1
|
Jiang Y, Guo JQ, Wu Y, Zheng P, Wang SF, Yang MC, Ma GS, Yao YY. Excessive or sustained endoplasmic reticulum stress: one of the culprits of adipocyte dysfunction in obesity. Ther Adv Endocrinol Metab 2024; 15:20420188241282707. [PMID: 39381518 PMCID: PMC11459521 DOI: 10.1177/20420188241282707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/22/2024] [Indexed: 10/10/2024] Open
Abstract
As the prevalence of obesity continues to rise globally, the research on adipocytes has attracted more and more attention. In the presence of nutrient overload, adipocytes are exposed to pressures such as hypoxia, inflammation, mechanical stress, metabolite, and oxidative stress that can lead to organelle dysfunction. Endoplasmic reticulum (ER) is a vital organelle for sensing cellular pressure, and its homeostasis is essential for maintaining adipocyte function. Under conditions of excess nutrition, ER stress (ERS) will be triggered by the gathering of abnormally folded proteins in the ER lumen, resulting in the activation of a signaling response known as the unfolded protein responses (UPRs), which is a response system to relieve ERS and restore ER homeostasis. However, if the UPRs fail to rescue ER homeostasis, ERS will activate pathways to damage cells. Studies have shown a role for disturbed activation of adipocyte ERS in the pathophysiology of obesity and its complications. Prolonged or excessive ERS in adipocytes can aggravate lipolysis, insulin resistance, and apoptosis and affect the bioactive molecule production. In addition, ERS also impacts the expression of some important genes. In view of the fact that ERS influences adipocyte function through various mechanisms, targeting ERS may be a viable strategy to treat obesity. This article summarizes the effects of ERS on adipocytes during obesity.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jia-Qi Guo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ya Wu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Peng Zheng
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Shao-Fan Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Meng-Chen Yang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Gen-Shan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| |
Collapse
|
2
|
Andres M, Hennuyer N, Zibar K, Bicharel-Leconte M, Duplan I, Enée E, Vallez E, Herledan A, Loyens A, Staels B, Deprez B, van Endert P, Deprez-Poulain R, Lancel S. Insulin-degrading enzyme inhibition increases the unfolded protein response and favours lipid accumulation in the liver. Br J Pharmacol 2024; 181:3610-3626. [PMID: 38812293 DOI: 10.1111/bph.16436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND AND PURPOSE Nonalcoholic fatty liver disease refers to liver pathologies, ranging from steatosis to steatohepatitis, with fibrosis ultimately leading to cirrhosis and hepatocellular carcinoma. Although several mechanisms have been suggested, including insulin resistance, oxidative stress, and inflammation, its pathophysiology remains imperfectly understood. Over the last decade, a dysfunctional unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress emerged as one of the multiple driving factors. In parallel, growing evidence suggests that insulin-degrading enzyme (IDE), a highly conserved and ubiquitously expressed metallo-endopeptidase originally discovered for its role in insulin decay, may regulate ER stress and UPR. EXPERIMENTAL APPROACH We investigated, by genetic and pharmacological approaches, in vitro and in vivo, whether IDE modulates ER stress-induced UPR and lipid accumulation in the liver. KEY RESULTS We found that IDE-deficient mice display higher hepatic triglyceride content along with higher inositol-requiring enzyme 1 (IRE1) pathway activation. Upon induction of ER stress by tunicamycin or palmitate in vitro or in vivo, pharmacological inhibition of IDE, using its inhibitor BDM44768, mainly exacerbated ER stress-induced IRE1 activation and promoted lipid accumulation in hepatocytes, effects that were abolished by the IRE1 inhibitors 4μ8c and KIRA6. Finally, we identified that IDE knockout promotes lipolysis in adipose tissue and increases hepatic CD36 expression, which may contribute to steatosis. CONCLUSION AND IMPLICATIONS These results unravel a novel role for IDE in the regulation of ER stress and development of hepatic steatosis. These findings pave the way to innovative strategies modulating IDE to treat metabolic diseases.
Collapse
Affiliation(s)
- Marine Andres
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - EGID Drugs and Molecules for Living Systems, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Nathalie Hennuyer
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Khamis Zibar
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | | | - Isabelle Duplan
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Emmanuelle Enée
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
| | - Emmanuelle Vallez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Adrien Herledan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - EGID Drugs and Molecules for Living Systems, Lille, France
| | - Anne Loyens
- Univ. Lille, UMR-S 1172-JPArc Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - EGID Drugs and Molecules for Living Systems, Lille, France
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Service immunologie biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Rebecca Deprez-Poulain
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - EGID Drugs and Molecules for Living Systems, Lille, France
- Institut Universitaire de France (IUF), Paris, France
| | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| |
Collapse
|
3
|
Yang S, Zhang S, Deng J, Xie J, Zhang J, Jia E. Association of systemic immune-inflammation index with body mass index, waist circumference and prevalence of obesity in US adults. Sci Rep 2024; 14:22086. [PMID: 39333666 PMCID: PMC11436774 DOI: 10.1038/s41598-024-73659-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
This study aims to investigate the potential relationships between the systemic immune-inflammation index (SII) and body mass index (BMI), waist circumference, and the prevalence of obesity. A cross-sectional analysis was conducted on 7,645 individuals aged 20 and above from the NHANES 2017-2020. Multivariate linear regression analyses were conducted to evaluate the association of the logarithmically transformed SII (lgSII) with BMI and waist circumference. Additionally, multivariable logistic regression was utilized to explore the relationship between lgSII and the prevalence of obesity. Fitted smoothing curves and threshold-effect analysis were applied to elucidate nonlinear relationships. In the fully adjusted model, a positive relationship was observed between lgSII and BMI, waist circumference, and obesity prevalence (β = 3.13, 95% CI 2.10-4.16; β = 7.81, 95% CI 5.50-10.13; OR = 1.44, 95% CI 1.12-1.86). The variables of gender, age, race, education, marital status, poverty income ratio (PIR), energy intake, sleep disorder, smoking status, and alcohol use did not significantly modify the positive association between lgSII and obesity. However, physical activity appeared to influence the positive correlation between lgSII and obesity. Using a two-segment linear regression model, an inverted U-shaped relationship was observed between lgSII and both BMI and waist circumference. Furthermore, lgSII demonstrated a linear positive correlation with obesity prevalence. When stratified by physical activity, lgSII showed a non-significant negative correlation with obesity in the physically active group. Our findings underscore a robust association between the logarithmically transformed SII and BMI, waist circumference, and the prevalence of obesity.
Collapse
Affiliation(s)
- Shuo Yang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Shan Zhang
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Jinrong Deng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Jingjing Xie
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
- Department of Rheumatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Jianyong Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China.
- Department of Rheumatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, People's Republic of China.
| | - Ertao Jia
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China.
- Department of Rheumatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Chan DY, Barra NG, Fang H, Rodrigues E-Lacerda R, Schertzer JD. Bruton's tyrosine kinase (BTK) inhibitors alter blood glucose and insulin in obese mice but reduce inflammation independent of BTK. Am J Physiol Endocrinol Metab 2024; 327:E271-E278. [PMID: 39017678 DOI: 10.1152/ajpendo.00205.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Obesity is associated with metabolic inflammation, which can contribute to insulin resistance, higher blood glucose, and higher insulin indicative of prediabetes progression. The nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a metabolic danger sensor implicated in metabolic inflammation. Many features of metabolic disease can activate the NLRP3 inflammasome; however, it is not yet clear which upstream triggers to target, and there are no clinically approved NLRP3 inflammasome inhibitors for metabolic disease. Bruton's tyrosine kinase (BTK) mediates activation of the NLRP3 inflammasome. Ibrutinib is the most-studied pharmacological inhibitor of BTK, and it can improve blood glucose control in obese mice. However, inhibitors of tyrosine kinases are permissive, and it is unknown if BTK inhibitors require BTK to alter endocrine control of metabolism or metabolic inflammation. We tested whether ibrutinib and acalabrutinib, a new generation BTK inhibitor with higher selectivity, require BTK to inhibit the NLRP3 inflammasome, metabolic inflammation, and blood glucose in obese mice. Chronic ibrutinib administration lowered fasting blood glucose and improved glycemia, whereas acalabrutinib increased fasting insulin levels and increased markers of insulin resistance in high-fat diet-fed CBA/J mice with intact Btk. These metabolic effects of BTK inhibitors were absent in CBA/CaHN-Btkxid/J mice with mutant Btk. However, ibrutinib and acalabrutinib reduced NF-κB activity, proinflammatory gene expression, and NLRP3 inflammasome activation in macrophages with and without functional BTK. These data highlight that the BTK inhibitors can have divergent effects on metabolism and separate effects on metabolic inflammation that can occur independently of actions on BTK.NEW & NOTEWORTHY Bruton's tyrosine kinase (BTK) is involved in immune function. It was thought that BTK inhibitors improve characteristics of obesity-related metabolic disease by lowering metabolic inflammation. However, tyrosine kinase inhibitors are permissive, and it was not known if different BTK inhibitors alter host metabolism or immunity through actions on BTK. We found that two BTK inhibitors had divergent effects on blood glucose and insulin via BTK, but inhibition of metabolic inflammation occurred independently of BTK in obese mice.
