1
|
Dev I, Mehmood S, Pleshko N, Obeid I, Querido W. Assessment of submicron bone tissue composition in plastic-embedded samples using optical photothermal infrared (O-PTIR) spectral imaging and machine learning. J Struct Biol X 2024; 10:100111. [PMID: 39507318 PMCID: PMC11539169 DOI: 10.1016/j.yjsbx.2024.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Understanding the composition of bone tissue at the submicron level is crucial to elucidate factors contributing to bone disease and fragility. Here, we introduce a novel approach utilizing optical photothermal infrared (O-PTIR) spectroscopy and imaging coupled with machine learning analysis to assess bone tissue composition at 500 nm spatial resolution. This approach was used to evaluate thick bone samples embedded in typical poly(methyl methacrylate) (PMMA) blocks, eliminating the need for cumbersome thin sectioning. We demonstrate the utility of O-PTIR imaging to assess the distribution of bone tissue mineral and protein, as well as to explore the structure-composition relationship surrounding microporosity at a spatial resolution unattainable by conventional infrared imaging modalities. Using bone samples from wildtype (WT) mice and from a mouse model of osteogenesis imperfecta (OIM), we further showcase the application of O-PTIR spectroscopy to quantify mineral content, crystallinity, and carbonate content in spatially defined regions across the cortical bone. Notably, we show that machine learning analysis using support vector machine (SVM) was successful in identifying bone phenotypes (typical in WT, fragile in OIM) based on input of spectral data, with over 86 % of samples correctly identified when using the collagen spectral range. Our findings highlight the potential of O-PTIR spectroscopy and imaging as valuable tools for exploring bone submicron composition.
Collapse
Affiliation(s)
- Isha Dev
- Department of Bioengineering, Temple University, Philadelphia, PA, 19122, USA
| | - Sofia Mehmood
- Department of Bioengineering, Temple University, Philadelphia, PA, 19122, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA, 19122, USA
| | - Iyad Obeid
- Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA 19122, USA
| | - William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
2
|
Gupta A, Saha S, Das A, Roy Chowdhury A. Evaluating the influence on osteocyte mechanobiology within the lacunar-canalicular system for varying lacunar equancy and perilacunar elasticity: A multiscale fluid-structure interaction analysis. J Mech Behav Biomed Mater 2024; 160:106767. [PMID: 39393133 DOI: 10.1016/j.jmbbm.2024.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
The lacunar morphology and perilacunar tissue properties of osteocytes in bone can vary under different physiological and pathological conditions. How these alterations collectively change the overall micromechanics of osteocytes in the lacunar-canalicular system (LCS) of an osteon still requires special focus. Therefore, a Haversian canal and LCS-based osteon model was established to evaluate the changes in the hydrodynamic environment around osteocytes under physiological loading using fluid-structure interaction analysis, followed by a sub-modelled finite element analysis to assess the mechanical responses of osteocytes and their components. Osteocytes were modelled with detailed configurations, including cytoplasm, nucleus, and cytoskeleton, and parametric variations in lacunar equancy (L.Eq) and perilacunar elasticity (Pl.E) were considered within the osteon model. The study aimed to conduct a comparative study among osteon models with varying L. Eq and Pl. E to check the resulting differences in osteocyte mechanobiology. The results demonstrated that the average mechanical stimulation of each subcellular component of osteocytes increased with decreases in L. Eq and Pl. E, reflecting conditions typically seen in young, healthy bone as per previous literature. However, hydrodynamic responses, such as fluid flow and fluid shear stress on osteocytes, varied proportionally with the elasticity difference between the bone matrix and the perilacunar region during Pl. E variation. Additionally, the findings revealed that a minimal percentage of energy was used to transmit mechanical responses through microtubules from the cell membrane to the nucleus, and this energy percentage increased with higher L. Eq. The outcomes of the study could help to quantify how the osteocyte microenvironment and its mechanosensitivity within cortical bone changes with L. Eq and Pl. E alterations in different bone conditions, from young to aged and healthy to diseased.
Collapse
Affiliation(s)
- Abhisek Gupta
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Subrata Saha
- Department of Restorative Dentistry, University of Washington, Seattle, WA, USA
| | - Apurba Das
- Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Amit Roy Chowdhury
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India.
| |
Collapse
|
3
|
Vahidi G, Boone C, Hoffman F, Heveran C. Aging decreases osteocyte peri-lacunar-canalicular system turnover in female C57BL/6JN mice. Bone 2024; 186:117163. [PMID: 38857854 PMCID: PMC11227388 DOI: 10.1016/j.bone.2024.117163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Osteocytes engage in bone resorption and mineralization surrounding their expansive lacunar-canalicular system (LCS) through peri-LCS turnover. However, fundamental questions persist about where, when, and how often osteocytes engage in peri-LCS turnover and how these processes change with aging. Furthermore, whether peri-LCS turnover is associated with natural variation in cortical tissue strain remains unexplored. To address these questions, we utilized confocal scanning microscopy, immunohistochemistry, and scanning electron microscopy to characterize osteocyte peri-LCS turnover in the cortical (mid-diaphysis) and cancellous (metaphysis) regions of femurs from young adult (5 mo) and early-old-age (22 mo) female C57BL/6JN mice. LCS bone mineralization was measured by the presence of perilacunar fluorochrome labels. LCS bone resorption was measured by immunohistochemical marker of bone resorption. The dynamics of peri-LCS turnover were estimated from serial fluorochrome labeling, where each mouse was administered two labels between 2 and 16 days before euthanasia. Osteocyte participation in mineralizing their surroundings is highly abundant in both cortical and cancellous bone of young adult mice but significantly decreases with aging. LCS bone resorption also decreases with aging. Aging has a greater impact on peri-LCS turnover dynamics in cancellous bone than in cortical bone. Lacunae with recent peri-LCS turnover are larger in both age groups. While peri-LCS turnover is associated with variation in tissue strain between cortical quadrants and intracortical location for 22 mo mice, these associations were not seen for 5 mo mice. The impact of aging on decreasing peri-LCS turnover may have significant implications for bone quality and mechanosensation.
Collapse
Affiliation(s)
- Ghazal Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Connor Boone
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Fawn Hoffman
- Department of Biomedical Sciences, College of Idaho, Caldwell, ID, USA
| | - Chelsea Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
4
|
Jiang J, Xu D, Ji Z, Wang F, Jia R, Wang J, Hong H, Zhang H, Li J. Application of a combined cancellous lag screw enhances the stability of locking plate fixation of osteoporotic lateral tibial plateau fracture by providing interfragmentary compression force. J Orthop Surg Res 2024; 19:139. [PMID: 38351078 PMCID: PMC10865576 DOI: 10.1186/s13018-024-04564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Insufficient interfragmentary compression force (IFCF) frequently leads to unstable fixation of osteoporotic lateral tibial plateau fractures (OLTPFs). A combined cancellous lag screw (CCLS) enhances IFCF; however, its effect on OLTPF fixation stability remains unclear. Therefore, we investigated the effect of CCLS on OLTPF stability using locking plate fixation (LPF). MATERIALS AND METHODS Twelve synthetic osteoporotic tibial bones were used to simulate OLTPFs, which were fixed using LPF, LPF-AO cancellous lag screws (LPF-AOCLS), and LPF-CCLS. Subsequently, 10,000 cyclic loadings from 30 to 400 N were performed. The initial axial stiffness (IAS), maximal axial micromotion of the lateral fragment (MAM-LF) measured every 1000 cycles, and failure load after 10,000 cycles were tested. The same three fixations for OLTPF were simulated using finite element analysis (FEA). IFCFs of 0, 225, and 300 N were applied to the LPF, LPF-AOCLS, and LPF-CCLS, respectively, with a 1000-N axial compressive force. The MAM-LF, peak von Mises stress (VMS), peak equivalent elastic strain of the lateral fragment (EES-LF), and nodes of EES-LF > 2% (considered bone destruction) were calculated. RESULTS Biomechanical tests revealed the LPF-AOCLS and LPF-CCLS groups to be superior to the LPF group in terms of the IAS, MAM-LF, and failure load (all p < 0.05). FEA revealed that the MAM-LF, peak VMS, peak EES-LF, and nodes with EES-LF > 2% in the LPF were higher than those in the LPF-AOCLS and LPF-CCLS. CONCLUSION IFCF was shown to enhance the stability of OLTPFs using LPF. Considering overscrewing, CCLS is preferably recommended, although there were no significant differences between CCLS and AOCLS.
Collapse
Affiliation(s)
- Jiang Jiang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual and Reality Experimental Education Center for Medical Morphology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Daqiang Xu
- Department of Orthopedics, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - Zhenhua Ji
- Department of Rehabilitation Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Fei Wang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual and Reality Experimental Education Center for Medical Morphology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Rui Jia
- Department of Anatomy, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual and Reality Experimental Education Center for Medical Morphology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jun Wang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual and Reality Experimental Education Center for Medical Morphology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Hong Hong
- Department of Anatomy, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual and Reality Experimental Education Center for Medical Morphology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Hongtao Zhang
- Zhongshan Torch Development Zone People's Hospital, No.123, Yixian Road, Torch Development District, Zhongshan, 528437, Guangdong, China.
| | - Jianyi Li
- Department of Anatomy, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual and Reality Experimental Education Center for Medical Morphology, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
5
|
Niroobakhsh M, Laughrey LE, Dallas SL, Johnson ML, Ganesh T. Computational modeling based on confocal imaging predicts changes in osteocyte and dendrite shear stress due to canalicular loss with aging. Biomech Model Mechanobiol 2024; 23:129-143. [PMID: 37642807 DOI: 10.1007/s10237-023-01763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
Exercise and physical activity exert mechanical loading on the bones which induces bone formation. However, the relationship between the osteocyte lacunar-canalicular morphology and mechanical stress experienced locally by osteocytes transducing signals for bone formation is not fully understood. In this study, we used computational modeling to predict the effect of canalicular density, the number of fluid inlets, and load direction on fluid flow shear stress (FFSS) and bone strains and how these might change following the microstructural deterioration of the lacunar-canalicular network that occurs with aging. Four distinct computational models were initially generated of osteocytes with either ten or eighteen dendrites using a fluid-structure interaction method with idealized geometries. Next, a young and a simulated aged osteocyte were developed from confocal images after FITC staining of the femur of a 4-month-old C57BL/6 mouse to estimate FFSS using a computational fluid dynamics approach. The models predicted higher fluid velocities in the canaliculi versus the lacunae. Comparison of idealized models with five versus one fluid inlet indicated that with four more inlets, one-half of the dendrites experienced FFSS greater than 0.8 Pa, which has been associated with osteogenic responses. Confocal image-based models of real osteocytes indicated a six times higher ratio of canalicular to lacunar surface area in the young osteocyte model than the simulated aged model and the average FFSS in the young model (FFSS = 0.46 Pa) was three times greater than the aged model (FFSS = 0.15 Pa). Interestingly, the surface area with FFSS values above 0.8 Pa was 23 times greater in the young versus the simulated aged model. These findings may explain the impaired mechano-responsiveness of osteocytes with aging.
