1
|
Kurup SV, Patil PM, Atkari SS, Divate SR, Thawkar BS, Kale MK. Guillain Barre Syndrome as a Complication of Infections Including COVID-19: a Review. CURRENT PHARMACOLOGY REPORTS 2023; 9:563-579. [DOI: 10.1007/s40495-023-00334-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 01/06/2025]
|
2
|
Wu N, Li X, Ma H, Zhang X, Liu B, Wang Y, Zheng Q, Fan X. The role of the gut microbiota and fecal microbiota transplantation in neuroimmune diseases. Front Neurol 2023; 14:1108738. [PMID: 36816570 PMCID: PMC9929158 DOI: 10.3389/fneur.2023.1108738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota plays a key role in the function of the host immune system and neuroimmune diseases. Alterations in the composition of the gut microbiota can lead to pathology and altered formation of microbiota-derived components and metabolites. A series of neuroimmune diseases, such as myasthenia gravis (MG), multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSDs), Guillain-Barré syndrome (GBS), and autoimmune encephalitis (AIE), are associated with changes in the gut microbiota. Microecological therapy by improving the gut microbiota is expected to be an effective measure for treating and preventing some neuroimmune diseases. This article reviews the research progress related to the roles of gut microbiota and fecal microbiota transplantation (FMT) in neuroimmune diseases.
Collapse
Affiliation(s)
- Nan Wu
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Xizhi Li
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - He Ma
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Xue Zhang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Yuan Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China,*Correspondence: Yuan Wang ✉
| | - Qi Zheng
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China,Qi Zheng ✉
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China,Xueli Fan ✉
| |
Collapse
|
3
|
Stein RA. Campylobacter jejuni and Postinfectious Autoimmune Diseases: A Proof of Concept in Glycobiology. ACS Infect Dis 2022; 8:1981-1991. [PMID: 36137262 DOI: 10.1021/acsinfecdis.2c00397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glycans, one of the most diverse groups of macromolecules, are ubiquitous constituents of all cells and have many critical functions, including the interaction between microbes and their hosts. One of the best model organisms to study the host-pathogen interaction, the gastrointestinal pathogen Campylobacter jejuni dedicates extensive resources to glycosylation and exhibits a diverse array of surface sugar-coated displays. The first bacterium where N-linked glycosylation was described, C. jejuni can additionally modify proteins by O-linked glycosylation, has extracellular capsular polysaccharides that are important for virulence and represent the major determinant of the Penner serotyping scheme, and has outer membrane lipooligosaccharides that participate in processes such as colonization, survival, inflammation, and immune evasion. In addition to causing gastrointestinal disease and extraintestinal infections, C. jejuni was also linked to postinfectious autoimmune neuropathies, of which Guillain-Barré syndrome (GBS) and Miller Fisher syndrome (MFS) are the most extensively characterized ones. These postinfectious autoimmune neuropathies occur when specific bacterial surface lipooligosaccharides mimic gangliosides in the host nervous system. C. jejuni provided the first proof of concept for the involvement of molecular mimicry in the pathogenesis of an autoimmune disease and, also, for the ability of a bacterial polymorphism to shape the clinical presentation of the postinfectious autoimmune neuropathy. The scientific journey that culminated with elucidating the mechanistic details of the C. jejuni-GBS link was the result of contributions from several fields, including microbiology, structural biology, glycobiology, genetics, and immunology and provides an inspiring and important example to interrogate other instances of molecular mimicry and their involvement in autoimmune disease.
Collapse
Affiliation(s)
- Richard A Stein
- Industry Associate Professor NYU Tandon School of Engineering, Department of Chemical and Biomolecular Engineering, 6 MetroTech Center, Brooklyn, New York 11201, United States
| |
Collapse
|
4
|
St. Charles JL, Brooks PT, Bell JA, Ahmed H, Van Allen M, Manning SD, Mansfield LS. Zoonotic Transmission of Campylobacter jejuni to Caretakers From Sick Pen Calves Carrying a Mixed Population of Strains With and Without Guillain Barré Syndrome-Associated Lipooligosaccharide Loci. Front Microbiol 2022; 13:800269. [PMID: 35591997 PMCID: PMC9112162 DOI: 10.3389/fmicb.2022.800269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Campylobacter jejuni causes foodborne gastroenteritis and may trigger acute autoimmune sequelae including Guillain Barré Syndrome. Onset of neuromuscular paralysis is associated with exposure to C. jejuni lipooligosaccharide (LOS) classes A, B, C, D, and E that mimic and evoke antibodies against gangliosides on myelin and axons of peripheral nerves. Family members managing a Michigan dairy operation reported recurring C. jejuni gastroenteritis. Because dairy cattle are known to shed C. jejuni, we hypothesized that calves in the sick pen were the source of human infections. Fecal samples obtained from twenty-five calves, one dog, and one asymptomatic family member were cultured for Campylobacter. C. jejuni isolates were obtained from thirteen calves and the family member: C. coli from two calves, and C. hyointestinalis from two calves. Some calves had diarrhea; most were clinically normal. Typing of lipooligosaccharide biosynthetic loci showed that eight calf C. jejuni isolates fell into classes A, B, and C. Two calf isolates and the human isolate possessed LOS class E, associated mainly with enteric disease and rarely with Guillain Barré Syndrome. Multi-locus sequence typing, porA and flaA typing, and whole genome comparisons of the thirteen C. jejuni isolates indicated that the three LOS class E strains that included the human isolate were closely related, indicating zoonotic transmission. Whole-genome comparisons revealed that isolates differed in virulence gene content, particularly in loci encoding biosynthesis of surface structures. Family members experienced diarrheal illness repeatedly over 2 years, yet none experienced GBS despite exposure to calves carrying invasive C. jejuni with LOS known to elicit antiganglioside autoantibodies.