Collapse
Affiliation(s)
- Darryl Y Chan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Han Fang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Rodrigo Rodrigues E-Lacerda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Wu D, Eeda V, Maria Z, Rawal K, Herlea-Pana O, Babu Undi R, Lim HY, Wang W. Targeting IRE1α improves insulin sensitivity and thermogenesis and suppresses metabolically active adipose tissue macrophages in obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603931. [PMID: 39071288 PMCID: PMC11275733 DOI: 10.1101/2024.07.17.603931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Overnutrition engenders the expansion of adipose tissue and the accumulation of immune cells, in particular, macrophages, in the adipose tissue, leading to chronic low-grade inflammation and insulin resistance. In obesity, several proinflammatory subpopulations of adipose tissue macrophages (ATMs) identified hitherto include the conventional "M1-like" CD11C-expressing ATM and the newly discovered metabolically activated CD9-expressing ATM; however, the relationship among ATM subpopulations is unclear. The ER stress sensor inositol-requiring enzyme 1α (IRE1α) is activated in the adipocytes and immune cells under obesity. It is unknown whether targeting IRE1α is capable of reversing insulin resistance and obesity and modulating the metabolically activated ATMs. We report that pharmacological inhibition of IRE1α RNase significantly ameliorates insulin resistance and glucose intolerance in diet-induced obesity mice. IRE1α inhibition also increases thermogenesis and energy expenditure, and hence protects against high fat diet-induced obesity. Our study shows that the "M1-like" CD11c+ ATMs are largely overlapping with but yet non-identical to CD9+ ATMs in obese white adipose tissue. Notably, IRE1α inhibition diminishes the accumulation of obesity-induced metabolically activated ATMs and "M1-like" ATMs, resulting in the curtailment of adipose inflammation and ensuing reactivation of thermogenesis, without augmentation of the alternatively activated M2 macrophage population. Our findings suggest the potential of targeting IRE1α for the therapeutic treatment of insulin resistance and obesity.
Collapse
Affiliation(s)
- Dan Wu
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35233, United States
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Venkateswararao Eeda
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Zahra Maria
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Komal Rawal
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Oana Herlea-Pana
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Ram Babu Undi
- Department of Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Hui-Ying Lim
- Department of Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| | - Weidong Wang
- Department of Genetics, Heersink School of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35233, United States
- Department of Medicine, Division of Endocrinology, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
6
|
Chang J, Wang Z, Hao Y, Song Y, Xia C. Calmodulin Contributes to Lipolysis and Inflammatory Responses in Clinical Ketosis Cows through the TLR4/IKK/NF-κB Pathway. Animals (Basel) 2024; 14:1678. [PMID: 38891725 PMCID: PMC11171032 DOI: 10.3390/ani14111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Clinical ketosis is a detrimental metabolic disease in dairy cows, often accompanied by severe lipolysis and inflammation in adipose tissue. Our previous study suggested a 2.401-fold upregulation in the calmodulin (CaM) level in the adipose tissue of cows with clinical ketosis. Therefore, we hypothesized that CaM may regulate lipolysis and inflammatory responses in cows with clinical ketosis. To verify the hypothesis, we conducted a thorough veterinary assessment of clinical symptoms and serum β-hydroxybutyrate (BHB) concentration. Subsequently, we collected subcutaneous adipose tissue samples from six healthy and six clinically ketotic Holstein cows at 17 ± 4 days postpartum. Commercial kits were used to test the abundance of BHB, non-esterified fatty acid (NEFA), the liver function index (LFI), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α). We found that cows with clinical ketosis exhibited higher levels of BHB, NEFA, LFI, IL-6, IL-1β, TNF-α, and lower glucose levels than healthy cows. Furthermore, the abundance of CaM, toll-like receptor 4 (TLR4), inhibitor of nuclear factor κB kinase subunit β (IKK), phosphorylated nuclear factor κB p65/nuclear factor κB p65 (p-NF-κB p65/NF-κB p65), adipose triacylglycerol lipase (ATGL), and phosphorylated hormone-sensitive lipase/hormone-sensitive lipase (p-HSL/HSL) was increased, while that of perilipin-1 (PLIN1) was decreased in the adipose tissue of cows with clinical ketosis. To investigate the mechanism underlying the responses, we isolated the primary bovine adipocytes from the adipose tissue of healthy cows and induced the inflammatory response mediated by TLR4/IKK/NF-κB p65 with lipopolysaccharide (LPS). Additionally, we treated the primary bovine adipocytes with CaM overexpression adenovirus and CaM small interfering RNA. In vitro, LPS upregulated the abundance of TLR4, IKK, p-NF-κB p65, ATGL, p-HSL/HSL, and CaM and downregulated PLIN1. Furthermore, CaM silencing downregulated the abundance of LPS-activated p-HSL/HSL, TLR4, IKK, and p-NF-κB p65 and upregulated PLIN1 in bovine adipocytes, except for ATGL. However, CaM overexpression upregulated the abundance of LPS-activated p-HSL/HSL, TLR4, IKK, and p-NF-κB p65 and downregulated PLIN1 expression in bovine adipocytes. These data suggest that CaM promotes lipolysis in adipocytes through HSL and PINL1 while activating the TLR4/IKK/NF-κB inflammatory pathway to stimulate an inflammatory response. There is a positive feedback loop between CaM, lipolysis, and inflammation. Inhibiting CaM may act as an adaptive mechanism to alleviate metabolic dysregulation in adipose tissue, thereby relieving lipolysis and inflammatory responses.
Collapse
Affiliation(s)
- Jinshui Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.C.); (Y.H.); (Y.S.)
| | - Zhijie Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
| | - Yu Hao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.C.); (Y.H.); (Y.S.)
| | - Yuxi Song
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.C.); (Y.H.); (Y.S.)
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.C.); (Y.H.); (Y.S.)
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| |
Collapse
|
7
|
Zhou ZY, Wu L, Liu YF, Tang MY, Tang JY, Deng YQ, Liu L, Nie BB, Zou ZK, Huang L. IRE1α: from the function to the potential therapeutic target in atherosclerosis. Mol Cell Biochem 2024; 479:1079-1092. [PMID: 37310588 DOI: 10.1007/s11010-023-04780-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
Inositol requiring enzyme 1 (IRE1) is generally thought to control the most conserved pathway in the unfolded protein response (UPR). Two isoforms of IRE1, IRE1α and IRE1β, have been reported in mammals. IRE1α is a ubiquitously expressed protein whose knockout shows marked lethality. In contrast, the expression of IRE1β is exclusively restricted in the epithelial cells of the respiratory and gastrointestinal tracts, and IRE1β-knockout mice are phenotypically normal. As research continues to deepen, IRE1α was showed to be tightly linked to inflammation, lipid metabolism regulation, cell death and so on. Growing evidence also suggests an important role for IRE1α in promoting atherosclerosis (AS) progression and acute cardiovascular events through disrupting lipid metabolism balance, facilitating cells apoptosis, accelerating inflammatory responses and promoting foam cell formation. In addition, IRE1α was recognized as novel potential therapeutic target in AS prevention. This review provides some clues about the relationship between IRE1α and AS, hoping to contribute to further understanding roles of IRE1α in atherogenesis and to be helpful for the design of novel efficacious therapeutics agents targeting IRE1α-related pathways.
Collapse
Affiliation(s)
- Zheng-Yang Zhou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Li Wu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yi-Fan Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Mu-Yao Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jing-Yi Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Anaesthesiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ya-Qian Deng
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Lei Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Bin-Bin Nie
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zi-Kai Zou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Liang Huang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Chirivi M, Contreras GA. Endotoxin-induced alterations of adipose tissue function: a pathway to bovine metabolic stress. J Anim Sci Biotechnol 2024; 15:53. [PMID: 38581064 PMCID: PMC10998405 DOI: 10.1186/s40104-024-01013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/14/2024] [Indexed: 04/07/2024] Open
Abstract
During the periparturient period, dairy cows exhibit negative energy balance due to limited appetite and increased energy requirements for lactogenesis. The delicate equilibrium between energy availability and expenditure puts cows in a state of metabolic stress characterized by excessive lipolysis in white adipose tissues (AT), increased production of reactive oxygen species, and immune cell dysfunction. Metabolic stress, especially in AT, increases the risk for metabolic and inflammatory diseases. Around parturition, cows are also susceptible to endotoxemia. Bacterial-derived toxins cause endotoxemia by promoting inflammatory processes and immune cell infiltration in different organs and systems while impacting metabolic function by altering lipolysis, mitochondrial activity, and insulin sensitivity. In dairy cows, endotoxins enter the bloodstream after overcoming the defense mechanisms of the epithelial barriers, particularly during common periparturient conditions such as mastitis, metritis, and pneumonia, or after abrupt changes in the gut microbiome. In the bovine AT, endotoxins induce a pro-inflammatory response and stimulate lipolysis in AT, leading to the release of free fatty acids into the bloodstream. When excessive and protracted, endotoxin-induced lipolysis can impair adipocyte's insulin signaling pathways and lipid synthesis. Endotoxin exposure can also induce oxidative stress in AT through the production of reactive oxygen species by inflammatory cells and other cellular components. This review provides insights into endotoxins' impact on AT function, highlighting the gaps in our knowledge of the mechanisms underlying AT dysfunction, its connection with periparturient cows' disease risk, and the need to develop effective interventions to prevent and treat endotoxemia-related inflammatory conditions in dairy cattle.
