosed with HS, this combination therapy stands as a promising and effective clinical intervention.
Collapse
Affiliation(s)
- Peixuan Zhang
- Department of Plastic and Reconstructive Surgery, Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haina Pei
- Department of Burn and Plastic Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, China
| | - Guiwen Zhou
- Department of Plastic and Reconstructive Surgery, Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiang Fu
- Department of Plastic and Reconstructive Surgery, Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruiqi Bai
- Department of Plastic and Reconstructive Surgery, Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pianpian Lin
- Department of Plastic and Reconstructive Surgery, Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Wu
- Department of Plastic and Reconstructive Surgery, Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao Xu
- Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Minliang Chen
- Department of Plastic and Reconstructive Surgery, Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Kotani T, Saito T, Suzuka T, Matsuda S. Adipose-derived mesenchymal stem cell therapy for connective tissue diseases and complications. Inflamm Regen 2024; 44:35. [PMID: 39026275 PMCID: PMC11264739 DOI: 10.1186/s41232-024-00348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Mesenchymal stem cells (MSCs) may be effective in treating connective tissue disease and associated organ damage, leveraging their anti-inflammatory and immunoregulatory effects. Moreover, MSCs may possess the ability to produce antiapoptotic, proliferative, growth, angiogenic, and antifibrotic factors. Among MSCs, adipose-derived MSCs (ASCs) stand out for their relative ease of harvesting and abundance. Additionally, studies have indicated that compared with bone marrow-derived MSCs, ASCs have superior immunomodulatory, proangiogenic, antiapoptotic, and antioxidative properties. However, relatively few reviews have focused on the efficacy of ASC therapy in treating connective tissue disease (CTD) and interstitial lung disease (ILD). Therefore, this review aims to evaluate evidence from preclinical studies that investigate the effectiveness of MSC therapy, specifically ASC therapy, in managing CTD and ILD. Moreover, we explore the outcomes of documented clinical trials. We also introduce an innovative approach involving the utilization of pharmacologically primed ASCs in the CTD model to address the current challenges associated with ASC therapy.
Collapse
Affiliation(s)
- Takuya Kotani
- Department of Internal Medicine (IV), Division of Rheumatology, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, 569-8686, Japan.
| | - Takashi Saito
- Department of Legal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Takayasu Suzuka
- Department of Internal Medicine (IV), Division of Rheumatology, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| | - Shogo Matsuda
- Department of Internal Medicine (IV), Division of Rheumatology, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
5
|
Bicer M. Revolutionizing dermatology: harnessing mesenchymal stem/stromal cells and exosomes in 3D platform for skin regeneration. Arch Dermatol Res 2024; 316:242. [PMID: 38795200 PMCID: PMC11127839 DOI: 10.1007/s00403-024-03055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 04/26/2024] [Indexed: 05/27/2024]
Abstract
Contemporary trends reveal an escalating interest in regenerative medicine-based interventions for addressing refractory skin defects. Conventional wound healing treatments, characterized by high costs and limited efficacy, necessitate a more efficient therapeutic paradigm to alleviate the economic and psychological burdens associated with chronic wounds. Mesenchymal stem/stromal cells (MSCs) constitute cell-based therapies, whereas cell-free approaches predominantly involve the utilization of MSC-derived extracellular vesicles or exosomes, both purportedly safe and effective. Exploiting the impact of MSCs by paracrine signaling, exosomes have emerged as a novel avenue capable of positively impacting wound healing and skin regeneration. MSC-exosomes confer several advantages, including the facilitation of angiogenesis, augmentation of cell proliferation, elevation of collagen production, and enhancement of tissue regenerative capacity. Despite these merits, challenges persist in clinical applications due to issues such as poor targeting and facile removal of MSC-derived exosomes from skin wounds. Addressing these concerns, a three-dimensional (3D) platform has been implemented to emend exosomes, allowing for elevated levels, and constructing more stable granules possessing distinct therapeutic capabilities. Incorporating biomaterials to encapsulate MSC-exosomes emerges as a favorable approach, concentrating doses, achieving intended therapeutic effectiveness, and ensuring continual release. While the therapeutic potential of MSC-exosomes in skin repair is broadly recognized, their application with 3D biomaterial scenarios remains underexplored. This review synthesizes the therapeutic purposes of MSCs and exosomes in 3D for the skin restoration, underscoring their promising role in diverse dermatological conditions. Further research may establish MSCs and their exosomes in 3D as a viable therapeutic option for various skin conditions.
Collapse
Affiliation(s)
- Mesude Bicer
- Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, 38080, Turkey.
| |
Collapse
|
6
|
Almadori A, Butler PEM. Scarring and Skin Fibrosis Reversal with Regenerative Surgery and Stem Cell Therapy. Cells 2024; 13:443. [PMID: 38474408 PMCID: PMC10930731 DOI: 10.3390/cells13050443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Skin scarring and fibrosis affect millions of people worldwide, representing a serious clinical problem causing physical and psychological challenges for patients. Stem cell therapy and regenerative surgery represent a new area of treatment focused on promoting the body's natural ability to repair damaged tissue. Adipose-derived stem cells (ASCs) represent an optimal choice for practical regenerative medicine due to their abundance, autologous tissue origin, non-immunogenicity, and ease of access with minimal morbidity for patients. This review of the literature explores the current body of evidence around the use of ASCs-based regenerative strategies for the treatment of scarring and skin fibrosis, exploring the different surgical approaches and their application in multiple fibrotic skin conditions. Human, animal, and in vitro studies demonstrate that ASCs present potentialities in modifying scar tissue and fibrosis by suppressing extracellular matrix (ECM) synthesis and promoting the degradation of their constituents. Through softening skin fibrosis, function and overall quality of life may be considerably enhanced in different patient cohorts presenting with scar-related symptoms. The use of stem cell therapies for skin scar repair and regeneration represents a paradigm shift, offering potential alternative therapeutic avenues for fibrosis, a condition that currently lacks a cure.
Collapse
Affiliation(s)
- Aurora Almadori
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College of London, London NW3 2QG, UK;
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London NW3 2QG, UK
- The Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital Campus, University College of London, London NW3 2QG, UK
| | - Peter EM Butler
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College of London, London NW3 2QG, UK;
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London NW3 2QG, UK
- The Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital Campus, University College of London, London NW3 2QG, UK
| |
Collapse
|
7
|
Alip M, Wang D, Zhao S, Li S, Zhang D, Duan X, Wang S, Hua B, Wang H, Zhang H, Feng X, Sun L. Umbilical cord mesenchymal stem cells transplantation in patients with systemic sclerosis: a 5-year follow-up study. Clin Rheumatol 2024; 43:1073-1082. [PMID: 38206544 DOI: 10.1007/s10067-024-06865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVE To assess the long-term safety and efficacy of umbilical cord mesenchymal stem cells transplantation (UMSCT) in patients with systemic sclerosis (SSc). METHODS Forty-one patients with moderate to severe SSc underwent UMSCT at the Affiliated Drum Tower Hospital of Nanjing University Medical School from 2009 to 2017. In this study, we conducted a longitudinal and retrospective analysis and compared the clinical and laboratory manifestations before and after UMSCT. The main outcome of the study was overall survival. We evaluated changes in the modified Rodnan Skin Score (mRSS), as well as the changes in the pulmonary examination by using high-resolution computed tomography (HRCT) and ultrasound cardiogram (UCG). Additionally, we assessed the Health Assessment Questionnaire-Disability Index (HAQ-DI) and the severity of peripheral vascular involvement during the first year after treatment. RESULTS The overall 5-year survival rate was 92.7% (38 out of 41 patients). Following UMSCT, the mean mRSS significantly decreased from 18.68 (SD = 7.26, n = 41) at baseline to 13.95 (SD = 8.49, n = 41), 13.29 (SD = 7.67, n = 38), and 12.39 (SD = 8.49, n = 38) at 1, 3, and 5 years, respectively. Improvement or stability in HRCT images was observed in 72.0% of interstitial lung disease (ILD) patients. Pulmonary arterial hypertension (PAH) remained stable in 5 out of 8 patients at the 5-year follow-up. No adverse events related to UMSCT were observed in any of the patients during the follow-up period. CONCLUSION UMSCT may provide a safe and feasible treatment option for patients with moderate to severe SSc based on long-term follow-up data. The randomized controlled study will further confirm the clinical efficacy of UMSCT in SSc. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT00962923. Key Point • UMSCT is safe and effective for SSc patients.
Collapse
Affiliation(s)
- Mihribangvl Alip
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Shengnan Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Siqi Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Dongdong Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoxiao Duan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Shiying Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Bingzhu Hua
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Hong Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Huayong Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
8
|
Sun T, Zhou C, Lu F, Dong Z, Gao J, Li B. Adipose-derived stem cells in immune-related skin disease: a review of current research and underlying mechanisms. Stem Cell Res Ther 2024; 15:37. [PMID: 38331803 PMCID: PMC10854049 DOI: 10.1186/s13287-023-03561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/06/2023] [Indexed: 02/10/2024] Open
Abstract
Adipose-derived stem cells (ASCs) are a critical adult stem cell subpopulation and are widely utilized in the fields of regenerative medicine and stem cell research due to their abundance, ease of harvest, and low immunogenicity. ASCs, which are homologous with skin by nature, can treat immune-related skin diseases by promoting skin regeneration and conferring immunosuppressive effects, with the latter being the most important therapeutic mechanism. ASCs regulate the immune response by direct cell-cell communication with immune cells, such as T cells, macrophages, and B cells. In addition to cell-cell interactions, ASCs modulate the immune response indirectly by secreting cytokines, interleukins, growth factors, and extracellular vesicles. The immunomodulatory effects of ASCs have been exploited to treat many immune-related skin diseases with good therapeutic outcomes. This article reviews the mechanisms underlying the immunomodulatory effects of ASCs, as well as progress in research on immune-related skin diseases.