Collapse
Affiliation(s)
- Mohammad Niroobakhsh
- Division of Natural and Built Environment, School of Science and Engineering, University of Missouri-Kansas City, 350 L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO, 64110, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Loretta E Laughrey
- Division of Natural and Built Environment, School of Science and Engineering, University of Missouri-Kansas City, 350 L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO, 64110, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 620 E 25th Street, Kansas City, MO, 64108, USA
| | - Thiagarajan Ganesh
- Division of Natural and Built Environment, School of Science and Engineering, University of Missouri-Kansas City, 350 L Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO, 64110, USA.
| |
Collapse
|
6
|
Ji C, Zhang L, Wang Y, Lin B, Bai X, Yun S, He B. The influence of different shaped osteocyte lacunae on microcrack initiation and propagation. Clin Biomech (Bristol, Avon) 2023; 108:106072. [PMID: 37611387 DOI: 10.1016/j.clinbiomech.2023.106072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND The morphology of osteocyte lacunae varies in bones of different ages and bone pathologies. Osteocyte lacunae can cause stress concentration and initiate microcracks. However, the influence of changes in osteocyte lacunar shape on microcrack is unknown. Therefore, the aim of this study was to determine the effects of osteocyte lacunae with different shapes on microcrack initiation and propagation. METHODS Osteon models containing osteocyte lacunae with different shapes were established. The progressive damage analysis method, based on computer simulations, was used to study the evolution of microdamage within the osteon, including the processes of intralaminar and interlaminar microdamage. FINDINGS Models with larger DoE values can effectively delay or prevent the formation of linear microcracks, which ensures high fracture toughness of cortical bone. It is subjected to stronger mechanical stimulation, making it more sensitive to loads. Models with smaller DoE values increase the load threshold for microdamage generation and reduces its impact on bone mechanical performance, making it less susceptible to microdamage than models with larger DoE values. INTERPRETATION These findings enhance the limited knowledge of the influence of the lacunar shape on microdamage and contribute to a better understanding of bone biomechanics.
Collapse
Affiliation(s)
- Chunhui Ji
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Liang Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yan Wang
- Tianjin Hospital, Tianjin University, Tianjin 300072, PR China
| | - Bin Lin
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Xinlei Bai
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Shiyue Yun
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Bingnan He
- School of Mechanical Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
7
|
Buccino F, Zagra L, Longo E, D'Amico L, Banfi G, Berto F, Tromba G, Vergani LM. Osteoporosis and Covid-19: Detected similarities in bone lacunar-level alterations via combined AI and advanced synchrotron testing. MATERIALS & DESIGN 2023; 231:112087. [PMID: 37323219 PMCID: PMC10257887 DOI: 10.1016/j.matdes.2023.112087] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
While advanced imaging strategies have improved the diagnosis of bone-related pathologies, early signs of bone alterations remain difficult to detect. The Covid-19 pandemic has brought attention to the need for a better understanding of bone micro-scale toughening and weakening phenomena. This study used an artificial intelligence-based tool to automatically investigate and validate four clinical hypotheses by examining osteocyte lacunae on a large scale with synchrotron image-guided failure assessment. The findings indicate that trabecular bone features exhibit intrinsic variability related to external loading, micro-scale bone characteristics affect fracture initiation and propagation, osteoporosis signs can be detected at the micro-scale through changes in osteocyte lacunar features, and Covid-19 worsens micro-scale porosities in a statistically significant manner similar to the osteoporotic condition. Incorporating these findings with existing clinical and diagnostic tools could prevent micro-scale damages from progressing into critical fractures.
Collapse
Affiliation(s)
- Federica Buccino
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Italy
| | - Luigi Zagra
- I.R.C.C.S Ospedale Galeazzi - Sant'Ambrogio, Milano 20157, Italy
| | - Elena Longo
- Elettra-Sincrotrone Trieste SCpA, Basovizza, Trieste 34149, Italy
| | - Lorenzo D'Amico
- Elettra-Sincrotrone Trieste SCpA, Basovizza, Trieste 34149, Italy
| | - Giuseppe Banfi
- I.R.C.C.S Ospedale Galeazzi - Sant'Ambrogio, Milano 20157, Italy
| | - Filippo Berto
- Università La Sapienza, Rome 00185, Italy
- NTNU, Norway
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste SCpA, Basovizza, Trieste 34149, Italy
| | | |
Collapse
|
8
|
Sang W, Ural A. Evaluating the Role of Canalicular Morphology and Perilacunar Region Properties on Local Mechanical Environment of Lacunar-Canalicular Network Using Finite Element Modeling. J Biomech Eng 2023; 145:1156059. [PMID: 36629002 DOI: 10.1115/1.4056655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
Physiological and pathological processes such as aging, diseases, treatments, and lactation can alter lacunar-canalicular network (LCN) morphology and perilacunar region properties. These modifications can impact the mechanical environment of osteocytes which in turn can influence osteocyte mechanosensitivity and the remodeling process. In this study, we aim to evaluate how the modifications in the canalicular morphology, lacunar density, and the perilacunar region properties influence the local mechanical environment of LCN and the apparent bone properties using three-dimensional finite element (FE) modeling. The simulation results showed that a 50% reduction in perilacunar elastic modulus led to about 7% decrease in apparent elastic modulus of the bone. The increase in canalicular density, length, and diameter did not influence the strain amplification in the models but they increased the amount of highly strained bone around LCN. Change in lacunar density did not influence the strain amplification and the amount of highly strained regions on LCN surfaces. Reduction in perilacunar elastic modulus increased both the strain amplification and the volume of highly strained tissue around and on the surface of LCN. The FE models of LCN in this study can be utilized to quantify the influence of modifications in canalicular morphology, lacunar density, and perilacunar region properties on the apparent bone properties and the local mechanical environment of LCN. Although this is a numerical study with idealized models, it provides important information on how mechanical environment of osteocytes is influenced by the modifications in LCN morphology and perilacunar region properties due to physiological and pathological processes.
Collapse
Affiliation(s)
- Wen Sang
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085
| | - Ani Ural
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085
| |
Collapse
|
9
|
Zheng L, Zhou D, Ju F, Liu Z, Yan C, Dong Z, Chen S, Deng L, Chan S, Deng J, Zhang X. Oscillating Fluid Flow Activated Osteocyte Lysate-Based Hydrogel for Regulating Osteoblast/Osteoclast Homeostasis to Enhance Bone Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204592. [PMID: 37017573 PMCID: PMC10214251 DOI: 10.1002/advs.202204592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/23/2023] [Indexed: 05/27/2023]
Abstract
As major regulators on bone formation/resorption in response to mechanical stimuli, osteocytes have shown great promise for restoring bone injury. However, due to the unmanageable and unabiding cell functions in unloading or diseased environments, the efficacy of osteogenic induction by osteocytes has been enormously limited. Herein, a facile method of oscillating fluid flow (OFF) loading for cell culture is reported, which enables osteocytes to initiate only osteogenesis and not the osteolysis process. After OFF loading, multiple and sufficient soluble mediators are produced in osteocytes, and the collected osteocyte lysates invariably induce robust osteoblastic differentiation and proliferation while restraining osteoclast generation and activity under unloading or pathological conditions. Mechanistic studies confirm that elevated glycolysis and activation of the ERK1/2 and Wnt/β-catenin pathways are the major contributors to the initiation of osteoinduction functions induced by osteocytes. Moreover, an osteocyte lysate-based hydrogel is designed to establish a stockpile of "active osteocytes" to sustainably deliver bioactive proteins, resulting in accelerated healing through regulation of endogenous osteoblast/osteoclast homeostasis.
Collapse
Affiliation(s)
- Liyuan Zheng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of Medicine, Shenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐sen UniversityShenzhen518106P. R. China
| | - Disheng Zhou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of Medicine, Shenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐sen UniversityShenzhen518106P. R. China
| | - Feier Ju
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of Medicine, Shenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐sen UniversityShenzhen518106P. R. China
| | - Zixuan Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of Medicine, Shenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐sen UniversityShenzhen518106P. R. China
| | - Chenzhi Yan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of Medicine, Shenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐sen UniversityShenzhen518106P. R. China
| | - Zhaoxia Dong
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of Medicine, Shenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐sen UniversityShenzhen518106P. R. China
| | - Shuna Chen
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of Medicine, Shenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐sen UniversityShenzhen518106P. R. China
| | - Lizhi Deng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of Medicine, Shenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐sen UniversityShenzhen518106P. R. China
| | - Szehoi Chan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of Medicine, Shenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐sen UniversityShenzhen518106P. R. China
| | - Junjie Deng
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Joint Centre of Translational MedicineWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
| | - Xingding Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory DiseasesSchool of Medicine, Shenzhen Campus of Sun Yat‐Sen UniversitySun Yat‐sen UniversityShenzhen518106P. R. China
| |
Collapse
|
10
|
Abstract
PURPOSE OF THE REVIEW Bone adapts structure and material properties in response to its mechanical environment, a process called mechanoadpatation. For the past 50 years, finite element modeling has been used to investigate the relationships between bone geometry, material properties, and mechanical loading conditions. This review examines how we use finite element modeling in the context of bone mechanoadpatation. RECENT FINDINGS Finite element models estimate complex mechanical stimuli at the tissue and cellular levels, help explain experimental results, and inform the design of loading protocols and prosthetics. FE modeling is a powerful tool to study bone adaptation as it complements experimental approaches. Before using FE models, researchers should determine whether simulation results will provide complementary information to experimental or clinical observations and should establish the level of complexity required. As imaging technics and computational capacity continue increasing, we expect FE models to help in designing treatments of bone pathologies that take advantage of mechanoadaptation of bone.
Collapse
Affiliation(s)
- Quentin A Meslier
- Department of Bioengineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA
| | - Sandra J Shefelbine
- Department of Bioengineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA.
- Department of Mechanical and Industrial Engineering, Northeastern University, 334 Snell, 360 Huntington Ave, Boston, MA, USA.
| |
Collapse
|
11
|
Boucetta A, Ramtani S, Garzón-Alvarado DA. Both network architecture and micro cracks effects on lacuno-canalicular liquid flow efficiency within the context of multiphysics approach for bone remodeling. J Mech Behav Biomed Mater 2023; 141:105780. [PMID: 36989871 DOI: 10.1016/j.jmbbm.2023.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
When physical forces are applied to bone, its mechanical adaptive behaviors change according to the microarchitecture configuration. This leads to changes in biological and physical thresholds in the remodeling cell population, involving sensor cells (osteocytes) interacting with each other and changes in osteocyte shape due to variation in lacunar shape. The resulting alterations in fluid flow leads to changes in the membrane electrical potential and shear stress. Eventual creation of microcracks, may lead in turn to modify cell activity. In contrast, the redundancy in the lacuno canalicular network (LCN) interconnectivity maintains partial flow. Our goal was to investigate the role of fluid flow in LCN by proposing a model of electro-mechanical energy spread through inhomogeneous microarchitectures. We focused on mechano-sensitivity to changes in load-induced flow impacted by neighboring micro cracks and quantifying its critical role in changing, velocity, shear stress and orientation of liquid mass transportation from one cell to another. To enhance the concept of intricacy LCN micro-structure to fluid flow, we provide a new combined effects factor considered as osteocytes sensor efficiency. We customized an influence function for each osteocyte, coupling: in one hand, the spatial distribution within remodeling influence areas, conducting a significant fluid spread, leading hydro-dynamic behavior and impacted further by presence of micro cracks and; in other hand, the fluid electro kinetic behavior. As an attempt to fill the limitations stated by many of the recent studies, we reveal in numerical simulation, some results which cannot be measured in vitro/in vivo studies. Numerical calculations were performed in order to evaluate, among many others, how liquid flow conditions changes between lacunas, how the orientation and the magnitude of the governing flow in LCN can regulate osteocytes efficiency. In addition to be regulated by osteocytes, a direct effects of fluid flow are also acting on osteoblast activity. In summary, this new approach considers mechano-sensitivity in relation to liquid flow dynamic and suggests additional pathway for Osseo integration via osteoblast regulation. However, this novel modeling approach may help improve the mapping and design bone scaffolds and/or selection of scaffold implantation regions.