Collapse
Affiliation(s)
- Miguel Chirivi
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
9
|
Schwärzler J, Grabherr F, Grander C, Adolph TE, Tilg H. The pathophysiology of MASLD: an immunometabolic perspective. Expert Rev Clin Immunol 2024; 20:375-386. [PMID: 38149354 DOI: 10.1080/1744666x.2023.2294046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
INTRODUCTION Metabolic-associated liver diseases have emerged pandemically across the globe and are clinically related to metabolic disorders such as obesity and type 2 diabetes. The new nomenclature and definition (i.e. metabolic dysfunction-associated steatotic liver disease - MASLD; metabolic dysfunction-associated steatohepatitis - MASH) reflect the nature of these complex systemic disorders, which are characterized by inflammation, gut dysbiosis and metabolic dysregulation. In this review, we summarize recent advantages in understanding the pathophysiology of MASLD, which we parallel to emerging therapeutic concepts. AREAS COVERED We summarize the pathophysiologic concepts of MASLD and its transition to MASH and subsequent advanced sequelae of diseases. Furthermore, we highlight how dietary constituents, microbes and associated metabolites, metabolic perturbations, and immune dysregulation fuel lipotoxicity, hepatic inflammation, liver injury, insulin resistance, and systemic inflammation. Deciphering the intricate pathophysiologic processes that contribute to the development and progression of MASLD is essential to develop targeted therapeutic approaches to combat this escalating burden for health-care systems. EXPERT OPINION The rapidly increasing prevalence of metabolic dysfunction-associated steatotic liver disease challenges health-care systems worldwide. Understanding pathophysiologic traits is crucial to improve the prevention and treatment of this disorder and to slow progression into advanced sequelae such as cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Carey A, Nguyen K, Kandikonda P, Kruglov V, Bradley C, Dahlquist KJV, Cholensky S, Swanson W, Badovinac VP, Griffith TS, Camell CD. Age-associated accumulation of B cells promotes macrophage inflammation and inhibits lipolysis in adipose tissue during sepsis. Cell Rep 2024; 43:113967. [PMID: 38492219 PMCID: PMC11014686 DOI: 10.1016/j.celrep.2024.113967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Non-canonical lipolysis induced by inflammatory cytokines or Toll-like receptor ligands is required for the regulation of inflammation during endotoxemia and sepsis. Canonical lipolysis induced by catecholamines declines during aging due to factors including an expansion of lymphocytes, pro-inflammatory macrophage polarization, and an increase in chronic low-grade inflammation; however, the extent to which the non-canonical pathway of lipolysis is active and impacted by immune cells during aging remains unclear. Therefore, we aimed to define the extent to which immune cells from old mice influence non-canonical lipolysis during sepsis. We identified age-associated impairments of non-canonical lipolysis and an accumulation of dysfunctional B1 B cells in the visceral white adipose tissue (vWAT) of old mice. Lifelong deficiency of B cells results in restored non-canonical lipolysis and reductions in pro-inflammatory macrophage populations. Our study suggests that targeting the B cell-macrophage signaling axis may resolve metabolic dysfunction in aged vWAT and attenuate septic severity in older individuals.
Collapse
Affiliation(s)
- Anna Carey
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katie Nguyen
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pranathi Kandikonda
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Victor Kruglov
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Claire Bradley
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Korbyn J V Dahlquist
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephanie Cholensky
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Whitney Swanson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Thomas S Griffith
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA; Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| | - Christina D Camell
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
11
|
Niu X, Zhang Y, Lai Z, Huang X, Guo L, Lu F, Yuan Y, Gao J, Chang Q. Lipolysis inhibition improves the survival of fat grafts through ameliorating lipotoxicity and inflammation. FASEB J 2024; 38:e23520. [PMID: 38430369 DOI: 10.1096/fj.202302090r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Fat grafting is a promising technique for correcting soft tissue abnormalities, but oil cyst formation and graft fibrosis frequently impede the therapeutic benefit of fat grafting. The lipolysis of released oil droplets after grafting may make the inflammation and fibrosis in the grafts worse; therefore, by regulating adipose triglyceride lipase (ATGL) via Atglistatin (ATG) and Forskolin (FSK), we investigated the impact of lipolysis on fat grafts in this study. After being removed from the mice and chopped into small pieces, the subcutaneous fat from wild-type C57BL/6J mice was placed in three different solutions for two hours: serum-free cell culture medium, culture medium+FSK (50 μM), and culture medium+ATG (100 μM). Following centrifugation to remove water and free oil droplets, 0.3 mL of the fat particles per mouse was subcutaneously injected into the back of mice. Additionally, the subcutaneous fat grafting area was immediately injected with PBS (control group), ATG (30 mg/kg), and FSK (15 mg/kg) following fat transplantation. Detailed cellular events after grafting were investigated by histological staining, real-time polymerase chain reaction, immunohistochemistry/immunofluorescent staining, and quantification. Two weeks after grafting, grafts treated with ATG showed lower expression of ATGL and decreased mRNA levels of TNFα and IL-6. In contrast, grafts treated with ATG showed elevated expression levels of IL-4 and IL-13 compared to the control grafts. In addition, fewer apoptotic cells and oil cysts were observed in ATG grafts. Meanwhile, a higher CD206+/CD68+ ratio of macrophages and more CD31+ vascular endothelial cells existed in the 2-month ATG grafts. In comparison to the control, ATG treatment improved the volume retention of grafts, and decreased graft fibrosis and oil cyst formation. By preventing oil droplet lipolysis, pharmacological suppression of ATGL shielded adipocytes from lipotoxicity following grafting. Additionally, ATG ameliorated the apoptosis and inflammation brought on by adipocyte death and oil droplet lipolysis in grafted fat. These all indicate that lipolysis inhibition improved transplanted fat survival and decreased the development of oil cysts and graft fibrosis, offering a potential postoperative pharmacological intervention for bettering fat grafting.
Collapse
Affiliation(s)
- Xingtang Niu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuchen Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuhao Lai
- Department of Plastic and Cosmetic Surgery, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Xiaoqi Huang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lingling Guo
- Department of Plastic and Cosmetic Surgery, The Central Hospital Affiliated of Shandong First Medical University, Jinan, Shandong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Yuan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Cani PD, Van Hul M. Gut microbiota in overweight and obesity: crosstalk with adipose tissue. Nat Rev Gastroenterol Hepatol 2024; 21:164-183. [PMID: 38066102 DOI: 10.1038/s41575-023-00867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 03/02/2024]
Abstract
Overweight and obesity are characterized by excessive fat mass accumulation produced when energy intake exceeds energy expenditure. One plausible way to control energy expenditure is to modulate thermogenic pathways in white adipose tissue (WAT) and/or brown adipose tissue (BAT). Among the different environmental factors capable of influencing host metabolism and energy balance, the gut microbiota is now considered a key player. Following pioneering studies showing that mice lacking gut microbes (that is, germ-free mice) or depleted of their gut microbiota (that is, using antibiotics) developed less adipose tissue, numerous studies have investigated the complex interactions existing between gut bacteria, some of their membrane components (that is, lipopolysaccharides), and their metabolites (that is, short-chain fatty acids, endocannabinoids, bile acids, aryl hydrocarbon receptor ligands and tryptophan derivatives) as well as their contribution to the browning and/or beiging of WAT and changes in BAT activity. In this Review, we discuss the general physiology of both WAT and BAT. Subsequently, we introduce how gut bacteria and different microbiota-derived metabolites, their receptors and signalling pathways can regulate the development of adipose tissue and its metabolic capacities. Finally, we describe the key challenges in moving from bench to bedside by presenting specific key examples.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
13
|
Mladenova SG, Todorova MN, Savova MS, Georgiev MI, Mihaylova LV. Maackiain Mimics Caloric Restriction through aak-2-Mediated Lipid Reduction in Caenorhabditis elegans. Int J Mol Sci 2023; 24:17442. [PMID: 38139270 PMCID: PMC10744277 DOI: 10.3390/ijms242417442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity prevalence is becoming a serious global health and economic issue and is a major risk factor for concomitant diseases that worsen the quality and duration of life. Therefore, the urgency of the development of novel therapies is of a particular importance. A previous study of ours revealed that the natural pterocarpan, maackiain (MACK), significantly inhibits adipogenic differentiation in human adipocytes through a peroxisome proliferator-activated receptor gamma (PPARγ)-dependent mechanism. Considering the observed anti-adipogenic potential of MACK, we aimed to further elucidate the molecular mechanisms that drive its biological activity in a Caenorhabditis elegans obesity model. Therefore, in the current study, the anti-obesogenic effect of MACK (25, 50, and 100 μM) was compared to orlistat (ORST, 12 μM) as a reference drug. Additionally, the hybrid combination between the ORST (12 μM) and MACK (100 μM) was assessed for suspected synergistic interaction. Mechanistically, the observed anti-obesogenic effect of MACK was mediated through the upregulation of the key metabolic regulators, namely, the nuclear hormone receptor 49 (nhr-49) that is a functional homologue of the mammalian PPARs and the AMP-activated protein kinase (aak-2/AMPK) in C. elegans. Collectively, our investigation indicates that MACK has the potential to limit lipid accumulation and control obesity that deserves future developments.