Collapse
Affiliation(s)
- Jessica L. St. Charles
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Phillip T. Brooks
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Julia A. Bell
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Husnain Ahmed
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Mia Van Allen
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Linda S. Mansfield
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- *Correspondence: Linda S. Mansfield,
| |
Collapse
|
5
|
Brudvig JM, Cluett MM, Gensterblum-Miller EU, Chen J, Bell JA, Mansfield LS. Th1/Th17-mediated Immunity and Protection from Peripheral Neuropathy in Wildtype and IL10 -/- BALB/c Mice Infected with a Guillain-Barré Syndrome-associated Campylobacter jejuni Strain. Comp Med 2022; 72:63-77. [PMID: 35272743 PMCID: PMC9084571 DOI: 10.30802/aalas-cm-21-000059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/07/2021] [Accepted: 09/03/2021] [Indexed: 11/05/2022]
Abstract
Campylobacter jejuni is an important cause of bacterial gastroenteritis worldwide and is linked to Guillain-Barré syndrome (GBS), a debilitating postinfectious polyneuropathy. The immunopathogenesis of GBS involves the generation of antibodies that are cross reactive to C. jejuni lipooligosaccharide and structurally similar peripheral nerve gangliosides. Both the C. jejuni infecting strain and host factors contribute to GBS development. GBS pathogenesis is associated with Th2-mediated responses in patients. Moreover, induction of IgG1 antiganglioside antibodies in association with colonic Th2-mediated immune responses has been reported in C. jejuni-infected C57BL/6 IL10-/- mice at 4 to 6 wk after infection. We hypothesized that, due to their Th2 immunologic bias, BALB/c mice would develop autoantibodies and signs of peripheral neuropathy after infection with a GBS patient-derived strain of C. jejuni (strain 260.94). WT and IL10-/- BALB/c mice were orally inoculated with C. jejuni 260.94, phenotyped weekly for neurologic deficits, and euthanized after 5 wk. Immune responses were assessed as C. jejuni-specific and antiganglioside antibodies in plasma and cytokine production and histologic lesions in the proximal colon. Peripheral nerve lesions were assessed in dorsal root ganglia and their afferent nerve fibers by scoring immunohistochemically labeled macrophages through morphometry. C. jejuni 260.94 stably colonized both WT and IL10-/- mice and induced systemic Th1/Th17-mediated immune responses with significant increases in C. jejuni-specific IgG2a, IgG2b, and IgG3 plasma antibodies. However, C. jejuni 260.94 did not induce IgG1 antiganglioside antibodies, colitis, or neurologic deficits or peripheral nerve lesions in WT or IL10-/- mice. Both WT and IL10-/- BALB/c mice showed relative protection from development of Th2-mediated immunity and antiganglioside antibodies as compared with C57BL/6 IL10-/- mice. Therefore, BALB/c mice infected with C. jejuni 260.94 are not an effective disease model but provide the opportunity to study the role of immune mechanisms and host genetic background in the susceptibility to post infectious GBS.
Collapse
Affiliation(s)
- Jean M Brudvig
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, Michigan; College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Matthew M Cluett
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Elizabeth U Gensterblum-Miller
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; College of Veterinary Medicine, Michigan State University, East Lansing, Michiga
| | - James Chen
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; College of Veterinary Medicine, Michigan State University, East Lansing, Michiga
| | - Julia A Bell
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; College of Veterinary Medicine, Michigan State University, East Lansing, Michiga
| | - Linda S Mansfield
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan; Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, Michigan; College of Veterinary Medicine, Michigan State University, East Lansing, Michigan; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan;,
| |
Collapse
|
6
|
Labombarde JG, Pillai MR, Wehenkel M, Lin CY, Keating R, Brown SA, Crawford JC, Brice DC, Castellaw AH, Mandarano AH, Guy CS, Mejia JR, Lewis CD, Chang TC, Oshansky CM, Wong SS, Webby RJ, Yan M, Li Q, Marion TN, Thomas PG, McGargill MA. Induction of broadly reactive influenza antibodies increases susceptibility to autoimmunity. Cell Rep 2022; 38:110482. [PMID: 35263574 PMCID: PMC9036619 DOI: 10.1016/j.celrep.2022.110482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 11/03/2022] Open
Abstract
Infection and vaccination repeatedly expose individuals to antigens that are conserved between influenza virus subtypes. Nevertheless, antibodies recognizing variable influenza epitopes greatly outnumber antibodies reactive against conserved epitopes. Elucidating factors contributing to the paucity of broadly reactive influenza antibodies remains a major obstacle for developing a universal influenza vaccine. Here, we report that inducing broadly reactive influenza antibodies increases autoreactive antibodies in humans and mice and exacerbates disease in four distinct models of autoimmune disease. Importantly, transferring broadly reactive influenza antibodies augments disease in the presence of inflammation or autoimmune susceptibility. Further, broadly reactive influenza antibodies spontaneously arise in mice with defects in B cell tolerance. Together, these data suggest that self-tolerance mechanisms limit the prevalence of broadly reactive influenza antibodies, which can exacerbate disease in the context of additional risk factors.