Collapse
Affiliation(s)
- Tianyi Sun
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Cheng Zhou
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Ziqing Dong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Jianhua Gao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Bin Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
9
|
Li J, He X, Liu F, Zheng X, Jiang J. Tumor Necrosis Factor-α-Induced Protein-8-like 2 Transfected Adipose-Derived Stem Cells Regulated the Dysfunction of Monocrotaline Pyrrole-Induced Pulmonary Arterial Smooth Muscle Cells and Pulmonary Arterial Endothelial Cells. J Cardiovasc Pharmacol 2024; 83:73-85. [PMID: 38180455 DOI: 10.1097/fjc.0000000000001505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/12/2023] [Indexed: 01/06/2024]
Abstract
ABSTRACT Pulmonary arterial hypertension (PAH) is characterized by pulmonary arterial endothelial cell (PAEC) dysfunction and pulmonary arterial smooth muscle cell (PASMC) activation. For decades, the therapies for PAH based on stem cells have been shown to be effective. Meanwhile, tumor necrosis factor-α-induced protein-8-like 2 (TIPE2) promote the viability of human amniotic mesenchymal stem cells. Therefore, we aimed to explore the role of TIPE2 in adipose-derived stem cells (ADSCs) and the function of TIPE2-transfected ADSCs in the regulation of PAH. We first explored the role and underlying molecular mechanism of TIPE2 in viability and migration of ADSCs. Moreover, the ADSCs transfected with TIPE2 were cocultured with monocrotaline pyrrole (MCTP)-stimulated PASMCs or PAECs. The effects and mechanisms of TIPE2-transfected ADSCs on MCTP-induced PASMCs and PAECs were further investigated. The results showed that TIPE2 overexpression promoted viability and migration of ADSCs by activating the TLR4-ERK1/2 pathway. In addition, TIPE2-transfected ADSCs inhibited the abnormal proliferation and the impaired apoptosis of PASMCs via NF-κB signaling and promoted the conversion of PASMCs from synthetic to contractile. Meanwhile, TIPE2-transfected ADSCs reduced the apoptosis, endothelial-to-mesenchymal transition, and migration of PAECs via PI3K/AKT signaling after MCTP treatment. MCTP-induced oxidative stress and inflammation of PAECs were significantly decreased by TIPE2-transfected ADSCs. In rat model, TIPE2-ADSCs administration further decreased the monocrotaline-induced increase in the right ventricular systolic pressure and ratio of right ventricle weight/left ventricle and septa weight (L + S) and right ventricle weight/body weight compared with the ADSCs group. In conclusion, TIPE2-transfected ADSCs dramatically attenuated the PAH via inhibiting the dysfunction of PASMCs and PAECs.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; and
| | - Xin He
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; and
| | - Feng Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; and
| | - Xinglong Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; and
| | - Jing Jiang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Yang H, Cheong S, He Y, Lu F. Mesenchymal stem cell-based therapy for autoimmune-related fibrotic skin diseases-systemic sclerosis and sclerodermatous graft-versus-host disease. Stem Cell Res Ther 2023; 14:372. [PMID: 38111001 PMCID: PMC10729330 DOI: 10.1186/s13287-023-03543-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/23/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) and sclerodermatous graft-versus-host disease (Scl-GVHD)-characterized by similar developmental fibrosis, vascular abnormalities, and innate and adaptive immune response, resulting in severe skin fibrosis at the late stage-are chronic autoimmune diseases of connective tissue. The significant immune system dysfunction, distinguishing autoimmune-related fibrosis from mere skin fibrosis, should be a particular focus of treating autoimmune-related fibrosis. Recent research shows that innovative mesenchymal stem cell (MSC)-based therapy, with the capacities of immune regulation, inflammation suppression, oxidation inhibition, and fibrosis restraint, shows great promise in overcoming the disease. MAIN BODY This review of recent studies aims to summarize the therapeutic effect and theoretical mechanisms of MSC-based therapy in treating autoimmune-related fibrotic skin diseases, SSc and Scl-GVHD, providing novel insights and references for further clinical applications. It is noteworthy that the efficacy of MSCs is not reliant on their migration into the skin. Working on the immune system, MSCs can inhibit the chemotaxis and infiltration of immune cells to the skin by down-regulating the expression of skin chemokines and chemokine receptors and reducing the inflammatory and pro-fibrotic mediators. Furthermore, to reduce levels of oxidative stress, MSCs may improve vascular abnormalities, and enhance the antioxidant defenses through inducible nitric oxide synthase, thioredoxin 1, as well as other mediators. The oxidative stress environment does not weaken MSCs and may even strengthen certain functions. Regarding fibrosis, MSCs primarily target the transforming growth factor-β signaling pathway to inhibit fibroblast activation. Here, miRNAs may play a critical role in ECM remodeling. Clinical studies have demonstrated the safety of these approaches, though outcomes have varied, possibly owing to the heterogeneity of MSCs, the disorders themselves, and other factors. Nevertheless, the research clearly reveals the immense potential of MSCs in treating autoimmune-related fibrotic skin diseases. CONCLUSION The application of MSCs presents a promising approach for treating autoimmune-related fibrotic skin diseases: SSc and Scl-GVHD. Therapies involving MSCs and MSC extracellular vesicles have been found to operate through three primary mechanisms: rebalancing the immune and inflammatory disorders, resisting oxidant stress, and inhibiting overactivated fibrosis (including fibroblast activation and ECM remodeling). However, the effectiveness of these interventions requires further validation through extensive clinical investigations, particularly randomized control trials and phase III/IV clinical trials. Additionally, the hypothetical mechanism underlying these therapies could be elucidated through further research.
Collapse
Affiliation(s)
- Han Yang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
11
|
Morozan A, Joy S, Fujii U, Fraser R, Watters K, Martin JG, Colmegna I. Superiority of systemic bleomycin to intradermal HOCl for the study of interstitial lung disease. Sci Rep 2023; 13:20577. [PMID: 37996447 PMCID: PMC10667597 DOI: 10.1038/s41598-023-47083-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, immune dysregulation, and multi-organ fibrosis. Interstitial lung disease (ILD) is a complication of SSc and a leading cause of SSc-death. The administration of hypochlorous acid (HOCl) intradermally in the mouse (HOCl-SSc) purportedly shows several features typical of SSc. We studied the model by injecting BALB/c mice daily intradermally with HOCl for 6-weeks, an exposure reported to induce lung fibrosis. On day 42, the skinfold thickness and the dermal thickness were two and three times larger respectively in the HOCl group compared to controls. HOCl treatment did not result in histological features of pulmonary fibrosis nor significant changes in lung compliance. Automated image analysis of HOCl mice lungs stained with picrosirius red did not show increased collagen deposition. HOCl injections did not increase pulmonary mRNA expression of pro-fibrotic genes nor induced the production of serum advanced oxidation protein products and anti-topoisomerase 1 antibodies. Immune cells in bronchoalveolar lavage fluid (BALF) and whole lung digests were not increased in HOCl-treated animals. Since lung fibrosis is proposed to be triggered by oxidative stress, we injected HOCl to Nrf2-/- mice, a mouse deficient in many antioxidant proteins. Lung compliance, histology, and BALF leukocyte numbers were comparable between Nrf2-/- mice and wild-type controls. We conclude that the HOCl-SSc model does not manifest SSc-lung disease.
Collapse
Affiliation(s)
- Arina Morozan
- Meakins Christie Laboratories, McGill University Health Centre and McGill University, Montreal, QC, H4A 3J1, Canada
- The Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Sydney Joy
- Meakins Christie Laboratories, McGill University Health Centre and McGill University, Montreal, QC, H4A 3J1, Canada
- The Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Utako Fujii
- Meakins Christie Laboratories, McGill University Health Centre and McGill University, Montreal, QC, H4A 3J1, Canada
| | - Richard Fraser
- Division of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - Kevin Watters
- Division of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - James G Martin
- Meakins Christie Laboratories, McGill University Health Centre and McGill University, Montreal, QC, H4A 3J1, Canada
- The Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Inés Colmegna
- The Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada.
- Division of Rheumatology, McGill University Health Centre, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Lescoat A, Kato H, Varga J. Emerging cellular and immunotherapies for systemic sclerosis: from mesenchymal stromal cells to CAR-T cells and vaccine-based approaches. Curr Opin Rheumatol 2023; 35:356-363. [PMID: 37650691 DOI: 10.1097/bor.0000000000000970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
PURPOSE OF REVIEW Although two targeted therapies have received recent approval for systemic sclerosis (SSc)-associated interstitial lung disease, they do not show major disease-modifying activity, highlighting the need for novel therapies and innovative paradigms. To that end, cellular therapies may represent a new opportunity for the treatment of SSc. The purpose of this review is to provide an up-to-date overview of emerging cell-based disease-modifying therapies in SSc. RECENT FINDINGS Initial small studies in patients with severe refractory systemic lupus erythematosus (SLE) using engineered regulatory cells show promising results. CD19-directed CAR-T have shown promising results in one case report of refractory diffuse cutaneous SSc patients. T cells engineered to express a chimeric autoantibody receptor (CAAR-T cells) may be even more relevant via the specific elimination of auto-reactive B cells. Targeting pro-fibrotic or senescence-related pathways may also constitute promising approaches in SSc. SUMMARY Building on the classification of the clinical phenotype and prediction of clinical trajectory based on individual patients' autoantigen and/or autoantibody profile, cellular therapies targeting the same autoantigen or related autoreactive cells may represent an unprecedented opportunity to implement personalized medicine in SSc.
Collapse
Affiliation(s)
- Alain Lescoat
- University of Rennes CHU Rennes, Inserm, EHESP, Irset -Institut de Recherche en Santé, Environnement et Travail-UMRS
- Department of Internal Medicine and Clinical Immunology, CHU Rennes, Rennes, France
| | - Hiroshi Kato
- University of Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- University of Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Xiao Y, Huang Z, Wang Y, Yang J, Wan W, Zou H, Yang X. Progress in research on mesenchymal stem cells and their extracellular vesicles for treating fibrosis in systemic sclerosis. Clin Exp Med 2023; 23:2997-3009. [PMID: 37458857 DOI: 10.1007/s10238-023-01136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/02/2023] [Indexed: 11/02/2023]
Abstract
Systemic sclerosis (SSc) refers to an autoimmune disease characterized by immune dysfunction, vascular endothelial damage, and multi-organ fibrosis. Thus far, this disease is incurable, and its high mortality rate is significantly correlated with fibrotic events. Fibrosis has been confirmed as a difficult clinical treatment area that should be urgently treated in clinical medicine. Mesenchymal stem cells (MSCs) exhibit immunomodulatory, pro-angiogenic, and anti-fibrotic functions. MSCs-derived extracellular vesicles (EVs) have aroused rising interest as a cellular component that retains the functions of MSCs while circumventing the possible adverse effects of MSCs. Moreover, EVs have great potential in treating SSc. In this study, the current research progress on MSCs and their EVs for treating fibrosis in SSc was reviewed, with an aim to provide some reference for future MSCs and their EVs in treating SSc.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Zhongzhou Huang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Yingyu Wang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiguo Wan
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| | - Xue Yang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Ejma-Multański A, Wajda A, Paradowska-Gorycka A. Cell Cultures as a Versatile Tool in the Research and Treatment of Autoimmune Connective Tissue Diseases. Cells 2023; 12:2489. [PMID: 37887333 PMCID: PMC10605903 DOI: 10.3390/cells12202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Cell cultures are an important part of the research and treatment of autoimmune connective tissue diseases. By culturing the various cell types involved in ACTDs, researchers are able to broaden the knowledge about these diseases that, in the near future, may lead to finding cures. Fibroblast cultures and chondrocyte cultures allow scientists to study the behavior, physiology and intracellular interactions of these cells. This helps in understanding the underlying mechanisms of ACTDs, including inflammation, immune dysregulation and tissue damage. Through the analysis of gene expression patterns, surface proteins and cytokine profiles in peripheral blood mononuclear cell cultures and endothelial cell cultures researchers can identify potential biomarkers that can help in diagnosing, monitoring disease activity and predicting patient's response to treatment. Moreover, cell culturing of mesenchymal stem cells and skin modelling in ACTD research and treatment help to evaluate the effects of potential drugs or therapeutics on specific cell types relevant to the disease. Culturing cells in 3D allows us to assess safety, efficacy and the mechanisms of action, thereby aiding in the screening of potential drug candidates and the development of novel therapies. Nowadays, personalized medicine is increasingly mentioned as a future way of dealing with complex diseases such as ACTD. By culturing cells from individual patients and studying patient-specific cells, researchers can gain insights into the unique characteristics of the patient's disease, identify personalized treatment targets, and develop tailored therapeutic strategies for better outcomes. Cell culturing can help in the evaluation of the effects of these therapies on patient-specific cell populations, as well as in predicting overall treatment response. By analyzing changes in response or behavior of patient-derived cells to a treatment, researchers can assess the response effectiveness to specific therapies, thus enabling more informed treatment decisions. This literature review was created as a form of guidance for researchers and clinicians, and it was written with the use of the NCBI database.