Collapse
Affiliation(s)
- Abdelkader Boucetta
- Université Sorbonne Paris Nord, CSPBA-LBPS, UMR CNRS 7244, Inst Galilee, 99 Ave JB Clement, Villetaneuse, France; GE VERNOVA, SS&O-OPS-O&M EMEA Regions, Algiers, Algeria.
| | - Salah Ramtani
- Université Sorbonne Paris Nord, CSPBA-LBPS, UMR CNRS 7244, Inst Galilee, 99 Ave JB Clement, Villetaneuse, France.
| | - Diego A Garzón-Alvarado
- Universidad Nacional de Colombia, Biomimetics Laboratory-Biotechnology Institute, Bogota, 571, Republic of Colombia.
| |
Collapse
|
12
|
Buccino F, Cervellera F, Ghidini M, Marini R, Bagherifard S, Vergani LM. Isolating the Role of Bone Lacunar Morphology on Static and Fatigue Fracture Progression through Numerical Simulations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1931. [PMID: 36903046 PMCID: PMC10004234 DOI: 10.3390/ma16051931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Currently, the onset of bone damage and the interaction of cracks with the surrounding micro-architecture are still black boxes. With the motivation to address this issue, our research targets isolating lacunar morphological and densitometric effects on crack advancement under both static and cyclic loading conditions by implementing static extended finite element models (XFEM) and fatigue analyses. The effect of lacunar pathological alterations on damage initiation and progression is evaluated; the results indicate that high lacunar density considerably reduces the mechanical strength of the specimens, resulting as the most influencing parameter among the studied ones. Lacunar size has a lower effect on mechanical strength, reducing it by 2%. Additionally, specific lacunar alignments play a key role in deviating the crack path, eventually slowing its progression. This could shed some light on evaluating the effects of lacunar alterations on fracture evolution in the presence of pathologies.
Collapse
|
13
|
Heveran CM, Boerckel JD. Osteocyte Remodeling of the Lacunar-Canalicular System: What's in a Name? Curr Osteoporos Rep 2023; 21:11-20. [PMID: 36512204 PMCID: PMC11223162 DOI: 10.1007/s11914-022-00766-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Osteocytes directly modify the bone surrounding the expansive lacunar-canalicular system (LCS) through both resorption and deposition. The existence of this phenomenon is now widely accepted, but is referred to as "osteocyte osteolysis," "LCS remodeling," and "perilacunar remodeling," among other names. The uncertainty in naming this physiological process reflects the many persistent questions about why and how osteocytes interact with local bone matrix. The goal of this review is to examine the purpose and nature of LCS remodeling and its impacts on multiscale bone quality. RECENT FINDINGS While LCS remodeling is clearly important for systemic calcium mobilization, this process may have additional potential drivers and may impact the ability of bone to resist fracture. There is abundant evidence that the osteocyte can resorb and replace bone mineral and does so outside of extreme challenges to mineral homeostasis. The impacts of the osteocyte on organic matrix are less certain, especially regarding whether osteocytes produce osteoid. Though multiple lines of evidence point towards osteocyte production of organic matrix, definitive work is needed. Recent high-resolution imaging studies demonstrate that LCS remodeling influences local material properties. The role of LCS remodeling in the maintenance and deterioration of bone matrix quality in aging and disease are active areas of research. In this review, we highlight current progress in understanding why and how the osteocyte removes and replaces bone tissue and the consequences of these activities to bone quality. We posit that answering these questions is essential for evaluating whether, how, when, and why LCS remodeling may be manipulated for therapeutic benefit in managing bone fragility.
Collapse
Affiliation(s)
- C M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, USA.
| | - J D Boerckel
- Department of Orthopaedic Surgery, Department of Bioengineering, University of Pennsylvania School of Medicine, Philadelphia, USA.
| |
Collapse
|
14
|
Allahyari P, Silani M, Yaghoubi V, Milovanovic P, Schmidt FN, Busse B, Qwamizadeh M. On the fracture behavior of cortical bone microstructure: The effects of morphology and material characteristics of bone structural components. J Mech Behav Biomed Mater 2023; 137:105530. [PMID: 36334581 DOI: 10.1016/j.jmbbm.2022.105530] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Bone encompasses a complex arrangement of materials at different length scales, which endows it with a range of mechanical, chemical, and biological capabilities. Changes in the microstructure and characteristics of the material, as well as the accumulation of microcracks, affect the bone fracture properties. In this study, two-dimensional finite element models of the microstructure of cortical bone were considered. The eXtended Finite Element Method (XFEM) developed by Abaqus software was used for the analysis of the microcrack propagation in the model as well as for local sensitivity analysis. The stress-strain behavior obtained for the different introduced models was substantially different, confirming the importance of bone tissue microstructure for its failure behavior. Considering the role of interfaces, the results highlighted the effect of cement lines on the crack deflection path and global fracture behavior of the bone microstructure. Furthermore, bone micromorphology and areal fraction of cortical bone tissue components such as osteons, cement lines, and pores affected the bone fracture behavior; specifically, pores altered the crack propagation path since increasing porosity reduced the maximum stress needed to start crack propagation. Therefore, cement line structure, mineralization, and areal fraction are important parameters in bone fracture. The parameter-wise sensitivity analysis demonstrated that areal fraction and strain energy release rate had the greatest and the lowest effect on ultimate strength, respectively. Furthermore, the component-wise sensitivity analysis revealed that for the areal fraction parameter, pores had the greatest effect on ultimate strength, whereas for the other parameters such as elastic modulus and strain energy release rate, cement lines had the most important effect on the ultimate strength. In conclusion, the finding of the current study can help to predict the fracture mechanisms in bone by taking the morphological and material properties of its microstructure into account.
Collapse
Affiliation(s)
- P Allahyari
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - M Silani
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - V Yaghoubi
- Structural Integrity & Composites, Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS, Delft, Netherlands
| | - P Milovanovic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - F N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - B Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - M Qwamizadeh
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany.
| |
Collapse
|
15
|
Quantifying how altered lacunar morphology and perilacunar tissue properties influence local mechanical environment of osteocyte lacunae using finite element modeling. J Mech Behav Biomed Mater 2022; 135:105433. [DOI: 10.1016/j.jmbbm.2022.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
|
16
|
Goff E, Cohen A, Shane E, Recker RR, Kuhn G, Müller R. Large-scale osteocyte lacunar morphological analysis of transiliac bone in normal and osteoporotic premenopausal women. Bone 2022; 160:116424. [PMID: 35460961 DOI: 10.1016/j.bone.2022.116424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022]
Abstract
Bone's ability to adapt is governed by the network of embedded osteocytes, which inhabit individual pores called lacunae. The morphology of these lacunae and their resident osteocytes are known to change with age and diseases such as postmenopausal osteoporosis. However, it is unclear whether alterations in lacunar morphology are present in younger populations with osteoporosis. To investigate this, we implemented a previously validated methodology to image and quantify the three-dimensional morphometries of lacunae on a large scale with ultra-high-resolution micro-computed tomography (microCT) in transiliac bone biopsies from three groups of premenopausal women: control n = 39; idiopathic osteoporosis (IOP) n = 45; idiopathic low BMD (ILBMD) n = 19. Lacunar morphometric parameters were measured in both trabecular and cortical bone such as lacunar density (Lc.N/BV), lacunar volume (Lc.V), and lacunar sphericity (Lc.Sr). These were then compared against each other and also with previously measured tissue morphometries such as bone volume density (BV/TV), trabecular separation (Tb.Sp), trabecular number (Tb.N), and others. We detected no differences in lacunar morphology between the IOP, ILBMD and healthy premenopausal women. In contrast, we did find significant differences between lacunar morphologies including Lc.N/BV, Lc. V, and Lc. Sr in cortical and trabecular regions within all three groups (p < 0.001), which was consistent with our previous findings on a subgroup of the healthy group. Furthermore, we discovered strong correlations between Lc. Sr from trabecular regions with the measured BV/TV (R = -0.90, p < 0.05). The findings and comprehensive lacunar dataset we present here will be a crucial foundation for future investigations of the relationship between osteocyte lacunar morphology and disease.
Collapse
Affiliation(s)
- Elliott Goff
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Adi Cohen
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Elizabeth Shane
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Robert R Recker
- Department of Medicine, Creighton University Medical Center, Omaha, NE, USA
| | - Gisela Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Cen H, Gong H, Liu H, Jia S, Wu X, Fan Y. A Comparative Study on the Multiscale Mechanical Responses of Human Femoral Neck Between the Young and the Elderly Using Finite Element Method. Front Bioeng Biotechnol 2022; 10:893337. [PMID: 35600894 PMCID: PMC9117745 DOI: 10.3389/fbioe.2022.893337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Femoral neck fracture (FNF) is the most serious bone disease in the elderly population. The multiscale mechanical response is a key to predicting the strength of the femoral neck, assessing the risk of FNF, and exploring the role of mechanosensation and mechanotransmission in bone remodeling, especially in the context of aging bone.Methods: Multiscale finite element (FE) models of the proximal femur for both young and elderly people were developed. The models included organ scale (proximal femur), tissue scale (cortical bone), tissue element scale (osteon), and cell scale [osteocyte lacuna-canalicular network (LCN) and extracellular matrix (ECM), OLCEM]. The mechanical responses of cortical bone and osteocytes in the mid-femoral neck and the differences in mechanical responses between these two scales were investigated.Results: The mechanical responses of cortical bone and osteocyte showed significant differences between the elderly and the young. The minimum principal strains and mean SEDs of cortical bone in the elderly were 2.067–4.708 times and 3.093–14.385 times of the values in the young, respectively; the minimum principal strains and mean SEDs of osteocyte in the elderly were 1.497–3.246 times and 3.044–12 times of the values in the young, respectively; the amplification factors of minimum principal strain in the inferior (Inf), anterior (Ant), and posterior (Post) quadrants in the young were 1.241–1.804 times of the values in the elderly, but the amplification factor of minimum principal strain in the superior (Sup) quadrant was 87.4% of the value in the elderly; the amplification factors of mean SED in the young were 1.124–9.637 times of the values in the elderly.Conclusion: The mass and bone mineral density (BMD) of cortical bone in the femoral neck is closely related to the mechanical response of osteocytes, which provides a new idea for improving cortical bone quality. Perhaps cortical bone quality could be improved by stimulating osteocytes. Quadrantal differences of bone quality in the mid-femoral neck should be considered to improve fracture risk prediction in the future.