Collapse
Affiliation(s)
- Jocelyn G. Labombarde
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Meenu R. Pillai
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Marie Wehenkel
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Chun-Yang Lin
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rachael Keating
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Scott A. Brown
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David C. Brice
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ashley H. Castellaw
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Clifford S. Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Juan R. Mejia
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Carlessia D. Lewis
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Christine M. Oshansky
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sook-San Wong
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Present address: Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, P.R. China,Present address: State Key Laboratory of Respiratory Diseases & National Clinical Research Center for Respiratory Disease, Guangzhou, P.R. China,Present address: School of Public Health, The University of Hong Kong, Hong Kong SAR, P.R. China
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mei Yan
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Quan–Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tony N. Marion
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Maureen A. McGargill
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Lead contact,Correspondence:
| |
Collapse
|
7
|
Malik A, Brudvig JM, Gadsden BJ, Ethridge AD, Mansfield LS. Campylobacter jejuni induces autoimmune peripheral neuropathy via Sialoadhesin and Interleukin-4 axes. Gut Microbes 2022; 14:2064706. [PMID: 35442154 PMCID: PMC9037470 DOI: 10.1080/19490976.2022.2064706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Campylobacter jejuni is a leading cause of gastroenteritis that has been causally linked with development of the autoimmune peripheral neuropathy Guillain Barré Syndrome (GBS). Previously, we showed that C. jejuni isolates from human enteritis patients induced Type1/17-cytokine dependent colitis in interleukin-10 (IL-10)-/- mice, while isolates from GBS patients colonized these mice without colitis but instead induced autoantibodies that cross-reacted with the sialylated oligosaccharide motifs on the LOS of GBS-associated C. jejuni and the peripheral nerve gangliosides. We show here that infection of IL-10-/- mice with the GBS but not the colitis isolate led to sciatic nerve inflammation and abnormal gait and hind limb movements, with character and timing consistent with this syndrome in humans. Autoantibody responses and associated nerve histologic changes were dependent on IL-4 production by CD4 T cells. We further show that Siglec-1 served as a central antigen presenting cell receptor mediating the uptake of the GBS isolates via interaction with the sialylated oligosaccharide motifs found specifically on the LOS of GBS-associated C. jejuni, and the ensuing T cell differentiation and autoantibody elicitation. Sialylated oligosaccharide motifs on the LOS of GBS-associated C. jejuni therefore acted as both the Siglec-1-ligand for phagocytosis, as well as the epitope for autoimmunity. Overall, we present a mouse model of an autoimmune disease induced directly by a bacterium that is dependent upon Siglec-1 and IL-4. We also demonstrate the negative regulatory role of IL-10 in C. jejuni induced autoimmunity and provide IL-4 and Siglec-1 blockade as potential therapeutic interventions against GBS.
Collapse
Affiliation(s)
- Ankit Malik
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Jean M. Brudvig
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MIUSA
| | - Barbie J. Gadsden
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MIUSA
| | - Alexander D. Ethridge
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Linda S. Mansfield
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Sri Dewi Untari NK, Kusumastuti K, Suryokusumo G, Sudiana IK. Protective Effect of Hyperbaric Oxygen Treatment on Axon Degeneration after Acute Motor Axonal Neuropathy. Autoimmune Dis 2021; 2021:6627779. [PMID: 34790416 PMCID: PMC8592739 DOI: 10.1155/2021/6627779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Acute motor axonal neuropathy (AMAN) is a disease that leads to acute flaccid paralysis and may result from the binding of antibody and antigen to the spinal cord. The objective of this study is to evaluate the protective effect of hyperbaric oxygen treatment (HBOT) on axon degeneration of the spinal cord and sciatic nerve of the AMAN model rabbit. Axonal degeneration was assessed by evaluating glutathione (GSH) activity, interleukin-1β (IL-1β) expression, and clinical and histopathological features. METHODS Twenty-one New Zealand rabbits were divided into three groups. The treatment group was exposed to 100% oxygen at 2.4 ATA 90 minutes for 10 days at a decompression rate of 2.9 pounds per square inch/minute. GSH level was evaluated using an enzyme-linked immune-sorbent assay. An expression of IL-1β in the spinal cord was determined by immunohistochemistry. Clinical appearances were done by motor scale and body weight. Histological features observed neuronal swelling and inflammatory infiltration in the sagittal lumbar region and the undulation of the longitudinal sciatic nerve. RESULTS Rabbits exposed to HBO had high GSH activity levels (p < 0.05) but unexpectedly had high IL1β expression (p > 0.05). In addition, the HBO-exposed rabbits had a better degree of undulation, the size of neuronal swelling was smaller, the number of macrophages was higher, and motor function was better than the AMAN model rabbits (p < 0.05). CONCLUSIONS These findings indicate that HBO therapy can decrease axon degeneration by triggering GSH activity, increasing IL-1β level, and restoring tissues and motor status. In conclusion, HBO has a protective effect on axon degeneration of the spinal cord and sciatic nerve of the AMAN model rabbit.
Collapse
Affiliation(s)
- Ni Komang Sri Dewi Untari
- Department of Hyperbaric, Drs. Med. Rijadi S. Phys. Naval Health Institute, Surabaya, Indonesia
- Department of Neurology, Faculty of Medicine, Hang Tuah University, Surabaya, Indonesia
- Department of Neurology, Dr. Ramelan Navy Hospital, Surabaya, Indonesia
- Hyperbaric Medicine, Basic Medical Science, Airlangga University, Surabaya, Indonesia
| | - Kurnia Kusumastuti
- Department of Neurology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Guritno Suryokusumo
- Department of Hyperbaric, Faculty of Medicine, Pembangunan Nasional University, Jakarta, Indonesia
| | - I Ketut Sudiana
- Department of Pathology Anatomy, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
9
|
Sri Dewi Untari NK, Kusumastuti K, Suryokusumo G, Sudiana IK. Characteristics of Guillain-Barre Syndrome Patient Underwent Hyperbaric Oxygen Therapy at Lakesla 2016–2019. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Guillain-Barre syndrome (GBS) is considered an acute immune-mediated monophasic illness. Standard therapy includes intravenous immunoglobulin (IVIG) and/or plasmapheresis. Yet, long-standing disability remains a problem. In Indonesia, the availability and cost of these therapies are constraints.
AIM: To show the capability of hyperbaric oxygen (HBO2) therapy in GBS patients who did not undergo standard therapy. HBO2 also provides healing in patients who experience delays in therapy.
METHODS: Data included identity, demographic, social history, current disease history, disease progression and therapies used. Data were displayed in the form of tables and graphs.
RESULTS: Twenty-five GBS patients underwent HBO2 from 2016 to 2019. The majority of patients were males aged 20-30 years, triggered by preceding diarrhea. After approximately three to ten days following HBO2, they felt their first positive changes. They walked with assistance after two to three weeks receiving HBO2 and without assistance after four to 12 weeks receiving HBO2.
CONCLUSION: HBO2 administration show clinical improvement in GBS patients. HBO2 is expected to become an adjuctive therapy for GBS patients in Indonesia.
