1
|
Yang Y, Xia C, Yao C, Ma X, Shen Z, Chen P, Jiang Q, Gong X. Mucosal immunity and rheumatoid arthritis: An update on mechanisms and therapeutic potential. Autoimmun Rev 2025; 24:103775. [PMID: 39954755 DOI: 10.1016/j.autrev.2025.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Rheumatoid Arthritis (RA) is a persistent autoimmune inflammatory disorder that arises from the intricate interaction between genetic predisposition and environmental influences. The progression of RA can be delineated into four distinct phases: initially, the influence of genetic and environmental risk factors; followed by the emergence of systemic autoimmunity; subsequently, an asymptomatic inflammatory phase; and ultimately, the manifestation of clinical arthritis. Recently, the role of mucosal immunity in RA has gained significant attention in research. Evidence from published studies suggests that mucosal immunity not only influences the onset of RA but also plays a crucial role in its progression. Scholars have begun to unravel the intricate links between RA and the mucosal barriers of the gastrointestinal tract, respiratory system, and oral cavity. Specifically, shifts in the mucosal microbiota, dysfunction of mucosal barriers, and the abnormal activation of mucosal immune tissues are all implicated in the pathogenesis of RA.Despite this growing body of knowledge, a comprehensive review of the abnormal mucosal immunity in RA and its therapeutic implications is yet to be conducted. This review emphasizes the driving role of mucosal immune abnormalities in the development of systemic autoimmunity in rheumatoid arthritis (RA). It further explores the therapeutic potential of mucosal immunity in RA, as well as the issues and challenges that need to be addressed in the current research field, providing a new perspective and potential therapeutic targets for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Yuchen Yang
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Congmin Xia
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chuanhui Yao
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xieli Ma
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zhengyao Shen
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Peng Chen
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Quan Jiang
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xun Gong
- Guang 'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
2
|
Bosilj M, Suljič A, Zakotnik S, Slunečko J, Kogoj R, Korva M. MetaAll: integrative bioinformatics workflow for analysing clinical metagenomic data. Brief Bioinform 2024; 25:bbae597. [PMID: 39550223 PMCID: PMC11568877 DOI: 10.1093/bib/bbae597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Over the past decade, there have been many improvements in the field of metagenomics, including sequencing technologies, advances in bioinformatics and the development of reference databases, but a one-size-fits-all sequencing and bioinformatics pipeline does not yet seem achievable. In this study, we address the bioinformatics part of the analysis by combining three methods into a three-step workflow that increases the sensitivity and specificity of clinical metagenomics and improves pathogen detection. The individual tools are combined into a user-friendly workflow suitable for analysing short paired-end (PE) and long reads from metagenomics datasets-MetaAll. To demonstrate the applicability of the developed workflow, four complicated clinical cases with different disease presentations and multiple samples collected from different biological sites as well as the CAMI Clinical pathogen detection challenge dataset were used. MetaAll was able to identify putative pathogens in all but one case. In this case, however, traditional microbiological diagnostics were also unsuccessful. In addition, co-infection with Haemophilus influenzae and Human rhinovirus C54 was detected in case 1 and co-infection with SARS-Cov-2 and Influenza A virus (FluA) subtype H3N2 was detected in case 3. In case 2, in which conventional diagnostics could not find a pathogen, mNGS pointed to Klebsiella pneumoniae as the suspected pathogen. Finally, this study demonstrated the importance of combining read classification, contig validation and targeted reference mapping for more reliable detection of infectious agents in clinical metagenome samples.
Collapse
Affiliation(s)
- Martin Bosilj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Alen Suljič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Samo Zakotnik
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Jan Slunečko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Rok Kogoj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Misa Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Chen S, Nie R, Wang C, Luan H, Ma X, Gui Y, Zeng X, Yuan H. A two sample mendelian randomization analysis investigates causal effects between gut microbiome and immune related Vasculitis. Sci Rep 2024; 14:18810. [PMID: 39138194 PMCID: PMC11322650 DOI: 10.1038/s41598-024-68205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Observational data suggest a link between gut microbiota and immune-related vasculitis, but causality remains unclear. A bidirectional mendelian randomization study was conducted using public genome-wide data. The inverse-variance-weighted (IVW) method identified associations and addressed heterogeneity.Families Clostridiaceae 1 and Actinomycetaceae correlated positively with granulomatosis with polyangiitis risk, while classes Lentisphaeria and Melainabacteria, and families Lachnospiraceae and Streptococcaceae showed negative associations. Behçet's disease was positively associated with the risk of family Streptococcaceae abundance. And other several gut microbiota constituents were identified as potential risk factors for immune-related vasculitis. Furthermore, combining positive association results from the IVW analysis revealed numerous shared gut microbiota constituents associated with immune-related vasculitis. MR analysis demonstrated a causal association between the gut microbiota and immune-related vasculitis, offering valuable insights for subsequent mechanistic and clinical investigations into microbiota-mediated immune-related vasculitis.
Collapse
Affiliation(s)
- Si Chen
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Rui Nie
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Chao Wang
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Haixia Luan
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Xu Ma
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Yuan Gui
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Xiaoli Zeng
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China.
| | - Hui Yuan
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
4
|
Joo YB, Lee J, Park YJ, Bang SY, Kim K, Lee HS. Associations of upper respiratory mucosa microbiota with Rheumatoid arthritis, autoantibodies, and disease activity. PLoS One 2024; 19:e0308010. [PMID: 39106279 PMCID: PMC11302903 DOI: 10.1371/journal.pone.0308010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 08/09/2024] Open
Abstract
The lung is recognized as a site for initiating the formation of self-antigen and autoimmune responses in rheumatoid arthritis (RA). We aimed to investigate the association of upper respiratory microbiota with RA, autoantibody production, and disease activity. Forty-six patients with RA and 17 controls were examined. Nasopharyngeal swab samples were sequenced for microbiome profiling using the V3-V4 region of the 16S rRNA gene. The microbial diversity and relative abundance were compared between RA patients and controls. Correlation analyses were conducted to evaluate the relationship between microbial abundance and clinical markers such as autoantibodies and disease activity. Microbial diversity analysis revealed no major differences between RA patients and healthy controls. However, beta diversity analysis indicated a subtle distinction in microbial composition (unweighted UniFrac distance) between the two groups (P = 0.03), hinting at a minor subset of microbiota associated with disease status. Differential abundance analysis uncovered specific taxa at various taxonomic levels, including Saccharibacteria (TM7) [O-1] (PFDR = 2.53 × 10-2), TM7 [F-1] (PFDR = 5.20 × 10-3), Microbacterium (PFDR = 3.37 × 10-4), and Stenotrophomonas (PFDR = 2.57 × 10-3). The relative abundance of ten genera correlated significantly with anti-cyclic citrullinated peptide (anti-CCP) antibody levels (PFDR < 0.05) and 11 genera were significantly associated with disease activity markers, including ESR, CRP, DAS28-ESR, and DAS-CRP (PFDR < 0.05). In particular, Saccharibacteria TM7 [G-3] and Peptostreptococcaceae [XI] [G-1] were correlated with all disease activity biomarkers. Dysbiosis in the upper respiratory mucosa is associated with RA, anti-CCP antibody levels, and disease activity.
Collapse
Affiliation(s)
- Young Bin Joo
- Department of Internal Medicine, Division of Rheumatology, Hanyang University Guri Hospital, Guri, Republic of Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Juho Lee
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Yune-Jung Park
- Department of Internal Medicine, Division of Rheumatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - So-Young Bang
- Department of Internal Medicine, Division of Rheumatology, Hanyang University Guri Hospital, Guri, Republic of Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Hye-Soon Lee
- Department of Internal Medicine, Division of Rheumatology, Hanyang University Guri Hospital, Guri, Republic of Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| |
Collapse
|
5
|
Brożek-Mądry E, Burska Z, Życińska K, Sierdziński J. Nasal Microbiome in Granulomatosis with Polyangiitis Compared to Chronic Rhinosinusitis. Diagnostics (Basel) 2024; 14:1673. [PMID: 39125549 PMCID: PMC11311696 DOI: 10.3390/diagnostics14151673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Rhinosinusitis in granulomatosis with polyangiitis (GPA) is categorised as a secondary, diffuse and inflammatory chronic rhinosinusitis (CRS). It is one of the conditions that impacts the nasal microbiota. This study aimed to compare the nasal microbiomes of patients with GPA, CRS and NSP. A total of 31 patients were included in the study (18 GPA, 6 CRS and 7 nasal septum perforation (NSP)). In all patients, SNOT 22, a nasal endoscopy (Lund-Kennedy scale) and a brush swab were performed. The metagenomic analysis was carried out based on the hypervariable V3-V4 region of the 16S rRNA gene. At the genus level, statistically significant differences were observed in two comparisons: the GPA/NSP and the GPA/CRS groups. In the GPA/NSP group, the differences were related to four genera (Actinomyces, Streptococcus, Methylobacterium-Methylorubrum, Paracoccus), while in the GPA/CRS group, they were related to six (Kocuria, Rothia, Cutibacterium, Streptococcus, Methylobacterium-Methylorubrum, Tepidimonas). Patients with GPA had lower diversity compared to CRS and NSP patients. There were no statistically significant differences found for the Staphylococcus family and Staphylococcus aureus between the three groups.