Collapse
Affiliation(s)
- Adam Ejma-Multański
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (A.W.); (A.P.-G.)
| | | | | |
Collapse
|
15
|
Assar S, Mohammadzadeh D, Norooznezhad AH, Payandeh M, Hassaninia D, Pournazari M, Soufivand P, Yarani R, Mansouri K. Improvement in the clinical manifestations of interstitial lung disease following treatment with placental mesenchymal stromal cell extracellular vesicles in a patient with systemic sclerosis: A case report. Respir Med Case Rep 2023; 46:101923. [PMID: 37928415 PMCID: PMC10622869 DOI: 10.1016/j.rmcr.2023.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/17/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Background Interstitial lung disease (ILD) is a severe systemic sclerosis (SSc) complication with no current approved or golden standard treatment. This report aims to investigate the effectiveness of treatment with placental mesenchymal stromal cell (MSC) extracellular vesicles (EVs) in a patient with ILD due to SSc. Case presentation The patient was a 55-year-old woman with a ten years history of SSc complicated by severe ILD. Over time, her lung disease progressed to interstitial fibrosis despite being treated with mycophenolate mofetil and monthly pulses of cyclophosphamide. Thus, she was treated with eight doses of placenta MSC-EVs. Four weeks after the third dose (Day 31 after the first dose), she reported marked improvement in her clinical symptoms, such as dyspnea and cough. Also, chest computed tomography (CT) scans demonstrated a significant reduction in ground glass consolidations and fibrotic changes. The patient was subsequently followed for twelve months, with findings showing significant improvement in exercise tolerance and reduced supplemental oxygen need. Conclusion In this single case, placental MSC-EVs were seen to provide a potentially efficient treatment for SSc-related ILD; however, further investigation and clinical trials are necessary.
Collapse
Affiliation(s)
- Shirin Assar
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dena Mohammadzadeh
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Hossein Norooznezhad
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehrdad Payandeh
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Daryoush Hassaninia
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parviz Soufivand
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
16
|
Zhao P, Sun T, Lyu C, Liang K, Du Y. Cell mediated ECM-degradation as an emerging tool for anti-fibrotic strategy. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:29. [PMID: 37653282 PMCID: PMC10471565 DOI: 10.1186/s13619-023-00172-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023]
Abstract
Investigation into the role of cells with respect to extracellular matrix (ECM) remodeling is still in its infancy. Particularly, ECM degradation is an indispensable process during the recovery from fibrosis. Cells with ECM degradation ability due to the secretion of various matrix metalloproteinases (MMPs) have emerged as novel contributors to the treatment of fibrotic diseases. In this review, we focus on the ECM degradation ability of cells associated with the repertoire of MMPs that facilitate the attenuation of fibrosis through the inhibition of ECM deposition. Besides, innovative approaches to engineering and characterizing cells with degradation ability, as well as elucidating the mechanism of the ECM degradation, are also illustrated. Studies conducted to date on the use of cell-based degradation for therapeutic purposes to combat fibrosis are summarized. Finally, we discuss the therapeutic potential of cells with high degradation ability, hoping to bridge the gap between benchside research and bedside applications in treating fibrotic diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tian Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Petitjean N, Canadas P, Jorgensen C, Royer P, Le Floc'h S, Noël D. Complex deformation of cartilage micropellets following mechanical stimulation promotes chondrocyte gene expression. Stem Cell Res Ther 2023; 14:226. [PMID: 37649121 PMCID: PMC10469822 DOI: 10.1186/s13287-023-03459-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Articular cartilage (AC)'s main function is to resist to a stressful mechanical environment, and chondrocytes are responding to mechanical stress for the development and homeostasis of this tissue. However, current knowledge on processes involved in response to mechanical stimulation is still limited. These mechanisms are commonly investigated in engineered cartilage models where the chondrocytes are included in an exogeneous biomaterial different from their natural extracellular matrix. The aim of the present study is to better understand the impact of mechanical stimulation on mesenchymal stromal cells (MSCs)-derived chondrocytes generated in their own extracellular matrix. METHODS A fluidic custom-made device was used for the mechanical stimulation of cartilage micropellets obtained from human MSCs by culture in a chondrogenic medium for 21 days. Six micropellets were positioned into the conical wells of the device chamber and stimulated with different signals of positive pressure (amplitude, frequency and duration). A camera was used to record the sinking of each micropellet into their cone, and micropellet deformation was analyzed using a finite element model. Micropellets were harvested at different time points after stimulation for RT-qPCR and histology analysis. RESULTS Moderate micropellet deformation was observed during stimulation with square pressure signals as mean von Mises strains between 6.39 and 14.35% were estimated for amplitudes of 1.75-14 kPa superimposed on a base pressure of 50% of the amplitude. The compression, tension and shear observed during deformation did not alter micropellet microstructure as shown by histological staining. A rapid and transient increase in the expression of chondrocyte markers (SOX9, AGG and COL2B) was measured after a single 30-min stimulation with a square pressure signal of 3.5 kPa amplitude superimposed on a minimum pressure of 1.75 kPa, at 1 Hz. A small change of 1% of cyclical deformations when using a square pressure signal instead of a constant pressure signal induced a fold change of 2 to 3 of chondrogenic gene expression. Moreover, the expression of fibrocartilage (COL I) or hypertrophic cartilage (COL X, MMP13 and ADAMTS5) was not significantly regulated, except for COL X. CONCLUSIONS Our data demonstrate that the dynamic deformation of cartilage micropellets by fluidic-based compression modulates the expression of chondrocyte genes responsible for the production of a cartilage-like extracellular matrix. This lays the foundations for further investigating the chondrocyte mechanobiology and the cartilage growth under mechanical stimulation.
Collapse
Affiliation(s)
- Noémie Petitjean
- IRMB, University of Montpellier, INSERM, Montpellier, France
- LMGC, CNRS, University of Montpellier, Montpellier, France
| | | | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, Montpellier, France
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France
| | - Pascale Royer
- LMGC, CNRS, University of Montpellier, Montpellier, France
| | | | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France.
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France.
- Inserm U1183, IRMB, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier Cedex 5, France.
| |
Collapse
|
18
|
Wu SCM, Zhu M, Chik SCC, Kwok M, Javed A, Law L, Chan S, Boheler KR, Liu YP, Chan GCF, Poon ENY. Adipose tissue-derived human mesenchymal stromal cells can better suppress complement lysis, engraft and inhibit acute graft-versus-host disease in mice. Stem Cell Res Ther 2023; 14:167. [PMID: 37357314 DOI: 10.1186/s13287-023-03380-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Acute graft-versus-host disease (aGvHD) is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (HSCT). Transplantation of immunosuppressive human mesenchymal stromal cells (hMSCs) can protect against aGvHD post-HSCT; however, their efficacy is limited by poor engraftment and survival. Moreover, infused MSCs can be damaged by activated complement, yet strategies to minimise complement injury of hMSCs and improve their survival are limited. METHODS Human MSCs were derived from bone marrow (BM), adipose tissue (AT) and umbilical cord (UC). In vitro immunomodulatory potential was determined by co-culture experiments between hMSCs and immune cells implicated in aGvHD disease progression. BM-, AT- and UC-hMSCs were tested for their abilities to protect aGvHD in a mouse model of this disease. Survival and clinical symptoms were monitored, and target tissues of aGvHD were examined by histopathology and qPCR. Transplanted cell survival was evaluated by cell tracing and by qPCR. The transcriptome of BM-, AT- and UC-hMSCs was profiled by RNA-sequencing. Focused experiments were performed to compare the expression of complement inhibitors and the abilities of hMSCs to resist complement lysis. RESULTS Human MSCs derived from three tissues divergently protected against aGvHD in vivo. AT-hMSCs preferentially suppressed complement in vitro and in vivo, resisted complement lysis and survived better after transplantation when compared to BM- and UC-hMSCs. AT-hMSCs also prolonged survival and improved the symptoms and pathological features of aGvHD. We found that complement-decay accelerating factor (CD55), an inhibitor of complement, is elevated in AT-hMSCs and contributed to reduced complement activation. We further report that atorvastatin and erlotinib could upregulate CD55 and suppress complement in all three types of hMSCs. CONCLUSION CD55, by suppressing complement, contributes to the improved protection of AT-hMSCs against aGvHD. The use of AT-hMSCs or the upregulation of CD55 by small molecules thus represents promising new strategies to promote hMSC survival to improve the efficacy of transplantation therapy. As complement injury is a barrier to all types of hMSC therapy, our findings are of broad significance to enhance the use of hMSCs for the treatment of a wide range of disorders.
Collapse
Affiliation(s)
- Stanley Chun Ming Wu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Manyu Zhu
- Department of Orthopaedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stanley C C Chik
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Maxwell Kwok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Kowloon Bay, Hong Kong SAR, China
| | - Asif Javed
- School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Laalaa Law
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shing Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth R Boheler
- Division of Cardiology, Department of Medicine and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yin Ping Liu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Godfrey Chi Fung Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- , Doctors' Office, 9/F, Tower B, Hong Kong Children's Hospital, 1 Shing Cheong Road, Kowloon Bay, Hong Kong SAR, China.
| | - Ellen Ngar-Yun Poon
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong, Kowloon Bay, Hong Kong SAR, China.
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Rm 226A, 2/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, Hong Kong SAR, China.
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
19
|
Liu YX, Sun JM, Ho CK, Gao Y, Wen DS, Liu YD, Huang L, Zhang YF. Advancements in adipose-derived stem cell therapy for skin fibrosis. World J Stem Cells 2023; 15:342-353. [PMID: 37342214 PMCID: PMC10277960 DOI: 10.4252/wjsc.v15.i5.342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Pathological scarring and scleroderma, which are the most common conditions of skin fibrosis, pathologically manifest as fibroblast proliferation and extracellular matrix (ECM) hyperplasia. Fibroblast proliferation and ECM hyperplasia lead to fibrotic tissue remodeling, causing an exaggerated and prolonged wound-healing response. The pathogenesis of these diseases has not been fully clarified and is unfortunately accompanied by exceptionally high medical needs and poor treatment effects. Currently, a promising and relatively low-cost treatment has emerged-adipose-derived stem cell (ASC) therapy as a branch of stem cell therapy, including ASCs and their derivatives-purified ASC, stromal vascular fraction, ASC-conditioned medium, ASC exosomes, etc., which are rich in sources and easy to obtain. ASCs have been widely used in therapeutic settings for patients, primarily for the defection of soft tissues, such as breast enhancement and facial contouring. In the field of skin regeneration, ASC therapy has become a hot research topic because it is beneficial for reversing skin fibrosis. The ability of ASCs to control profibrotic factors as well as anti-inflammatory and immunomodulatory actions will be discussed in this review, as well as their new applications in the treatment of skin fibrosis. Although the long-term effect of ASC therapy is still unclear, ASCs have emerged as one of the most promising systemic antifibrotic therapies under development.
Collapse
Affiliation(s)
- Yu-Xin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jia-Ming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chia-Kang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Dong-Sheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yang-Dan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Lu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yi-Fan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
20
|
Loisel S, Lansiaux P, Rossille D, Ménard C, Dulong J, Monvoisin C, Bescher N, Bézier I, Latour M, Cras A, Farge D, Tarte K. Regulatory B Cells Contribute to the Clinical Response After Bone Marrow-Derived Mesenchymal Stromal Cell Infusion in Patients With Systemic Sclerosis. Stem Cells Transl Med 2023; 12:194-206. [PMID: 36928395 PMCID: PMC10108721 DOI: 10.1093/stcltm/szad010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/09/2023] [Indexed: 03/18/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have recently emerged as an interesting therapeutic approach for patients with progressive systemic sclerosis (SSc), a rare and life-threatening orphan autoimmune disease. Whereas MSC immunomodulatory potential is considered as a central mechanism for their clinical benefit, very few data are available on the impact of MSCs on immune cell subsets in vivo. In the current extended study of a phase I/II clinical trial exploring the injection of a single dose of allogeneic bone marrow-MSCs (alloBM-MSCs) in patients with severe SSc (NCT02213705), we performed a longitudinal in-depth characterization of circulating immune cells in 19 MSC-treated patients, including 14 responders and 5 non-responders. By a combination of flow cytometry and transcriptomic analyses, we highlighted an increase in circulating CD24hiCD27posCD38lo/neg memory B cells, the main IL-10-producing regulatory B cell (Breg) subset, and an upregulation of IL10 expression in ex-vivo purified B cells, specifically in responder patients, early after the alloBM-MSC infusion. In addition, a deeper alteration of the B-cell compartment before alloBM-MSC treatment, including a higher expression of profibrotic cytokines IL6 and TGFβ by sorted B cells was associated with a non-responder clinical status. Finally, BM-MSCs were able to directly upregulate IL-10 production in activated B cells in vitro. These data suggest that cytokine-producing B cells, in particular Breg, are pivotal effectors of BM-MSC therapeutic activity in SSc. Their quantification as activity biomarkers in MSC potency assays and patient selection criteria may be considered to reach optimal clinical benefit when designing MSC-based clinical trials.