Collapse
|
10
|
Cao H, Xu H, Ning C, Xiang L, Ren Q, Zhang T, Zhang Y, Gao R. Multi-Omics Approach Reveals the Potential Core Vaccine Targets for the Emerging Foodborne Pathogen Campylobacter jejuni. Front Microbiol 2021; 12:665858. [PMID: 34248875 PMCID: PMC8265506 DOI: 10.3389/fmicb.2021.665858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in humans around the world. The emergence of bacterial resistance is becoming more serious; therefore, development of new vaccines is considered to be an alternative strategy against drug-resistant pathogen. In this study, we investigated the pangenome of 173 C. jejuni strains and analyzed the phylogenesis and the virulence factor genes. In order to acquire a high-quality pangenome, genomic relatedness was firstly performed with average nucleotide identity (ANI) analyses, and an open pangenome of 8,041 gene families was obtained with the correct taxonomy genomes. Subsequently, the virulence property of the core genome was analyzed and 145 core virulence factor (VF) genes were obtained. Upon functional genomics and immunological analyses, five core VF proteins with high antigenicity were selected as potential core vaccine targets for humans. Furthermore, functional annotations indicated that these proteins are involved in important molecular functions and biological processes, such as adhesion, regulation, and secretion. In addition, transcriptome analysis in human cells and pig intestinal loop proved that these vaccine target genes are important in the virulence of C. jejuni in different hosts. Comprehensive pangenome and relevant animal experiments will facilitate discovering the potential core vaccine targets with improved efficiency in reverse vaccinology. Likewise, this study provided some insights into the genetic polymorphism and phylogeny of C. jejuni and discovered potential vaccine candidates for humans. Prospective development of new vaccines using the targets will be an alternative to the use of antibiotics and prevent the development of multidrug-resistant C. jejuni in humans and even other animals.
Collapse
Affiliation(s)
- Hengchun Cao
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Hanxiao Xu
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Chunhui Ning
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Li Xiang
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Qiufang Ren
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Tiantian Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, China
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan, China
| |
Collapse
|
11
|
Xu HM, Huang HL, Zhou YL, Zhao HL, Xu J, Shou DW, Liu YD, Zhou YJ, Nie YQ. Fecal Microbiota Transplantation: A New Therapeutic Attempt from the Gut to the Brain. Gastroenterol Res Pract 2021; 2021:6699268. [PMID: 33510784 PMCID: PMC7826222 DOI: 10.1155/2021/6699268] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/26/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gut dysbacteriosis is closely related to various intestinal and extraintestinal diseases. Fecal microbiota transplantation (FMT) is a biological therapy that entails transferring the gut microbiota from healthy individuals to patients in order to reconstruct the intestinal microflora in the latter. It has been proved to be an effective treatment for recurrent Clostridium difficile infection. Studies show that the gut microbiota plays an important role in the pathophysiology of neurological and psychiatric disorders through the microbiota-gut-brain axis. Therefore, reconstruction of the healthy gut microbiota is a promising new strategy for treating cerebral diseases. We have reviewed the latest research on the role of gut microbiota in different nervous system diseases as well as FMT in the context of its application in neurological, psychiatric, and other nervous system-related diseases (Parkinson's disease, Alzheimer's disease, multiple sclerosis, epilepsy, autism spectrum disorder, bipolar disorder, hepatic encephalopathy, neuropathic pain, etc.).
Collapse
Affiliation(s)
- Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Hong-Li Huang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - You-Lian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Hai-Lan Zhao
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Di-Wen Shou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yan-Di Liu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yong-Jian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
12
|
Sharafutdinov I, Esmaeili DS, Harrer A, Tegtmeyer N, Sticht H, Backert S. Campylobacter jejuni Serine Protease HtrA Cleaves the Tight Junction Component Claudin-8. Front Cell Infect Microbiol 2020; 10:590186. [PMID: 33364202 PMCID: PMC7752809 DOI: 10.3389/fcimb.2020.590186] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni express the high temperature requirement protein A (HtrA), a secreted serine protease, which is implicated in virulence properties of the pathogen. Previous studies have shown that C. jejuni HtrA can cleave the epithelial transmembrane proteins occludin and E-cadherin in the tight and adherens junctions, respectively. In the present report, we studied the interaction of HtrA with another human tight junction protein, claudin-8. Confocal immunofluorescence experiments have shown that C. jejuni infection of the intestinal polarized epithelial cells in vitro leads to a relocation of claudin-8. Wild-type C. jejuni induced the downregulation of claudin-8 signals in the tight junctions and an accumulation of claudin-8 agglomerates in the cytoplasm, which were not seen during infection with isogenic ΔhtrA knockout deletion or protease-inactive S197A point mutants. Western blotting of protein samples from infected vs. uninfected cells revealed that an 18-kDa carboxy-terminal fragment is cleaved-off from the 26-kDa full-length claudin-8 protein, but not during infection with the isogenic ΔhtrA mutant. These results were confirmed by in vitro cleavage assays using the purified recombinant C. jejuni HtrA and human claudin-8 proteins. Recombinant HtrA cleaved purified claudin-8 in vitro giving rise to the same 18-kDa sized carboxy-terminal cleavage product. Mapping studies revealed that HtrA cleavage occurs in the first extracellular loop of claudin-8. Three-dimensional modeling of the claudin-8 structure identified an exposed HtrA cleavage site between the amino acids alanine 58 and asparagine 59, which is in well agreement with the mapping studies. Taken together, HtrA operates as a secreted virulence factor targeting multiple proteins both in the tight and adherens junctions. This strategy may help the bacteria to open the cell-to-cell junctions, and to transmigrate across the intestinal epithelium by a paracellular mechanism and establish an acute infection.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Delara Soltan Esmaeili
- Department of Biology, Division of Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aileen Harrer
- Department of Biology, Division of Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
13
|
Core Genome Multilocus Sequence Typing for Food Animal Source Attribution of Human Campylobacter jejuni Infections. Pathogens 2020; 9:pathogens9070532. [PMID: 32630646 PMCID: PMC7400327 DOI: 10.3390/pathogens9070532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen and common cause of bacterial enteritis worldwide. A total of 622 C. jejuni isolates recovered from food animals and retail meats in the United States through the National Antimicrobial Resistance Monitoring System between 2013 and 2017 were sequenced using an Illumina MiSeq. Sequences were combined with WGS data of 222 human isolates downloaded from NCBI and analyzed by core genome multilocus sequence typing (cgMLST) and traditional MLST. cgMLST allelic difference (AD) thresholds of 0, 5, 10, 25, 50, 100 and 200 identified 828, 734, 652, 543, 422, 298 and 197 cgMLST types among the 844 isolates, respectively, and traditional MLST identified 174 ST. The cgMLST scheme allowing an AD of 200 (cgMLST200) revealed strong correlation with MLST. cgMLST200 showed 40.5% retail chicken isolates, 56.5% swine, 77.4% dairy cattle and 78.9% beef cattle isolates shared cgMLST sequence type with human isolates. All ST-8 had the same cgMLST200 type (cgMLST200-12) and 74.3% of ST-8 and 75% cgMLST200-12 were confirmed as sheep abortion virulence clones by PorA analysis. Twenty-nine acquired resistance genes, including 21 alleles of blaOXA, tetO, aph(3′)-IIIa, ant(6)-Ia, aadE, aad9, aph(2′)-Ig, aph(2′)-Ih, sat4 plus mutations in gyrA, 23SrRNA and L22 were identified. Resistance genotypes were strongly linked with cgMLST200 type for certain groups including 12/12 cgMLST200-510 with the A103V substitution in L22 and 10/11 cgMLST200-608 with the T86I GyrA substitution associated with macrolide and quinolone resistance, respectively. In summary, the cgMLST200 threshold scheme combined with resistance genotype information could provide an excellent subtyping scheme for source attribution of human C. jejuni infections.