Collapse
Affiliation(s)
| | - Monika N. Todorova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (M.I.G.)
| | - Martina S. Savova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (M.I.G.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Milen I. Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (M.I.G.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Liliya V. Mihaylova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (M.I.G.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
14
|
Cho CH, Patel S, Rajbhandari P. Adipose tissue lipid metabolism: lipolysis. Curr Opin Genet Dev 2023; 83:102114. [PMID: 37738733 DOI: 10.1016/j.gde.2023.102114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
White adipose tissue stores fatty acid (FA) as triglyceride in the lipid droplet organelle of highly specialized cells known as fat cells or adipocytes. Depending on the nutritional state and energy demand, hormonal and biochemical signals converge on activating an elegant and fundamental process known as lipolysis, which involves triglyceride hydrolysis to FAs. Almost six decades of work have vastly expanded our knowledge of lipolysis from enzymatic processes to complex protein assembly, disassembly, and post-translational modification. Research in recent decades ushered in the discovery of new lipolytic enzymes and coregulators and the characterization of numerous factors and signaling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels. This review will discuss recent developments with particular emphasis on the past two years in enzymatic lipolytic pathways and transcriptional regulation of lipolysis. We will summarize the positive and negative regulators of lipolysis, the adipose tissue microenvironment in lipolysis, and the systemic effects of lipolysis. The dynamic nature of adipocyte lipolysis is emerging as an essential regulator of metabolism and energy balance, and we will discuss recent developments in this area.
Collapse
Affiliation(s)
- Chung Hwan Cho
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanil Patel
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Diabetes, Obesity, and Metabolism Institute, Department of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place New York, NY 10029 USA.
| |
Collapse
|
15
|
von Kroge S, Büyükyilmaz Z, Alimy AR, Hubert J, Citak M, Amling M, Beil FT, Ohlmeier M, Rolvien T. Do Clinical Parameters Reflect Local Bone Metabolism in Heterotopic Ossification After Septic or Aseptic THA? Clin Orthop Relat Res 2023; 481:2029-2041. [PMID: 37462509 PMCID: PMC10499090 DOI: 10.1097/corr.0000000000002758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/06/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Heterotopic ossification (HO) is a common complication after THA. Although current research primarily focuses on treatment and prevention, little is known about the local bone metabolism of HO and clinical contributing factors. QUESTIONS/PURPOSES We aimed to assess bone remodeling processes in HO using histomorphometry, focusing on the effects of inflammation and prior NSAID treatment. Specifically, we asked: (1) Are HO specimens taken from patients with periprosthetic joint infection (PJI) more likely to exhibit active bone modeling and remodeling than specimens taken at the time of revision from patients without infection? (2) Do clinical or inflammatory serum and synovial parameters reflect the microstructure of and remodeling in both HO entities? (3) Is NSAID treatment before revision surgery associated with altered local bone mineralization or remodeling properties? METHODS Between June 2021 and May 2022, we screened 395 patients undergoing revision THA at two tertiary centers in Germany. Of those, we considered all patients with radiographic HO as potentially eligible. Based on that, 21% (83 of 395) were eligible; a further 43 were excluded because of an inability to remove the implant intraoperatively (16 patients), insufficient material (11), comorbidities with a major effect on bone metabolism (10), or bone-specific drugs (six), leaving 10% (40) for analysis in this retrospective, comparative study. HO specimens were collected during aseptic (25 patients: 18 male, seven female, mean age 70 ± 11 years, mean BMI 29 ± 4 kg/m 2 ) and septic (15 patients: 11 male, four female, mean age 69 ± 9 years, mean BMI 32 ± 9 kg/m 2 ) revision THA at a mean of 6 ± 7 years after primary implantation and a mean age of 70 ± 9 years at revision. Septic origin (PJI) was diagnosed based on the 2018 International Consensus Meeting criteria, through a preoperative assessment of serum and synovial parameters. To specify the local bone microstructure, ossification, and cellular bone turnover, we analyzed HO specimens using micro-CT and histomorphometry on undecalcified sections. Data were compared with those of controls, taken from femoral neck trabecular bone (10 patients: five female, five male, mean age 75 ± 6 years, mean BMI 28 ± 4 kg/m 2 ) and osteophytes (10 patients: five female, five male, mean age 70 ± 10 years, mean BMI 29 ± 7 kg/m 2 ). The time between primary implantation and revision (time in situ), HO severity based on the Brooker classification, and serum and synovial markers were correlated with HO microstructure and parameters of cellular bone turnover. In a subgroup of specimens of patients with NSAID treatment before revision, osteoid and bone turnover indices were evaluated and compared a matched cohort of specimens from patients without prior NSAID treatment. RESULTS Patients with aseptic and septic HO presented with a higher bone volume (BV/TV; aseptic: 0.41 ± 0.15, mean difference 0.20 [95% CI 0.07 to 0.32]; septic: 0.43 ± 0.15, mean difference 0.22 [95% CI 0.08 to 0.36]; femoral neck: 0.21 ± 0.04; both p < 0.001), lower bone mineral density (aseptic: 809 ± 66 mg HA/cm 3 , mean difference -91 mg HA/cm 3 [95% CI -144 to -38]; septic: 789 ± 44 mg HA/cm 3 , mean difference -111 mg HA/cm 3 [95% CI -169 to -53]; femoral neck: 899 ± 20 mg HA/cm 3 ; both p < 0.001), and ongoing bone modeling with endochondral ossification and a higher proportion of woven, immature bone (aseptic: 25% ± 17%, mean difference 25% [95% CI 9% to 41%]; septic: 37% ± 23%, mean difference 36% [95% CI 19% to 54%]; femoral neck: 0.4% ± 0.5%; both p < 0.001) compared with femoral neck specimens. Moreover, bone surfaces were characterized by increased osteoblast and osteoclast indices in both aseptic and septic HO, although a higher density of osteocytes was detected exclusively in septic HO (aseptic: 158 ± 56 1/mm 2 versus septic: 272 ± 48 1/mm 2 , mean difference 114 1/mm 2 [95% CI 65 to 162]; p < 0.001). Compared with osteophytes, microstructure and turnover indices were largely similar in HO. The Brooker class was not associated with any local bone metabolism parameters. The time in situ was negatively associated with bone turnover in aseptic HO specimens (osteoblast surface per bone surface: r = -0.46; p = 0.01; osteoclast surface per bone surface: r = -0.56; p = 0.003). Serum or synovial inflammatory markers were not correlated with local bone turnover in septic HO. Specimens of patients with NSAID treatment before revision surgery had a higher osteoid thickness (10.1 ± 2.1 µm versus 5.5 ± 2.6 µm, mean difference -4.7 µm [95% CI -7.4 to -2.0]; p = 0.001), but there was no difference in other osteoid, structural, or cellular parameters. CONCLUSION Aseptic and septic HO share phenotypic characteristics in terms of the sustained increase in bone metabolism, although differences in osteocyte and adipocyte numbers suggest distinct homeostatic mechanisms. These results suggest persistent bone modeling or remodeling, with osteoblast and osteoclast indices showing a moderate decline with the time in situ in aseptic HO. Future studies should use longitudinal study designs to correlate our findings with clinical outcomes (such as HO growth or recurrence). In addition, the molecular mechanisms of bone cell involvement during HO formation and growth should be further investigated, which may allow specific therapeutic and preventive interventions. CLINICAL RELEVANCE To our knowledge, our study is the first to systematically investigate histomorphometric bone metabolism parameters in patients with HO after THA, providing a clinical reference for evaluating modeling and remodeling activity. Routine clinical, serum, and synovial markers are not useful for inferring local bone metabolism.
Collapse
Affiliation(s)
- Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Assil-Ramin Alimy
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Hubert
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mustafa Citak
- Department of Joint Surgery, Helios ENDO-Klinik, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Timo Beil
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Ohlmeier
- Department of Joint Surgery, Helios ENDO-Klinik, Hamburg, Germany
- Department of Orthopaedic and Trauma Surgery, UKM Marienhospital, Steinfurt, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
El-Mallah C, Ragi MEE, Eid A, Obeid OA. Low-quality protein modulates inflammatory markers and the response to lipopolysaccharide insult: the case of lysine. Br J Nutr 2023; 130:944-957. [PMID: 36597807 PMCID: PMC10442798 DOI: 10.1017/s0007114522004068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
The relationship between non-communicable diseases and eating behaviour has long been attributed to a surplus of food and energy. However, the increase in the prevalence of non-communicable disease and their underlying low-grade inflammatory milieu among people of low socio-economic status has highlighted the existence of a confounding factor. In this work, we aim to study the effect of lysine deficiency on some inflammatory markers in the absence or presence of an inflammatory insult (lipopolysaccharide (LPS)). For this purpose, thirty-two 5-week-old male Sprague Dawley rats were randomly distributed into four groups: (1) control diet, (2) control diet+LPS, (3) lysine-deficient diet and (4) lysine-deficient diet + LPS. Groups were only allowed their experimental diets for 4 weeks, during which LPS (50 µg/kg) or saline injections were administered intraperitoneally three times per week. The study showed that lysine deficiency blunted growth and body compartments development, decreased albumin production and elevated liver C-reactive protein (CRP) expression, independently of IL-6 and IL-1β, the main precursors of CRP. Also, the insufficient levels of lysine in the diet increased hyperactivity and triggered an anxiety-like behaviour, exacerbated with LPS. This work presents evidence that various physiological changes are associated with the absence of a sufficient amount of lysine in the diet and can potentially increase the risk factor for diseases. Thus, the increment in non-communicable disease among the low socio-economic status populations, who heavily rely on cereals as a main source of protein, can be, at least partially, blamed on low lysine availability in diets.