Collapse
Affiliation(s)
- Séverine Loisel
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Pauline Lansiaux
- Unité de Médecine Interne (UF 04), CRMR Maladies auto-immunes et thérapie cellulaire (MATHEC), Centre de Référence des Maladies auto-immunes systémiques Rares d’Ile-de-France, AP-HP, Hôpital St-Louis, Paris, France
- Université de Paris Cité, IRSL, Recherche clinique appliquée à l’hématologie, URP 3518, Paris, France
| | - Delphine Rossille
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Cédric Ménard
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Joëlle Dulong
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Céline Monvoisin
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Nadège Bescher
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Isabelle Bézier
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Maëlle Latour
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Audrey Cras
- Cell Therapy Unit, Saint Louis Hospital, Assistance-Publique Hôpitaux de Paris, Paris, France
- UMR1140, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France
| | - Dominique Farge
- Unité de Médecine Interne (UF 04), CRMR Maladies auto-immunes et thérapie cellulaire (MATHEC), Centre de Référence des Maladies auto-immunes systémiques Rares d’Ile-de-France, AP-HP, Hôpital St-Louis, Paris, France
- Université de Paris Cité, IRSL, Recherche clinique appliquée à l’hématologie, URP 3518, Paris, France
- Department of Medicine, McGill University, Montreal, Canada
| | - Karin Tarte
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| |
Collapse
|
21
|
Adipose Tissue and Adipose-Tissue-Derived Cell Therapies for the Treatment of the Face and Hands of Patients Suffering from Systemic Sclerosis. Biomedicines 2023; 11:biomedicines11020348. [PMID: 36830886 PMCID: PMC9953720 DOI: 10.3390/biomedicines11020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023] Open
Abstract
Adipose tissue is recognized as a valuable source of cells with angiogenic, immunomodulatory, reparative and antifibrotic properties and emerged as a therapeutic alternative for the regeneration and repair of damaged tissues. The use of adipose-tissue-based therapy is expanding in autoimmune diseases, particularly in Systemic Sclerosis (SSc), a disease in which hands and face are severely affected, leading to disability and a decrease in quality of life. Combining the advantage of an abundant supply of fat tissue and a high abundance of stem/stromal cells, fat grafting and adipose tissue-derived cell-based therapies are attractive therapeutic options in SSc. This review aims to synthesize the evidence to determine the effects of the use of these biological products for face and hands treatment in the context of SSc. This highlights several points: the need to use relevant effectiveness criteria taking into account the clinical heterogeneity of SSc in order to facilitate assessment and comparison of innovative therapies; second, it reveals some impacts of the disease on fat-grafting success; third, an important heterogeneity was noticed regarding the manufacturing of the adipose-derived products and lastly, it shows a lack of robust evidence from controlled trials comparing adipose-derived products with standard care.
Collapse
|
22
|
Hua C, Chen S, Cheng H. Therapeutic potential of mesenchymal stem cells for refractory inflammatory and immune skin diseases. Hum Vaccin Immunother 2022; 18:2144667. [PMID: 36382475 PMCID: PMC9746473 DOI: 10.1080/21645515.2022.2144667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inflammatory and immunological skin diseases such as psoriasis, systemic sclerosis, dermatomyositis and atopic dermatitis, whose abnormal skin manifestations not only affected life quality but also caused social discrimination, have been wildly concerned. Complex variables such as hereditary predisposition, racial differences, age and gender can influence the prevalence and therapeutic options. The population of patients with unsatisfactory curative effects under current therapies is growing, it's advisable to seek novel and advanced therapies that are less likely to cause systemic damage. Mesenchymal stem cells (MSCs) have been proven with therapeutic benefits in tissue regeneration, self-renewal and differentiation abilities when treating refractory skin disorders in preclinical and clinical studies. Here we highlighted the immune modulation and inflammation suppression of MSCs in skin diseases, summarized current studies, research progress and related clinical trials, hoping to strengthen the confidence of promising MSCs therapy in future clinical application.
Collapse
Affiliation(s)
- Chunting Hua
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Siji Chen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Abstract
Abstract
The pathogenesis of connective tissue diseases (CTDs), represented by systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), primary Sjögren’s syndrome (pSS), and idiopathic inflammatory myopathies (IIM), includes various immune cells involved in both innate and adaptive immunity. The mesenchymal stem cells (MSCs) are unique due to their regulatory effect on immunity. This makes them a promising therapeutic approach for patients with immune-mediated disorders such as CTD. The safety and clinical efficacy of MSC treatment in CTD have been tested in a growing number of preclinical and clinical studies. Administration of MSCs has consistently shown benefits with both symptomatic and histologic improvement in CTD animal models. MSC therapies in severe and drug-resistant CTD patients have shown promise in a number of the pilot studies, cohort studies, and randomized controlled trials in SLE, RA, and SSc, but some problems still need to be resolved in the transition from the bench to the bedside. The relevant studies in pSS and IIM are still in their infancy, but have displayed encouraging outcomes. Considerable efficacy variations have been observed in terms of the route of delivery, time of MSC injection, origin of the MSCs and dosage. Furthermore, the optimization of conventional drugs combined with MSC therapies and the applications of novel cell engineering approaches requires additional research. In this review, we summarize the current evidence about the immunoregulatory mechanism of MSCs, as well as the preclinical and clinical studies of MSC-based therapy for the treatment of CTDs.
Collapse
|
24
|
Juhl M, Follin B, Christensen JP, Kastrup J, Ekblond A. Functional in vitro models of the inhibitory effect of adipose tissue-derived stromal cells on lymphocyte proliferation: Improved sensitivity and quantification through flow cytometric analysis. J Immunol Methods 2022; 510:113360. [PMID: 36130659 DOI: 10.1016/j.jim.2022.113360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 12/31/2022]
Abstract
As the interest in cell-based therapies continue to increase, so does the need for assays detailing potency and providing platforms for identifying mechanisms of action. For most clinical implications of mesenchymal stromal cells, the immunomodulatory effect is crucial. While the suppressive potential on lymphocyte proliferation is well-described in literature, reproducible and standardized assays to document and quantify it varies from research group to research group and between methodologies. The aim of the present study was to utilize flowcytometry to quantify proliferation and identify measurements to increase the assay sensitivity to treatment with adipose tissue-derived stromal cells (ASC). Lymphocyte proliferation was induced by the unspecific mitogen phytohemagglutinin or by alloreactivity towards an irradiated donor in a mixed lymphocyte reaction. Addition of ASC did not change the composition of T cells, B cells, NK cells, NKT cell types considerably; likewise, no increases in proliferation were observed upon inclusion of ASC, demonstrating that ASC does not evoke an additive response. On the contrary, the suppressive effect of ASC was documented. By applying different gating strategies and curve fitting, the sensitivity was increased, and dose-response relationships established. Flow cytometric evaluation allows for more detailed identification of the lymphocytes affected by ASC and constitute a significant asset in future unraveling of modes and mechanisms of action, as well as quantification of potency.
Collapse
Affiliation(s)
- Morten Juhl
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Denmark.
| | - Bjarke Follin
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Denmark
| | | | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Denmark
| |
Collapse
|
25
|
Xue E, Minniti A, Alexander T, Del Papa N, Greco R. Cellular-Based Therapies in Systemic Sclerosis: From Hematopoietic Stem Cell Transplant to Innovative Approaches. Cells 2022; 11:3346. [PMID: 36359742 PMCID: PMC9658618 DOI: 10.3390/cells11213346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 08/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a systemic disease characterized by autoimmune responses, vasculopathy and tissue fibrosis. The pathogenic mechanisms involve a wide range of cells and soluble factors. The complexity of interactions leads to heterogeneous clinical features in terms of the extent, severity, and rate of progression of skin fibrosis and internal organ involvement. Available disease-modifying drugs have only modest effects on halting disease progression and may be associated with significant side effects. Therefore, cellular therapies have been developed aiming at the restoration of immunologic self-tolerance in order to provide durable remissions or to foster tissue regeneration. Currently, SSc is recommended as the 'standard indication' for autologous hematopoietic stem cell transplantation by the European Society for Blood and Marrow Transplantation. This review provides an overview on cellular therapies in SSc, from pre-clinical models to clinical applications, opening towards more advanced cellular therapies, such as mesenchymal stem cells, regulatory T cells and potentially CAR-T-cell therapies.
Collapse
Affiliation(s)
- Elisabetta Xue
- Hematopoietic and Bone Marrow Transplant Unit, San Raffaele Hospital, 20132 Milan, Italy
| | - Antonina Minniti
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milan, Italy
| | - Tobias Alexander
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | | | - Raffaella Greco
- Hematopoietic and Bone Marrow Transplant Unit, San Raffaele Hospital, 20132 Milan, Italy
| | | |
Collapse
|
26
|
Suzuka T, Kotani T, Saito T, Matsuda S, Sato T, Takeuchi T. Therapeutic effects of adipose-derived mesenchymal stem/stromal cells with enhanced migration ability and hepatocyte growth factor secretion by low-molecular-weight heparin treatment in bleomycin-induced mouse models of systemic sclerosis. Arthritis Res Ther 2022; 24:228. [PMID: 36207753 PMCID: PMC9540693 DOI: 10.1186/s13075-022-02915-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background Adipose-derived mesenchymal stem cells (ASCs) have gained attention as a new treatment for systemic sclerosis (SSc). Low-molecular-weight heparin (LMWH) enhances cell function and stimulates the production of hepatocyte growth factor (HGF) in a variety of cells. This study investigated the effects of LMWH on the functions of mouse ASCs (mASCs), and the therapeutic effects of mASCs activated with LMWH (hep-mASCs) in mouse models of SSc. Methods The cellular functions of mASCs cultured with different concentrations of LMWH were determined. Mice were divided into four groups: bleomycin (BLM)-induced SSc (BLM-alone), BLM-induced SSc administered with mASCs (BLM-mASC), and BLM-induced SSc administered with mASCs activated with 10 or 100 μg/mL LMWH (BLM-hep-mASC); there were 9 mice per group (n = 9). Skin inflammation and fibrosis were evaluated using histological and biochemical examinations and gene expression levels. Results In vitro assays showed that migration ability and HGF production were significantly higher in hep-mASCs than in mASCs alone. The mRNA expression levels of cell migration factors were significantly upregulated in hep-mASCs compared to those in mASCs alone. The hep-mASCs accumulated in the skin tissues more than mASCs alone. The thickness of skin and hydroxyproline content in BLM-hep-mASC groups were significantly decreased, and the skin mRNA expression levels of interleukin-2, α-smooth muscle actin, transforming growth factor β1, collagen type 1 alpha 1, and tissue inhibitor of metalloproteinase 2 were significantly downregulated compared to those in the BLM-alone group. Conclusions hep-mASCs showed higher anti-inflammatory and anti-fibrotic effects than mASCs alone and may be a promising candidate for SSc treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02915-6.