Collapse
Affiliation(s)
- Eliza Brożek-Mądry
- Department of Otorhinolaryngology, National Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Zofia Burska
- Department of Otorhinolaryngology, National Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Katarzyna Życińska
- Department of Rheumatology, Connective Tissue Diseases and Rare Diseases, National Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Janusz Sierdziński
- Department of Medical Informatics and Telemedicine, Medical University of Warsaw, 00-581 Warsaw, Poland
| |
Collapse
|
6
|
Klapa S, Arnold S, Lamprecht P. [Granulomatosis with polyangiitis and microscopic polyangiitis]. Laryngorhinootologie 2024; 103:490-499. [PMID: 38211619 DOI: 10.1055/a-2217-4457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA) are two entities of ANCA-associated vasculitis (AAV). Both diseases are characterised by systemic necrotising small-vessel vasculitis, which can affect any organ. In GPA, extravascular necrotising granulomatous inflammation, usually affecting the respiratory tract, is found in addition. In the majority of cases, the clinical presentation is dominated by a pulmonary-renal syndrome with alveolar haemorrhage and rapidly progressive glomerulonephritis. Other organ involvement is found as well. In GPA, the upper respiratory tract is commonly affected. GPA is associated with anti-neutrophil cytoplasmic autoantibodies (ANCA) with specificity for proteinase 3 (PR3-ANCA) and MPA with specificity for myeloperoxidase (MPO-ANCA). Immunosuppressive therapy depends on disease activity and the severity of organ involvement.
Collapse
Affiliation(s)
- Sebastian Klapa
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Sabrina Arnold
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Li CX, Lv M, Liu HY, Lin YX, Pan JB, You CX, Su J. Comparison of the upper and lower airway microbiome in early postoperative lung transplant recipients. Microbiol Spectr 2024; 12:e0379123. [PMID: 38747583 PMCID: PMC11237413 DOI: 10.1128/spectrum.03791-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 06/06/2024] Open
Abstract
The upper and lower respiratory tract may share microbiome because they are directly continuous, and the nasal microbiome contributes partially to the composition of the lung microbiome. But little is known about the upper and lower airway microbiome of early postoperative lung transplant recipients (LTRs). Using 16S rRNA gene sequencing, we compared paired nasal swab (NS) and bronchoalveolar lavage fluid (BALF) microbiome from 17 early postoperative LTRs. The microbiome between the two compartments were significantly different in Shannon diversity and beta diversity. Four and eight core NS-associated and BALF-associated microbiome were identified, respectively. NS samples harbored more Corynebacterium, Acinetobacter, and Pseudomonas, while BALF contained more Ralstonia, Stenotrophomonas, Enterococcus, and Pedobacter. The within-subject dissimilarity was higher than the between-subject dissimilarity, indicating a greater impact of sampling sites than sampling individuals on microbial difference. There were both difference and homogeneity between NS and BALF microbiome in early postoperative LTRs. High levels of pathogens were detected in both samples, suggesting that both of them can reflect the diseases characteristics of transplanted lung. The differences between upper and lower airway microbiome mainly come from sampling sites instead of sampling individuals. IMPORTANCE Lung transplantation is the only therapeutic option for patients with end-stage lung disease, but its outcome is much worse than other solid organ transplants. Little is known about the NS and BALF microbiome of early postoperative LTRs. Here, we compared paired samples of the nasal and lung microbiome from 17 early postoperative LTRs and showed both difference and homogeneity between the two samples. Most of the "core" microbiome in both NS and BALF samples were recognized respiratory pathogens, suggesting that both samples can reflect the diseases characteristics of transplanted lung. We also found that the differences between upper and lower airway microbiome in early postoperative LTRs mainly come from sampling sites instead of sampling individuals.
Collapse
Affiliation(s)
- Chun-xi Li
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Lv
- Department of Oncology, Medical Center for Overseas Patient, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-yue Liu
- Department of laboratory medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yan-xia Lin
- Hospital Infection-Control Department, Shenzhen University General Hospital, Shenzhen, China
| | - Jian-bing Pan
- Department of Respiratory Medicine, Meizhou People's Hospital, Meizhou, China
| | - Chang-xuan You
- Department of Oncology, Medical Center for Overseas Patient, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Su
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Fang J, Li YX, Luo HY, Zhang WH, Chan KC, Chan YM, Chen HB, Zhao ZZ, Li SL, Dong CX, Xu J. Impacts of sulfur fumigation on the chemistry and immunomodulatory activity of polysaccharides in ginseng. Int J Biol Macromol 2023; 247:125843. [PMID: 37460073 DOI: 10.1016/j.ijbiomac.2023.125843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Ginseng is widely regarded as a panacea in Oriental medicine mainly due to its immunomodulatory activity. We previously found that sulfur fumigation, a commonly used pesticidal and anti-bacterial processing practice, weakened the immunomodulatory activity of ginseng. However, if and how sulfur fumigation affects the polysaccharides in ginseng, the crucial components contributing to the immunomodulatory function, remain unknown. Here we report that polysaccharides extracted from sulfur-fumigated ginseng (SGP) presented different chemical properties with polysaccharides extracted with non-fumigated ginseng (NGP), particularly increased water extraction yield and decreased branching degree. SGP had weaker immunomodulatory activity than NGP in immunocompromised mice, as evidenced by less improved immunophenotypes involving body weight, immune organ indexes, white blood cells, lymphocyte cell populations and inflammation. The different immunomodulatory activities were accompanied by changes in the interaction between the polysaccharides and gut microbiota, in which SGP stimulated the growth of different bacteria but produced less SCFAs as compared to NGP. Fecal microbiota transplantation experiment suggested that gut microbiota played a central role in causing the weakened immunomodulatory activity in vivo. This study provides definite evidence that sulfur fumigation affects the chemistry and bioactivity of ginseng polysaccharides, thereby contributing to understanding how sulfur fumigation weakens the immunomodulatory activity of ginseng.
Collapse
Affiliation(s)
- Jing Fang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Yi-Xuan Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Han-Yan Luo
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Wei-Hao Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Kam-Chun Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Yui-Man Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Zhong-Zhen Zhao
- Institute of Ben Cao Gang Mu, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Song-Lin Li
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China.
| | - Cai-Xia Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China.
| |
Collapse
|
9
|
The effect of nasal Staphylococcus aureus colonization and antibiotic treatment on disease activity in ANCA-associated vasculitis: a retrospective cohort study in the Netherlands. Rheumatol Int 2023; 43:467-475. [PMID: 36289068 PMCID: PMC9968256 DOI: 10.1007/s00296-022-05228-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/05/2022] [Indexed: 10/31/2022]
Abstract
The aim of this study was to identify the role of nasal Staphylococcus aureus (S. aureus) colonization and the effect of systemic or local antibiotic treatment on disease activity in patients with antineutrophil cytoplasmic antibodies (ANCA) associated vasculitis and ear nose and throat (ENT) involvement. Clinical, laboratory and histological data from all patients with ANCA-associated vasculitis and ENT involvement, who were diagnosed in two medical centres in The Netherlands between 1981 and 2020, were retrospectively collected. Nasal S. aureus colonization was defined as at least one positive nasal swab during follow-up. Data on systemic (cotrimoxazole and azithromycin) and local (mupirocin) antibiotic use were collected. Disease activity was divided into systemic and local disease activity. Univariate analyses and regression analyses (negative binomial Poisson and binary regression) were used. Two-hundred and thirteen patients were available for analysis. Median follow-up time was 8 (IQR 3-17) years. S. aureus colonization was tested in 100 (46.9%) cases of whom 44 patients (44%) tested positive. In these 100 patients, systemic and local disease activity at baseline and at last visit were comparable between patients with and without S. aureus colonization. Twenty-eight of the 44 S. aureus positive patients received antibiotics aimed at eradication of S. aureus. No statistically significant difference was found between the treated versus non-treated group with regard to systemic and local disease activity. Nasal S. aureus colonization does not influence systemic or local disease activity. Antibiotic treatment aimed at eradication did not modify disease activity.
Collapse
|
10
|
Bieber K, Hundt JE, Yu X, Ehlers M, Petersen F, Karsten CM, Köhl J, Kridin K, Kalies K, Kasprick A, Goletz S, Humrich JY, Manz RA, Künstner A, Hammers CM, Akbarzadeh R, Busch H, Sadik CD, Lange T, Grasshoff H, Hackel AM, Erdmann J, König I, Raasch W, Becker M, Kerstein-Stähle A, Lamprecht P, Riemekasten G, Schmidt E, Ludwig RJ. Autoimmune pre-disease. Autoimmun Rev 2023; 22:103236. [PMID: 36436750 DOI: 10.1016/j.autrev.2022.103236] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Approximately 5% of the world-wide population is affected by autoimmune diseases. Overall, autoimmune diseases are still difficult to treat, impose a high burden on patients, and have a significant economic impact. Like other complex diseases, e.g., cancer, autoimmune diseases develop over several years. Decisive steps in the development of autoimmune diseases are (i) the development of autoantigen-specific lymphocytes and (often) autoantibodies and (ii) potentially clinical disease manifestation at a later stage. However, not all healthy individuals with autoantibodies develop disease manifestations. Identifying autoantibody-positive healthy individuals and monitoring and inhibiting their switch to inflammatory autoimmune disease conditions are currently in their infancy. The switch from harmless to inflammatory autoantigen-specific T and B-cell and autoantibody responses seems to be the hallmark for the decisive factor in inflammatory autoimmune disease conditions. Accordingly, biomarkers allowing us to predict this progression would have a significant impact. Several factors, such as genetics and the environment, especially diet, smoking, exposure to pollutants, infections, stress, and shift work, might influence the progression from harmless to inflammatory autoimmune conditions. To inspire research directed at defining and ultimately targeting autoimmune predisease, here, we review published evidence underlying the progression from health to autoimmune predisease and ultimately to clinically manifest inflammatory autoimmune disease, addressing the following 3 questions: (i) what is the current status, (ii) what is missing, (iii) and what are the future perspectives for defining and modulating autoimmune predisease.