Collapse
Affiliation(s)
- Carla El-Mallah
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Marie-Elizabeth E. Ragi
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Assaad Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Omar A. Obeid
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
17
|
Muniz-Santos R, Lucieri-Costa G, de Almeida MAP, Moraes-de-Souza I, Brito MADSM, Silva AR, Gonçalves-de-Albuquerque CF. Lipid oxidation dysregulation: an emerging player in the pathophysiology of sepsis. Front Immunol 2023; 14:1224335. [PMID: 37600769 PMCID: PMC10435884 DOI: 10.3389/fimmu.2023.1224335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by abnormal host response to infection. Millions of people are affected annually worldwide. Derangement of the inflammatory response is crucial in sepsis pathogenesis. However, metabolic, coagulation, and thermoregulatory alterations also occur in patients with sepsis. Fatty acid mobilization and oxidation changes may assume the role of a protagonist in sepsis pathogenesis. Lipid oxidation and free fatty acids (FFAs) are potentially valuable markers for sepsis diagnosis and prognosis. Herein, we discuss inflammatory and metabolic dysfunction during sepsis, focusing on fatty acid oxidation (FAO) alterations in the liver and muscle (skeletal and cardiac) and their implications in sepsis development.
Collapse
Affiliation(s)
- Renan Muniz-Santos
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giovanna Lucieri-Costa
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Augusto P. de Almeida
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Isabelle Moraes-de-Souza
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adriana Ribeiro Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Koçberber Z, Willemsen N, Bartelt A. The role of proteasome activators PA28αβ and PA200 in brown adipocyte differentiation and function. Front Endocrinol (Lausanne) 2023; 14:1176733. [PMID: 37201100 PMCID: PMC10187037 DOI: 10.3389/fendo.2023.1176733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Brown adipocytes produce heat through non shivering thermogenesis (NST). To adapt to temperature cues, they possess a remarkably dynamic metabolism and undergo substantial cellular remodeling. The proteasome plays a central role in proteostasis and adaptive proteasome activity is required for sustained NST. Proteasome activators (PAs) are a class of proteasome regulators but the role of PAs in brown adipocytes is unknown. Here, we studied the roles of PA28α (encoded by Psme1) and PA200 (encoded by Psme4) in brown adipocyte differentiation and function. Methods We measured gene expression in mouse brown adipose tissue. In cultured brown adipocytes, we silenced Psme1 and/or Psme4 expression through siRNA transfection. We then assessed impact on the ubiquitin proteasome system, brown adipocyte differentiation and function. Results We found that Psme1 and Psme4 are expressed in brown adipocytes in vivo and in vitro. Through silencing of Psme1 and/or Psme4 expression in cultured brown adipocytes, we found that loss of PAs did not impair proteasome assembly or activity, and that PAs were not required for proteostasis in this model. Loss of Psme1 and/or Psme4 did not impair brown adipocyte development or activation, suggesting that PAs are neither required for brown adipogenesis nor NST. Discussion In summary, we found no role for Psme1 and Psme4 in brown adipocyte proteostasis, differentiation, or function. These findings contribute to our basic understanding of proteasome biology and the roles of proteasome activators in brown adipocytes.
Collapse
Affiliation(s)
- Zeynep Koçberber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nienke Willemsen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Ludwig-Maximilians-University Hospital, Munich, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Molecular Metabolism and Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
19
|
Stafeev I, Michurina S, Agareva M, Zubkova E, Sklyanik I, Shestakova E, Gavrilova A, Sineokaya M, Ratner E, Menshikov M, Parfyonova Y, Shestakova M. Visceral mesenchymal stem cells from type 2 diabetes donors activate triglycerides synthesis in healthy adipocytes via metabolites exchange and cytokines secretion. Int J Obes (Lond) 2023:10.1038/s41366-023-01317-1. [PMID: 37100877 DOI: 10.1038/s41366-023-01317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND In recent years, there has been an increase in the prevalence of obesity and type 2 diabetes mellitus (T2DM). Development of visceral instead of subcutaneous adipose tissue is pathogenic and increases the risk of metabolic abnormalities. We hypothesize that visceral adipocytes and stromal cells are able to deteriorate other fat depots metabolism via secretory mechanisms. METHODS We study the regulatory role of visceral adipose-derived stem cells (vADSC) from donors with obesity and T2DM or normal glucose tolerance (NGT) on healthy subcutaneous ADSC (sADSC) in the Transwell system. Lipid droplets formation during adipogenesis was assessed by confocal microscopy. Cell metabolism was evaluated by 14C-glucose incorporation analysis and western blotting. vADSC secretome was assessed by Milliplex assay. RESULTS We showed that both NGT and T2DM vADSC had mesenchymal phenotype, but expression of CD29 was enhanced, whereas expressions of CD90, CD140b and IGF1R were suppressed in both NGT and T2DM vADSC. Co-differentiation with T2DM vADSC increased lipid droplet size and stimulated accumulation of fatty acids in adipocytes from healthy sADSC. In mature adipocytes T2DM vADSC stimulated triglyceride formation, whereas NGT vADSC activated oxidative metabolism. Secretome of NGT vADSC was pro-inflammatory and pro-angiogenic in comparison with T2DM vADSC. CONCLUSIONS The present study has demonstrated the critical role of secretory interactions between visceral and subcutaneous fat depots both in the level of progenitor and mature cells. Mechanisms of these interactions are related to direct exchange of metabolites and cytokines secretion.
Collapse
Affiliation(s)
- Iurii Stafeev
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia.
| | - Svetlana Michurina
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
- Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Margarita Agareva
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
- Institute of Fine Chemical Technologies named after M.V. Lomonosov, 119571, Moscow, Russia
| | - Ekaterina Zubkova
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
| | - Igor Sklyanik
- Endocrinology Research Centre, 117292, Moscow, Russia
| | | | | | | | - Elizaveta Ratner
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
| | - Yelena Parfyonova
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
- Lomonosov Moscow State University, 119991, Moscow, Russia
| | | |
Collapse
|
20
|
Caratti G, Stifel U, Caratti B, Jamil AJM, Chung KJ, Kiehntopf M, Gräler MH, Blüher M, Rauch A, Tuckermann JP. Glucocorticoid activation of anti-inflammatory macrophages protects against insulin resistance. Nat Commun 2023; 14:2271. [PMID: 37080971 PMCID: PMC10119112 DOI: 10.1038/s41467-023-37831-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 04/01/2023] [Indexed: 04/22/2023] Open
Abstract
Insulin resistance (IR) during obesity is linked to adipose tissue macrophage (ATM)-driven inflammation of adipose tissue. Whether anti-inflammatory glucocorticoids (GCs) at physiological levels modulate IR is unclear. Here, we report that deletion of the GC receptor (GR) in myeloid cells, including macrophages in mice, aggravates obesity-related IR by enhancing adipose tissue inflammation due to decreased anti-inflammatory ATM leading to exaggerated adipose tissue lipolysis and severe hepatic steatosis. In contrast, GR deletion in Kupffer cells alone does not alter IR. Co-culture experiments show that the absence of GR in macrophages directly causes reduced phospho-AKT and glucose uptake in adipocytes, suggesting an important function of GR in ATM. GR-deficient macrophages are refractory to alternative ATM-inducing IL-4 signaling, due to reduced STAT6 chromatin loading and diminished anti-inflammatory enhancer activation. We demonstrate that GR has an important function in macrophages during obesity by limiting adipose tissue inflammation and lipolysis to promote insulin sensitivity.
Collapse
Affiliation(s)
- Giorgio Caratti
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX37LE, UK
| | - Ulrich Stifel
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Bozhena Caratti
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Ali J M Jamil
- Molecular Endocrinology & Stem Cell Research Unit, Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Michael Kiehntopf
- SG Sepsis Research Clinic for Anesthesiology and Intensive Care, Jena University Hospital, Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Matthias Blüher
- Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Alexander Rauch
- Molecular Endocrinology & Stem Cell Research Unit, Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Steno Diabetes Center Odense, Odense, Denmark.
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany.
| |
Collapse
|
21
|
Kilic F. The nature of the binding between insulin receptor and serotonin transporter in placenta (review). Placenta 2023; 133:40-44. [PMID: 36796293 DOI: 10.1016/j.placenta.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
The interplay between the insulin receptor (IR) and serotonin transporter (SERT) allows reciprocal regulation of each other's physiological roles to ensure appropriate responses to specific environmental and developmental signals. The studies reported herein provided substantial evidence of how insulin signaling influences the modification and trafficking of SERT to the plasma membrane via enabling its association with specific endoplasmic reticulum (ER) proteins. While insulin signaling is important for the modifications of SERT proteins, the fact that phosphorylation of IR was significantly down-regulated in the placenta of SERT knock out (KO) mice suggests that SERT also regulates IR. Further suggestive of SERT functional regulation of IR, SERT-KO mice developed obesity and glucose intolerance with symptoms similar to those of type 2 diabetes. The picture emerging from those studies proposes that the interplay between IR and SERT maintains conditions supportive of IR phosphorylation and regulates insulin signaling in placenta which ultimately enables the trafficking of SERT to the plasma membrane. IR-SERT association thus appears to play a protective metabolic role in placenta and is impaired under diabetic conditions. This review focuses on recent findings describing the functional and physical associations between IR and SERT in placental cells, and the dysregulation of this process in diabetes.