Collapse
|
14
|
Vendrik KEW, Ooijevaar RE, de Jong PRC, Laman JD, van Oosten BW, van Hilten JJ, Ducarmon QR, Keller JJ, Kuijper EJ, Contarino MF. Fecal Microbiota Transplantation in Neurological Disorders. Front Cell Infect Microbiol 2020; 10:98. [PMID: 32266160 PMCID: PMC7105733 DOI: 10.3389/fcimb.2020.00098] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Several studies suggested an important role of the gut microbiota in the pathophysiology of neurological disorders, implying that alteration of the gut microbiota might serve as a treatment strategy. Fecal microbiota transplantation (FMT) is currently the most effective gut microbiota intervention and an accepted treatment for recurrent Clostridioides difficile infections. To evaluate indications of FMT for patients with neurological disorders, we summarized the available literature on FMT. In addition, we provide suggestions for future directions. Methods: In July 2019, five main databases were searched for studies and case descriptions on FMT in neurological disorders in humans or animal models. In addition, the ClinicalTrials.gov website was consulted for registered planned and ongoing trials. Results: Of 541 identified studies, 34 were included in the analysis. Clinical trials with FMT have been performed in patients with autism spectrum disorder and showed beneficial effects on neurological symptoms. For multiple sclerosis and Parkinson's disease, several animal studies suggested a positive effect of FMT, supported by some human case reports. For epilepsy, Tourette syndrome, and diabetic neuropathy some studies suggested a beneficial effect of FMT, but evidence was restricted to case reports and limited numbers of animal studies. For stroke, Alzheimer's disease and Guillain-Barré syndrome only studies with animal models were identified. These studies suggested a potential beneficial effect of healthy donor FMT. In contrast, one study with an animal model for stroke showed increased mortality after FMT. For Guillain-Barré only one study was identified. Whether positive findings from animal studies can be confirmed in the treatment of human diseases awaits to be seen. Several trials with FMT as treatment for the above mentioned neurological disorders are planned or ongoing, as well as for amyotrophic lateral sclerosis. Conclusions: Preliminary literature suggests that FMT may be a promising treatment option for several neurological disorders. However, available evidence is still scanty and some contrasting results were observed. A limited number of studies in humans have been performed or are ongoing, while for some disorders only animal experiments have been conducted. Large double-blinded randomized controlled trials are needed to further elucidate the effect of FMT in neurological disorders.
Collapse
Affiliation(s)
- Karuna E W Vendrik
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (Rijksinstituut voor Volksgezondheid en Milieu, RIVM), Bilthoven, Netherlands
| | - Rogier E Ooijevaar
- Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, Netherlands.,Department of Gastroenterology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, Netherlands
| | - Pieter R C de Jong
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Jon D Laman
- Department Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, Netherlands
| | - Bob W van Oosten
- Department of Neurology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, Netherlands
| | | | - Quinten R Ducarmon
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
| | - Josbert J Keller
- Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, Netherlands.,Department of Gastroenterology, Haaglanden Medical Center, The Hague, Netherlands
| | - Eduard J Kuijper
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (Rijksinstituut voor Volksgezondheid en Milieu, RIVM), Bilthoven, Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands.,Department of Neurology, Haga Teaching Hospital, The Hague, Netherlands
| |
Collapse
|
15
|
Brooks PT, Bell JA, Bejcek CE, Malik A, Mansfield LS. An antibiotic depleted microbiome drives severe Campylobacter jejuni-mediated Type 1/17 colitis, Type 2 autoimmunity and neurologic sequelae in a mouse model. J Neuroimmunol 2019; 337:577048. [PMID: 31678855 DOI: 10.1016/j.jneuroim.2019.577048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
Abstract
The peripheral neuropathy Guillain-Barré Syndrome can follow Campylobacter jejuni infection when outer core lipooligosaccharides induce production of neurotoxic anti-ganglioside antibodies. We hypothesized that gut microbiota depletion with an antibiotic would increase C. jejuni colonization, severity of gastroenteritis, and GBS. Microbiota depletion increased C. jejuni colonization, invasion, and colitis with Type 1/17 T cells in gut lamina propria. It also stimulated Type 1/17 anti-C. jejuni and -antiganglioside-antibodies, Type 2 anti-C. jejuni and -antiganglioside antibodies, and neurologic phenotypes. Results indicate that both C. jejuni strain and gut microbiota affect development of inflammation and GBS and suggest that probiotics following C. jejuni infection may ameliorate inflammation and autoimmune disease.