Collapse
Affiliation(s)
- Takayasu Suzuka
- Division of Rheumatology, Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, Japan
| | - Takuya Kotani
- Division of Rheumatology, Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, Japan.
| | - Takashi Saito
- Department of Legal Medicine, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, Japan.
| | - Shogo Matsuda
- Division of Rheumatology, Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, Japan
| | - Takako Sato
- Department of Legal Medicine, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, Japan
| | - Tohru Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, Japan
| |
Collapse
|
27
|
Charrier M, Lorant J, Contreras-Lopez R, Téjédor G, Blanquart C, Lieubeau B, Schleder C, Leroux I, Deshayes S, Fonteneau JF, Babarit C, Hamel A, Magot A, Péréon Y, Viau S, Delorme B, Luz-Crawford P, Lamirault G, Djouad F, Rouger K. Human MuStem cells repress T-cell proliferation and cytotoxicity through both paracrine and contact-dependent pathways. Stem Cell Res Ther 2022; 13:7. [PMID: 35012660 PMCID: PMC8751303 DOI: 10.1186/s13287-021-02681-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background Muscular dystrophies (MDs) are inherited diseases in which a dysregulation of the immune response exacerbates disease severity and are characterized by infiltration of various immune cell types leading to muscle inflammation, fiber necrosis and fibrosis. Immunosuppressive properties have been attributed to mesenchymal stem cells (MSCs) that regulate the phenotype and function of different immune cells. However, such properties were poorly considered until now for adult stem cells with myogenic potential and advanced as possible therapeutic candidates for MDs. In the present study, we investigated the immunoregulatory potential of human MuStem (hMuStem) cells, for which we previously demonstrated that they can survive in injured muscle and robustly counteract adverse tissue remodeling. Methods The impact of hMuStem cells or their secretome on the proliferative and phenotypic properties of T-cells was explored by co-culture experiments with either peripheral blood mononucleated cells or CD3-sorted T-cells. A comparative study was produced with the bone marrow (BM)-MSCs. The expression profile of immune cell-related markers on hMuStem cells was determined by flow cytometry while their secretory profile was examined by ELISA assays. Finally, the paracrine and cell contact-dependent effects of hMuStem cells on the T-cell-mediated cytotoxic response were analyzed through IFN-γ expression and lysis activity. Results Here, we show that hMuStem cells have an immunosuppressive phenotype and can inhibit the proliferation and the cytotoxic response of T-cells as well as promote the generation of regulatory T-cells through direct contact and via soluble factors. These effects are associated, in part, with the production of mediators including heme-oxygenase-1, leukemia inhibitory factor and intracellular cell adhesion molecule-1, all of which are produced at significantly higher levels by hMuStem cells than BM-MSCs. While the production of prostaglandin E2 is involved in the suppression of T-cell proliferation by both hMuStem cells and BM-MSCs, the participation of inducible nitric oxide synthase activity appears to be specific to hMuStem cell-mediated one. Conclusions Together, our findings demonstrate that hMuStem cells are potent immunoregulatory cells. Combined with their myogenic potential, the attribution of these properties reinforces the positioning of hMuStem cells as candidate therapeutic agents for the treatment of MDs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02681-3.
Collapse
Affiliation(s)
- Marine Charrier
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France.,L'institut du Thorax, INSERM, CNRS, UNIV Nantes, 44007, Nantes, France.,Université de Nantes, Nantes, France
| | - Judith Lorant
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France
| | - Rafael Contreras-Lopez
- INSERM U1183 IRMB, Hôpital Saint Eloi, CHRU Montpellier, Université de Montpellier, 80, Rue Augustin Fliche, 34295, Montpellier, France.,Laboratorio de Immunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Las Condes, Chile
| | - Gautier Téjédor
- INSERM U1183 IRMB, Hôpital Saint Eloi, CHRU Montpellier, Université de Montpellier, 80, Rue Augustin Fliche, 34295, Montpellier, France
| | | | | | - Cindy Schleder
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France
| | - Isabelle Leroux
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France
| | - Sophie Deshayes
- CNRS, INSERM, CRCINA, Université de Nantes, 44000, Nantes, France
| | | | - Candice Babarit
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France
| | - Antoine Hamel
- Service de Chirurgie Infantile, Centre Hospitalier Universitaire (CHU) de Nantes, 44093, Nantes, France
| | - Armelle Magot
- Laboratoire d'Explorations Fonctionnelles, Centre de Référence Maladies Neuromusculaires AOC, CHU Nantes, 44093, Nantes, France
| | - Yann Péréon
- Laboratoire d'Explorations Fonctionnelles, Centre de Référence Maladies Neuromusculaires AOC, CHU Nantes, 44093, Nantes, France
| | - Sabrina Viau
- Biotherapy Division, Macopharma, 59420, Mouvaux, France
| | - Bruno Delorme
- Biotherapy Division, Macopharma, 59420, Mouvaux, France
| | - Patricia Luz-Crawford
- Laboratorio de Immunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Las Condes, Chile.,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | | | - Farida Djouad
- INSERM U1183 IRMB, Hôpital Saint Eloi, CHRU Montpellier, Université de Montpellier, 80, Rue Augustin Fliche, 34295, Montpellier, France.
| | - Karl Rouger
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France.
| |
Collapse
|
28
|
Les cellules stromales mésenchymateuses de patients sclérodermiques conservent leurs fonctions anti-fibrotiques et immunosuppressives. Rev Med Interne 2021. [DOI: 10.1016/j.revmed.2021.10.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Maumus M, Fonteneau G, Ruiz M, Assou S, Boukhaddaoui H, Pastoureau P, De Ceuninck F, Jorgensen C, Noel D. Neuromedin B promotes chondrocyte differentiation of mesenchymal stromal cells via calcineurin and calcium signaling. Cell Biosci 2021; 11:183. [PMID: 34663442 PMCID: PMC8525028 DOI: 10.1186/s13578-021-00695-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 09/30/2021] [Indexed: 11/11/2022] Open
Abstract
Background Articular cartilage is a complex tissue with poor healing capacities. Current approaches for cartilage repair based on mesenchymal stromal cells (MSCs) are often disappointing because of the lack of relevant differentiation factors that could drive MSC differentiation towards a stable mature chondrocyte phenotype. Results We used a large-scale transcriptomic approach to identify genes that are modulated at early stages of chondrogenic differentiation using the reference cartilage micropellet model. We identified several modulated genes and selected neuromedin B (NMB) as one of the early and transiently modulated genes. We found that the timely regulated increase of NMB was specific for chondrogenesis and not observed during osteogenesis or adipogenesis. Furthermore, NMB expression levels correlated with the differentiation capacity of MSCs and its inhibition resulted in impaired chondrogenic differentiation indicating that NMB is required for chondrogenesis. We further showed that NMB activated the calcineurin activity through a Ca2+-dependent signaling pathway. Conclusion NMB is a newly described chondroinductive bioactive factor that upregulates the key chondrogenic transcription factor Sox9 through the modulation of Ca2+ signaling pathway and calcineurin activity. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00695-1.
Collapse
Affiliation(s)
- Marie Maumus
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | | | - Maxime Ruiz
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | - Said Assou
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | - Hassan Boukhaddaoui
- INM, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Philippe Pastoureau
- Institut de Recherches Servier, Center for Therapeutic Innovation, Immuno-Inflammatory Disease, Croissy-sur-Seine, France
| | - Frédéric De Ceuninck
- Institut de Recherches Servier, Center for Therapeutic Innovation, Immuno-Inflammatory Disease, Croissy-sur-Seine, France
| | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France
| | - Danièle Noel
- IRMB, Univ Montpellier, INSERM, Montpellier, France. .,Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France.
| |
Collapse
|
30
|
Rozier P, Maumus M, Maria ATJ, Toupet K, Jorgensen C, Guilpain P, Noël D. Lung Fibrosis Is Improved by Extracellular Vesicles from IFNγ-Primed Mesenchymal Stromal Cells in Murine Systemic Sclerosis. Cells 2021; 10:2727. [PMID: 34685707 PMCID: PMC8535048 DOI: 10.3390/cells10102727] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a severe autoimmune disease for which mesenchymal stromal cells (MSCs)-based therapy was reported to reduce SSc-related symptoms in pre-clinical studies. Recently, extracellular vesicles released by MSCs (MSC-EVs) were shown to mediate most of their therapeutic effect. Here, we aimed at improving their efficacy by increasing the MSC-EV dose or by IFNγ-priming of MSCs. METHODS small size (ssEVs) and large size EVs (lsEVs) were recovered from murine MSCs that were pre-activated using 1 or 20 ng/mL of IFNγ. In the HOCl-induced model of SSc, mice were treated with EVs at day 21 and sacrificed at day 42. Lung and skin samples were collected for histological and molecular analyses. RESULTS increasing the dose of MSC-EVs did not add benefit to the dose previously reported to be efficient in SSc. By contrast, IFNγ pre-activation improved MSC-EVs-based treatment, essentially in the lungs. Low doses of IFNγ decreased the expression of fibrotic markers, while high doses improved remodeling and anti-inflammatory markers. IFNγ pre-activation upregulated iNos, IL1ra and Il6 in MSCs and ssEVs and the PGE2 protein in lsEVs. CONCLUSION IFNγ-pre-activation improved the therapeutic effect of MSC-EVs preferentially in the lungs of SSc mice by modulating anti-inflammatory and anti-fibrotic markers.
Collapse
Affiliation(s)
- Pauline Rozier
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
| | - Alexandre Thibault Jacques Maria
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
- Department of Internal Medicine, Multi-Organic Diseases, CHU, 34295 Montpellier, France
| | - Karine Toupet
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, 34295 Montpellier, France
| | - Philippe Guilpain
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
- Department of Internal Medicine, Multi-Organic Diseases, CHU, 34295 Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (P.R.); (M.M.); (A.T.J.M.); (K.T.); (C.J.); (P.G.)
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, 34295 Montpellier, France
| |
Collapse
|
31
|
The Role of MSC in Wound Healing, Scarring and Regeneration. Cells 2021; 10:cells10071729. [PMID: 34359898 PMCID: PMC8305394 DOI: 10.3390/cells10071729] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue repair and regeneration after damage is not completely understood, and current therapies to support this process are limited. The wound healing process is associated with cell migration and proliferation, extracellular matrix remodeling, angiogenesis and re-epithelialization. In normal conditions, a wound will lead to healing, resulting in reparation of the tissue. Several risk factors, chronic inflammation, and some diseases lead to a deficient wound closure, producing a scar that can finish with a pathological fibrosis. Mesenchymal stem/stromal cells (MSCs) are widely used for their regenerative capacity and their possible therapeutically potential. Derived products of MSCs, such as exosomes or extravesicles, have shown a therapeutic potential similar to MSCs, and these cell-free products may be interesting in clinics. MSCs or their derivative products have shown paracrine beneficial effects, regulating inflammation, modifying the fibroblast activation and production of collagen and promoting neovascularization and re-epithelialization. This review describes the effects of MSCs and their derived products in each step of the wound repair process. As well, it reviews the pre-clinical and clinical use of MSCs to benefit in skin wound healing in diabetic associated wounds and in pathophysiological fibrosis.
Collapse
|
32
|
Cheng C, Chen X, Wang Y, Cheng W, Zuo X, Tang W, Huang W. MSCs‑derived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6. Mol Med 2021; 27:67. [PMID: 34215174 PMCID: PMC8254277 DOI: 10.1186/s10020-021-00324-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/01/2021] [Indexed: 01/01/2023] Open
Abstract
Background This study aimed to explore the role of mesenchymal stromal cells (MSCs)-derived exosomes (MSCs-Exo) in the cerebral ischemia–reperfusion (I/R) injury. Methods Exosomes were isolated from MSCs of adult C57BL/6J mice by the gradient centrifugation method. The expression of miR-26a-5p and CDK6 in MSCs-Exo and mice brain tissues were evaluated by qRT-PCR and western blot. miR-26a-5p mimics and miR-NC were transfected into MSCs, and exosomes were isolated from the MSCs stably expressing miR-26a-5p. Then MSCs-Exo-miR-26a-5p mimics or MSCs-Exo-miR-NC was injected into mice through the tail vein, or added into medium to stimulate BV-2 cells. Cell viability was evaluated by CCK-8 assay. Cell apoptosis was detected by flow cytometry. The apoptosis in brain tissues was evaluated by TUNEL staining assay. Bioinformatics analysis and luciferase reporter assay were performed to determine the binding relationship between miR-26a-5p and CDK6. Results miR-26a-5p was downregulated and CDK6 was upregulated in MSCs-Exo of MCAO-mice and OGD-induced MSCs. MSCs-Exo-miR-26a-5p mimics significantly reduced cell apoptosis of OGD-injured BV-2 cells. MSCs-Exo-miR-26a-5p mimics significantly reduced the infarct volume of MCAO-induced mice. Luciferase reporter assay revealed that CDK-6 was a target of miR-26a-5p. In addition, MSCs-Exo-miR-26a-5p mimics significantly decreased the expression of CDK6 in both OGD-induced BV-2 cells and the brain tissues of MCAO-treated mice. Conclusion Our results indicated that MSCs‑Exo attenuated I/R injury in mice by inhibiting microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6. Our study shed light on the application of MSC-Exo as a potential therapeutic tool for cerebral I/R injury.