Collapse
Affiliation(s)
- Fusun Kilic
- Biology Department, Merced College, Merced, CA, USA.
| |
Collapse
|
22
|
Gulzar F, Ahmad S, Singh S, Kumar P, Sharma A, Tamrakar AK. NOD1 activation in 3T3-L1 adipocytes confers lipid accumulation in HepG2 cells. Life Sci 2023; 316:121400. [PMID: 36657640 DOI: 10.1016/j.lfs.2023.121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
AIMS Activation of specific innate immune receptors has been characterized to modulate nutrient metabolism in individual metabolic tissue directly or indirectly via secretory molecules. Activation of the nucleotide-binding oligomerization domain-containing protein 1 (NOD1) in adipocytes has been reported to induce lipolysis linked with insulin resistance and inflammatory response. These cues are positioned to modulate metabolic action in distal organs through paracrine/endocrine signaling. Here, we assessed the role of NOD1-mediated lipolysis and inflammatory response in adipocytes to affect lipid metabolism in hepatocytes. MAIN METHODS Human hepatoma cells (HepG2) were exposed to conditioned medium obtained from 3 T3-L1 adipocytes pretreated with NOD1 ligand (iE-DAP) and the effects on lipid accumulation, inflammation and insulin response were assessed. Activation of mechanisms leading to hepatic lipid accumulation was investigated by gene expression analysis. KEY FINDINGS The conditioned medium from NOD1-activated 3 T3-L1 adipocytes (CM-DAP) induced lipid accumulation in HepG2 cells, driven by both lipolysis and inflammatory responses. The CM-DAP-induced lipid accumulation was independent to de novo lipogenesis and resulted from the enhanced transport of fatty acids inside and consequent increase in rate of triglycerides synthesis in hepatocytes. Moreover, CM-DAP-induced lipid accumulation instigated the expression of the markers of fatty acid oxidation and VLDL assembly for the export of triglycerides from hepatocyte. Furthermore, CM-DAP-induced lipid accumulation was associated with induction of inflammatory response and impairment of insulin signaling in HepG2 cells. SIGNIFICANCE Beyond showing liver-specific mechanisms to adipocytes-derived factors, our findings support the involvement of adipose tissue as a mediator in NOD1-mediated biological responses to modulate hepatic metabolism.
Collapse
Affiliation(s)
- Farah Gulzar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shadab Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Sushmita Singh
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Pawan Kumar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Aditya Sharma
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
23
|
Kolb H. Obese visceral fat tissue inflammation: from protective to detrimental? BMC Med 2022; 20:494. [PMID: 36575472 PMCID: PMC9795790 DOI: 10.1186/s12916-022-02672-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/21/2022] [Indexed: 12/28/2022] Open
Abstract
Obesity usually is accompanied by inflammation of fat tissue, with a prominent role of visceral fat. Chronic inflammation in obese fat tissue is of a lower grade than acute immune activation for clearing the tissue from an infectious agent. It is the loss of adipocyte metabolic homeostasis that causes activation of resident immune cells for supporting tissue functions and regaining homeostasis. Initially, the excess influx of lipids and glucose in the context of overnutrition is met by adipocyte growth and proliferation. Eventual lipid overload of hypertrophic adipocytes leads to endoplasmic reticulum stress and the secretion of a variety of signals causing increased sympathetic tone, lipolysis by adipocytes, lipid uptake by macrophages, matrix remodeling, angiogenesis, and immune cell activation. Pro-inflammatory signaling of adipocytes causes the resident immune system to release increased amounts of pro-inflammatory and other mediators resulting in enhanced tissue-protective responses. With chronic overnutrition, these protective actions are insufficient, and death of adipocytes as well as senescence of several tissue cell types is seen. This structural damage causes the expression or release of immunostimulatory cell components resulting in influx and activation of monocytes and many other immune cell types, with a contribution of stromal cells. Matrix remodeling and angiogenesis is further intensified as well as possibly detrimental fibrosis. The accumulation of senescent cells also may be detrimental via eventual spread of senescence state from affected to neighboring cells by the release of microRNA-containing vesicles. Obese visceral fat inflammation can be viewed as an initially protective response in order to cope with excess ambient nutrients and restore tissue homeostasis but may contribute to tissue damage at a later stage.
Collapse
Affiliation(s)
- Hubert Kolb
- Faculty of Medicine, University of Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany. .,West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Hohensandweg 37, 40591, Düsseldorf, Germany.
| |
Collapse
|
24
|
Ramms B, Pollow DP, Zhu H, Nora C, Harrington AR, Omar I, Gordts PL, Wortham M, Sander M. Systemic LSD1 Inhibition Prevents Aberrant Remodeling of Metabolism in Obesity. Diabetes 2022; 71:2513-2529. [PMID: 36162056 PMCID: PMC9750949 DOI: 10.2337/db21-1131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/06/2022] [Indexed: 01/11/2023]
Abstract
The transition from lean to obese states involves systemic metabolic remodeling that impacts insulin sensitivity, lipid partitioning, inflammation, and glycemic control. Here, we have taken a pharmacological approach to test the role of a nutrient-regulated chromatin modifier, lysine-specific demethylase (LSD1), in obesity-associated metabolic reprogramming. We show that systemic administration of an LSD1 inhibitor (GSK-LSD1) reduces food intake and body weight, ameliorates nonalcoholic fatty liver disease (NAFLD), and improves insulin sensitivity and glycemic control in mouse models of obesity. GSK-LSD1 has little effect on systemic metabolism of lean mice, suggesting that LSD1 has a context-dependent role in promoting maladaptive changes in obesity. In analysis of insulin target tissues we identified white adipose tissue as the major site of insulin sensitization by GSK-LSD1, where it reduces adipocyte inflammation and lipolysis. We demonstrate that GSK-LSD1 reverses NAFLD in a non-hepatocyte-autonomous manner, suggesting an indirect mechanism potentially via inhibition of adipocyte lipolysis and subsequent effects on lipid partitioning. Pair-feeding experiments further revealed that effects of GSK-LSD1 on hyperglycemia and NAFLD are not a consequence of reduced food intake and weight loss. These findings suggest that targeting LSD1 could be a strategy for treatment of obesity and its associated complications including type 2 diabetes and NAFLD.
Collapse
Affiliation(s)
- Bastian Ramms
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| | - Dennis P. Pollow
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| | - Han Zhu
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| | - Chelsea Nora
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Austin R. Harrington
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| | - Ibrahim Omar
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| | - Philip L.S.M. Gordts
- Department of Medicine, University of California, San Diego, La Jolla, CA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA
| | - Matthew Wortham
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| | - Maike Sander
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| |
Collapse
|
25
|
Resistance Training Modulates Reticulum Endoplasmic Stress, Independent of Oxidative and Inflammatory Responses, in Elderly People. Antioxidants (Basel) 2022; 11:antiox11112242. [DOI: 10.3390/antiox11112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Aging is related to changes in the redox status, low-grade inflammation, and decreased endoplasmic reticulum unfolded protein response (UPR). Exercise has been shown to regulate the inflammatory response, balance redox homeostasis, and ameliorate the UPR. This work aimed to investigate the effects of resistance training on changes in the UPR, oxidative status, and inflammatory responses in peripheral blood mononuclear cells of elderly subjects. Thirty elderly subjects volunteered to participate in an 8-week resistance training program, and 11 youth subjects were included for basal assessments. Klotho, heat shock protein 60 (HSP60), oxidative marker expression (catalase, glutathione, lipid peroxidation, nuclear factor erythroid 2-related factor 2, protein carbonyls, reactive oxygen species, and superoxide dismutase 1 and 2), the IRE1 arm of UPR, and TLR4/TRAF6/pIRAK1 pathway activation were evaluated before and following training. No changes in the HSP60 and Klotho protein content, oxidative status markers, and TLR4/TRAF6/pIRAK1 pathway activation were found with exercise. However, an attenuation of the reduced pIRE1/IRE1 ratio was observed following training. Systems biology analysis showed that a low number of proteins (RPS27A, SYVN1, HSPA5, and XBP1) are associated with IRE1, where XBP1 and RPS27A are essential nodes according to the centrality analysis. Additionally, a gene ontology analysis confirms that endoplasmic reticulum stress is a key mechanism modulated by IRE1. These findings might partially support the modulatory effect of resistance training on the endoplasmic reticulum in the elderly.