Collapse
Affiliation(s)
- Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Marc Ehlers
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany; Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Unit of Dermatology and Skin Research Laboratory, Baruch Padeh Medical Center, Poriya, Israel
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Jens Y Humrich
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Axel Künstner
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Christoph M Hammers
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Reza Akbarzadeh
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | | | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Alexander M Hackel
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Inke König
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Mareike Becker
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Anja Kerstein-Stähle
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany.
| |
Collapse
|
11
|
Drakopanagiotakis F, Stavropoulou E, Tsigalou C, Nena E, Steiropoulos P. The Role of the Microbiome in Connective-Tissue-Associated Interstitial Lung Disease and Pulmonary Vasculitis. Biomedicines 2022; 10:biomedicines10123195. [PMID: 36551951 PMCID: PMC9775480 DOI: 10.3390/biomedicines10123195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The microbiome can trigger and maintain immune-mediated diseases and is associated with the severity and prognosis of idiopathic pulmonary fibrosis, which is the prototype of interstitial lung diseases (ILDs). The latter can be a major cause of morbidity and mortality in patients with connective-tissue diseases (CTD). In the present review, we discuss the current evidence regarding microbiome in CTD-ILD and pulmonary vasculitis. In patients with rheumatoid arthritis (RA) the BAL microbiota is significantly less diverse and abundant, compared to healthy controls. These changes are associated with disease severity. In systemic sclerosis (SSc), gastrointestinal (GI)-dysbiosis is associated with ILD. Butyrate acid administration as a means of restoration of GI-microbiota has reduced the degree of lung fibrosis in animal models. Although related studies are scarce for SLE and Sjögren's syndrome, studies of the gut, oral and ocular microbiome provide insights into the pathogenesis of these diseases. In ANCA-associated vasculitis, disease severity and relapses have been associated with disturbed nasal mucosa microbiota, with immunosuppressive treatment restoring the microbiome changes. The results of these studies suggest however no causal relation. More studies of the lung microbiome in CTD-ILDs are urgently needed, to provide a better understanding of the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Fotios Drakopanagiotakis
- Department of Pulmonology, Medical School, Democritus University of Thrace, 69100 Alexandroupolis, Greece
- Correspondence: (F.D.); (E.S.)
| | - Elisavet Stavropoulou
- Service of Infectious Diseases, Department of Medicine, Lausanne University Hospital, University of Lausanne (Centre Hospitalier Universitaire Vaudois—CHUV), 1011 Lausanne, Switzerland
- Correspondence: (F.D.); (E.S.)
| | - Christina Tsigalou
- Laboratory of Microbiology, Medical School, Democritus University of Thrace, 69100 Alexandroupolis, Greece
| | - Evangelia Nena
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 69100 Alexandroupolis, Greece
| | - Paschalis Steiropoulos
- Department of Pulmonology, Medical School, Democritus University of Thrace, 69100 Alexandroupolis, Greece
| |
Collapse
|
12
|
Scurt FG, Bose K, Hammoud B, Brandt S, Bernhardt A, Gross C, Mertens PR, Chatzikyrkou C. Old known and possible new biomarkers of ANCA-associated vasculitis. J Autoimmun 2022; 133:102953. [PMID: 36410262 DOI: 10.1016/j.jaut.2022.102953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/06/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
Antineutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) comprises a group of multisystem disorders involving severe, systemic, small-vessel vasculitis with short- and long term serious and life-threating complications. Despite the simplification of treatment, fundamental aspects concerning assessment of its efficacy and its adaptation to encountered complications or to the relapsing/remitting/subclinical disease course remain still unknown. The pathogenesis of AAV is complex and unique, and despite the progress achieved in the last years, much has not to be learnt. Foremost, there is still no accurate marker enabling us to monitoring disease and guide therapy. Therefore, the disease management relays often on clinical judgment and follows a" trial and error approach". In the recent years, an increasing number of new molecules s have been explored and used for this purpose including genomics, B- and T-cell subpopulations, complement system factors, cytokines, metabolomics, biospectroscopy and components of our microbiome. The aim of this review is to discuss both the role of known historical and clinically established biomarkers of AAV, as well as to highlight potential new ones, which could be used for timely diagnosis and monitoring of this devastating disease, with the goal to improve the effectiveness and ameliorate the complications of its demanding therapy.
Collapse
Affiliation(s)
- Florian G Scurt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany.
| | - K Bose
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - Ben Hammoud
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - S Brandt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - A Bernhardt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - C Gross
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | - Peter R Mertens
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Germany
| | | |
Collapse
|
13
|
Yao H, Yang H, Wang Y, Xing Q, Yan L, Chai Y. Gut microbiome and fecal metabolic alteration in systemic lupus erythematosus patients with depression. Front Cell Infect Microbiol 2022; 12:1040211. [PMID: 36506019 PMCID: PMC9732533 DOI: 10.3389/fcimb.2022.1040211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Mental health disorders in systemic lupus erythematosus (SLE) are gradually getting recognized; however, less is known regarding the actual structure and compositional alterations in gut microbiome and metabolism and the mechanisms of how they affect depression development in SLE patients. Methods Twenty-one SLE patients with depression (SLE-d), 17 SLE patients without depression (SLE-nd), and 32 healthy controls (HC) were included in this study. Fecal samples were collected for 16S rRNA gene sequencing and ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) based metabolomics. Results The structure of gut microbiome in the SLE-d group changed compared with that in the other two groups. The microbiome composition of SLE-d group showed decreased species richness indices, characterized by low ACE and Chao1 indices, a decrease in the ratio of phylum Firmicutes to Bacteroidetes, genus Faecalibacterium and Roseburia. A downregulation of the metabolite fexofenadine involved in bile secretion was positively correlated with the genus Faecalibacterium, Subdoligranulum and Agathobacter. Compared with the SLE-nd group, the SLE-d group had elevated serum levels of IL-2 and IL-6 and decreased BDNF. Interestingly, abundance of the genus Faecalibacterium and Roseburia was negatively correlated with IL-6, abundance of the genus Roseburia was negatively correlated with IL-2, and abundance of the genus Bacteroides was positively correlated with IL-2. Conclusion This study identified specific fecal microbes and their metabolites that may participate in the development of SLE-d. Our findings provide a new perspective for improving depression in SLE patients by regulating the gut-brain axis.
Collapse
Affiliation(s)
- Han Yao
- Department of Immunology and Rheumatology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Hao Yang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yueying Wang
- Department of Immunology and Rheumatology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Qian Xing
- Department of Immunology and Rheumatology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China,*Correspondence: Qian Xing,
| | - Lin Yan
- School of Clinical Medicine, Graduate School of Dalian Medical University, Dalian, Liaoning, China
| | - Yaru Chai
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
14
|
Klapa S, Arnold S, Lamprecht P. Granulomatose mit Polyangiitis und mikroskopische
Polyangiitis. AKTUEL RHEUMATOL 2022. [DOI: 10.1055/a-1963-7586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ZusammenfassungDie Granulomatose mit Polyangiitis (GPA) und mikroskopische Polyangiitis (MPA)
sind zwei zur ANCA-assoziierten Vaskulitis (AAV) zählende
Entitäten. Beiden Erkrankungen liegt eine systemische nekrotisierende
Kleingefäßvaskulitis zugrunde, die jedes Organ betreffen kann.
Bei der GPA ist zusätzlich eine in der Regel den Respirationstrakt
betreffende extravaskuläre nekrotisierende granulomatöse
Entzündung vorzufinden. Das klinische Bild wird in der Mehrzahl der
Fälle durch ein pulmo-renales Syndrom mit alveolärer
Hämorrhagie und rapid-progressiver Glomerulonephritis sowie weitere
Organmanifestationen bestimmt. Bei der GPA imponiert zudem die fast regelhafte
Mitbeteiligung des oberen Respirationstrakts. Die GPA ist mit Anti-Neutrophilen
zytoplasmatischen Autoantikörpern (ANCA) mit einer Spezifität
für die Proteinase 3 (PR3-ANCA) und die MPA für Myeloperoxidase
(MPO-ANCA) assoziiert. Die immunsuppressive Therapie richtet sich nach der
Krankheitsaktivität und Schwere der Organbeteiligung.
Collapse
Affiliation(s)
- Sebastian Klapa
- Department of Rheumatology and Clinical Immunology, University of
Lübeck, Lübeck, Germany
| | - Sabrina Arnold
- Department of Rheumatology and Clinical Immunology, University of
Lübeck, Lübeck, Germany
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology, University of
Lübeck, Lübeck, Germany
| |
Collapse
|
15
|
Zhao WM, Wang ZJ, Shi R, Zhu YY, Zhang S, Wang RF, Wang DG. Environmental factors influencing the risk of ANCA-associated vasculitis. Front Immunol 2022; 13:991256. [PMID: 36119110 PMCID: PMC9479327 DOI: 10.3389/fimmu.2022.991256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group of diseases characterized by inflammation and destruction of small and medium-sized blood vessels. Clinical disease phenotypes include microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA), and eosinophilic granulomatosis with polyangiitis (EGPA). The incidence of AAV has been on the rise in recent years with advances in ANCA testing. The etiology and pathogenesis of AAV are multifactorial and influenced by both genetic and environmental factors, as well as innate and adaptive immune system responses. Multiple case reports have shown that sustained exposure to silica in an occupational environment resulted in a significantly increased risk of ANCA positivity. A meta-analysis involving six case-control studies showed that silica exposure was positively associated with AAV incidence. Additionally, exposure to air pollutants, such as carbon monoxide (CO), is a risk factor for AAV. AAV has seasonal trends. Studies have shown that various environmental factors stimulate the body to activate neutrophils and expose their own antigens, resulting in the release of proteases and neutrophil extracellular traps, which damage vascular endothelial cells. Additionally, the activation of complement replacement pathways may exacerbate vascular inflammation. However, the role of environmental factors in the etiology of AAV remains unclear and has received little attention. In this review, we summarized the recent literature on the study of environmental factors, such as seasons, air pollution, latitude, silica, and microbial infection, in AAV with the aim of exploring the relationship between environmental factors and AAV and possible mechanisms of action to provide a scientific basis for the prevention and treatment of AAV.