Collapse
Affiliation(s)
- Phillip T Brooks
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, MI, USA; Comparative Medicine Integrative Biology Graduate Program, Michigan State University, East Lansing, MI, USA; College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Julia A Bell
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, MI, USA; Departments of Microbiology and Molecular Genetics and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA; College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Christopher E Bejcek
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, MI, USA; Departments of Microbiology and Molecular Genetics and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Ankit Malik
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, MI, USA; Departments of Microbiology and Molecular Genetics and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Linda S Mansfield
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, MI, USA; Departments of Microbiology and Molecular Genetics and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA; College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
16
|
Effects of antibiotic resistance (AR) and microbiota shifts on Campylobacter jejuni-mediated diseases. Anim Health Res Rev 2019; 18:99-111. [PMID: 29665882 DOI: 10.1017/s1466252318000014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Campylobacter jejuni is an important zoonotic pathogen recently designated a serious antimicrobial resistant (AR) threat. While most patients with C. jejuni experience hemorrhagic colitis, serious autoimmune conditions can follow including inflammatory bowel disease (IBD) and the acute neuropathy Guillain Barré Syndrome (GBS). This review examines inter-relationships among factors mediating C. jejuni diarrheal versus autoimmune disease especially AR C. jejuni and microbiome shifts. Because both susceptible and AR C. jejuni are acquired from animals or their products, we consider their role in harboring strains. Inter-relationships among factors mediating C. jejuni colonization, diarrheal and autoimmune disease include C. jejuni virulence factors and AR, the enteric microbiome, and host responses. Because AR C. jejuni have been suggested to affect the severity of disease, length of infections and propensity to develop GBS, it is important to understand how these interactions occur when strains are under selection by antimicrobials. More work is needed to elucidate host-pathogen interactions of AR C. jejuni compared with susceptible strains and how AR C. jejuni are maintained and evolve in animal reservoirs and the extent of transmission to humans. These knowledge gaps impair the development of effective strategies to prevent the emergence of AR C. jejuni in reservoir species and human populations.
Collapse
|
17
|
Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in Dark Agouti rats. Sci Rep 2019; 9:918. [PMID: 30696913 PMCID: PMC6351648 DOI: 10.1038/s41598-018-37505-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota dysbiosis has been considered the essential element in the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Antibiotics were administered orally to Dark Agouti (DA) rats early in their life with the aim of perturbing gut microbiota and investigating the effects of such intervention on the course of EAE. As a result, the diversity of the gut microbiota was reduced under the influence of antibiotics. Mainly, Firmicutes and Actinobacteria were replaced by Proteobacteria and Bacteroidetes, while decreased proportions of Clostridia and Bacilli classes were accompanied by an increase in Gamma-Proteobacteria in antibiotic-treated animals. Interestingly, a notable decrease in the Helicobacteraceae, Spirochaetaceae and Turicibacteriaceae was scored in antibiotic-treated groups. Also, levels of short chain fatty acids were reduced in the faeces of antibiotic-treated rats. Consequently, aggravation of EAE, paralleled with stronger immune response in lymph nodes draining the site of immunization, and increased inflammation within the CNS, were observed in antibiotic-treated DA rats. Thus, the alteration of gut microbiota leads to an escalation of CNS-directed autoimmunity in DA rats. The results of this study indicate that antibiotic use in early life may have subsequent unfavourable effects on the regulation of the immune system.
Collapse
|
18
|
Bulbow H, Wu J, Turner D, McEntire M, Tizard I. Campylobacter colonization is not associated with proventricular dilatation disease in psittacines. VETERINARY MEDICINE-RESEARCH AND REPORTS 2018; 8:37-40. [PMID: 30050854 PMCID: PMC6042502 DOI: 10.2147/vmrr.s137213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Psittacine proventricular dilatation disease (PDD) is a neurological disease caused by parrot bornaviruses. A competing theory suggests that intestinal colonization by Campylobacter species may also be a potential cause of PDD or that their presence may be required for disease development. This theory proposes that PDD results from the activities of antiganglioside antibodies on enteric neurons in a manner similar to the pathogenesis of Guillain–Barré syndrome in humans. We therefore cultured feces from domestic chickens as well as from multiple parrot species to determine whether Campylobacter spp. could be detected in the latter. We failed to detect Campylobacter in a flock of cockatiels known to be highly susceptible to experimental parrot bornavirus-induced PDD. Even in naturally infected psittacines suffering from clinical PDD, no Campylobacter species were detected. Conversely, Campylobacter was readily cultured from domestic poultry samples and confirmed by using matrix-associated laser desorption ionization mass spectroscopy/real-time polymerase chain reaction. We conclude that not only are Campylobacter infections of psittacines uncommon, but also that infection by Campylobacter species is not related to the etiology of PDD.
Collapse
Affiliation(s)
- Holden Bulbow
- Schubot Exotic Bird Health Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA,
| | - Jing Wu
- Schubot Exotic Bird Health Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA,
| | - Debra Turner
- Schubot Exotic Bird Health Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA,
| | - Michael McEntire
- Schubot Exotic Bird Health Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA,
| | - Ian Tizard
- Schubot Exotic Bird Health Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA,
| |
Collapse
|
19
|
Abstract
The number of peer-reviewed articles published during the 2016 solar year and retrieved using the "autoimmunity" key word remained stable while gaining a minimal edge among the immunology articles. Nonetheless, the quality of the publications has been rising significantly and, importantly, acquisitions have become available through scientific journals dedicated to immunology or autoimmunity. Major discoveries have been made in the fields of systemic lupus erythematosus, rheumatoid arthritis, autoimmunity of the central nervous system, vasculitis, and seronegative spondyloarthrithritides. Selected examples include the role of IL17-related genes and long noncoding RNAs in systemic lupus erythematosus or the effects of anti-pentraxin 3 (PTX3) in the treatment of this paradigmatic autoimmune condition. In the case of rheumatoid arthritis, there have been reports of the role of induced regulatory T cells (iTregs) or fibrocytes and T cell interactions with exciting implications. The large number of studies dealing with neuroimmunology pointed to Th17 cells, CD56(bright) NK cells, and low-level TLR2 ligands as involved in multiple sclerosis, along with a high salt intake or the micriobiome-derived Lipid 654. Lastly, we focused on the rare vasculitides to which numerous studies were devoted and suggested that unsuspected cell populations, including monocytes, mucosal-associated invariant T cells, and innate lymphoid cells, may be crucial to ANCA-associated manifestations. This brief and arbitrary discussion of the findings published in 2016 is representative of a promising background for developments that will enormously impact the work of laboratory scientists and physicians at an exponential rate.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy.