Collapse
Affiliation(s)
- Haipeng Cen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: He Gong,
| | - Haibo Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaodan Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Osteocytes are the conductors of bone adaptation and remodelling. Buried inside the calcified matrix, they sense mechanical cues and signal osteoclasts in case of low activity, and osteoblasts when stresses are high. How do osteocytes detect mechanical stress? What physical signal do they perceive? Finite element analysis is a useful tool to address these questions as it allows calculating stresses, strains and fluid flow where they cannot be measured. The purpose of this review is to evaluate the capabilities and challenges of finite element models of bone, in particular the osteocytes and load-induced activation mechanisms. RECENT FINDINGS High-resolution imaging and increased computational power allow ever more detailed modelling of osteocytes, either in isolation or embedded within the mineralised matrix. Over the years, homogeneous models of bone and osteocytes got replaced by heterogeneous and microstructural models, including, e.g. the lacuno-canalicular network and the cytoskeleton. The lacuno-canalicular network induces strain amplifications and the osteocyte protrusions seem to be stimulated much more than the cell body, both by strain and fluid flow. More realistic cell geometries, like minute constrictions of the canaliculi, increase this effect. Microstructural osteocyte models describe the transduction of external stimuli to the nucleus. Supracellular multiscale models (e.g. of a tunnelling osteon) allow to study differential loading of osteocytes and to distinguish between strain and fluid flow as the pivotal stimulatory cue. In the future, the finite element models may be enhanced by including chemical transport and intercellular communication between osteocytes, osteoclasts and osteoblasts.
Collapse
Affiliation(s)
- Theodoor H Smit
- Department of Medical Biology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Orthopaedic Surgery, Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Rux CJ, Vahidi G, Darabi A, Cox LM, Heveran CM. Perilacunar bone tissue exhibits sub-micrometer modulus gradation which depends on the recency of osteocyte bone formation in both young adult and early-old-age female C57Bl/6 mice. Bone 2022; 157:116327. [PMID: 35026452 PMCID: PMC8858864 DOI: 10.1016/j.bone.2022.116327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022]
Abstract
Osteocytes resorb and replace bone local to the lacunar-canalicular system (LCS). However, whether osteocyte remodeling impacts bone quality adjacent to the LCS is not understood. Further, while aging is well-established to decrease osteocyte viability and truncate LCS geometry, it is unclear if aging also decreases perilacunar bone quality. To address these questions, we employed atomic force microscopy (AFM) to generate nanoscale-resolution modulus maps for cortical femur osteocyte lacunae from young (5-month) and early-old-age (22-month) female C57Bl/6 mice. AFM-mapped lacunae were also imaged with confocal laser scanning microscopy to determine which osteocytes recently deposited bone as determined by the presence of fluorochrome labels administered 2d and 8d before euthanasia. Modulus gradation with distance from the lacunar wall was compared for labeled (i.e., bone forming) and non-labeled lacunae in both young and aged mice. All mapped lacunae showed sub-microscale modulus gradation, with peak modulus values 200-400 nm from the lacunar wall. Perilacunar modulus gradations depended on the recency of osteocyte bone formation (i.e., the presence of labels). For both ages, 2d-labeled perilacunar bone had lower peak and bulk modulus compared to non-labeled perilacunar bone. Lacunar length reduced with age, but lacunar shape and size were not strong predictors of modulus gradation. Our findings demonstrate for the first time that osteocyte perilacunar remodeling impacts bone tissue modulus, one contributor to bone quality. Given the immense scale of the LCS, differences in perilacunar modulus resulting from osteocyte remodeling activity may affect the quality of a substantial amount of bone tissue.
Collapse
Affiliation(s)
- Caleb J Rux
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America; UC Berkeley-UCSF Graduate Program in Bioengineering, United States of America
| | - Ghazal Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Amir Darabi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Lewis M Cox
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - Chelsea M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America.
| |
Collapse
|
20
|
von Kroge S, Stürznickel J, Bechler U, Stockhausen KE, Eissele J, Hubert J, Amling M, Beil FT, Busse B, Rolvien T. Impaired bone quality in the superolateral femoral neck occurs independent of hip geometry and bone mineral density. Acta Biomater 2022; 141:233-243. [PMID: 34999261 DOI: 10.1016/j.actbio.2022.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/01/2022]
Abstract
Skeletal adaptation is substantially influenced by mechanical loads. Osteocytes and their lacuno-canalicular network have been identified as a key player in load sensation and bone quality regulation. In the femoral neck, one of the most common fracture sites, a complex loading pattern with lower habitual loading in the superolateral neck and higher compressive stresses in the inferomedial neck is present. Variations in the femoral neck-shaft angle (NSA), i.e., coxa vara or coxa valga, provide the opportunity to examine the influence of loading patterns on bone quality. We obtained femoral neck specimens of 28 osteoarthritic human subjects with coxa vara, coxa norma and coxa valga during total hip arthroplasty. Bone mineral density (BMD) was assessed preoperatively by dual energy X-ray absorptiometry (DXA). Cortical and trabecular microstructure and three-dimensional osteocyte lacunar characteristics were assessed in the superolateral and inferomedial neck using ex vivo high resolution micro-computed tomography. Additionally, BMD distribution and osteocyte lacunar characteristics were analyzed by quantitative backscattered electron imaging (qBEI). All groups presented thicker inferomedial than superolateral cortices. Furthermore, the superolateral site exhibited a lower osteocyte lacunar density along with lower lacunar sphericity than the inferomedial site, independent of NSA. Importantly, BMD and corresponding T-scores correlated with microstructural parameters at the inferomedial but not superolateral neck. In conclusion, we provide micromorphological evidence for fracture vulnerability of the superolateral neck, which is independent of NSA and BMD. The presented bone qualitative data provide an explanation why DXA may be insufficient to predict a substantial proportion of femoral neck fractures. STATEMENT OF SIGNIFICANCE: The femoral neck, one of the most common fracture sites, is subject to a complex loading pattern. Site-specific differences (i.e., superolateral vs. inferomedial) in bone quality influence fracture risk, but it is unclear how this relates to hip geometry and bone mineral density (BMD) measurements in vivo. Here, we examine femoral neck specimens using a variety of high-resolution imaging techniques and demonstrate impaired bone quality in the superolateral compared to the inferomedial neck. Specifically, we found impaired cortical and trabecular microarchitecture, mineralization, and osteocyte properties, regardless of neck-shaft angle. Since BMD correlated with bone quality of the inferomedial but not the superolateral neck, our results illustrate why bone densitometry may not predict a substantial proportion of femoral neck fractures.
Collapse
|
21
|
Choi JUA, Kijas AW, Lauko J, Rowan AE. The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Front Cell Dev Biol 2022; 9:770143. [PMID: 35265628 PMCID: PMC8900535 DOI: 10.3389/fcell.2021.770143] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bone homeostasis is a dynamic equilibrium between bone-forming osteoblasts and bone-resorbing osteoclasts. This process is primarily controlled by the most abundant and mechanosensitive bone cells, osteocytes, that reside individually, within chambers of porous hydroxyapatite bone matrix. Recent studies have unveiled additional functional roles for osteocytes in directly contributing to local matrix regulation as well as systemic roles through endocrine functions by communicating with distant organs such as the kidney. Osteocyte function is governed largely by both biochemical signaling and the mechanical stimuli exerted on bone. Mechanical stimulation is required to maintain bone health whilst aging and reduced level of loading are known to result in bone loss. To date, both in vivo and in vitro approaches have been established to answer important questions such as the effect of mechanical stimuli, the mechanosensors involved, and the mechanosensitive signaling pathways in osteocytes. However, our understanding of osteocyte mechanotransduction has been limited due to the technical challenges of working with these cells since they are individually embedded within the hard hydroxyapatite bone matrix. This review highlights the current knowledge of the osteocyte functional role in maintaining bone health and the key regulatory pathways of these mechanosensitive cells. Finally, we elaborate on the current therapeutic opportunities offered by existing treatments and the potential for targeting osteocyte-directed signaling.
Collapse
Affiliation(s)
- Jung Un Ally Choi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Sang W, Li Y, Guignon J, Liu XS, Ural A. Structural role of osteocyte lacunae on mechanical properties of bone matrix: A cohesive finite element study. J Mech Behav Biomed Mater 2022; 125:104943. [PMID: 34736032 PMCID: PMC8670554 DOI: 10.1016/j.jmbbm.2021.104943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/05/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
Despite the extensive studies on biological function of osteocytes, there are limited studies that evaluated the structural role of osteocyte lacunae on local mechanical properties of the bone matrix. As a result, the goal of this study was to elucidate the independent contribution of osteocyte lacunae structure on mechanical properties and fracture behavior of the bone matrix uncoupled from its biological effects and bone tissue composition variation. This study combined cohesive finite element modeling with experimental data from a lactation rat model to evaluate the influence of osteocyte lacunar area porosity, density, size, axis ratio, and orientation on the elastic modulus, ultimate strength, and ultimate strain of the bone matrix as well as on local crack formation and propagation. It also performed a parametric study to isolate the influence of a single osteocyte lacunae structural property on the mechanical properties of the bone matrix. The experimental measurements demonstrated statistically significant differences in lacunar size between ovariectomized rats with lactation history and virgin groups (both ovariectomized and intact) and in axis ratio between rats with lactation history and virgins. There were no differences in mechanical properties between virgin and lactation groups as determined by the finite element simulations. However, there were statistically significant linear relationships between the physiological range of osteocyte lacunar area porosity, density, size, and orientation and the elastic modulus and ultimate strength of the bone matrix in virgin and lactation rats. The parametric study also revealed similar but stronger relationships between elastic modulus and ultimate strength and lacunar density, size, and orientation. The simulations also demonstrated that the osteocyte lacunae guided the crack propagation through local stress concentrations. In summary, this study enhanced the limited knowledge on the structural role of osteocyte lacunae on local mechanical properties of the bone matrix. These data are important in gaining a better understanding of the mechanical implications of the local modifications due to osteocytes in the bone matrix.
Collapse
Affiliation(s)
- Wen Sang
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, USA
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 332A Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, USA
| | - Jane Guignon
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 332A Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA, USA
| | - Ani Ural
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, USA.
| |
Collapse
|
23
|
Josephson TO, Moore JP, Maghami E, Freeman TA, Najafi AR. Computational study of the mechanical influence of lacunae and perilacunar zones in cortical bone microcracking. J Mech Behav Biomed Mater 2021; 126:105029. [PMID: 34971951 DOI: 10.1016/j.jmbbm.2021.105029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 02/01/2023]
Abstract
The mechanical behavior of cortical bone is influenced by microstructural components such as osteons, Haversian canals, and osteocyte lacunae that arise from biological remodeling processes. This study takes a computational approach to investigate the role of the perilacunar zones formed by the local remodeling processes of lacunar-dwelling osteocytes by utilizing phase-field finite element models based on histological imaging of human bone. The models simulated the microdamage accumulation that occurs in cortical bone under transverse compression in bone without lacunae, with lacunae, and with a perilacunar zone surrounding lacunae in order to investigate the role of these features. The results of the simulations found that while lacunae create stress concentration which initiate further damage, perilacunar regions can delay or prevent the emergence and growth of microcracks.