Collapse
|
16
|
Oral Microbiota Profile in Patients with Anti-Neutrophil Cytoplasmic Antibody–Associated Vasculitis. Microorganisms 2022; 10:microorganisms10081572. [PMID: 36013990 PMCID: PMC9412476 DOI: 10.3390/microorganisms10081572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
Microbiota has been associated with autoimmune diseases, with nasal Staphylococcus aureus being implicated in the pathogenesis of anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV). Little is known about the role of oral microbiota in AAV. In this study, levels of IgG antibodies to 53 oral bacterial species/subspecies were screened using immunoblotting in plasma/serum in pre-symptomatic AAV-individuals (n = 85), matched controls, and established AAV-patients (n = 78). Saliva microbiota from acute-AAV and controls was sequenced from 16s rDNA amplicons. Information on dental status was extracted from a national register. IgG levels against oral bacteria were lower in established AAV versus pre-AAV and controls. Specifically, pre-AAV samples had, compared to controls, a higher abundance of periodontitis-associated species paralleling more signs of periodontitis in established AAV-patients than controls. Saliva microbiota in acute-AAV showed higher within-sample diversity but fewer detectable amplicon-sequence variants and taxa in their core microbiota than controls. Acute-AAV was not associated with increased abundance of periodontal bacteria but species in, e.g., Arthrospira, Staphylococcus, Lactobacillus, and Scardovia. In conclusion, the IgG profiles against oral bacteria differed between pre-AAV, established AAV, and controls, and microbiota profiles between acute AAV and controls. The IgG shift from a pre-symptomatic stage to established disease cooccurred with treatment of immunosuppression and/or antibiotics.
Collapse
|
17
|
A novel PEG-mediated boric acid functionalized magnetic nanomaterials based fluorescence biosensor for the detection of Staphylococcus aureus. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
La Barbera L, Macaluso F, Fasano S, Grasso G, Ciccia F, Guggino G. Microbiome Changes in Connective Tissue Diseases and Vasculitis: Focus on Metabolism and Inflammation. Int J Mol Sci 2022; 23:ijms23126532. [PMID: 35742974 PMCID: PMC9224234 DOI: 10.3390/ijms23126532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The microbial community acts as an active player in maintaining homeostasis and immune functions through a continuous and changeable cross-talk with the host immune system. Emerging evidence suggests that altered microbial composition, known as dysbiosis, might perturb the delicate balance between the microbiota and the immune system, triggering inflammation and potentially contributing to the pathogenesis and development of chronic inflammatory diseases. This review will summarize the current evidence about the microbiome-immunity cross-talk, especially focusing on the microbiota alterations described in patients with rheumatic diseases and on the recent findings concerning the interaction between microbiota, metabolic function, and the immune system.
Collapse
Affiliation(s)
- Lidia La Barbera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (L.L.B.); (G.G.)
| | - Federica Macaluso
- Rheumatology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, AUSL-IRCCS, Via Giovanni Amendola, 2, 42122 Reggio Emilia, Italy;
- Division of Rheumatology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, S. Andrea delle Dame, Via L. De Crecchio 7, 80138 Naples, Italy; (S.F.); (F.C.)
| | - Serena Fasano
- Division of Rheumatology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, S. Andrea delle Dame, Via L. De Crecchio 7, 80138 Naples, Italy; (S.F.); (F.C.)
| | - Giulia Grasso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (L.L.B.); (G.G.)
| | - Francesco Ciccia
- Division of Rheumatology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, S. Andrea delle Dame, Via L. De Crecchio 7, 80138 Naples, Italy; (S.F.); (F.C.)
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; (L.L.B.); (G.G.)
- Correspondence: ; Tel.: +39-091-655-2148
| |
Collapse
|
19
|
Niccolai E, Bettiol A, Baldi S, Silvestri E, Di Gloria L, Bello F, Nannini G, Ricci F, Nicastro M, Ramazzotti M, Vaglio A, Bartolucci G, Emmi G, Amedei A, Prisco D. Gut Microbiota and Associated Mucosal Immune Response in Eosinophilic Granulomatosis with Polyangiitis (EGPA). Biomedicines 2022; 10:biomedicines10061227. [PMID: 35740247 PMCID: PMC9219964 DOI: 10.3390/biomedicines10061227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Eosinophilic granulomatosis with polyangiitis (EGPA) is an anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. A genome-wide association study showed a correlation between ANCA-negative EGPA and variants of genes encoding proteins with intestinal barrier functions, suggesting that modifications of the mucosal layer and consequent gut dysbiosis might be involved in EGPA pathogenesis. Here, we characterized the gut microbiota (GM) composition and the intestinal immune response in a cohort of EGPA patients. Faeces from 29 patients and 9 unrelated healthy cohabitants were collected, and GM and derived metabolites’ composition were compared. Seven intestinal biopsies from EGPA patients with gastrointestinal manifestations were analysed to assess the T-cell distribution and its correlation with GM and EGPA clinical and laboratory features. No significant differences in GM composition, nor in the total amount of faecal metabolites, emerged between patients and controls. Nevertheless, differences in bacterial taxa abundances and compositional GM-derived metabolites profile were observed. Notably, an enrichment of potential pathobionts (Enterobacteriacee and Streptococcaceae) was found in EGPA, particularly in patients with active disease, while lower levels were found in patients on immunosuppression, compared with non-immunosuppressed ones. Significantly lower amounts of hexanoic acid were found in patients, compared to controls. The analysis of the immune response in the gut mucosa revealed a high frequency of IFN-γ/IL-17-producing T lymphocytes, and a positive correlation between EGPA disease activity and intestinal T-cell levels. Our data suggest that an enrichment in potential intestinal pathobionts might drive an imbalanced inflammatory response in EGPA.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (A.B.); (S.B.); (E.S.); (F.B.); (G.N.); (D.P.)
| | - Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (A.B.); (S.B.); (E.S.); (F.B.); (G.N.); (D.P.)
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (A.B.); (S.B.); (E.S.); (F.B.); (G.N.); (D.P.)
| | - Elena Silvestri
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (A.B.); (S.B.); (E.S.); (F.B.); (G.N.); (D.P.)
- Internal Interdisciplinary Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, 50134 Florence, Italy; (L.D.G.); (M.R.); (A.V.)
| | - Federica Bello
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (A.B.); (S.B.); (E.S.); (F.B.); (G.N.); (D.P.)
- Internal Interdisciplinary Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (A.B.); (S.B.); (E.S.); (F.B.); (G.N.); (D.P.)
| | - Federica Ricci
- Core Research Laboratory, Institute for Cancer Research and Prevention (ISPRO), 50139 Florence, Italy;
| | - Maria Nicastro
- Department of Medicine and Surgery, University of Parma and Unit of Occupational Medicine and Industrial Toxicology, University Hospital of Parma, 43121 Parma, Italy;
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, 50134 Florence, Italy; (L.D.G.); (M.R.); (A.V.)
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, 50134 Florence, Italy; (L.D.G.); (M.R.); (A.V.)
- Nephrology Unit, Meyer Children’s Hospital, 50139 Florence, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50139 Florence, Italy;
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (A.B.); (S.B.); (E.S.); (F.B.); (G.N.); (D.P.)
- Internal Interdisciplinary Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
- Correspondence: (G.E.); (A.A.); Tel.: +39-05-5275-8020 (G.E.); +39-05-5275-8330 (A.A.)
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (A.B.); (S.B.); (E.S.); (F.B.); (G.N.); (D.P.)
- Internal Interdisciplinary Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
- Correspondence: (G.E.); (A.A.); Tel.: +39-05-5275-8020 (G.E.); +39-05-5275-8330 (A.A.)
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.N.); (A.B.); (S.B.); (E.S.); (F.B.); (G.N.); (D.P.)
- Internal Interdisciplinary Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
20
|
Arnold S, Holl-Ulrich K, Müller A, Klapa S, Lamprecht P. [Update on etiopathogenesis of small vessel vasculitis]. Z Rheumatol 2022; 81:270-279. [PMID: 35084556 DOI: 10.1007/s00393-021-01155-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 11/29/2022]
Abstract
Small vessel vasculitis is characterized by a necrotizing inflammation of the vessel wall predominantly with involvement of small intraparenchymal arteries, arterioles, capillaries and venules. Medium-sized and occasionally large vessels can also be involved. Antineutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (granulomatosis with polyangiitis, microscopic polyangiitis, eosinophilic granulomatosis with polyangiitis) are differentiated from immune complex vasculitides based on immunopathological and serological aspects. Immune complex vasculitides include IgA vasculitis, cryoglobulinemic vasculitis, hypocomplementemic urticarial vasculitis (anti-C1q vasculitis) and anti-glomerular basement membrane disease. Epidemiological and next-generation sequencing-based studies have significantly contributed to the identification of predisposing environmental factors and genetic risk factors in recent years. Under specific conditions ANCA and immune complexes can induce premature intravascular activation of neutrophilic granulocytes with degranulation and release of enzymes and reactive oxygen species, which leads to vascular damage. In granulomatosis with polyangiitis and eosinophilic granulomatosis with polyangiitis various factors, such as barrier dysfunction and dysbiosis of the microbiome contribute to extravascular granuloma formation predominantly affecting the respiratory tract.