| |
Collapse
|
20
|
Neal-McKinney JM, Liu KC, Jinneman KC, Wu WH, Rice DH. Whole Genome Sequencing and Multiplex qPCR Methods to Identify Campylobacter jejuni Encoding cst-II or cst-III Sialyltransferase. Front Microbiol 2018; 9:408. [PMID: 29615986 PMCID: PMC5865068 DOI: 10.3389/fmicb.2018.00408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/21/2018] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni causes more than 2 million cases of gastroenteritis annually in the United States, and is also linked to the autoimmune sequelae Guillan-Barre syndrome (GBS). GBS often results in flaccid paralysis, as the myelin sheaths of nerve cells are degraded by the adaptive immune response. Certain strains of C. jejuni modify their lipooligosaccharide (LOS) with the addition of neuraminic acid, resulting in LOS moieties that are structurally similar to gangliosides present on nerve cells. This can trigger GBS in a susceptible host, as antibodies generated against C. jejuni can cross-react with gangliosides, leading to demyelination of nerves and a loss of signal transduction. The goal of this study was to develop a quantitative PCR (qPCR) method and use whole genome sequencing data to detect the Campylobacter sialyltransferase (cst) genes responsible for the addition of neuraminic acid to LOS. The qPCR method was used to screen a library of 89 C. jejuni field samples collected by the Food and Drug Administration Pacific Northwest Lab (PNL) as well as clinical isolates transferred to PNL. In silico analysis was used to screen 827 C. jejuni genomes in the FDA GenomeTrakr SRA database. The results indicate that a majority of C. jejuni strains could produce LOS with ganglioside mimicry, as 43.8% of PNL isolates and 46.9% of the GenomeTrakr isolates lacked the cst genes. The methods described in this study can be used by public health laboratories to rapidly determine whether a C. jejuni isolate has the potential to induce GBS. Based on these results, a majority of C. jejuni in the PNL collection and submitted to GenomeTrakr have the potential to produce LOS that mimics human gangliosides.
Collapse
Affiliation(s)
- Jason M Neal-McKinney
- Pacific Northwest Laboratory, Applied Technology Center, U.S. Food and Drug Administration, Bothell, WA, United States
| | - Kun C Liu
- Pacific Northwest Laboratory, Applied Technology Center, U.S. Food and Drug Administration, Bothell, WA, United States
| | - Karen C Jinneman
- Pacific Northwest Laboratory, Applied Technology Center, U.S. Food and Drug Administration, Bothell, WA, United States
| | - Wen-Hsin Wu
- Pacific Northwest Laboratory, Applied Technology Center, U.S. Food and Drug Administration, Bothell, WA, United States
| | - Daniel H Rice
- Pacific Northwest Laboratory, Applied Technology Center, U.S. Food and Drug Administration, Bothell, WA, United States
| |
Collapse
|
21
|
Giallourou N, Medlock GL, Bolick DT, Medeiros PHQS, Ledwaba SE, Kolling GL, Tung K, Guerry P, Swann JR, Guerrant RL. A novel mouse model of Campylobacter jejuni enteropathy and diarrhea. PLoS Pathog 2018; 14:e1007083. [PMID: 29791507 PMCID: PMC5988333 DOI: 10.1371/journal.ppat.1007083] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/05/2018] [Accepted: 05/09/2018] [Indexed: 01/31/2023] Open
Abstract
Campylobacter infections are among the leading bacterial causes of diarrhea and of 'environmental enteropathy' (EE) and growth failure worldwide. However, the lack of an inexpensive small animal model of enteric disease with Campylobacter has been a major limitation for understanding its pathogenesis, interventions or vaccine development. We describe a robust standard mouse model that can exhibit reproducible bloody diarrhea or growth failure, depending on the zinc or protein deficient diet and on antibiotic alteration of normal microbiota prior to infection. Zinc deficiency and the use of antibiotics create a niche for Campylobacter infection to establish by narrowing the metabolic flexibility of these mice for pathogen clearance and by promoting intestinal and systemic inflammation. Several biomarkers and intestinal pathology in this model also mimic those seen in human disease. This model provides a novel tool to test specific hypotheses regarding disease pathogenesis as well as vaccine development that is currently in progress.