Collapse
Affiliation(s)
- Timothy O Josephson
- Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Jason P Moore
- Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Ebrahim Maghami
- Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, 19104, PA, USA
| | - Theresa A Freeman
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, 1015 Walnut Street, Philadelphia, 19107, PA, USA
| | - Ahmad R Najafi
- Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, 19104, PA, USA.
| |
Collapse
|
24
|
Dixit M, Duran‐Ortiz S, Yildirim G, Poudel SB, Louis LD, Bartke A, Schaffler MB, Kopchick JJ, Yakar S. Induction of somatopause in adult mice compromises bone morphology and exacerbates bone loss during aging. Aging Cell 2021; 20:e13505. [PMID: 34811875 PMCID: PMC8672783 DOI: 10.1111/acel.13505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022] Open
Abstract
Somatopause refers to the gradual declines in growth hormone (GH) and insulin‐like growth factor‐1 throughout aging. To define how induced somatopause affects skeletal integrity, we used an inducible GH receptor knockout (iGHRKO) mouse model. Somatopause, induced globally at 6 months of age, resulted in significantly more slender bones in both male and female iGHRKO mice. In males, induced somatopause was associated with progressive expansion of the marrow cavity leading to significant thinning of the cortices, which compromised bone strength. We report progressive declines in osteocyte lacunar number, and increases in lacunar volume, in iGHRKO males, and reductions in lacunar number accompanied by ~20% loss of overall canalicular connectivity in iGHRKO females by 30 months of age. Induced somatopause did not affect mineral/matrix ratio assessed by Raman microspectroscopy. We found significant increases in bone marrow adiposity and high levels of sclerostin, a negative regulator of bone formation in iGHRKO mice. Surprisingly, however, despite compromised bone morphology, osteocyte senescence was reduced in the iGHRKO mice. In this study, we avoided the confounded effects of constitutive deficiency in the GH/IGF‐1 axis on the skeleton during growth, and specifically dissected its effects on the aging skeleton. We show here, for the first time, that induced somatopause compromises bone morphology and the bone marrow environment.
Collapse
Affiliation(s)
- Manisha Dixit
- David B. Kriser Dental Center Department of Molecular Pathobiology New York University College of Dentistry New York New York NY USA
| | - Silvana Duran‐Ortiz
- Edison Biotechnology Institute and Dept. of Biomedical Sciences Ohio University Athens OH USA
| | - Godze Yildirim
- David B. Kriser Dental Center Department of Molecular Pathobiology New York University College of Dentistry New York New York NY USA
| | - Sher Bahadur Poudel
- David B. Kriser Dental Center Department of Molecular Pathobiology New York University College of Dentistry New York New York NY USA
| | - Leeann D. Louis
- Department of Biomedical Engineering City College of New York New York NY USA
| | - Andrzej Bartke
- Southern Illinois University School of Medicine Springfield IL USA
| | | | - John J. Kopchick
- Edison Biotechnology Institute and Dept. of Biomedical Sciences Ohio University Athens OH USA
| | - Shoshana Yakar
- David B. Kriser Dental Center Department of Molecular Pathobiology New York University College of Dentistry New York New York NY USA
| |
Collapse
|
25
|
Cen H, Yao Y, Liu H, Jia S, Gong H. Multiscale mechanical responses of young and elderly human femurs: A finite element investigation. Bone 2021; 153:116125. [PMID: 34280582 DOI: 10.1016/j.bone.2021.116125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bone remodeling in the elderly is no longer balanced. As a result, the morphologies and mechanical properties of bone at different scales will change. These changes would affect the mechanical responses of bone, which might exacerbate the imbalance of bone remodeling and even cause age-related bone diseases. METHODS Considering those changes, multiscale finite element (FE) models of bone in the young and the elderly were developed that included macroscale (proximal femur), mesoscale (cortical bone), microscale (Haversian system) and sub-microscale (osteocyte-lacuna-canaliculus-extracellular matrix system, OLCES). The stress and strain distributions at different scales and transmissions among different scales were investigated. RESULTS The stresses of the elderly at macroscale, mesoscale and microscale were higher than those in the young by 23.7%, 62.5% and 8.0%, respectively, and the stresses of the elderly and the young at sub-microscale were almost the same. The strain of the elderly at macroscale, mesoscale, microscale and sub-microscale were higher than those in the young by 48.6%, 56.8%, 11.9% and 25.1%, respectively. The stress and strain transmission rates (ησand ηε) from mesoscale to microscale were decreased by 1.8%, and 2.5% than those from macroscale to mesoscale in the elderly, respectively; but increased by 13.8%, and 4.7% in the young, respectively. ηε from microscale to sub-microscale in the elderly was higher than that in the young by 21.3%. CONCLUSIONS Degeneration of cortical bone mechanical property in the elderly causes increases in stress and strain at macroscale and mesoscale. The reduction of lacunar number in the elderly is not conducive to the mechanical transmission from mesoscale to microscale. The differences in stress and strain at microscale between the young and the elderly are smaller than those at macroscale or mesoscale. The strain stimulus sensed by osteocyte in the elderly is not weakened compared with that in the young.
Collapse
Affiliation(s)
- Haipeng Cen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Yan Yao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Haibo Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
26
|
Moharrer Y, Boerckel JD. Tunnels in the rock: Dynamics of osteocyte morphogenesis. Bone 2021; 153:116104. [PMID: 34245936 PMCID: PMC8478866 DOI: 10.1016/j.bone.2021.116104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022]
Abstract
Osteocytes are dynamic, bone matrix-remodeling cells that form an intricate network of interconnected projections through the bone matrix, called the lacunar-canalicular system. Osteocytes are the dominant mechanosensory cells in bone and their mechanosensory and mechanotransductive functions follow their morphological form. During osteocytogenesis and development of the osteocyte lacunar-canalicular network, osteocytes must dramatically remodel both their cytoskeleton and their extracellular matrix. In this review, we summarize our current understanding of the mechanisms that govern osteocyte differentiation, cytoskeletal morphogenesis, mechanotransduction, and matrix remodeling. We postulate that the physiologic activation of matrix remodeling in adult osteocytes, known as perilacunar/canalicular remodeling (PLR) represents a re-activation of the developmental program by which the osteocyte network is first established. While much of osteocyte biology remains unclear, new tools and approaches make the present moment a particularly fruitful and exciting time to study the development of these remarkable cells.
Collapse
Affiliation(s)
- Yasaman Moharrer
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Joel D Boerckel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
27
|
Hemmatian H, Bakker AD, Klein-Nulend J, van Lenthe GH. Alterations in osteocyte lacunar morphology affect local bone tissue strains. J Mech Behav Biomed Mater 2021; 123:104730. [PMID: 34438250 DOI: 10.1016/j.jmbbm.2021.104730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/16/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022]
Abstract
Osteocytes are capable of remodeling their perilacunar bone matrix, which causes considerable variations in the shape and size of their lacunae. If these variations in lacunar morphology cause changes in the mechanical environment of the osteocytes, in particular local strains, they would subsequently affect bone mechanotransduction, since osteocytes are likely able to directly sense these strains. The purpose of this study is to quantify the effect of alterations in osteocyte lacunar morphology on peri-lacunar bone tissue strains. To this end, we related the actual lacunar shape in fibulae of six young-adult (5-month) and six old (23-month) mice, quantified by high-resolution micro-computed tomography, to microscopic strains, analyzed by micro-finite element modeling. We showed that peak effective strain increased by 12.6% in osteocyte cell bodies (OCYs), 9.6% in pericellular matrix (PCM), and 5.3% in extra cellular matrix (ECM) as the lacunae volume increased from 100-200 μm3 to 500-600 μm3. Lacunae with a larger deviation (>8°) in orientation from the longitudinal axis of the bone are exposed to 8% higher strains in OCYs, 6.5% in PCM, 4.2% in ECM than lacunae with a deviation in orientation below 8°. Moreover, increased lacuna sphericity from 0 to 0.5 to 0.7-1 led to 25%, 23%, and 13% decrease in maximum effective strains in OCYs, PCM, and ECM, respectively. We further showed that due to the presence of smaller and more round lacunae in old mice, local bone tissue strains are on average 5% lower in the vicinity of lacunae and their osteocytes of old mice compared to young. Understanding how changes in lacunar morphology affect the micromechanical environment of osteocytes presents a first step in unraveling their potential role in impaired bone mechanoresponsiveness with e.g. aging.
Collapse
Affiliation(s)
- Haniyeh Hemmatian
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - G Harry van Lenthe
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
28
|
Lira Dos Santos EJ, Salmon CR, Chavez MB, de Almeida AB, Tan MH, Chu EY, Sallum EA, Casati MZ, Ruiz KGS, Kantovitz KR, Foster BL, Nociti Júnior FH. Cementocyte alterations associated with experimentally induced cellular cementum apposition in hyp mice. J Periodontol 2021; 92:116-127. [PMID: 34003518 DOI: 10.1002/jper.21-0119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cellular cementum, a mineralized tissue covering apical tooth roots, grows by apposition to maintain the tooth in its occlusal position. We hypothesized that resident cementocytes would show morphological changes in response to cementum apposition, possibly implicating a role in cementum biology. METHODS Mandibular first molars were induced to super-erupt (EIA) by extraction of maxillary molars, promoting rapid new cementum formation. Tissue and cell responses were analyzed at 6 and/or 21 days post-procedure (dpp). RESULTS High-resolution micro-computed tomography (micro-CT) and confocal laser scanning microscopy showed increased cellular cementum by 21 dpp. Transmission electron microscopy (TEM) revealed that cementocytes under EIA were 50% larger than control cells, supported by larger pore sizes detected by micro-CT. Cementocytes under EIA displayed ultrastructural changes consistent with increased activity, including increased cytoplasm and nuclear size. We applied EIA to Hyp mutant mice, where cementocytes have perilacunar hypomineralization defects, to test cell and tissue responses in an altered mechanoresponsive milieu. Hyp and WT molars displayed similar super-eruption, with Hyp molars exhibiting 28% increased cellular cementum area versus 22% in WT mice at 21 dpp. Compared to control, Hyp cementocytes featured well-defined, disperse euchromatin and a thick layer of peripherally condensed heterochromatin in nuclei, indicating cellular activity. Immunohistochemistry (IHC) for cementum markers revealed intense dentin matrix protein-1 expression and abnormal osteopontin deposition in Hyp mice. Both WT and Hyp cementocytes expressed gap junction protein, connexin 43. CONCLUSION This study provides new insights into the EIA model and cementocyte activity in association with new cementum formation.