Collapse
Affiliation(s)
- Sabrina Arnold
- Klinik für Rheumatologie und klinische Immunologie, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | | | - Antje Müller
- Forschungslabor, Klinik für Rheumatologie und klinische Immunologie, Universität zu Lübeck, Lübeck, Deutschland
| | - Sebastian Klapa
- Klinik für Rheumatologie und klinische Immunologie, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - Peter Lamprecht
- Klinik für Rheumatologie und klinische Immunologie, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland.
| |
Collapse
|
21
|
Yu M, Li L, Ren Q, Feng H, Tao S, Cheng L, Ma L, Gou SJ, Fu P. Understanding the Gut-Kidney Axis in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis: An Analysis of Gut Microbiota Composition. Front Pharmacol 2022; 13:783679. [PMID: 35140612 PMCID: PMC8819146 DOI: 10.3389/fphar.2022.783679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/07/2022] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence suggested that gut microbiota played critical roles in developing autoimmune diseases. This study investigated the correlation between gut microbiota and antineutrophil cytoplasmic antibody-associated vasculitis (AAV) with kidney injury. We analyzed the fecal samples of 23 AAV patients with kidney injury using a 16s RNA microbial profiling approach. The alpha-diversity indexes were significantly lower in AAV patients with kidney injury than healthy controls (Sobs P < 0.001, Shannon P < 0.001, Chao P < 0.001). The beta-diversity difference demonstrated a significant difference among AAV patients with kidney injury, patients with lupus nephritis (LN), and health controls (ANOSIM, p = 0.001). Among these AAV patients, the Deltaproteobacteria, unclassified_o_Bacteroidales, Prevotellaceae, Desulfovibrionaceae Paraprevotella, and Lachnospiraceae_NK4A136_group were correlated negatively with serum creatinine, and the proportion of Deltaproteobacteria, unclassified_o_Bacteroidales, Desulfovibrionaceae, Paraprevotella, and Lachnospiraceae_NK4A136_group had a positive correlation with eGFR. In conclusion, the richness and diversity of gut microbiota were reduced in AAV patients with kidney injury, and the alteration of gut microbiota might be related with the severity of kidney injury of AAV patients. Targeted regulation of gut microbiota disorder might be a potential treatment for AAV patients with kidney injury.
Collapse
Affiliation(s)
- Meilian Yu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Lingzhi Li
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Qian Ren
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Han Feng
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sibei Tao
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Cheng
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Liang Ma, ; Shen-Ju Gou,
| | - Shen-Ju Gou
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Liang Ma, ; Shen-Ju Gou,
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Néel A, Degauque N, Bruneau S, Braudeau C, Bucchia M, Caristan A, De Mornac D, Genin V, Glemain A, Oriot C, Rimbert M, Brouard S, Josien R, Hamidou M. [Pathogenesis of ANCA-associated vasculitides in 2021: An update]. Rev Med Interne 2022; 43:89-97. [PMID: 35033384 DOI: 10.1016/j.revmed.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Anticytoplasmic neutrophil antibodies (ANCA)-associated vasculitis (AAV) are rare systemic immune-mediated diseases characterized by small vessel necrotizing vasculitis and/or respiratory tract inflammation. Over the last 2 decades, anti-MPO vasculitis mouse model has enlightened the role of ANCA, neutrophils, complement activation, T helper cells (Th1, Th17) and microbial agents. In humans, CD4T cells have been extensively studied, while the dramatic efficacy of rituximab demonstrated the key role of B cells. Many areas of uncertainty remain, such as the driving force of GPA extra-vascular granulomatous inflammation and the relapse risk of anti-PR3 AAV pathogenesis. Animal models eventually led to identify complement activation as a promising therapeutic target. New investigation tools, which permit in depth immune profiling of human blood and tissues, may open a new era for the studying of AAV pathogenesis.
Collapse
Affiliation(s)
- A Néel
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Centre de référence maladies auto-immunes systémiques Rares, hôpital Cochin, AP-HP, Paris, France.
| | - N Degauque
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - S Bruneau
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - C Braudeau
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Laboratoire d'immunologie, CHU de Nantes, Nantes, France
| | - M Bucchia
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Service de pédiatrie, CHU de Nantes, Nantes, France
| | - A Caristan
- Service de médecine interne, CHD Vendée, La-Roche-Sur-Yon, France
| | - D De Mornac
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - V Genin
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - A Glemain
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - C Oriot
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Service de pédiatrie, CHU de Nantes, Nantes, France
| | - M Rimbert
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Laboratoire d'immunologie, CHU de Nantes, Nantes, France
| | - S Brouard
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| | - R Josien
- Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France; Laboratoire d'immunologie, CHU de Nantes, Nantes, France
| | - M Hamidou
- Service de médecine interne, CHU de Nantes, Nantes, France; Inserm, centre de recherche en transplantation et immunologie, UMR 1064, université de Nantes, Nantes, France
| |
Collapse
|
23
|
Steinke KV, Welkoborsky HJ. [Granulomatosis with polyangiitis - manifestations in the head and neck area]. Laryngorhinootologie 2021; 101:112-119. [PMID: 34781398 DOI: 10.1055/a-1580-7037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Granulomatosis with polyangiitis is a rare chronic rheumatologic systemic disease with a vasculitis of small- and medium-size vessels. Mostly the upper airways, lung and kidneys are affected. Symptoms are unspecific. Patients complain about stuffy nose, crustiness of nasal secretions, ulcera of the oral mucosa or epistaxis. The otorhinolaryngologist may be the first one to evaluate the patient's health condition. Long term complications may be cardial, renal or pulmonal failure. To this day the aetiology is still unknown. Severe disease is treated with a combination of immunosuppressive medications. Clinic examinations and laboratory tests should be carried out for life-time.
Collapse
|
24
|
Effect of chewing betel nut on the gut microbiota of Hainanese. PLoS One 2021; 16:e0258489. [PMID: 34648581 PMCID: PMC8516201 DOI: 10.1371/journal.pone.0258489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Betel nut chewing (BNC) is prevalent in South Asia and Southeast Asia. BNC can affect host health by modulating the gut microbiota. The aim of this study is to evaluate the effect of BNC on the gut microbiota of the host. Feces samples were obtained from 34 BNC individuals from Ledong and Lingshui, Hainan, China. The microbiota was analyzed by 16S rRNA gene sequencing. BNC decreased the microbial α-diversity. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were the predominant phyla, accounting for 99.35% of the BNC group. The Firmicutes-to-Bacteroidetes ratio was significantly increased in the BNC group compared to a control group. The abundances of the families Aerococcaceae, Neisseriaceae, Moraxellaceae, Porphyromonadaceae, and Planococcaceae were decreased in the BNC/BNC_Male/BNC_Female groups compared to the control group, whereas the abundances of Coriobacteriaceae, Streptococcaceae, Micrococcaceae, Xanthomonadaceae, Coxiellaceae, Nocardioidaceae, Rhodobacteraceae, and Succinivibrionaceae were increased. In general, the gut microbiome profiles suggest that BNC may have positive effects, such as an increase in the abundance of beneficial microbes and a reduction in the abundance of disease-related microbes. However, BNC may also produce an increase in the abundance of disease-related microbes. Therefore, extraction of prebiotic components could increase the beneficial value of betel nut.
Collapse
|
25
|
Vertically transferred maternal immune cells promote neonatal immunity against early life infections. Nat Commun 2021; 12:4706. [PMID: 34349112 PMCID: PMC8338998 DOI: 10.1038/s41467-021-24719-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/26/2021] [Indexed: 11/17/2022] Open
Abstract
During mammalian pregnancy, immune cells are vertically transferred from mother to fetus. The functional role of these maternal microchimeric cells (MMc) in the offspring is mostly unknown. Here we show a mouse model in which MMc numbers are either normal or low, which enables functional assessment of MMc. We report a functional role of MMc in promoting fetal immune development. MMc induces preferential differentiation of hematopoietic stem cells in fetal bone marrow towards monocytes within the myeloid compartment. Neonatal mice with higher numbers of MMc and monocytes show enhanced resilience against cytomegalovirus infection. Similarly, higher numbers of MMc in human cord blood are linked to a lower number of respiratory infections during the first year of life. Our data highlight the importance of MMc in promoting fetal immune development, potentially averting the threats caused by early life exposure to pathogens. Maternal immune cells seed into the foetus during mammalian pregnancy, yet the functional role of these cells is unclear. Here the authors show that maternal immune cells in foetal bone marrow stimulate immune development, subsequently reducing the risk or severity of infections in newborns.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW To summarize recent evidence regarding the presence and potential role of the microbiome in systemic vasculitides. RECENT FINDINGS Microbiomic descriptions are now available in patients with small, medium and large vessel vasculitis. The majority of studies have evaluated gastrointestinal inhabitants, with a smaller number of studies describing the nasal, pulmonary or vascular microbiomes. Most published studies are observational and cross-sectional. Dysbiosis is seen frequently in vasculitis patients with reduced microbial diversity observed in nasal, fecal and vascular samples compared with disease and/or healthy controls. Predominant bacteria vary, but overall, patients with vasculitis tend to have more pathogenic and less commensal bacteria in active disease. In the few longitudinal studies available, improvement or resolution of dysbiosis has been observed following vasculitis treatment and improved disease activity. SUMMARY Dysbiosis and reduced microbial diversity has been identified in patients with small, medium and large vessel vasculitis. Although limited data suggests microbiomes may 'normalize' following immunosuppression, cause or effect cannot be determined. It is hypothesized that microbial disruption in a genetically susceptible individual may trigger excessive host immune activation and vasculitis; however, larger studies with longitudinal and translational design are needed to further our current understanding.
Collapse
|
27
|
Dekkema GJ, Rutgers A, Sanders JS, Stegeman CA, Heeringa P. The Nasal Microbiome in ANCA-Associated Vasculitis: Picking the Nose for Clues on Disease Pathogenesis. Curr Rheumatol Rep 2021; 23:54. [PMID: 34196846 PMCID: PMC8249244 DOI: 10.1007/s11926-021-01015-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW The onset and progression of small vessel vasculitis associated with anti-neutrophil cytoplasmic antibodies has been linked to microbial infections. Here, we provide a brief overview of the association of nasal colonization of Staphylococcus aureus with ANCA-associated vasculitis (AAV) and discuss several recent studies mapping the nasal microbiome in AAV patients in particular. RECENT FINDINGS Nasal microbiome studies revealed dysbiosis as a common trait in active AAV which tends to normalize upon immunosuppressive treatment and quiescent disease. However, due to differences in study design, patient selection, and methodology, the reported microbiome profiles differ considerably precluding conclusions on causal relationships. The microbiome is an emerging area of research in AAV warranting further investigation. Ideally, such studies should be combined with mechanistic studies to unravel key elements related to host-microbe interactions and their relevance for AAV pathogenesis.