Collapse
Affiliation(s)
- Chang Cheng
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 188 Xinqiaozheng Street, Chongqing, 400038, People's Republic of China
| | - Xiuying Chen
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 188 Xinqiaozheng Street, Chongqing, 400038, People's Republic of China
| | - Yuhan Wang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 188 Xinqiaozheng Street, Chongqing, 400038, People's Republic of China
| | - Wenchao Cheng
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 188 Xinqiaozheng Street, Chongqing, 400038, People's Republic of China
| | - Xuzheng Zuo
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 188 Xinqiaozheng Street, Chongqing, 400038, People's Republic of China
| | - Weiju Tang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 188 Xinqiaozheng Street, Chongqing, 400038, People's Republic of China
| | - Wen Huang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), No. 188 Xinqiaozheng Street, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
33
|
Rozier P, Maumus M, Bony C, Maria ATJ, Sabatier F, Jorgensen C, Guilpain P, Noël D. Extracellular Vesicles Are More Potent Than Adipose Mesenchymal Stromal Cells to Exert an Anti-Fibrotic Effect in an In Vitro Model of Systemic Sclerosis. Int J Mol Sci 2021; 22:ijms22136837. [PMID: 34202139 PMCID: PMC8269376 DOI: 10.3390/ijms22136837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex disorder resulting from dysregulated interactions between the three main pathophysiological axes: fibrosis, immune dysfunction, and vasculopathy, with no specific treatment available to date. Adipose tissue-derived mesenchymal stromal cells (ASCs) and their extracellular vesicles (EVs) have proved efficacy in pre-clinical murine models of SSc. However, their precise action mechanism is still not fully understood. Because of the lack of availability of fibroblasts isolated from SSc patients (SSc-Fb), our aim was to determine whether a TGFβ1-induced model of human myofibroblasts (Tβ-Fb) could reproduce the characteristics of SSc-Fb and be used to evaluate the anti-fibrotic function of ASCs and their EVs. We found out that Tβ-Fb displayed the main morphological and molecular features of SSc-Fb, including the enlarged hypertrophic morphology and expression of several markers associated with the myofibroblastic phenotype. Using this model, we showed that ASCs were able to regulate the expression of most myofibroblastic markers on Tβ-Fb and SSc-Fb, but only when pre-stimulated with TGFβ1. Of interest, ASC-derived EVs were more effective than parental cells for improving the myofibroblastic phenotype. In conclusion, we provided evidence that Tβ-Fb are a relevant model to mimic the main characteristics of SSc fibroblasts and investigate the mechanism of action of ASCs. We further reported that ASC-EVs are more effective than parental cells suggesting that the TGFβ1-induced pro-fibrotic environment may alter the function of ASCs.
Collapse
Affiliation(s)
- Pauline Rozier
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
| | - Marie Maumus
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
| | - Claire Bony
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
| | | | - Florence Sabatier
- INSERM, INRA, C2VN, Aix Marseille University, 13005 Marseille, France;
| | - Christian Jorgensen
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, 34295 Montpellier, France
| | - Philippe Guilpain
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
- Department of Internal Medicine, Multi-Organic Diseases, CHU, 34295 Montpellier, France;
| | - Danièle Noël
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, 34295 Montpellier, France
- Correspondence: ; Tel.: +33-4-67-33-04-73; Fax: +33-4-67-33-01-13
| |
Collapse
|
34
|
Jin J, Ou Q, Wang Z, Tian H, Xu JY, Gao F, Hu S, Chen J, Wang J, Zhang J, Lu L, Jin C, Xu GT, Zhao J. BMSC-derived extracellular vesicles intervened the pathogenic changes of scleroderma in mice through miRNAs. Stem Cell Res Ther 2021; 12:327. [PMID: 34090522 PMCID: PMC8179710 DOI: 10.1186/s13287-021-02400-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Background Systemic sclerosis (SSc) is a disease that features severe fibrosis of the skin and lacks effective therapy. Bone marrow mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) are potential stem cell-based tools for the treatment of SSc. Methods BMSCs were isolated from the bone marrow of mice and identified with surface markers according to multilineage differentiation. EVs were isolated from the BMSC culture medium by ultracentrifugation and identified with a Nanosight NS300 particle size analyzer, transmission electron microscopy (TEM), and western blot. The microRNAs (miRNAs) of BMSC-derived EVs (BMSC-EVs) were studied via miRNA sequencing (miRNA-seq) and bioinformatic analysis. An SSc mouse model was established via subcutaneous bleomycin (BLM) injection, and the mice were treated with BMSCs or BMSC-derived EVs. Skin tissues were dissociated and analyzed with H&E staining, RNA sequencing (RNA-seq), western blot, and immunohistochemical staining. Results Evident pathological changes, like fibrosis and inflammation, were induced in the skin of BLM-treated mice. BMSCs and BMSC-EVs effectively intervened such pathological manifestations and disease processes in a very similar way. The effects of the BMSC-EVs were found to be caused by the miRNAs they carried, which were proven to be involved in regulating the proliferation and differentiation of multiple cell types and in multiple EV-related biological processes. Furthermore, TGF-β1-positive cells and α-SMA-positive myofibroblasts were significantly increased in the scleroderma skin of BLM-treated mice but evidently reduced in the scleroderma skin of the EV-treated SSc group. In addition, the numbers of mast cells and infiltrating macrophages and lymphocytes were evidently increased in the skin of BLM-treated mice but significantly reduced by EV treatment. In line with these observations, there were significantly higher mRNA levels of the inflammatory cytokines Il6, Il10, and Tnf-α in SSc mice than in control mice, but the levels decreased following EV treatment. Through bioinformatics analysis, the TGFβ and WNT signaling pathways were revealed to be closely involved in the pathogenic changes seen in mouse SSc, and these pathways could be therapeutic targets for treating the disease. Conclusions BMSC-derived EVs could be developed as a potential therapy for treating skin dysfunction in SSc, especially considering that they show similar efficacy to BMSCs but have fewer developmental regulatory requirements than cell therapy. The effects of EVs are generated by the miRNAs they carry, which alleviate SSc pathogenic changes by regulating the WNT and TGFβ signaling pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02400-y.
Collapse
Affiliation(s)
- Jiahui Jin
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhe Wang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Shuqin Hu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Jie Chen
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Jingjun Zhao
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
35
|
Rozier P, Maumus M, Maria ATJ, Toupet K, Lai-Kee-Him J, Jorgensen C, Guilpain P, Noël D. Mesenchymal stromal cells-derived extracellular vesicles alleviate systemic sclerosis via miR-29a-3p. J Autoimmun 2021; 121:102660. [PMID: 34020253 DOI: 10.1016/j.jaut.2021.102660] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/16/2022]
Abstract
Systemic sclerosis (SSc) is a potentially lethal disease with no curative treatment. Mesenchymal stromal cells (MSCs) have proved efficacy in SSc but no data is available on MSC-derived extracellular vesicles (EVs) in this multi-organ fibrosis disease. Small size (ssEVs) and large size EVs (lsEVs) were isolated from murine MSCs or human adipose tissue-derived MSCs (ASCs). Control antagomiR (Ct) or antagomiR-29a-3p (A29a) were transfected in MSCs and ASCs before EV production. EVs were injected in the HOCl-induced SSc model at day 21 and euthanasized at day 42. We found that both ssEVs and lsEVs were effective to slow-down the course of the disease. All disease parameters improved in skin and lungs. Interestingly, down-regulating miR-29a-3p in MSCs totally abolished therapeutic efficacy. Besides, we demonstrated a similar efficacy of human ASC-EVs and importantly, EVs from A29a-transfected ASCs failed to improve skin fibrosis. We identified Dnmt3a, Pdgfrbb, Bcl2, Bcl-xl as target genes of miR-29a-3p whose regulation was associated with skin fibrosis improvement. Our study highlights the therapeutic role of miR-29a-3p in SSc and the importance of regulating methylation and apoptosis.
Collapse
Affiliation(s)
- Pauline Rozier
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Alexandre Thibault Jacques Maria
- IRMB, University of Montpellier, INSERM, Montpellier, France; Department of Internal Medicine, Multi-organic Diseases, CHU, Montpellier, France
| | - Karine Toupet
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Joséphine Lai-Kee-Him
- Centre de Biochimie Structurale (CBS), University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| | - Philippe Guilpain
- IRMB, University of Montpellier, INSERM, Montpellier, France; Department of Internal Medicine, Multi-organic Diseases, CHU, Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France.