Collapse
Affiliation(s)
- Elis J Lira Dos Santos
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH
| | - Cristiane R Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
- Faculty of Dentistry, N. Sra. do Patrocínio University Center, Itu, São Paulo, Brazil
| | - Michael B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH
| | - Amanda B de Almeida
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
| | - Michelle H Tan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH
| | - Emily Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD
| | - Enilson A Sallum
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
| | - Marcio Z Casati
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
| | - Karina G S Ruiz
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
| | - Kamila R Kantovitz
- Department of Dental Materials, São Leopoldo Mandic Research Center, Campinas, São Paulo, Brazil
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH
| | - Francisco H Nociti Júnior
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
- São Leopoldo Mandic Research Center, Campinas, São Paulo, Brazil
| |
Collapse
|
29
|
Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Li Y, Liu J, Wang Y, Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater 2021; 6:4110-4140. [PMID: 33997497 PMCID: PMC8091181 DOI: 10.1016/j.bioactmat.2021.03.043] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bone-tissue defects affect millions of people worldwide. Despite being common treatment approaches, autologous and allogeneic bone grafting have not achieved the ideal therapeutic effect. This has prompted researchers to explore novel bone-regeneration methods. In recent decades, the development of bone tissue engineering (BTE) scaffolds has been leading the forefront of this field. As researchers have provided deep insights into bone physiology and the bone-healing mechanism, various biomimicking and bioinspired BTE scaffolds have been reported. Now it is necessary to review the progress of natural bone physiology and bone healing mechanism, which will provide more valuable enlightenments for researchers in this field. This work details the physiological microenvironment of the natural bone tissue, bone-healing process, and various biomolecules involved therein. Next, according to the bone physiological microenvironment and the delivery of bioactive factors based on the bone-healing mechanism, it elaborates the biomimetic design of a scaffold, highlighting the designing of BTE scaffolds according to bone biology and providing the rationale for designing next-generation BTE scaffolds that conform to natural bone healing and regeneration.
Collapse
Affiliation(s)
- Guanyin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Miao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Ke Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yazhen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
30
|
Chang B, Liu X. Osteon: Structure, Turnover, and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:261-278. [PMID: 33487116 DOI: 10.1089/ten.teb.2020.0322] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone is composed of dense and solid cortical bone and honeycomb-like trabecular bone. Although cortical bone provides the majority of mechanical strength for a bone, there are few studies focusing on cortical bone repair or regeneration. Osteons (the Haversian system) form structural and functional units of cortical bone. In recent years, emerging evidences have shown that the osteon structure (including osteocytes, lamellae, lacunocanalicular network, and Haversian canals) plays critical roles in bone mechanics and turnover. Therefore, reconstruction of the osteon structure is crucial for cortical bone regeneration. This article provides a systematic summary of recent advances in osteons, including the structure, function, turnover, and regenerative strategies. First, the hierarchical structure of osteons is illustrated and the critical functions of osteons in bone dynamics are introduced. Next, the modeling and remodeling processes of osteons at a cellular level and the turnover of osteons in response to mechanical loading and aging are emphasized. Furthermore, several bioengineering approaches that were recently developed to recapitulate the osteon structure are highlighted. Impact statement This review provides a comprehensive summary of recent advances in osteons, especially the roles in bone formation, remodeling, and regeneration. Besides introducing the hierarchical structure and critical functions of osteons, we elucidate the modeling and remodeling of osteons at a cellular level. Specifically, we highlight the bioengineering approaches that were recently developed to mimic the hierarchical structure of osteons. We expect that this review will provide informative insights and attract increasing attentions in orthopedic community, shedding light on cortical bone regeneration in the future.
Collapse
Affiliation(s)
- Bei Chang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| |
Collapse
|
31
|
Vahidi G, Rux C, Sherk VD, Heveran CM. Lacunar-canalicular bone remodeling: Impacts on bone quality and tools for assessment. Bone 2021; 143:115663. [PMID: 32987198 PMCID: PMC7769905 DOI: 10.1016/j.bone.2020.115663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/06/2023]
Abstract
Osteocytes can resorb as well as replace bone adjacent to the expansive lacunar-canalicular system (LCS). Suppressed LCS remodeling decreases bone fracture toughness, but it is unclear how altered LCS remodeling impacts bone quality. The first goal of this review is to assess how LCS remodeling impacts LCS morphology as well as the composition and mechanical properties of surrounding bone tissue. The second goal is to compare tools available for the assessment of bone quality at length-scales that are physiologically-relevant to LCS remodeling. We find that changes to LCS morphology occur in response to a variety of physiological conditions and diseases and can be classified in two general phenotypes. In the 'aging phenotype', seen in aging and in some disuse models, the LCS is truncated and osteocytes apoptosis is increased. In the 'osteocytic osteolysis' phenotype, which is adaptive in some physiological settings and possibly maladaptive in others, the LCS enlarges and osteocytes generally maintain viability. Bone composition and mechanical properties vary near the osteocyte and change with at least some conditions that alter LCS morphology. However, few studies have evaluated bone composition and mechanical properties close to the LCS and so the impacts of LCS remodeling phenotypes on bone tissue quality are still undetermined. We summarize the current understanding of how LCS remodeling impacts LCS morphology, tissue-scale bone composition and mechanical properties, and whole-bone material properties. Tools are compared for assessing tissue-scale bone properties, as well as the resolution, advantages, and limitations of these techniques.
Collapse
Affiliation(s)
- G Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - C Rux
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America
| | - V D Sherk
- Department of Orthopedics, University of Colorado Anschutz School of Medicine, United States of America
| | - C M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, United States of America.
| |
Collapse
|
32
|
Abstract
Osteocytes are an ancient cell, appearing in fossilized skeletal remains of early fish and dinosaurs. Despite its relative high abundance, even in the context of nonskeletal cells, the osteocyte is perhaps among the least studied cells in all of vertebrate biology. Osteocytes are cells embedded in bone, able to modify their surrounding extracellular matrix via specialized molecular remodeling mechanisms that are independent of the bone forming osteoblasts and bone-resorbing osteoclasts. Osteocytes communicate with osteoclasts and osteoblasts via distinct signaling molecules that include the RankL/OPG axis and the Sost/Dkk1/Wnt axis, among others. Osteocytes also extend their influence beyond the local bone environment by functioning as an endocrine cell that controls phosphate reabsorption in the kidney, insulin secretion in the pancreas, and skeletal muscle function. These cells are also finely tuned sensors of mechanical stimulation to coordinate with effector cells to adjust bone mass, size, and shape to conform to mechanical demands.
Collapse
Affiliation(s)
- Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| |
Collapse
|
33
|
Buss DJ, Reznikov N, McKee MD. Crossfibrillar mineral tessellation in normal and Hyp mouse bone as revealed by 3D FIB-SEM microscopy. J Struct Biol 2020; 212:107603. [DOI: 10.1016/j.jsb.2020.107603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/05/2023]
|
34
|
Wilmoth RL, Ferguson VL, Bryant SJ. A 3D, Dynamically Loaded Hydrogel Model of the Osteochondral Unit to Study Osteocyte Mechanobiology. Adv Healthc Mater 2020; 9:e2001226. [PMID: 33073541 PMCID: PMC7677224 DOI: 10.1002/adhm.202001226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Osteocytes are mechanosensitive cells that orchestrate signaling in bone and cartilage across the osteochondral unit. The mechanisms by which osteocytes regulate osteochondral homeostasis and degeneration in response to mechanical cues remain unclear. This study introduces a novel 3D hydrogel bilayer composite designed to support osteocyte differentiation and bone matrix deposition in a bone-like layer and to recapitulate key aspects of the osteochondral unit's complex loading environment. The bilayer hydrogel is fabricated with a soft cartilage-like layer overlaying a stiff bone-like layer. The bone-like layer contains a stiff 3D-printed hydrogel structure infilled with a soft, degradable, cellular hydrogel. The IDG-SW3 cells embedded within the soft hydrogel mature into osteocytes and produce a mineralized collagen matrix. Under dynamic compressive strains, near-physiological levels of strain are achieved in the bone layer (≤ 0.08%), while the cartilage layer bears the majority of the strains (>99%). Under loading, the model induces an osteocyte response, measured by prostaglandin E2, that is frequency, but not strain, dependent: a finding attributed to altered fluid flow within the composite. Overall, this new hydrogel platform provides a novel approach to study osteocyte mechanobiology in vitro in an osteochondral tissue-mimetic environment.
Collapse
Affiliation(s)
- Rachel L Wilmoth
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, 80309-0427, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, 80309-0427, USA
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO, 80309-0596, USA
- Materials Science and Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO, 80309, USA
| | - Stephanie J Bryant
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO, 80309-0596, USA
- Materials Science and Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO, 80309, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO, 80309-0596, USA
| |
Collapse
|
35
|
Jandl NM, von Kroge S, Stürznickel J, Baranowsky A, Stockhausen KE, Mushumba H, Beil FT, Püschel K, Amling M, Rolvien T. Large osteocyte lacunae in iliac crest infantile bone are not associated with impaired mineral distribution or signs of osteocytic osteolysis. Bone 2020; 135:115324. [PMID: 32198110 DOI: 10.1016/j.bone.2020.115324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/29/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
The enlargement of osteocyte lacunae via osteocytic osteolysis was previously detected in situations of increased calcium demand (e.g., lactation, vitamin D deficiency). However, it is unclear whether similar processes occur also in the growing infantile skeleton and how this is linked to the mineral distribution within the bone matrix. Human iliac crest biopsies of 30 subjects (0-6 months, n = 14; 2-8 years, n = 6 and 18-25 years, n = 10) were acquired. Bone microarchitecture was assessed by micro-CT, while cellular bone histomorphometry was performed on undecalcified histological sections. Quantitative backscattered electron imaging (qBEI) was conducted to determine the bone mineral density distribution (BMDD) as well as osteocyte lacunar size and density. We additionally evaluated cathepsin K positive osteocytes using immunohistochemistry. Infantile bone was characterized by various signs of ongoing bone development such as higher bone (re)modeling, lower cortical and trabecular thickness compared to young adults. Importantly, a significantly higher osteocyte lacunar density and increased lacunar area were detected. Large osteocyte lacunae were associated with a more heterogeneous bone mineral density distribution of the trabecular bone matrix due to the presence of hypermineralized cartilage remnants, whereas the mean mineralization (i.e., CaMean) was not different in infantile bone. Absence of cathepsin K expression in osteocyte lacunae indicated nonexistent osteocytic osteolysis. Taken together, we demonstrated that the overall mineralization distribution in infantile bone is not altered compared to young adults besides high trabecular mineralization heterogeneity. Our study also provides important reference values for bone microstructure, BMDD and osteocyte characteristics in infants, children and young adults. Infantile bone displays large osteocyte lacunae indicating a developmental phenomenon rather than osteocytic osteolysis. Larger osteocytes may have superior mechanosensory abilities to enable bone adaption during growth.