Collapse
Affiliation(s)
- G J Dekkema
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A Rutgers
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J S Sanders
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - C A Stegeman
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - P Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, The Netherlands.
| |
Collapse
|
28
|
Müller A, Krause B, Kerstein-Stähle A, Comdühr S, Klapa S, Ullrich S, Holl-Ulrich K, Lamprecht P. Granulomatous Inflammation in ANCA-Associated Vasculitis. Int J Mol Sci 2021; 22:ijms22126474. [PMID: 34204207 PMCID: PMC8234846 DOI: 10.3390/ijms22126474] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
ANCA-associated vasculitis (AAV) comprises granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis (EGPA). While systemic vasculitis is a hallmark of all AAV, GPA is characterized by extravascular granulomatous inflammation, preferentially affecting the respiratory tract. The mechanisms underlying the emergence of neutrophilic microabscesses; the appearance of multinucleated giant cells; and subsequent granuloma formation, finally leading to scarred or destroyed tissue in GPA, are still incompletely understood. This review summarizes findings describing the presence and function of molecules and cells contributing to granulomatous inflammation in the respiratory tract and to renal inflammation observed in GPA. In addition, factors affecting or promoting the development of granulomatous inflammation such as microbial infections, the nasal microbiome, and the release of damage-associated molecular patterns (DAMP) are discussed. Further, on the basis of numerous results, we argue that, in situ, various ways of exposure linked with a high number of infiltrating proteinase 3 (PR3)- and myeloperoxidase (MPO)-expressing leukocytes lower the threshold for the presentation of an altered PR3 and possibly also of MPO, provoking the local development of ANCA autoimmune responses, aided by the formation of ectopic lymphoid structures. Although extravascular granulomatous inflammation is unique to GPA, similar molecular and cellular patterns can be found in both the respiratory tract and kidney tissue of GPA and MPA patients; for example, the antimicrobial peptide LL37, CD163+ macrophages, or regulatory T cells. Therefore, we postulate that granulomatous inflammation in GPA or PR3-AAV is intertwined with autoimmune and destructive mechanisms also seen at other sites.
Collapse
Affiliation(s)
- Antje Müller
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
- Correspondence: ; Tel.: +49-451-5005-0867
| | - Bettina Krause
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
- Institute of Anatomy & Experimental Morphology, University Hospital Hamburg-Eppendorf, University of Hamburg, 20251 Hamburg, Germany;
| | - Anja Kerstein-Stähle
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
| | - Sara Comdühr
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
| | - Sebastian Klapa
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
- Institute of Experimental Medicine c/o German Naval Medical Institute, Carl-Albrechts University of Kiel, 24119 Kronshagen, Germany
| | - Sebastian Ullrich
- Institute of Anatomy & Experimental Morphology, University Hospital Hamburg-Eppendorf, University of Hamburg, 20251 Hamburg, Germany;
- Municipal Hospital Kiel, 24116 Kiel, Germany
| | | | - Peter Lamprecht
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
| |
Collapse
|
29
|
Du G, Huang H, Zhu Q, Ying L. Effects of cat ownership on the gut microbiota of owners. PLoS One 2021; 16:e0253133. [PMID: 34133453 PMCID: PMC8208556 DOI: 10.1371/journal.pone.0253133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Pet ownership is an essential environmental exposure that might influence the health of the owner. This study’s primary objectives were to explore the effects of cat ownership on the gut microbial diversity and composition of owners. Raw data from the American Gut Project were obtained from the SRA database. A total of 214 Caucasian individuals (111 female) with cats and 214 individuals (111 female) without cats were used in the following analysis. OTU number showed significant alteration in the Cat group and Female_cat group, compared with that of the no cat (NC) group and Female_ NC group, respectively. Compared with the NC group, the microbial phylum Proteobacteria was significantly decreased in the Cat group. The microbial families Alcaligenaceae and Pasteurellaceae were significantly reduced, while Enterobacteriaceae and Pseudomonadaceae were significantly increased in the Cat group. Fifty metabolic pathways were predicted to be significantly changed in the Cat group. Twenty-one and 13 metabolic pathways were predicted to be significantly changed in the female_cat and male_cat groups, respectively. Moreover, the microbial phylum Cyanobacteria was significantly decreased, while the families Alcaligenaceae, Pseudomonadaceae and Enterobacteriaceae were significantly changed in the normal weight cat group. In addition, 41 and 7 metabolic pathways were predicted to be significantly changed in the normal-weight cat and overweight cat groups, respectively. Therefore, this study demonstrated that cat ownership could influence owners’ gut microbiota composition and function, especially in the female group and normal-weight group.
Collapse
Affiliation(s)
- Guankui Du
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
- The Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, China
- * E-mail: (GKD); (YL)
| | - Hairong Huang
- School of Public Health, Hainan Medical University, Haikou, China
| | - Qiwei Zhu
- The Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, China
| | - Li Ying
- Haikou Customs, Haikou, China
- * E-mail: (GKD); (YL)
| |
Collapse
|
30
|
Rhee RL, Lu J, Bittinger K, Lee JJ, Mattei LM, Sreih AG, Chou S, Miner JJ, Cohen NA, Kelly BJ, Lee H, Grayson PC, Collman RG, Merkel PA. Dynamic Changes in the Nasal Microbiome Associated With Disease Activity in Patients With Granulomatosis With Polyangiitis. Arthritis Rheumatol 2021; 73:1703-1712. [PMID: 33682371 DOI: 10.1002/art.41723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/02/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Little is known about temporal changes in nasal bacteria in granulomatosis with polyangiitis (GPA). This study was undertaken to examine longitudinal changes in the nasal microbiome in association with relapse in GPA patients. METHODS Bacterial 16S ribosomal RNA gene sequencing was performed on nasal swabs from 19 patients with GPA who were followed up longitudinally for a total of 78 visits, including 9 patients who experienced a relapse and 10 patients who remained in remission. Relative abundance of bacteria and ratios between bacteria were examined. Generalized estimating equation models were used to evaluate the association between bacterial composition and 1) disease activity and 2) levels of antineutrophil cytoplasmic antibody (ANCA) with specificity for proteinase 3 (PR3), adjusted for medication. RESULTS Corynebacterium and Staphylococcus were the most abundant bacterial genera across all nasal samples. Patients with quiescent disease maintained a stable ratio of Corynebacterium to Staphylococcus across visits. In contrast, in patients who experienced a relapse, a significantly lower ratio was observed at the visit prior to relapse, followed by a higher ratio at the time of relapse (adjusted P < 0.01). Species-level analysis identified an association between a higher abundance of nasal Corynebacterium tuberculostearicum and 1) relapse (adjusted P = 0.04) and 2) higher PR3-ANCA levels (adjusted P = 0.02). CONCLUSION In GPA, significant changes occur in the nasal microbiome over time and are associated with disease activity. The occurrence of these changes months prior to the onset of relapse supports a pathogenic role of nasal bacteria in GPA. Our results uphold existing hypotheses implicating Staphylococcus as an instigator of disease and have generated a novel finding involving Corynebacterium as a potential mediator of disease in GPA.
Collapse
Affiliation(s)
| | - Jiarui Lu
- University of Pennsylvania, Philadelphia
| | - Kyle Bittinger
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jung-Jin Lee
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lisa M Mattei
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | - Peter C Grayson
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | | | | |
Collapse
|
31
|
Kronbichler A, Harrison EM, Wagner J. Nasal microbiome research in ANCA-associated vasculitis: Strengths, limitations, and future directions. Comput Struct Biotechnol J 2020; 19:415-423. [PMID: 33489010 PMCID: PMC7804347 DOI: 10.1016/j.csbj.2020.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
The human nasal microbiome is characterized by biodiversity and undergoes changes during the span of life. In granulomatosis with polyangiitis (GPA), the persistent nasal colonization by Staphylococcus aureus (S. aureus) assessed by culture-based detection methods has been associated with increased relapse frequency. Different research groups have characterized the nasal microbiome in patients with GPA and found that patients have a distinct nasal microbiome compared to controls, but the reported results between studies differed. In order to increase comparability, there is a need to standardize patient selection, sample preparation, and analytical methodology; particularly as low biomass samples like those obtained by nasal swabbing are impacted by reagent contamination. Optimization in obtaining a sample and processing with the inclusion of critical controls is needed for consistent comparative studies. Ongoing studies will analyze the nasal microbiome in GPA in a longitudinal way and the results will inform whether or not targeted antimicrobial management in a clinical trial should be pursued or not. This review focuses on the proposed role of S. aureus in GPA, the (healthy) nasal microbiome, findings in the first pilot studies in GPA, and will discuss future strategies.