Collapse
Affiliation(s)
- Natasa Giallourou
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Gregory L. Medlock
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - David T. Bolick
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Pedro HQS Medeiros
- Institute of Biomedicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Solanka E. Ledwaba
- Department of Microbiology, University of Venda, Thohoyandou, Limpopo, South Africa
| | - Glynis L. Kolling
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Kenneth Tung
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Patricia Guerry
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Jonathan R. Swann
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Richard L. Guerrant
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| |
Collapse
|
22
|
Stanisavljević S, Dinić M, Jevtić B, Đedović N, Momčilović M, Đokić J, Golić N, Mostarica Stojković M, Miljković Đ. Gut Microbiota Confers Resistance of Albino Oxford Rats to the Induction of Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9:942. [PMID: 29770137 PMCID: PMC5942155 DOI: 10.3389/fimmu.2018.00942] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/16/2018] [Indexed: 12/16/2022] Open
Abstract
Albino Oxford (AO) rats are extremely resistant to induction of experimental autoimmune encephalomyelitis (EAE). EAE is an animal model of multiple sclerosis, a chronic inflammatory disease of the central nervous system (CNS), with established autoimmune pathogenesis. The autoimmune response against the antigens of the CNS is initiated in the peripheral lymphoid tissues after immunization of AO rats with CNS antigens. Subsequently, limited infiltration of the CNS occurs, yet without clinical sequels. It has recently become increasingly appreciated that gut-associated lymphoid tissues (GALT) and gut microbiota play an important role in regulation and propagation of encephalitogenic immune response. Therefore, modulation of AO gut microbiota by antibiotics was performed in this study. The treatment altered composition of gut microbiota in AO rats and led to a reduction in the proportion of regulatory T cells in Peyer's patches, mesenteric lymph nodes, and in lymph nodes draining the site of immunization. Upregulation of interferon-γ and interleukin (IL)-17 production was observed in the draining lymph nodes. The treatment led to clinically manifested EAE in AO rats with more numerous infiltrates and higher production of IL-17 observed in the CNS. Importantly, transfer of AO gut microbiota into EAE-prone Dark Agouti rats ameliorated the disease. These results clearly imply that gut microbiota is an important factor in AO rat resistance to EAE and that gut microbiota transfer is an efficacious way to treat CNS autoimmunity. These findings also support the idea that gut microbiota modulation has a potential as a future treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Miroslav Dinić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Neda Đedović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Miljana Momčilović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Jelena Đokić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nataša Golić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
- *Correspondence: Đorde Miljković,
| |
Collapse
|
23
|
Schafflick D, Kieseier BC, Wiendl H, Meyer Zu Horste G. Novel pathomechanisms in inflammatory neuropathies. J Neuroinflammation 2017; 14:232. [PMID: 29179723 PMCID: PMC5704548 DOI: 10.1186/s12974-017-1001-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
Inflammatory neuropathies are rare autoimmune-mediated disorders affecting the peripheral nervous system. Considerable progress has recently been made in understanding pathomechanisms of these disorders which will be essential for developing novel diagnostic and therapeutic strategies in the future. Here, we summarize our current understanding of antigenic targets and the relevance of new immunological concepts for inflammatory neuropathies. In addition, we provide an overview of available animal models of acute and chronic variants and how new diagnostic tools such as magnetic resonance imaging and novel therapeutic candidates will benefit patients with inflammatory neuropathies in the future. This review thus illustrates the gap between pre-clinical and clinical findings and aims to outline future directions of development.
Collapse
Affiliation(s)
- David Schafflick
- Department of Neurology, Westfälische Wilhems-University, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Bernd C Kieseier
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology, Westfälische Wilhems-University, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Gerd Meyer Zu Horste
- Department of Neurology, Westfälische Wilhems-University, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
24
|
Brooks PT, Brakel KA, Bell JA, Bejcek CE, Gilpin T, Brudvig JM, Mansfield LS. Transplanted human fecal microbiota enhanced Guillain Barré syndrome autoantibody responses after Campylobacter jejuni infection in C57BL/6 mice. MICROBIOME 2017; 5:92. [PMID: 28789710 PMCID: PMC5547673 DOI: 10.1186/s40168-017-0284-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/05/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Campylobacter jejuni is the leading antecedent infection to the autoimmune neuropathy Guillain-Barré syndrome (GBS), which is accompanied by an autoimmune anti-ganglioside antibody attack on peripheral nerves. Previously, we showed that contrasting immune responses mediate C. jejuni induced colitis and autoimmunity in interleukin-10 (IL-10)-deficient mice, dependent upon the infecting strain. Strains from colitis patients elicited T helper 1 (TH1)-dependent inflammatory responses while strains from GBS patients elicited TH2-dependent autoantibody production. Both syndromes were exacerbated by antibiotic depletion of the microbiota, but other factors controlling susceptibility to GBS are unknown. METHODS Using 16S rRNA gene high-throughput sequencing, we examined whether structure of the gut microbial community alters host (1) gastrointestinal inflammation or (2) anti-ganglioside antibody responses after infection with C. jejuni strains from colitis or GBS patients. We compared these responses in C57BL/6 mice with either (1) stable human gut microbiota (Humicrobiota) transplants or (2) conventional mouse microbiota (Convmicrobiota). RESULTS Inoculating germ-free C57BL/6 wild-type (WT) mice with a mixed human fecal slurry provided a murine model that stably passed its microbiota over >20 generations. Mice were housed in specific pathogen-free (SPF) facilities, while extra precautions of having caretakers wear sterile garb along with limited access ensured that no mouse pathogens were acquired. Humicrobiota conferred many changes upon the WT model in contrast to previous results, which showed only colonization with no disease after C. jejuni challenge. When compared to Convmicrobiota mice for susceptibility to C. jejuni enteric or GBS patient strains, infected Humicrobiota mice had (1) 10-100 fold increases in C. jejuni colonization of both strains, (2) pathologic change in draining lymph nodes but only mild changes in colon or cecal lamina propria, (3) significantly lower Th1/Th17-dependent anti-C. jejuni responses, (4) significantly higher IL-4 responses at 5 but not 7 weeks post infection (PI), (5) significantly higher Th2-dependent anti-C. jejuni responses, and (6) significantly elevated anti-ganglioside autoantibodies after C. jejuni infection. These responses in Humicrobiota mice were correlated with a dominant Bacteroidetes and Firmicutes microbiota. CONCLUSIONS These data demonstrate that Humicrobiota altered host-pathogen interactions in infected mice, increasing colonization and Th-2 and autoimmune responses in a C. jejuni strain-dependent manner. Thus, microbiota composition is another factor controlling susceptibility to GBS.
Collapse
Affiliation(s)
- Phillip T Brooks
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, MI, USA
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Kelsey A Brakel
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Julia A Bell
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, MI, USA
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Christopher E Bejcek
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, MI, USA
| | - Trey Gilpin
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, MI, USA
| | - Jean M Brudvig
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, MI, USA
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, USA
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Linda S Mansfield
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, MI, USA.
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA.
- Department of Microbiology and Molecular Genetics, Michigan State University, 181 Food Safety Building; 1129 Farm Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|