Collapse
|
26
|
Lpcat3 deficiency promotes palmitic acid-induced 3T3-L1 mature adipocyte inflammation through enhanced ROS generation. Acta Biochim Biophys Sin (Shanghai) 2022; 55:117-130. [PMID: 36331295 PMCID: PMC10157521 DOI: 10.3724/abbs.2022161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylcholines (PCs) are major phospholipids in the mammalian cell membrane. Structural remodeling of PCs is associated with many biological processes. Lysophosphatidylcholine acyltransferase 3 (Lpcat3), which catalyzes the incorporation of polyunsaturated fatty acyl chains into the sn-2 site of PCs, plays an important role in maintaining plasma membrane fluidity. Adipose tissue is one of the main distribution organs of Lpcat3, while the relationship between Lpcat3 and adipose tissue dysfunction during overexpansion remains unknown. In this study, we reveal that both polyunsaturated PC content and Lpcat3 expression are increased in abdominal adipose tissues of high-fat diet-fed mice when compared with chow-diet-fed mice, indicating that Lpcat3 is involved in adipose tissue overexpansion and dysfunction. Our experiments in 3T3-L1 adipocytes show that inhibition of Lpcat3 does not change triglyceride accumulation but increases palmitic acid-induced inflammation and lipolysis. Conversely, Lpcat3 overexpression exhibits anti-inflammatory and anti-lipolytic effects. Furthermore, mechanistic studies demonstrate that Lpcat3 deficiency promotes reactive oxygen species (ROS) generation by increasing NOX enzyme activity by facilitating the translocation of NOX4 to lipid rafts, thereby aggregating 3T3-L1 adipocyte inflammation induced by palmitic acid. Moreover, overexpression of Lpcat3 exhibits the opposite effects. These findings suggest that Lpcat3 protects adipocytes from inflammation during adipose tissue overexpansion by reducing ROS generation. In conclusion, our study demonstrates that Lpcat3 deficiency promotes palmitic acid-induced inflammation in 3T3-L1 adipocytes by enhancing ROS generation.
Collapse
|
27
|
Chen Y, Wu Z, Huang S, Wang X, He S, Liu L, Hu Y, Chen L, Chen P, Liu S, He S, Shan B, Zheng L, Duan SZ, Song Z, Jiang L, Wang QA, Gan Z, Song BL, Liu J, Rui L, Shao M, Liu Y. Adipocyte IRE1α promotes PGC1α mRNA decay and restrains adaptive thermogenesis. Nat Metab 2022; 4:1166-1184. [PMID: 36123394 DOI: 10.1038/s42255-022-00631-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 08/01/2022] [Indexed: 12/23/2022]
Abstract
Adipose tissue undergoes thermogenic remodeling in response to thermal stress and metabolic cues, playing a crucial role in regulating energy expenditure and metabolic homeostasis. Endoplasmic reticulum (ER) stress is associated with adipose dysfunction in obesity and metabolic disease. It remains unclear, however, if ER stress-signaling in adipocytes mechanistically mediates dysregulation of thermogenic fat. Here we show that inositol-requiring enzyme 1α (IRE1α), a key ER stress sensor and signal transducer, acts in both white and beige adipocytes to impede beige fat activation. Ablation of adipocyte IRE1α promotes browning/beiging of subcutaneous white adipose tissue following cold exposure or β3-adrenergic stimulation. Loss of IRE1α alleviates diet-induced obesity and augments the anti-obesity effect of pharmacologic β3-adrenergic stimulation. Notably, IRE1α suppresses stimulated lipolysis and degrades Ppargc1a messenger RNA through its RNase activity to downregulate the thermogenic gene program. Hence, blocking IRE1α bears therapeutic potential in unlocking adipocytes' thermogenic capacity to combat obesity and metabolic disorders.
Collapse
Affiliation(s)
- Yong Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Zhuyin Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shijia Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiaoxia Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sijia He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Lin Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yurong Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Li Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Peng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Songzi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shengqi He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Bo Shan
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhiyin Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Lei Jiang
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Department of Molecular & Cellular Endocrinology, Diabetes & Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Qiong A Wang
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Department of Molecular & Cellular Endocrinology, Diabetes & Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jianmiao Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Liangyou Rui
- Department of Molecular and Integrative Physiology, the University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mengle Shao
- The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; The Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
28
|
Du X, Liu M, Tai W, Yu H, Hao X, Loor JJ, Jiang Q, Fang Z, Gao X, Fan M, Gao W, Lei L, Song Y, Wang Z, Zhang C, Liu G, Li X. Tumor necrosis factor-α promotes lipolysis and reduces insulin sensitivity by activating nuclear factor kappa B and c-Jun N-terminal kinase in primary bovine adipocytes. J Dairy Sci 2022; 105:8426-8438. [PMID: 35965124 DOI: 10.3168/jds.2022-22009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022]
Abstract
Sustained lipolysis and insulin resistance increase the risk of metabolic dysfunction in dairy cows during the transition period. Proinflammatory cytokines are key regulators of adipose tissue metabolism in nonruminants, but biological functions of these molecules in ruminants are not well known. Thus, the objective of this study was to investigate whether tumor necrosis factor-α (TNF-α) could affect insulin sensitivity and lipolysis in bovine adipocytes as well as the underlying mechanisms. Bovine adipocytes (obtained from the omental and mesenteric adipose depots) isolated from 5 Holstein female calves (1 d old) with similar body weight (median: 36.9 kg, range: 35.5-41.2 kg) were differentiated and used for (1) treatment with different concentrations of TNF-α (0, 0.1, 1, or 10 ng/mL) for 12 h; (2) pretreatment with 10 μM lipolytic agonist isoproterenol (ISO) for 3 h, followed by treatment with or without 10 ng/mL TNF-α for 12 h; and (3) pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 (20 μM for 2 h) and nuclear factor kappa B (NF-κB) inhibitor BAY 11-7082 (10 μM for 1 h) followed by treatment with or without 10 ng/mL TNF-α for 12 h. The TNF-α increased glycerol content in supernatant, decreased triglyceride content and insulin-stimulated phosphorylation of protein kinase B suggesting activation of lipolysis and impairment of insulin sensitivity. The TNF-α reduced cell viability, upregulated mRNA abundance of Caspase 3 (CASP3), an apoptosis marker, and increased activity of Caspase 3. In addition, increased phosphorylation of NF-κB and JNK, upregulation of mRNA abundance of interleukin-6 (IL-6), TNFA, and suppressor of cytokine signaling 3 (SOCS3) suggested that TNF-α activated NF-κB and JNK signaling pathways. Furthermore, ISO plus TNF-α-activated NF-κB and JNK signaling pathway to a greater extent than TNF-α alone. Combining TNF-α and ISO aggravated TNF-α-induced apoptosis, insulin insensitivity and lipolysis. In the absence of TNF-α, inhibition of NF-κB and JNK did not alter glycerol content in supernatant, triglyceride content or insulin-stimulated phosphorylation of protein kinase B. In the presence of TNF-α, inhibition of NF-κB and JNK alleviated TNF-α-induced apoptosis, insulin insensitivity and lipolysis. Overall, TNF-α impairs insulin sensitivity and induces lipolysis and apoptosis in bovine adipocytes, which may be partly mediated by activation of NF-κB and JNK. Thus, the data suggested that NF-κB and JNK are potential therapeutic targets for alleviating lipolysis dysregulation and insulin resistance in adipocytes.
Collapse
Affiliation(s)
- Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Wenjun Tai
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Hao Yu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xue Hao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Zhiyuan Fang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xinxing Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Minghe Fan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Wenwen Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Lin Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Zhe Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
29
|
Hertzel AV, Yong J, Chen X, Bernlohr DA. Immune Modulation of Adipocyte Mitochondrial Metabolism. Endocrinology 2022; 163:6618136. [PMID: 35752995 PMCID: PMC9653008 DOI: 10.1210/endocr/bqac094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/19/2022]
Abstract
Immune cells infiltrate adipose tissue as a function of age, sex, and diet, leading to a variety of regulatory processes linked to metabolic disease and dysfunction. Cytokines and chemokines produced by resident macrophages, B cells, T cells and eosinophils play major role(s) in fat cell mitochondrial functions modulating pyruvate oxidation, electron transport and oxidative stress, branched chain amino acid metabolism, fatty acid oxidation, and apoptosis. Indeed, cytokine-dependent downregulation of numerous genes affecting mitochondrial metabolism is strongly linked to the development of the metabolic syndrome, whereas the potentiation of mitochondrial metabolism represents a counterregulatory process improving metabolic outcomes. In contrast, inflammatory cytokines activate mitochondrially linked cell death pathways such as apoptosis, pyroptosis, necroptosis, and ferroptosis. As such, the adipocyte mitochondrion represents a major intersection point for immunometabolic regulation of central metabolism.
Collapse
Affiliation(s)
- Ann V Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaoli Chen
- Department of Food Science and Nutrition, The University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Bernlohr
- Correspondence: David A. Bernlohr, PhD, Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
30
|
Gentile A, Magnacca N, de Matteis R, Moreno M, Cioffi F, Giacco A, Lanni A, de Lange P, Senese R, Goglia F, Silvestri E, Lombardi A. Ablation of uncoupling protein 3 affects interrelated factors leading to lipolysis and insulin resistance in visceral white adipose tissue. FASEB J 2022; 36:e22325. [PMID: 35452152 DOI: 10.1096/fj.202101816rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/11/2022]
Abstract
The physiological role played by uncoupling protein 3 (UCP3) in white adipose tissue (WAT) has not been elucidated so far. In the present study, we evaluated the impact of the absence of the whole body UCP3 on WAT physiology in terms of ability to store triglycerides, oxidative capacity, response to insulin, inflammation, and adipokine production. Wild type (WT) and UCP3 Knockout (KO) mice housed at thermoneutrality (30°C) have been used as the animal model. Visceral gonadic WAT (gWAT) from KO mice showed an impaired capacity to store triglycerides (TG) as indicated by its lowered weight, reduced adipocyte diameter, and higher glycerol release (index of lipolysis). The absence of UCP3 reduces the maximal oxidative capacity of gWAT, increases mitochondrial free radicals, and activates ER stress. These processes are associated with increased levels of monocyte chemoattractant protein-1 and TNF-α. The response of gWAT to in vivo insulin administration, revealed by (ser473)-AKT phosphorylation, was blunted in KO mice, with a putative role played by eif2a, JNK, and inflammation. Variations in adipokine levels in the absence of UCP3 were observed, including reduced adiponectin levels both in gWAT and serum. As a whole, these data indicate an important role of UCP3 in regulating the metabolic functionality of gWAT, with its absence leading to metabolic derangement. The obtained results help to clarify some aspects of the association between metabolic disorders and low UCP3 levels.