Collapse
Affiliation(s)
- Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
- Department of Medicine, University of Cambridge, CB2 0QQ, United Kingdom
- Corresponding author at: Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria.
| | - Ewan M. Harrison
- Department of Medicine, University of Cambridge, CB2 0QQ, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CD10 1SA, United Kingdom
- Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, United Kingdom
| | - Josef Wagner
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, Victoria, Australia
| |
Collapse
|
32
|
Sharma RK, Lövström B, Gunnarsson I, Malmström V. Proteinase 3 Autoreactivity in Anti-Neutrophil Cytoplasmic Antibody-associated vasculitis-Immunological versus clinical features. Scand J Immunol 2020; 92:e12958. [PMID: 32794199 PMCID: PMC7685112 DOI: 10.1111/sji.12958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022]
Abstract
ANCA-associated vasculitis (AAV) is a group of chronic inflammatory diseases of small- and medium-sized vessels, which are broadly subdivided based on organ manifestations and disease-specific autoantibodies. The so called anti-neutrophil cytoplasmic antibodies (ANCA) mostly target one of the enzymes, proteinase 3 (PR3) or myeloperoxidase (MPO). Accumulating genetic data demonstrates that these two autoantibodies discriminate two distinct disease entities, more so than the clinical subdivision which is mainly criteria-based. Treatment of AAV includes heavy immunosuppression and is guided by which organs that are involved. Generally, patients with PR3-ANCA display higher risk for disease relapse than patients with MPO-ANCA. In this review, we will focus on the autoimmune features of PR3+ AAV and our current understanding of its triggers and the potential translation into clinical practice.
Collapse
Affiliation(s)
- Ravi K. Sharma
- Division of RheumatologyDepartment of Medicine SolnaCenter for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Björn Lövström
- Division of RheumatologyDepartment of Medicine SolnaCenter for Molecular MedicineKarolinska InstitutetStockholmSweden
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Unit of RheumatologyKarolinska University HospitalStockholmSweden
| | - Iva Gunnarsson
- Division of RheumatologyDepartment of Medicine SolnaCenter for Molecular MedicineKarolinska InstitutetStockholmSweden
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Unit of RheumatologyKarolinska University HospitalStockholmSweden
| | - Vivianne Malmström
- Division of RheumatologyDepartment of Medicine SolnaCenter for Molecular MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
33
|
Scott J, Hartnett J, Mockler D, Little MA. Environmental risk factors associated with ANCA associated vasculitis: A systematic mapping review. Autoimmun Rev 2020; 19:102660. [PMID: 32947040 DOI: 10.1016/j.autrev.2020.102660] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/29/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) is a rare multi-system autoimmune disease, characterised by a pauci-immune necrotising small-vessel vasculitis, with a relapsing and remitting course. Like many autoimmune diseases, the exact aetiology of AAV, and the factors that influence relapse are unknown. Evidence suggests a complex interaction of polygenic genetic susceptibility, epigenetic influences and environmental triggers. This systematic mapping review focuses on the environmental risk factors associated with AAV. The aim was to identify gaps in the literature, thus informing further research. METHODS Articles that examined any environmental risk factor in AAV disease activity (new onset disease or relapse) were included. Studies had to make explicit reference to AAV, which includes the 3 clinico-pathological phenotypes (GPA, MPA and EGPA), rather than isolated ANCA-positivity. All articles identified were English-language, full manuscripts involving adult humans (>16 years). There was no restriction on publication date and all study designs, except single case reports, were included. The systematic search was performed on 9th December 2019, using the following databases: EMBASE, Medline (Ovid), Cochrane Library, CINAHL and Web of Science. RESULTS The search yielded a total of 2375 articles. 307 duplicates were removed, resulting in the title and abstract of 2068 articles for screening. Of these, 1809 were excluded. Thus, 259 remained for full-text review, of which 181 were excluded. 78 articles were included in this review. The most notable findings support the role of various pollutants - primarily silica and other environmental antigens released during natural disasters and through farming. Assorted geoepidemiological triggers were also identified including seasonality and latitude-dependent factors such as UV radiation. Finally, infection was tightly associated, but the exact microorganism(s) is not clear - Staphylococcus aureus is the most presently convincing. CONCLUSION The precise aetiology of AAV has yet to be elucidated. It is likely that different triggers, and the degree to which they influence disease activity, vary by subgroup (e.g. ANCA subtype, geographic region). There is a need for more interoperable disease registries to facilitate international collaboration and hence large-scale epidemiological studies, with novel analytical techniques.
Collapse
Affiliation(s)
- Jennifer Scott
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Jack Hartnett
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - David Mockler
- John Stearne Medical Library, School of Medicine, Trinity College Dublin, Ireland
| | - Mark A Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; ADAPT Centre, Trinity College Dublin, Ireland.
| |
Collapse
|
34
|
Fukui S, Morimoto S, Ichinose K, Nakashima S, Ishimoto H, Hara A, Kakugawa T, Sakamoto N, Tsuji Y, Aramaki T, Koga T, Kawashiri SY, Iwamoto N, Tamai M, Nakamura H, Origuchi T, Ueki Y, Suzuki S, Mukae H, Kawakami A. Comparison of lung microbiota between antineutrophil cytoplasmic antibody-associated vasculitis and sarcoidosis. Sci Rep 2020; 10:9466. [PMID: 32528054 PMCID: PMC7289840 DOI: 10.1038/s41598-020-66178-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Microbial involvement in the pathogenesis have been suggested in both antineutrophil cytoplasmic antibody-associated vasculitis (AAV) and sarcoidosis, both of which have lung involvement. However, exhaustive research to assess the bacteria in the lung in AAV and in sarcoidosis have not been performed. We sought to elucidate the distinct dysbiotic lung microbiota between AAV and sarcoidosis. We used 16S rRNA gene high-throughput sequencing to obtain the bacterial community composition of bronchoalveolar lavage fluid (BALF) in patients with AAV (n = 16) compared to patients with sarcoidosis (n = 21). The patients had not undergone therapy with immunosuppressive medication when their BALF was acquired. No difference was observed in α-diversity between patients with AAV and patients with sarcoidosis when using all the detected taxa. We defined the taxa of the oral cavity by using the data of oral microbiota of healthy individuals from the Human Microbiome Project (HMP). The analysis using only oral taxa made the difference in α-diversity between AAV and sarcoidosis clearer compared with those using all the detected taxa. Besides, the analysis using detected taxa except for oral taxa also made the difference in α-diversity between AAV and sarcoidosis clearer compared with those using all the detected taxa. A linear negative relationship between the α-diversity and Birmingham vasculitis activity score (BVAS) was detected in the AAV group. The observed p-value for the effect of the disease groups on the ß-diversity was small while the effect of other factors including sex and smoking status did not have small p-values. By excluding oral taxa from all the detected taxa, we found a cluster mainly consisted of sarcoidosis patients which was characterized with microbial community monopolized by Erythrobacteraceae family. Our results suggested the importance of considering the influence of oral microbiota in evaluating lung microbiota.
Collapse
Affiliation(s)
- Shoichi Fukui
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shimpei Morimoto
- Innovation Platform & Office for Precision Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kunihiro Ichinose
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Shota Nakashima
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Ishimoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsuko Hara
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoyuki Kakugawa
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshika Tsuji
- Rheumatic and Collagen Disease Center, Sasebo Chuo Hospital, Sasebo, Japan
| | - Toshiyuki Aramaki
- Rheumatic and Collagen Disease Center, Sasebo Chuo Hospital, Sasebo, Japan
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shin-Ya Kawashiri
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Iwamoto
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mami Tamai
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Nakamura
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoki Origuchi
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yukitaka Ueki
- Rheumatic and Collagen Disease Center, Sasebo Chuo Hospital, Sasebo, Japan
| | - Shino Suzuki
- Kochi Institute for Core Sample Research, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
35
|
Li BZ, Zhou HY, Guo B, Chen WJ, Tao JH, Cao NW, Chu XJ, Meng X. Dysbiosis of oral microbiota is associated with systemic lupus erythematosus. Arch Oral Biol 2020; 113:104708. [PMID: 32203722 DOI: 10.1016/j.archoralbio.2020.104708] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/10/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The important role of intestinal microbiota in systemic lupus erythematosus (SLE) has been recognized. Oral-gut microbiome axis is a crucial link in human health and disease, but few researches indicated the relationship between oral microorganisms and SLE. This study mainly explored the composition and changes of oral microorganisms in SLE patients with different stages, clinical manifestations and biomarkers. DESIGN Oral microbiota was detected by 16S ribosomal RNA gene sequencing from 20 SLE patients and 19 healthy controls (HCs). The evenness, diversity and composition of oral microbiota were analyzed. Moreover, receiver-operating characteristic analysis was conducted. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) based on Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to investigate microbiota functions. RESULTS The oral microbiota of SLE patients was imbalanced and the diversity was decreased, but no difference was found between new-onset and treated SLE patients. Families Lactobacillaceae, Veillonellaceae and Moraxellaceae were enriched in SLE patients. Families like Corynebacteriaceae, Micrococcaceae, Defluviitaleaceae, Caulobacteraceae, Phyllobacteriaceae, Methylobacteriaceae, Hyphomicrobiaceae, Sphingomonadaceae, Halomonadaceae, Pseudomonadaceae, Xanthomonadaceae, etc. were decreased in SLE patients. After multiple testing adjustment, families Sphingomonadaceae, Halomonadaceae, and Xanthomonadaceae were significantly decreased in SLE patients. And area under the curve was 0.953 (95% confidence intervals 0.890-1.000) to distinguish SLE patients from HCs. There were differences in metabolic pathways between SLE and HCs (P = 0.025). CONCLUSIONS These findings collectively support that oral microbiota dysbiosis and aberrant metabolic pathways were observed in patients with SLE. Our findings may provide suggestive evidences for the diagnosis and treatment of SLE.