| |
Collapse
|
36
|
Pers YM, Bony C, Duroux-Richard I, Bernard L, Maumus M, Assou S, Barry F, Jorgensen C, Noël D. miR-155 Contributes to the Immunoregulatory Function of Human Mesenchymal Stem Cells. Front Immunol 2021; 12:624024. [PMID: 33841404 PMCID: PMC8033167 DOI: 10.3389/fimmu.2021.624024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
Objectives Mesenchymal stem/stromal cells (MSCs) are widely investigated in regenerative medicine thanks to their immunomodulatory properties. They exert their anti-inflammatory function thanks to the secretion of a number of mediators, including proteins and miRNAs, which can be released in the extracellular environment or in the cargo of extracellular vesicles (EVs). However, the role of miRNAs in the suppressive function of MSCs is controversial. The aim of the study was to identify miRNAs that contribute to the immunomodulatory function of human bone marrow-derived MSCs (BM-MSCs). Methods Human BM-MSCs were primed by coculture with activated peripheral blood mononuclear cells (aPBMCs). High throughput miRNA transcriptomic analysis was performed using Human MicroRNA TaqMan® Array Cards. The immunosuppressive function of miRNAs was investigated in mixed lymphocyte reactions and the delayed type hypersensitivity (DTH) murine model. Results Upon priming, 21 out of 377 tested miRNAs were significantly modulated in primed MSCs. We validated the up-regulation of miR-29a, miR-146a, miR-155 and the down-regulation of miR-149, miR-221 and miR-361 in additional samples of primed MSCs. We showed that miR-155 significantly reduced the proliferation of aPBMCs in vitro and inflammation in vivo, using the DTH model. Analysis of miRNA-mRNA interactions revealed miR-221 as a potential target gene that is down-regulated by miR-155 both in primed MSCs and in aPBMCs. Conclusion Here, we present evidence that miR-155 participates to the immunosuppressive function of human BM-MSCs and down-regulates the expression of miR-221 as a possible inflammatory mediator.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cells, Cultured
- Coculture Techniques
- Disease Models, Animal
- Extracellular Vesicles/genetics
- Extracellular Vesicles/immunology
- Extracellular Vesicles/metabolism
- Gene Expression Profiling
- Humans
- Hypersensitivity, Delayed/genetics
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/metabolism
- Hypersensitivity, Delayed/prevention & control
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Culture Test, Mixed
- Male
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/immunology
- Mesenchymal Stem Cells/metabolism
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Transcriptome
- Mice
Collapse
Affiliation(s)
- Yves-Marie Pers
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| | - Claire Bony
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | | | - Laurène Bernard
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Said Assou
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Frank Barry
- REMEDI, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| |
Collapse
|
37
|
Sierra-Sánchez Á, Montero-Vilchez T, Quiñones-Vico MI, Sanchez-Diaz M, Arias-Santiago S. Current Advanced Therapies Based on Human Mesenchymal Stem Cells for Skin Diseases. Front Cell Dev Biol 2021; 9:643125. [PMID: 33768095 PMCID: PMC7985058 DOI: 10.3389/fcell.2021.643125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Skin disease may be related with immunological disorders, external aggressions, or genetic conditions. Injuries or cutaneous diseases such as wounds, burns, psoriasis, and scleroderma among others are common pathologies in dermatology, and in some cases, conventional treatments are ineffective. In recent years, advanced therapies using human mesenchymal stem cells (hMSCs) from different sources has emerged as a promising strategy for the treatment of many pathologies. Due to their properties; regenerative, immunomodulatory and differentiation capacities, they could be applied for the treatment of cutaneous diseases. In this review, a total of thirteen types of hMSCs used as advanced therapy have been analyzed, considering the last 5 years (2015-2020). The most investigated types were those isolated from umbilical cord blood (hUCB-MSCs), adipose tissue (hAT-MSCs) and bone marrow (hBM-MSCs). The most studied diseases were wounds and ulcers, burns and psoriasis. At preclinical level, in vivo studies with mice and rats were the main animal models used, and a wide range of types of hMSCs were used. Clinical studies analyzed revealed that cell therapy by intravenous administration was the advanced therapy preferred except in the case of wounds and burns where tissue engineering was also reported. Although in most of the clinical trials reviewed results have not been posted yet, safety was high and only local slight adverse events (mild nausea or abdominal pain) were reported. In terms of effectiveness, it was difficult to compare the results due to the different doses administered and variables measured, but in general, percentage of wound's size reduction was higher than 80% in wounds, Psoriasis Area and Severity Index and Severity Scoring for Atopic Dermatitis were significantly reduced, for scleroderma, parameters such as Modified Rodnan skin score (MRSC) or European Scleroderma Study Group activity index reported an improvement of the disease and for hypertrophic scars, Vancouver Scar Scale (VSS) score was decreased after applying these therapies. On balance, hMSCs used for the treatment of cutaneous diseases is a promising strategy, however, the different experimental designs and endpoints stablished in each study, makes necessary more research to find the best way to treat each patient and disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Trinidad Montero-Vilchez
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - María I Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Manuel Sanchez-Diaz
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain.,Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
38
|
Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Zali H, Niknejad H. Human amniotic mesenchymal stem cells to promote/suppress cancer: two sides of the same coin. Stem Cell Res Ther 2021; 12:126. [PMID: 33579346 PMCID: PMC7881457 DOI: 10.1186/s13287-021-02196-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer is a leading cause of death in both developed and developing countries, and because of population growth and aging, it is a growing medical burden worldwide. With robust development in medicine, the use of stem cells has opened new treatment modalities in cancer therapy. In adult stem cells, mesenchymal stem cells (MSCs) are showing rising promise in cancer treatment due to their unique properties. Among different sources of MSCs, human amniotic fluid/membrane is an attractive and suitable reservoir. There are conflicting opinions about the role of human amniotic membrane/fluid mesenchymal stem cells (hAMSCS/hAFMSCs) in cancer, as some studies demonstrating the anticancer effects of these cells and others suggesting their progressive effects on cancer. This review focuses on recent findings about the role of hAMSCs/hAFMSCs in cancer treatment and summarizes the suppressing as well as promoting effects of these cells on cancer progression and underling mechanisms.
Collapse
Affiliation(s)
- Ameneh Jafari
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Rosa I, Romano E, Fioretto BS, Matucci-Cerinic M, Manetti M. Adipose-derived stem cells: Pathophysiologic implications vs therapeutic potential in systemic sclerosis. World J Stem Cells 2021; 13:30-48. [PMID: 33584978 PMCID: PMC7859990 DOI: 10.4252/wjsc.v13.i1.30] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) residing in the stromal vascular fraction (SVF) of white adipose tissue are recently emerging as an alternative tool for stem cell-based therapy in systemic sclerosis (SSc), a complex connective tissue disorder affecting the skin and internal organs with fibrotic and vascular lesions. Several preclinical and clinical studies have reported promising therapeutic effects of fat grafting and autologous SVF/ADSC-based local treatment for facial and hand cutaneous manifestations of SSc patients. However, currently available data indicate that ADSCs may represent a double-edged sword in SSc, as they may exhibit a pro-fibrotic and anti-adipogenic phenotype, possibly behaving as an additional pathogenic source of pro-fibrotic myofibroblasts through the adipocyte-to-myofibroblast transition process. Thus, in the perspective of a larger employ of SSc-ADSCs for further therapeutic applications, it is important to definitely unravel whether these cells present a comparable phenotype and similar immunosuppressive, anti-inflammatory, anti-fibrotic and pro-angiogenic properties in respect to healthy ADSCs. In light of the dual role that ADSCs seem to play in SSc, this review will provide a summary of the most recent insights into the preclinical and clinical studies employing SVF and ADSCs for the treatment of the disease and, at the same time, will focus on the main findings highlighting the possible involvement of these stem cells in SSc-related fibrosis pathogenesis.
Collapse
Affiliation(s)
- Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy.
| |
Collapse
|
40
|
Mesenchymal stromal cells for systemic sclerosis treatment. Autoimmun Rev 2021; 20:102755. [PMID: 33476823 DOI: 10.1016/j.autrev.2021.102755] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis (SSc) is a rare chronic autoimmune disease characterized by vasculopathy, dysregulation of innate and adaptive immune responses, and progressive fibrosis. SSc remains an orphan disease, with high morbity and mortality in SSc patients. The mesenchymal stromal cells (MSC) demonstrate in vitro and in vivo pro-angiogenic, immuno-suppressive, and anti-fibrotic properties and appear as a promising stem cell therapy type, that may target the key pathological features of SSc disease. This review aims to summarize acquired knowledge in the field of :1) MSC definition and in vitro and in vivo functional properties, which vary according to the donor type (allogeneic or autologous), the tissue sources (bone marrow, adipose tissue or umbilical cord) or inflammatory micro-environment in the recipient; 2) preclinical studies in various SSc animal models , which showed reduction in skin and lung fibrosis after MSC infusion; 3) first clinical trials in human, with safety and early efficacy results reported in SSc patients or currently tested in several ongoing clinical trials.
Collapse
|
41
|
Zhao M, Wu J, Wu H, Sawalha AH, Lu Q. Clinical Treatment Options in Scleroderma: Recommendations and Comprehensive Review. Clin Rev Allergy Immunol 2021; 62:273-291. [PMID: 33449302 DOI: 10.1007/s12016-020-08831-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
There are two major clinical subsets of scleroderma: (i) systemic sclerosis (SSc) is a complex systemic autoimmune disorder characterized by inflammation, vasculopathy, and excessive fibrosis of the skin and multiple internal organs and (ii) localized scleroderma (LoS), also known as morphea, is confined to the skin and/or subcutaneous tissues resulting in collagen deposition and subsequent fibrosis. SSc is rare but is associated with significant morbidity and mortality compared with other rheumatic diseases. Fatal outcomes in SSc often originate from organ complications of the disease, such as lung fibrosis, pulmonary artery hypertension (PAH), and scleroderma renal crisis (SRC). Current treatment modalities in SSc have focused on targeting vascular damage, fibrosis, and regulation of inflammation as well as autoimmune responses. Some drugs previously used in an attempt to suppress fibrosis, like D-penicillamine (D-Pen) or colchicine, have been disappointing in clinical practice despite anecdotal evidence of their advantages. Some canonical medications, including glucocorticoids, immunosuppressants, and vasodilators, have had some success in treating various manifestations in SSc patients. Increasing evidence suggests that some biologic agents targeting collagen, cytokines, and cell surface molecules might have promising therapeutic effects in SSc. In recent years, hematopoietic stem cell transplantation (HSCT), mostly autologous, has made great progress as a promising treatment option in severe and refractory SSc. Due to the complexity and heterogeneity of SSc, there are currently no optimal treatments for all aspects of the disease. As for LoS, local skin-targeted therapy is generally used, including topical application of glucocorticoids or other immunomodulatory ointments and ultraviolet (UV) irradiation. In addition, systemic immunosuppressants are also utilized in several forms of LoS. Here, we comprehensively discuss current treatment options for scleroderma, encompassing old, new, and future potential treatment options. In addition, we summarize data from new clinical trials that have the potential to modify the disease process and improve long-term outcomes in SSc.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Jiali Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China.,Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China
| | - Amr H Sawalha
- Departments of Pediatrics, Medicine, and Immunology, and Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China. .,Research Unit of Key Technologies of Immune-Related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences, Changsha, China. .,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
42
|
An Update on the Potential of Mesenchymal Stem Cell Therapy for Cutaneous Diseases. Stem Cells Int 2021; 2021:8834590. [PMID: 33505474 PMCID: PMC7806381 DOI: 10.1155/2021/8834590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are nonhematopoietic postnatal stem cells with self-renewal, multipotent differentiation, and potent immunomodulatory and anti-inflammatory capabilities, thus playing an important role in tissue repair and regeneration. Numerous clinical and preclinical studies have demonstrated the potential application of MSCs in the treatment of tissue inflammation and immune diseases, including inflammatory skin diseases. Therefore, understanding the biological and immunological characteristics of MSCs is important to standardize and optimize MSC-based regenerative therapy. In this review, we highlight the mechanisms underlying MSC-mediated immunomodulation and tissue repair/regeneration and present the latest development of MSC-based clinical trials on cutaneous diseases.
Collapse
|
43
|
Laloze J, Fiévet L, Desmoulière A. Adipose-Derived Mesenchymal Stromal Cells in Regenerative Medicine: State of Play, Current Clinical Trials, and Future Prospects. Adv Wound Care (New Rochelle) 2021; 10:24-48. [PMID: 32470315 PMCID: PMC7698876 DOI: 10.1089/wound.2020.1175] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Significance: Wound healing is a complex process involving pain and inflammation, where innervation plays a central role. Managing wound healing and pain remains an important issue, especially in pathologies such as excessive scarring (often leading to fibrosis) or deficient healing, leading to chronic wounds. Recent Advances: Advances in therapies using mesenchymal stromal cells offer new insights for treating indications that previously lacked options. Adipose-derived mesenchymal stromal cells (AD-MSCs) are now being used to a much greater extent in clinical trials for regenerative medicine. However, to be really valid, these randomized trials must imperatively follow strict guidelines such as consolidated standards of reporting trials (CONSORT) statement. Indeed, AD-MSCs, because of their paracrine activities and multipotency, have potential to cure degenerative and/or inflammatory diseases. Combined with their relatively easy access (from adipose tissue) and proliferation capacity, AD-MSCs represent an excellent candidate for allogeneic treatments. Critical Issues: The success of AD-MSC therapy may depend on the robustness of the biological functions of AD-MSCs, which requires controlling source heterogeneity and production processes, and development of biomarkers that predict desired responses. Several studies have investigated the effect of AD-MSCs on innervation, wound repair, or pain management separately, but systematic evaluation of how those effects could be combined is lacking. Future Directions: Future studies that explore how AD-MSC therapy can be used to treat difficult-to-heal wounds, underlining the need to thoroughly characterize the cells used, and standardization of preparation processes are needed. Finally, how this a priori easy-to-use cell therapy treatment fits into clinical management of pain, improvement of tissue healing, and patient quality of life, all need to be explored.