Collapse
Affiliation(s)
| | - Nunzia Magnacca
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rita de Matteis
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Maria Moreno
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Federica Cioffi
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Antonia Giacco
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Fernando Goglia
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Elena Silvestri
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
31
|
Xie H, Heier C, Meng X, Bakiri L, Pototschnig I, Tang Z, Schauer S, Baumgartner VJ, Grabner GF, Schabbauer G, Wolinski H, Robertson GR, Hoefler G, Zeng W, Wagner EF, Schweiger M, Zechner R. An immune-sympathetic neuron communication axis guides adipose tissue browning in cancer-associated cachexia. Proc Natl Acad Sci U S A 2022; 119:e2112840119. [PMID: 35210363 PMCID: PMC8892347 DOI: 10.1073/pnas.2112840119] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer-associated cachexia (CAC) is a hypermetabolic syndrome characterized by unintended weight loss due to the atrophy of adipose tissue and skeletal muscle. A phenotypic switch from white to beige adipocytes, a phenomenon called browning, accelerates CAC by increasing the dissipation of energy as heat. Addressing the mechanisms of white adipose tissue (WAT) browning in CAC, we now show that cachexigenic tumors activate type 2 immunity in cachectic WAT, generating a neuroprotective environment that increases peripheral sympathetic activity. Increased sympathetic activation, in turn, results in increased neuronal catecholamine synthesis and secretion, β-adrenergic activation of adipocytes, and induction of WAT browning. Two genetic mouse models validated this progression of events. 1) Interleukin-4 receptor deficiency impeded the alternative activation of macrophages, reduced sympathetic activity, and restrained WAT browning, and 2) reduced catecholamine synthesis in peripheral dopamine β-hydroxylase (DBH)-deficient mice prevented cancer-induced WAT browning and adipose atrophy. Targeting the intraadipose macrophage-sympathetic neuron cross-talk represents a promising therapeutic approach to ameliorate cachexia in cancer patients.
Collapse
Affiliation(s)
- Hao Xie
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Christoph Heier
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Xia Meng
- School of Medicine, Tsinghua University, 100190 Beijing, China
| | - Latifa Bakiri
- Genes and Disease Group, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Zhiyuan Tang
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- Department of Pharmacy, Affiliated Hospital of Nantong University, 226001 Nantong, China
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University Graz, 8010 Graz, Austria
| | | | - Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Gernot Schabbauer
- Institute of Physiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University Graz, 8010 Graz, Austria
| | - Wenwen Zeng
- School of Medicine, Tsinghua University, 100190 Beijing, China
| | - Erwin F Wagner
- Genes and Disease Group, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Genes and Disease Group, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria;
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria;
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
32
|
Маркова ТН, Мищенко НК, Петина ДВ. [Adipocytokines: modern definition, classification and physiological role]. PROBLEMY ENDOKRINOLOGII 2021; 68:73-80. [PMID: 35262298 PMCID: PMC9761877 DOI: 10.14341/probl12805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Adipose tissue is an endocrine organ which produces a large number of secretory bioactive substances also known as adipocytokines affecting directly insulin resistance (IR), glucose and lipid metabolism, angiogenesis and inflammation. The studies show a close connection between the imbalance of adipocytokines formed as a result of excessive deposit of adipose tissue in the course of the development of type 2 diabetes mellitus and cardiovascular diseases. In the present review, we summarize current data on the effect of the adipocytokines on the liver, skeletal muscles, adipose tissue, endothelial cells and inflammatory processes, as well as attempt to define the term «adipocytokines» and classify adipocytokines according to their influence on metabolic processes and pro-inflammatory status. Some of adipocytokines (adiponectin, omentin, leptin, resistin, tumor necrosis factor-α and interleukin-6) are divided into two groups: adipocytokines reducing IR, and adipocytokines increasing IR.
Collapse
Affiliation(s)
- Т. Н. Маркова
- Городская клиническая больница №52 Департамента здравоохранения города Москвы;
Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - Н. К. Мищенко
- Московский государственный медико-стоматологический университет им. А.И. Евдокимова
| | - Д. В. Петина
- Городская клиническая больница №52 Департамента здравоохранения города Москвы
| |
Collapse
|
33
|
Duggan BM, Tamrakar AK, Barra NG, Anhê FF, Paniccia G, Wallace JG, Stacey HD, Surette MG, Miller MS, Sloboda DM, Schertzer JD. Gut microbiota-based vaccination engages innate immunity to improve blood glucose control in obese mice. Mol Metab 2021; 55:101404. [PMID: 34839023 PMCID: PMC8693341 DOI: 10.1016/j.molmet.2021.101404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Obesity and diabetes increase circulating levels of microbial components derived from the gut microbiota. Individual bacterial factors (i.e., postbiotics) can have opposing effects on blood glucose. Methods We tested the net effect of gut bacterial extracts on blood glucose in mice using a microbiota-based vaccination strategy. Results Male and female mice had improved glucose and insulin tolerance five weeks after a single subcutaneous injection of a specific dose of a bacterial extract obtained from the luminal contents of the upper small intestine (SI), lower SI, or cecum. Injection of mice with intestinal extracts from germ-free mice revealed that bacteria were required for a microbiota-based vaccination to improve blood glucose control. Vaccination of Nod1−/−, Nod2−/−, and Ripk2−/− mice showed that each of these innate immune proteins was required for bacterial extract injection to improve blood glucose control. A microbiota-based vaccination promoted an immunoglobulin-G (IgG) response directed against bacterial extract antigens, where subcutaneous injection of mice with the luminal contents of the lower SI elicited a bacterial extract-specific IgG response that is compartmentalized to the lower SI of vaccinated mice. A microbiota-based vaccination was associated with an altered microbiota composition in the lower SI and colon of mice. Lean mice only required a single injection of small intestinal-derived bacterial extract, but high fat diet (HFD)-fed, obese mice required prime-boost bacterial extract injections for improvements in blood glucose control. Conclusions Subversion of the gut barrier by vaccination with a microbiota-based extract engages innate immunity to promote long-lasting improvements in blood glucose control in a dose-dependent manner. Subcutaneous injection of gut bacterial extracts improved blood glucose control in mice. Microbiota-based vaccination engaged NOD1-NOD2-RIPK2 to alter blood glucose. Microbiota-based vaccination promoted a proximal gut IgG response. Microbiota-based vaccination altered the composition of the gut microbiome. Obese mice required prime-boost injections to improve blood glucose control.
Collapse
Affiliation(s)
- Brittany M Duggan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada
| | - Akhilesh K Tamrakar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada
| | - Fernando F Anhê
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada
| | - Gabriella Paniccia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Jessica G Wallace
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Hannah D Stacey
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada; Department of Medicine, McMaster University, Hamilton, Canada
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Department of Obstetrics and Gynecology, McMaster University, Hamilton, Canada; Department of Pediatrics, McMaster University, Hamilton, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada.
| |
Collapse
|
34
|
Collagen XV Promotes ER Stress-Induced Inflammation through Activating Integrin β1/FAK Signaling Pathway and M1 Macrophage Polarization in Adipose Tissue. Int J Mol Sci 2021; 22:ijms22189997. [PMID: 34576160 PMCID: PMC8465275 DOI: 10.3390/ijms22189997] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Collagen XV (Col XV), a basement membrane (BM) component, is highly expressed in adipose tissue, and studies have found that Col XV is related to extracellular matrix (ECM) remodeling involving in adipose tissue fibrosis and inflammation. Furthermore, the ECM is essential for maintaining normal development and tissue function. In this study, we found that Col XV is related to the endoplasmic reticulum stress (ERS) and inflammation of adipose tissue. Moreover, we found that overexpression of Col XV in mice could cause macrophages to infiltrate white adipose tissue (iWAT). At the same time, the expression of the ERS sensor IRE1α (Inositol-Requiring Enzyme-1α) was significantly up-regulated, which intensified the inflammation of adipose tissue and the polarization of M1 macrophages after the overexpression of Col XV in mice. In addition, after overexpression of Col XV, the intracellular Ca2+ concentration was significantly increased. Using focal adhesion kinase (FAK) inhibitor PF573228, we found that PF-573228 inhibited the phosphorylation of FAK and reversed the upward trend of Col XV-induced protein expression levels of IRE1α, C/EBP-homologous protein (CHOP), and 78 kDa glucose-regulated protein (GRP78). After treatment with IRE1α inhibitor STF-083010, the results showed that the expression of adipocyte inflammation-related genes interleukin 6 (IL-6) and tumor necrosis factor α (TNFα) significantly were decreased. Our results demonstrate that Col XV induces ER-stress in adipocytes by activating the Integrinβ1/FAK pathway and disrupting the intracellular Ca2+ balance. At the same time, Col XV regulates the inflammation induced by ER stress in adipocytes by promoting IRE1α/XBP1 (X-Box binding protein 1) signaling. Our study provides new ideas for solving the problems of adipose tissue metabolism disorders caused by abnormal accumulation of ECM.
Collapse
|