Collapse
Affiliation(s)
- Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| | - Hao-Yue Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Biao Guo
- Department of Human Resource, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, China
| | - Wen-Jun Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology & Immunology, Anhui Provincial Hospital, Anhui, Hefei, China
| | - Nv-Wei Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Xiu-Jie Chu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Xiang Meng
- School of Stomatology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
36
|
Abstract
Microbial contributions to the immunopathogenesis of autoimmune rheumatic diseases have been studied since the advent of germ theory in the 19th century. With the exception of Group A Streptococcus in rheumatic fever, early studies failed to establish causal relationships between specific pathobionts and rheumatic disease. Today, systemic autoimmune diseases are thought to result from a complex interplay of environmental factors, individual genetic risk, and stochastic events. Interactions of microbiota and the immune system have been shown to promote and sustain chronic inflammation and autoimmunity. In mechanistic studies, microbe-immune cell interactions have been implicated in the initiation of autoimmune rheumatic diseases, e.g., through the posttranslational modification of autoantigens in rheumatoid arthritis or through neutrophil cell death and cross-reactivity with commensal orthologs in systemic lupus erythematosus. In parallel, modern molecular techniques have catalyzed the study of the microbiome in systemic autoimmune diseases. Here, I review current insights gained into the skin, oral, gut, lung, and vascular microbiome in connective tissue diseases and vasculitis. Mechanism relevant to the development and propagation of autoimmunity will be discussed whenever explored. While studies on autoimmune rheumatic disease have almost invariably shown abnormal microbiome structure (dysbiosis), substantial variability in microbial composition between studies makes generalization difficult. Moreover, an etiopathogenic role of specific pathobionts cannot be inferred by association alone. Integrating descriptive studies of microbial communities with hypothesis-driven research informed by immunopathogenesis will be important in elucidating targetable mechanisms in preclinical and established rheumatic disease.
Collapse
Affiliation(s)
- Maximilian F Konig
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
37
|
Ao T, Ran Y, Chen Y, Li R, Luo Y, Liu X, Li D. Effect of viscosity on process stability and microbial community composition during anaerobic mesophilic digestion of Maotai-flavored distiller's grains. BIORESOURCE TECHNOLOGY 2020; 297:122460. [PMID: 31784250 DOI: 10.1016/j.biortech.2019.122460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
To investigate the effects of viscosity on the mesophilic digestion of Maotai-flavored distiller's grains, a continuous experiment was conducted in a 70 L reactor at organic loading rates of 3, 4, 5, and 6 g VS/(L·d) with and without effluent recirculation. High organic loading rates and continuous effluent recirculation increased the digestate viscosity, and high viscosity caused severe foaming, which blocked the biogas outlet pipe. Moreover, a viscosity above 782 mPa·s was proposed as an early warning indicator for foaming. A maximum volumetric biogas production rate of 1.72 L/(L·d) was accomplished by diluting the feed without effluent recirculation at a recommended organic loading rate of 5 g VS/(L·d). Proteiniphilum, Ruminococcus_2, norank_f_Synergistaceae, norank_o__DTU014, Syntrophomonas, Methanosarcina, Methanobacterium, and Methanosaeta were the dominant acidogens, syntrophic bacteria, and methanogens existed in both low and high viscosity groups. Candidatus_Methanofastidiosum capable of employing the methylated thiol reduction pathway was found only in the high viscosity system.
Collapse
Affiliation(s)
- Tianjie Ao
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Ran
- Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Yichao Chen
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China
| | - Ruiling Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; College of Engineering, Northeast Agricultural University, No. 600, Changjiang Road, Xiangfang District, Harbin, Heilongjiang 150030, China
| | - Yiping Luo
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China
| | - Xiaofeng Liu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China
| | - Dong Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China.
| |
Collapse
|
38
|
Ceccarelli F, Perricone C, Olivieri G, Cipriano E, Spinelli FR, Valesini G, Conti F. Staphylococcus aureus Nasal Carriage and Autoimmune Diseases: From Pathogenic Mechanisms to Disease Susceptibility and Phenotype. Int J Mol Sci 2019; 20:ijms20225624. [PMID: 31717919 PMCID: PMC6888194 DOI: 10.3390/ijms20225624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022] Open
Abstract
The role of infective agents in autoimmune diseases (ADs) development has been historically investigated, but in the last years has been strongly reconsidered due to the interest in the link between the microbiome and ADs. Together with the gut, the skin microbiome is characterized by the presence of several microorganisms, potentially influencing innate and adaptive immune response. S. aureus is one of the most important components of the skin microbiome that can colonize anterior nares without clinical manifestations. Data from the literature demonstrates a significantly higher prevalence of nasal colonization in ADs patients in comparison with healthy subjects, suggesting a possible role in terms of disease development and phenotypes. Thus, in the present narrative review we focused on the mechanisms by which S. aureus could influence the immune response and on its relationship with ADs, in particular granulomatosis with polyangiitis, rheumatoid arthritis, and systemic lupus erythematosus.
Collapse
|
39
|
Wagner J, Harrison EM, Martinez Del Pero M, Blane B, Mayer G, Leierer J, Gopaluni S, Holmes MA, Parkhill J, Peacock SJ, Jayne DRW, Kronbichler A. The composition and functional protein subsystems of the human nasal microbiome in granulomatosis with polyangiitis: a pilot study. MICROBIOME 2019; 7:137. [PMID: 31640771 PMCID: PMC6806544 DOI: 10.1186/s40168-019-0753-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 09/24/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Ear, nose and throat involvement in granulomatosis with polyangiitis (GPA) is frequently the initial disease manifestation. Previous investigations have observed a higher prevalence of Staphylococcus aureus in patients with GPA, and chronic nasal carriage has been linked with an increased risk of disease relapse. In this cross-sectional study, we investigated changes in the nasal microbiota including a detailed analysis of Staphylococcus spp. by shotgun metagenomics in patients with active and inactive granulomatosis with polyangiitis (GPA). Shotgun metagenomic sequence data were also used to identify protein-encoding genes within the SEED database, and the abundance of proteins then correlated with the presence of bacterial species on an annotated heatmap. RESULTS The presence of S. aureus in the nose as assessed by culture was more frequently detected in patients with active GPA (66.7%) compared with inactive GPA (34.1%). Beta diversity analysis of nasal microbiota by bacterial 16S rRNA profiling revealed a different composition between GPA patients and healthy controls (P = 0.039). Beta diversity analysis of shotgun metagenomic sequence data for Staphylococcus spp. revealed a different composition between active GPA patients and healthy controls and disease controls (P = 0.0007 and P = 0.0023, respectively), and between healthy controls and inactive GPA patients and household controls (P = 0.0168 and P = 0.0168, respectively). Patients with active GPA had a higher abundance of S. aureus, mirroring the culture data, while healthy controls had a higher abundance of S. epidermidis. Staphylococcus pseudintermedius, generally assumed to be a pathogen of cats and dogs, showed an abundance of 13% among the Staphylococcus spp. in our cohort. During long-term follow-up of patients with inactive GPA at baseline, a higher S. aureus abundance was not associated with an increased relapse risk. Functional analyses identified ten SEED protein subsystems that differed between the groups. Most significant associations were related to chorismate synthesis and involved in the vitamin B12 pathway. CONCLUSION Our data revealed a distinct dysbiosis of the nasal microbiota in GPA patients compared with disease and healthy controls. Metagenomic sequencing demonstrated that this dysbiosis in active GPA patients is manifested by increased abundance of S. aureus and a depletion of S. epidermidis, further demonstrating the antagonist relationships between these species. SEED functional protein subsystem analysis identified an association between the unique bacterial nasal microbiota clusters seen mainly in GPA patients and an elevated abundance of genes associated with chorismate synthesis and vitamin B12 pathways. Further studies are required to further elucidate the relationship between the biosynthesis genes and the associated bacterial species.
Collapse
Affiliation(s)
- Josef Wagner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Ewan M. Harrison
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ UK
- Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, CB1 8RN UK
| | | | - Beth Blane
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ UK
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Johannes Leierer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Seerapani Gopaluni
- Vasculitis and Lupus Clinic, Box 57, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ UK
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Sharon J. Peacock
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ UK
- London School of Hygiene and Tropical Medicine, WC1E 7HT, London, UK
| | - David R. W. Jayne
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ UK
- Vasculitis and Lupus Clinic, Box 57, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ UK
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
- Vasculitis and Lupus Clinic, Box 57, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ UK
| |
Collapse
|
40
|
Antibiotic treatment and flares of rheumatoid arthritis: a self-controlled case series study analysis using CPRD GOLD. Sci Rep 2019; 9:8941. [PMID: 31222078 PMCID: PMC6586671 DOI: 10.1038/s41598-019-45435-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/06/2019] [Indexed: 12/27/2022] Open
Abstract
There is emerging evidence of the impact of infections on rheumatoid arthritis pathogenesis and flares. We aimed to study the association between antibiotic use (and timing of use), and the occurrence of flares in patients with RA. We nested a self-controlled case series (SCCS) of patients who have RA flares within a newly diagnosed RA cohort (n = 31,992) from the UK Clinical Practice Research Datalink (CPRD) GOLD dataset. We determined associations between exposure to antibiotics (beta-lactam, imidazole, macrolide, nitrofurantoin, quinolone, sulphonamide and trimethoprim, and tetracycline) and the occurrence of RA flares. Conditional fixed-effects Poisson regression models were used to determine incidence rate ratios (IRR), offset by the natural logarithm of risk periods. A total of 1,192 (3.7%) of RA subjects had one or more flare/s during the study period, and were therefore included. Use of sulphonamide and trimethoprim was associated with an increased risk of RA flare at 29–90 days (IRR 1.71, CI 1.12–2.59, p = 0.012); 91–183 days (IRR 1.57, CI 1.06–2.33, p = 0.025); and 184–365 days (IRR 1.44, CI 1.03–2.02, p = 0.033) after commencement of antibiotic treatment. No other antibiotic group/s appear associated with RA flare/s risk. Usage of sulphonamide and trimethoprim antibiotics, is associated with a 70% increased risk of RA flare at 1–3 months, which decreases but remains significant up to 12 months after treatment. We hypothesise that the delayed onset of RA flares after specific antibiotics is mediated through the gut or urinary microbiomes. Further epidemiological and mechanistic research is needed to determine the role of infections in RA.
Collapse
|
41
|
|