Collapse
Affiliation(s)
- Nico Maximilian Jandl
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Anke Baranowsky
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Kilian Elia Stockhausen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Herbert Mushumba
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529 Hamburg, Germany
| | - Frank Timo Beil
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529 Hamburg, Germany
| | - Michael Amling
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Tim Rolvien
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany.
| |
Collapse
|
36
|
Osteocyte lacunar strain determination using multiscale finite element analysis. Bone Rep 2020; 12:100277. [PMID: 32478144 PMCID: PMC7251370 DOI: 10.1016/j.bonr.2020.100277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/13/2020] [Accepted: 05/01/2020] [Indexed: 01/09/2023] Open
Abstract
Osteocytes are thought to be the primary mechanosensory cells within bone, regulating both osteoclasts and osteoblasts to control load induced changes in bone resorption and formation. Osteocytes initiate intracellular responses including activating the Wnt/β-catenin signaling pathway after experiencing mechanical forces. In response to changing mechanical loads (strain) the osteocytes signal to cells on the bone surface. However, this process of osteocyte activation appears heterogeneous since it occurs in sub-populations of osteocytes, even within regions predicted to be experiencing similar global strain magnitudes determined based on traditional finite element modeling approaches. Several studies have investigated the strain responses of osteocyte lacunae using finite element (FE) models, but many were limited by the use of idealized geometries (e.g., ellipsoids) and analysis of a single osteocyte. Finite element models by other groups included more details, such as canaliculi, but all were done on models consisting of a single osteocyte. We hypothesized that variation in size and orientation of the osteocyte lacunae within bone would give rise to micro heterogeneity in the strain fields that could better explain the observed patterns of osteocyte activation following load. The osteocytes in our microscale and nanoscale models have an idealized oval shape and some are based on confocal scans. However, all the FE models in this preliminary study consist of multiple osteocytes. The number of osteocytes in the 3D confocal scan models ranged from five to seventeen. In this study, a multi-scale computational approach was used to first create an osteocyte FE model at the microscale level to examine both the theoretical lacunar and perilacunar strain responses based on two parameters: 1) lacunar orientation and 2) lacunar size. A parametric analysis was performed by steadily increasing the perilacunar modulus (5, 10, 15, and 20 GPa). Secondly, a nanoscale FE model was built using known osteocyte dimensions to determine the predicted strains in the perilacunar matrix, fluid space, and cell body regions. Finally, 3-D lacunar models were created using confocal image stacks from mouse femurs to determine the theoretical strain in the lacunae represented by realistic geometries. Overall, lacunar strains decreased by 14% in the cell body, 15% in the fluid space region and 25% in the perilacunar space as the perilacunar modulus increased, indicating a stress shielding effect. Lacunar strains were lower for the osteocytes aligned along the loading axis compared to those aligned perpendicular to axis. Increases in lacuna size also led to increased lacunar strains. These finite element model findings suggest that orientation and lacunar size may contribute to the heterogeneous initial pattern of osteocyte strain response observed in bone following in vivo applied mechanical loads. A better understanding of how mechanical stimuli directly affect the lacunae and perilacunar tissue strains may ultimately lead to a better understanding of the process of osteocyte activation in response to mechanical loading. A multi-scale computational approach used to first create multiple osteocyte FE model at the microscale level 3-D Lacuna model created using confocal image stacks from a mouse femur to determine the theoretical strain in the lacunae. Lacunar strains decreased as the perilacunar modulus increased. Lacunar strains were lower for the osteocytes aligned along the loading axis compared to those aligned perpendicular to axis. Increases in lacuna size also led to increased lacunar strains
Collapse
|
37
|
Taylor EA, Donnelly E, Yao X, Johnson ML, Amugongo SK, Kimmel DB, Lane NE. Sequential Treatment of Estrogen Deficient, Osteopenic Rats with Alendronate, Parathyroid Hormone (1-34), or Raloxifene Alters Cortical Bone Mineral and Matrix Composition. Calcif Tissue Int 2020; 106:303-314. [PMID: 31784772 DOI: 10.1007/s00223-019-00634-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
Abstract
Anti-resorptive and anabolic treatments can be used sequentially to treat osteoporosis, but their effects on bone composition are incompletely understood. Osteocytes may influence bone tissue composition with sequential therapies because bisphosphonates diffuse into the canalicular network and anabolic treatments increase osteocyte lacunar size. Cortical bone composition of osteopenic, ovariectomized (OVX) rats was compared to that of Sham-operated rats and OVX rats given monotherapy or sequential regimens of single approved anti-osteoporosis medications. Adult female Sprague-Dawley rats were OVX (N = 37) or Sham-OVXd (N = 6). After 2 months, seven groups of OVX rats were given three consecutive 3-month periods of treatment with vehicle (V), h-PTH (1-34) (P), alendronate (A), or raloxifene (R), using the following orders: VVV, PVV, RRR, RPR, AAA, AVA, and APA. Compositional properties around osteocyte lacunae of the left tibial cortex were assessed from Raman spectra in perilacunar and non-perilacunar bone matrix regions. Sequential treatments involving parathyroid hormone (PTH) caused lower mean collagen maturity relative to monotherapies. Mean mineral:matrix ratio was 2.2% greater, mean collagen maturity was 1.4% greater, and mean carbonate:phosphate ratio was 2.2% lower in the perilacunar than in the non-perilacunar bone matrix region (all P < 0.05). These data demonstrate cortical bone tissue composition differences around osteocytes caused by sequential treatment with anti-osteoporosis medications. We speculate that the region-specific differences demonstrate the ability of osteocytes to alter bone tissue composition adjacent to lacunae.
Collapse
Affiliation(s)
- Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
- Research Division, Hospital for Special Surgery, New York, NY, USA
| | - Xiaomei Yao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah K Amugongo
- Center for Musculoskeletal Health, University of California Davis Medical Center, Sacramento, CA, USA
| | - Donald B Kimmel
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California Davis Medical Center, Sacramento, CA, USA.
- Health Center, University of California At Davis, 4625 Second Avenue, Suite 2006, Sacramento, CA, 95817, USA.
| |
Collapse
|
38
|
Stocchero M, Jinno Y, Toia M, Jimbo R, Lee C, Yamaguchi S, Imazato S, Becktor JP. In silico multi-scale analysis of remodeling peri-implant cortical bone: a comparison of two types of bone structures following an undersized and non-undersized technique. J Mech Behav Biomed Mater 2020; 103:103598. [DOI: 10.1016/j.jmbbm.2019.103598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
|
39
|
Gauthier R, Follet H, Langer M, Peyrin F, Mitton D. What is the influence of two strain rates on the relationship between human cortical bone toughness and micro-structure? Proc Inst Mech Eng H 2020; 234:247-254. [DOI: 10.1177/0954411919884776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cortical bone fracture mechanisms are well studied under quasi-static loading. The influence of strain rate on crack propagation mechanisms needs to be better understood, however. We have previously shown that several aspects of the bone micro-structure are involved in crack propagation, such as the complete porosity network, including the Haversian system and the lacunar network, as well as biochemical aspects, such as the maturity of collagen cross-links. The aim of this study is to investigate the influence of strain rate on the toughness of human cortical bone with respect to its microstructure and organic non-collagenous composition. Two strain rates will be considered: quasi-static loading (10−4 s−1), a standard condition, and a higher loading rate (10−1 s−1), representative of a fall. Cortical bone samples were extracted from eight female donors (age 50–91 years). Three-point bending tests were performed until failure. Synchrotron radiation micro-computed tomography imaging was performed to assess bone microstructure including the Haversian system and the lacunar system. Collagen enzymatic cross-link maturation was measured using a high performance liquid chromatography column. Results showed that that under quasi-static loading, the elastic contribution of the fracture process is correlated to both the collagen cross-links maturation and the microstructure, while the plastic contribution is correlated only to the porosity network. Under fall-like loading, bone organization appears to be less linked to crack propagation.
Collapse
Affiliation(s)
- Rémy Gauthier
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, Lyon, France
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, CREATIS, Villeurbanne, France
| | - Hélène Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, LYOS UMR1033, Lyon, France
| | - Max Langer
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, CREATIS, Villeurbanne, France
| | - Françoise Peyrin
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, CREATIS, Villeurbanne, France
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - David Mitton
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, Lyon, France
| |
Collapse
|
40
|
Goggin P, Ho EML, Gnaegi H, Searle S, Oreffo ROC, Schneider P. Development of protocols for the first serial block-face scanning electron microscopy (SBF SEM) studies of bone tissue. Bone 2020; 131:115107. [PMID: 31669251 PMCID: PMC6961117 DOI: 10.1016/j.bone.2019.115107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 11/28/2022]
Abstract
There is an unmet need for a high-resolution three-dimensional (3D) technique to simultaneously image osteocytes and the matrix in which these cells reside. In serial block-face scanning electron microscopy (SBF SEM), an ultramicrotome mounted within the vacuum chamber of a microscope repeatedly sections a resin-embedded block of tissue. Backscattered electron scans of the block face provide a stack of high-resolution two-dimensional images, which can be used to visualise and quantify cells and organelles in 3D. High-resolution 3D images of biological tissues from SBF SEM have been exploited considerably to date in the neuroscience field. However, non-brain samples, in particular hard biological tissues, have appeared more challenging to image by SBF SEM due to the difficulties of sectioning and rendering the samples conductive. We have developed and propose protocols for bone tissue preparation using SBF SEM, for imaging simultaneously soft and hard bone tissue components in 3D. We review the state of the art in high-resolution imaging of osteocytes, provide a historical perspective of SBF SEM, and we present first SBF SEM proof-of-concept studies for murine and human tissue. The application of SBF SEM to hard tissues will facilitate qualitative and quantitative 3D studies of tissue microstructure and ultrastructure in bone development, ageing and pathologies such as osteoporosis and osteoarthritis.
Collapse
Affiliation(s)
- Patricia Goggin
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Elaine M L Ho
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | | | | | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philipp Schneider
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
41
|
Delgado-Ruiz RA, Calvo-Guirado JL, Romanos GE. Effects of occlusal forces on the peri-implant-bone interface stability. Periodontol 2000 2019; 81:179-193. [PMID: 31407438 DOI: 10.1111/prd.12291] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The occlusal forces and their influence on the initiation of peri-implant bone loss or their relationship with peri-implantitis have created discussion during the past 30 years given the discrepancies observed in clinical, animal, and finite element analysis studies. Beyond these contradictions, in the case of an osseointegrated implant, the occlusal forces can influence the implant-bone interface and the cells responsible for the bone remodeling in different ways that may result in the maintenance or loss of the osseointegration. This comprehensive review focuses on the information available about the forces transmitted through the implant-crown system to the implant-bone interface and the mechano-transduction phenomena responsible for the bone cells' behavior and their interactions. Knowledge of the basic molecular biology of the peri-implant bone would help clinicians to understand the complex phenomenon of occlusal forces and their effects on the implant-bone interface, and would allow better control of the negative effects of mechanical stresses, leading to therapy with fewer risks and complications.