Collapse
Affiliation(s)
- Jérôme Laloze
- Faculties of Medicine and Pharmacy, University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Limoges, France
- Department of Maxillo-Facial and Reconstructive Surgery and Stomatology, University Hospital Dupuytren, Limoges, France
| | - Loïc Fiévet
- STROMALab, Etablissement Français du Sang (EFS)-Occitanie, INSERM 1031, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, University of Toulouse, Toulouse, France
| | - Alexis Desmoulière
- Faculties of Medicine and Pharmacy, University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Limoges, France
| |
Collapse
|
44
|
Abedi M, Alavi-Moghadam S, Payab M, Goodarzi P, Mohamadi-jahani F, Sayahpour FA, Larijani B, Arjmand B. Mesenchymal stem cell as a novel approach to systemic sclerosis; current status and future perspectives. CELL REGENERATION (LONDON, ENGLAND) 2020; 9:20. [PMID: 33258056 PMCID: PMC7704834 DOI: 10.1186/s13619-020-00058-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Systemic sclerosis is a rare chronic autoimmune disease with extensive microvascular injury, damage of endothelial cells, activation of immune responses, and progression of tissue fibrosis in the skin and various internal organs. According to epidemiological data, women's populations are more susceptible to systemic sclerosis than men. Until now, various therapeutic options are employed to manage the symptoms of the disease. Since stem cell-based treatments have developed as a novel approach to rescue from several autoimmune diseases, it seems that stem cells, especially mesenchymal stem cells as a powerful regenerative tool can also be advantageous for systemic sclerosis treatment via their remarkable properties including immunomodulatory and anti-fibrotic effects. Accordingly, we discuss the contemporary status and future perspectives of mesenchymal stem cell transplantation for systemic sclerosis.
Collapse
Affiliation(s)
- Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Mohamadi-jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Yang Y, Zhu S, Li Y, Lu Q, Zhang Q, Su L, Zhang Q, Zhao Y, Luo Y, Liu Y. Human umbilical cord mesenchymal stem cells ameliorate skin fibrosis development in a mouse model of bleomycin-induced systemic sclerosis. Exp Ther Med 2020; 20:257. [PMID: 33199983 PMCID: PMC7664606 DOI: 10.3892/etm.2020.9387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC) infusion has become a novel therapeutic strategy for complex autoimmune diseases; however, few detailed studies have been performed to investigate the benefit and mechanism of MSC treatment on systemic sclerosis (SSc). The present study aimed to evaluate the therapeutic effect of human umbilical cord derived-MSCs (UC-MSCs) on bleomycin-induced SSc in mice and explore the potential underlying mechanism. The murine SSc model was established by daily subcutaneous injection of bleomycin for 4 weeks, followed with two UC-MSC infusions every 7 days. Skin fibrosis was assessed by H&E and Masson staining. Flow cytometry was used to determine IL-17A, IFN-γ, tumor necrosis factor-β, IL-10 and IL-12 levels in serum samples and T cell subsets in murine spleen. Additionally, gene expression levels of cytokines and fibrosis markers in skin samples were measured by reverse transcription-quantitative PCR. Immunofluorescence staining was performed to track UC-MSC localization and lymphocyte cell infiltration in vivo. UC-MSC treatment exerted an anti-fibrotic role in bleomycin-induced SSc mice, as confirmed by histological improvement, decreased collagen synthesis, and reduced collagen-1α1, collagen-1α2, fibronectin-1 and α-smooth muscle actin gene expression levels. The results indicated that UC-MSC treatment only had a limited systematic effect on cytokine production in serum samples and T cell activation in the spleen. By contrast, T helper (Th)17 cell infiltration and activation in skin were efficiently inhibited after UC-MSC infusion, as evidenced by the decreased IL-17A and retinoic acid-related orphan receptor γt gene expression as well as IL-17A production. UC-MSC administration significantly ameliorated bleomycin-induced skin fibrosis and collagen formation primarily by eliminating local inflammation and Th17 cell activation in the skin; however, the systemic inhibitory effect of UM-MSCs on cytokines was less profound.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Rheumatology and Immunology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Shuai Zhu
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanhong Li
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qian Lu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Qiuyi Zhang
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Linchong Su
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiuping Zhang
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Zhao
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yubin Luo
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Liu
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
46
|
Chyle Fat-Derived Stem Cells Conditioned Medium Inhibits Hypertrophic Scar Fibroblast Activity. Ann Plast Surg 2020; 83:271-277. [PMID: 31149905 DOI: 10.1097/sap.0000000000001932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Hypertrophic scars (HSs) generally form after injury to the deep layers of the dermis and are characterized by excessive collagen deposition. An increasing amount of evidence has determined that human adipose tissue-derived mesenchymal stem cells attenuate fibrosis in various conditions. We explored the effect and possible mechanism of chyle fat-derived stem cells (CFSCs) on HS formation. METHODS Hypertrophic scar-derived fibroblasts (HSFs) and CFSCs were isolated from individual patients. Third-passage CFSCs were isolated and cultured using a mechanical emulsification method, and their surface CD markers were analyzed by flow cytometry. The adipogenic and osteogenic differentiation capacity of the CFSCs was determined using oil red O staining and alizarin red S staining, respectively. Then, the effects of CFSCs on HSFs were assessed in vitro. Hypertrophic scar-derived fibroblasts were treated with starvation-induced conditioned medium from the CFSCs (CFSC-CM). The change in HSF cellular behaviors, such as cell proliferation, migration, and protein expression of scar-related molecules, was evaluated by cell counting assay, scratch wound assay, enzyme-linked immunosorbent assay, and western blotting. All data were analyzed using SPSS 17.0. RESULTS The CFSCs expressed CD90, CD105, and CD73 but did not express CD34, CD45, or CD31. The CFSCs differentiated into adipocytes and osteoblasts under the appropriate induction conditions. Chyle fat-derived stem cells conditioned medium inhibited HSF proliferation and migration. The in vitro and ex vivo studies revealed that CFSC-CM decreased type I collagen, type III collagen, and α smooth muscle actin expression. CONCLUSIONS Our results suggest that CFSCs are associated with the inhibition of fibrosis in HSFs by a paracrine effect. The use of CFSC-CM may be a novel therapeutic strategy for HSs.
Collapse
|
47
|
Development and Validation of a Fully GMP-Compliant Process for Manufacturing Stromal Vascular Fraction: A Cost-Effective Alternative to Automated Methods. Cells 2020; 9:cells9102158. [PMID: 32987708 PMCID: PMC7598595 DOI: 10.3390/cells9102158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
The therapeutic use of adipose-derived stromal vascular fraction (SVF) is expanding in multiple pathologies. Various processes have been proposed for manufacturing SVF but they must be revisited based on advanced therapy medicinal product (ATMP) regulations. We report here the development and validation of a fully good manufacturing practices (GMP)-compliant protocol for the isolation of SVF. Adipose tissue was collected from healthy volunteers undergoing lipoaspiration. The optimal conditions of collagenase digestion and washing were determined based on measurements of SVF cell viability, yield recovery, and cell subset distribution. Comparability of the SVF obtained using the newly developed manufacturing process (n = 6) and the Celution-based automated method (n = 33), used as a reference, was established using inter-donor analyses. Characteristics of SVF (n = 5) generated using both manufacturing protocols were analyzed for an intra-donor comparison. In addition, these comparisons also included the determination of colony-forming unit fibroblast frequency, in vitro angiogenic activity, and in vivo regenerative effects in a mouse ischemic cutaneous wound model. We successfully developed a process for the generation of SVF presenting higher cell viability and yield recovery compared to the Celution device-based protocol. Characteristics of the SVF including phenotype, capacity for angiogenesis, and wound-healing promotion attested to the comparability of the two manufacturing processes. We validated an optimized non-automated process that should allow for a GMP-compliant, more affordable, and reduced-cost strategy to exploit the potential of SVF-based regenerative therapies.
Collapse
|
48
|
Colombo JS, Jia S, D'Souza RN. Modeling Hypoxia Induced Factors to Treat Pulpal Inflammation and Drive Regeneration. J Endod 2020; 46:S19-S25. [DOI: 10.1016/j.joen.2020.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
DeBari MK, Abbott RD. Adipose Tissue Fibrosis: Mechanisms, Models, and Importance. Int J Mol Sci 2020; 21:ijms21176030. [PMID: 32825788 PMCID: PMC7503256 DOI: 10.3390/ijms21176030] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Increases in adipocyte volume and tissue mass due to obesity can result in inflammation, further dysregulation in adipose tissue function, and eventually adipose tissue fibrosis. Like other fibrotic diseases, adipose tissue fibrosis is the accumulation and increased production of extracellular matrix (ECM) proteins. Adipose tissue fibrosis has been linked to decreased insulin sensitivity, poor bariatric surgery outcomes, and difficulty in weight loss. With the rising rates of obesity, it is important to create accurate models for adipose tissue fibrosis to gain mechanistic insights and develop targeted treatments. This article discusses recent research in modeling adipose tissue fibrosis using in vivo and in vitro (2D and 3D) methods with considerations for biomaterial selections. Additionally, this article outlines the importance of adipose tissue in treating other fibrotic diseases and methods used to detect and characterize adipose tissue fibrosis.
Collapse
Affiliation(s)
- Megan K. DeBari
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
50
|
Dusfour G, Maumus M, Cañadas P, Ambard D, Jorgensen C, Noël D, Le Floc'h S. Mesenchymal stem cells-derived cartilage micropellets: A relevant in vitro model for biomechanical and mechanobiological studies of cartilage growth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110808. [PMID: 32409025 DOI: 10.1016/j.msec.2020.110808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/20/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
The prevalence of diseases that affect the articular cartilage is increasing due to population ageing, but the current treatments are only palliative. One innovative approach to repair cartilage defects is tissue engineering and the use of mesenchymal stem/stromal cells (MSCs). Although the combination of MSCs with biocompatible scaffolds has been extensively investigated, no product is commercially available yet. This could be explained by the lack of mechanical stimulation during in vitro culture and the absence of proper and stable cartilage matrix formation, leading to poor integration after implantation. The objective of the present study was to investigate the biomechanical behaviour of MSC differentiation in micropellets, a well-defined 3D in vitro model of cartilage differentiation and growth, in view of tissue engineering applications. MSC micropellet chondrogenic differentiation was induced by exposure to TGFβ3. At different time points during differentiation (35 days of culture), their global mechanical properties were assessed using a very sensitive compression device coupled to an identification procedure based on a finite element parametric model. Micropellets displayed both a non-linear strain-induced stiffening behaviour and a dissipative behaviour that increased from day 14 to day 29, with a maximum instantaneous Young's modulus of 179.9 ± 18.8 kPa. Moreover, chondrocyte gene expression levels were strongly correlated with the observed mechanical properties. This study indicates that cartilage micropellets display the biochemical and biomechanical characteristics required for investigating and recapitulating the different stages of cartilage development.
Collapse
Affiliation(s)
- G Dusfour
- LMGC, Univ. Montpellier, CNRS, Montpellier, France
| | - M Maumus
- IRMB, Univ. Montpellier, INSERM, CHU Montpellier, Montpellier, France; Hopital Lapeyronie, Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Montpellier, France
| | - P Cañadas
- LMGC, Univ. Montpellier, CNRS, Montpellier, France
| | - D Ambard
- LMGC, Univ. Montpellier, CNRS, Montpellier, France
| | - C Jorgensen
- IRMB, Univ. Montpellier, INSERM, CHU Montpellier, Montpellier, France; Hopital Lapeyronie, Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Montpellier, France
| | - D Noël
- IRMB, Univ. Montpellier, INSERM, CHU Montpellier, Montpellier, France; Hopital Lapeyronie, Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Montpellier, France
| | - S Le Floc'h
- LMGC, Univ. Montpellier, CNRS, Montpellier, France.
| |
Collapse
|