Collapse
Affiliation(s)
- Rafael Arcesio Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Jose Luis Calvo-Guirado
- International Dentistry Research Cathedra, Faculty of Medicine and Dentistry, Universidad Catolica San Antonio De Murcia (UCAM), Murcia, Spain
| | - Georgios E Romanos
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA.,Department of Oral Surgery and Implant Dentistry, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
42
|
George EL, Truesdell SL, Magyar AL, Saunders MM. The effects of mechanically loaded osteocytes and inflammation on bone remodeling in a bisphosphonate-induced environment. Bone 2019; 127:460-473. [PMID: 31301402 DOI: 10.1016/j.bone.2019.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022]
Abstract
Bisphosphonate-related osteonecrosis of the jaw is a disease appearing after tooth removal in patients undergoing bisphosphonate treatment for metastasizing cancers and osteoporosis. The complexity of the condition requires a multicellular model to address the net effects of two key risk factors: mechanical trauma (pathologic overload) and inflammation. In this work, a system comprised of a polydimethylsiloxane chip and mechanical loading device is used to expose bisphosphonate-treated osteocytes to mechanical trauma. Specifically, osteocytes are treated with the potent nitrogen-containing bisphosphonate, zoledronic acid, and exposed to short-term pathologic overload via substrate stretch. During bone remodeling, osteocyte apoptosis plays a role in attracting pre-osteoclasts to sites of damage; as such, lactate dehydrogenase activity, cell death and protein expression are evaluated as functions of load. Additionally, the effects of osteocyte soluble factors on osteoclast and osteoblast functional activity are quantified. Osteoclast activity and bone resorption are quantified in the presence and absence of inflammatory components, lipopolysaccharide and interferon gamma. Results suggest that inflammation associated with bacterial infection may hinder bone resorption by osteoclasts. In addition, osteocytes may respond to overload by altering expression of soluble signals that act on osteoblasts to attenuate bone formation. These findings give insight into the multicellular interactions implicated in bisphosphonate-related osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Estee L George
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| | - Sharon L Truesdell
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| | - Alexandria L Magyar
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| | - Marnie M Saunders
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| |
Collapse
|
43
|
Othman MIA, Abd-Elaziz EM. Effect of initial stress and Hall current on a magneto-thermoelastic porous medium with microtemperatures. INDIAN JOURNAL OF PHYSICS 2019; 93:475-485. [DOI: 10.1007/s12648-018-1313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 07/12/2018] [Indexed: 09/02/2023]
|
44
|
Gardinier JD, Al-Omaishi S, Rostami N, Morris MD, Kohn DH. Examining the influence of PTH(1-34) on tissue strength and composition. Bone 2018; 117:130-137. [PMID: 30261327 PMCID: PMC6202137 DOI: 10.1016/j.bone.2018.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/27/2018] [Accepted: 09/23/2018] [Indexed: 01/13/2023]
Abstract
The lacunar-canaliculi system is a network of channels that is created and maintained by osteocytes as they are embedded throughout cortical bone. As osteocytes modify their lacuna space, the local tissue composition and tissue strength are subject to change. Although continual exposure to parathyroid hormone (PTH) can induce adaptation at the lacunar wall, the impact of intermittent PTH treatment on perilacunar adaptation remains unclear. Therefore, the primary objective of this study was to establish how intermittent PTH(1-34) treatment influences perilacunar adaptation with respect to changes in tissue composition. We hypothesized that local changes in tissue composition following PTH(1-34) are associated with corresponding gains in tissue strength and resistance to microdamage at the whole bone level. Adult male C57BL/6J mice were treated daily with PTH(1-34) or vehicle for 3 weeks. In response to PTH(1-34), Raman spectroscopy revealed a significant decrease in the carbonate-to-phosphate ratio and crystallinity across the entire tissue, while the mineral-to-matrix ratio demonstrated a significant decrease in just the perilacunar region. The shift in perilacunar composition largely explained the corresponding increase in tissue strength, while the degree of new tissue added at the endosteum and periosteum did not produce any significant changes in cortical area or moment of inertia that would explain the increase in tissue strength. Furthermore, fatigue testing revealed a greater resistance to crack formation within the existing tissue following PTH(1-34) treatment. As a result, the shift in perilacunar composition presents a unique mechanism by which PTH(1-34) produces localized differences in tissue quality that allow more energy to be dissipated under loading, thereby increasing tissue strength and resistance to microdamage. In addition, our findings demonstrate the potential for PTH(1-34) to amplify osteocytes' mechanotransduction by producing a more compliant tissue. Overall, the present study demonstrates that changes in tissue composition localized at the lacuna wall contribute to the strength and fatigue resistance of cortical bone gained in response to intermittent PTH(1-34) treatment.
Collapse
Affiliation(s)
| | - Salam Al-Omaishi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Niloufar Rostami
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Michael D Morris
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - David H Kohn
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
45
|
Paul GR, Malhotra A, Müller R. Mechanical Stimuli in the Local In Vivo Environment in Bone: Computational Approaches Linking Organ-Scale Loads to Cellular Signals. Curr Osteoporos Rep 2018; 16:395-403. [PMID: 29915967 PMCID: PMC6579731 DOI: 10.1007/s11914-018-0448-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Connecting organ-scale loads to cellular signals in their local in vivo environment is a current challenge in the field of bone (re)modelling. Understanding this critical missing link would greatly improve our ability to anticipate mechanotransduction during different modes of stimuli and the resultant cellular responses. This review characterises computational approaches that could enable coupling links across the multiple scales of bone. RECENT FINDINGS Current approaches using strain and fluid shear stress concepts have begun to link organ-scale loads to cellular signals; however, these approaches fail to capture localised micro-structural heterogeneities. Furthermore, models that incorporate downstream communication from osteocytes to osteoclasts, bone-lining cells and osteoblasts, will help improve the understanding of (re)modelling activities. Incorporating this potentially key information in the local in vivo environment will aid in developing multiscale models of mechanotransduction that can predict or help describe resultant biological events related to bone (re)modelling. Progress towards multiscale determination of the cell mechanical environment from organ-scale loads remains elusive. Construction of organ-, tissue- and cell-scale computational models that include localised environmental variation, strain amplification and intercellular communication mechanisms will ultimately help couple the hierarchal levels of bone.
Collapse
Affiliation(s)
- Graeme R Paul
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zürich, Switzerland
| | - Angad Malhotra
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zürich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zürich, Switzerland.
| |
Collapse
|
46
|
Hemmatian H, Laurent MR, Bakker AD, Vanderschueren D, Klein-Nulend J, van Lenthe GH. Age-related changes in female mouse cortical bone microporosity. Bone 2018; 113:1-8. [PMID: 29738854 DOI: 10.1016/j.bone.2018.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/04/2018] [Accepted: 05/02/2018] [Indexed: 12/23/2022]
Abstract
Osteocyte lacunae are small cavities within the bone matrix. Their dimensions and spatial arrangement affect bone mechanical properties. Furthermore, their size and shape affect the strain in bone tissue close to the lacunae; hence, they are supposed to affect the mechanosensory function of the osteocytes residing in the lacunae. It was the purpose of this study to quantify the morphological features of osteocyte lacunae, whether these are affected by aging and whether these vary among different anatomical location. In addition, we aimed at quantifying the vascular canals as these affect bone's microporosity too. We quantified the microporosity in the fibular midshaft of young-adult and old female C57BL/6 mice. Using micro-computed tomography (μCT), we found that advanced age was associated with a significantly decreased vascular canal number and volume density. In aged mice, the mean volume of the lacuna was significantly smaller than in young animals and they were more round. Lacuna number density close to the neutral axis of the fibula was higher in older mice than in young ones. The characterization of bone microporosity presents a first step in further unraveling their potential role in age-related reductions in bone strength.
Collapse
Affiliation(s)
- Haniyeh Hemmatian
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Michaël R Laurent
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - G Harry van Lenthe
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
47
|
Wang Z, Vashishth D, Picu RC. Bone toughening through stress-induced non-collagenous protein denaturation. Biomech Model Mechanobiol 2018; 17:1093-1106. [DOI: 10.1007/s10237-018-1016-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/02/2018] [Indexed: 01/17/2023]
|
48
|
Effect of osteoporosis treatment agents on the cortical bone osteocyte microenvironment in adult estrogen-deficient, osteopenic rats. Bone Rep 2018; 8:115-124. [PMID: 29955630 PMCID: PMC6020081 DOI: 10.1016/j.bonr.2018.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 01/18/2018] [Accepted: 02/23/2018] [Indexed: 11/21/2022] Open
Abstract
Though osteoporosis is a significant cause of disability worldwide, treatment with pharmacologic agents decreases risk of fragility fracture. Though these treatments act through the bone remodeling system to improve bone mass, it is unclear if they alter the response of bone to mechanical loading at the level of the osteocyte. This pre-clinical study determined the relationship between microstructural bone tissue properties and osteocyte lacunar size and density to strain around osteocytes with standard osteoporosis treatment or sequential therapies. Six-month-old female ovariectomized (OVX) Sprague-Dawley rats were cycled through various sequences of pharmacological treatments [alendronate (Aln), raloxifene (Ral) and human parathyroid hormone-1,34 (PTH)] for three month intervals, over nine months. Linear nanoindentation mapping was used to determine Young's modulus in perilacunar and bone matrix regions around cortical bone osteocyte lacunae. Measurements of lacunar diameter and density were completed. Treatment-related differences in Young's modulus in the perilacunar and bone matrix regions were not observed. We confirmed previous data that showed that the bone matrix region was stiffer than the perilacunar matrix region. Whole bone material properties were correlated to perilacunar matrix stiffness. Finite element models predicted a range of mechanical strain amplification factors estimated at the osteocyte across treatment groups. In summary, though the perilacunar matrix near cortical osteocyte lacuna is not as stiff as bone matrix further away, osteoporosis treatment agents do not affect the stiffness of bone tissue near osteocyte lacunae. Monotherapy with osteoporosis treatment agents does not affect the stiffness of bone tissue around osteocyte lacunae. Sequential use of osteoporosis treatment agents does not affect bone tissue stiffness around osteocyte lacunae. Perilacunar cortical bone tissue is not as stiff as bone matrix further from osteocyte lacunae. Whole bone material properties are negatively correlated to the stiffness of perilacunar bone tissue.
Collapse
|
49
|
Pastrama MI, Scheiner S, Pivonka P, Hellmich C. A mathematical multiscale model of bone remodeling, accounting for pore space-specific mechanosensation. Bone 2018; 107:208-221. [PMID: 29170108 DOI: 10.1016/j.bone.2017.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/30/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
Abstract
While bone tissue is a hierarchically organized material, mathematical formulations of bone remodeling are often defined on the level of a millimeter-sized representative volume element (RVE), "smeared" over all types of bone microstructures seen at lower observation scales. Thus, there is no explicit consideration of the fact that the biological cells and biochemical factors driving bone remodeling are actually located in differently sized pore spaces: active osteoblasts and osteoclasts can be found in the vascular pores, whereas the lacunar pores host osteocytes - bone cells originating from former osteoblasts which were then "buried" in newly deposited extracellular bone matrix. We here propose a mathematical description which considers size and shape of the pore spaces where the biological and biochemical events take place. In particular, a previously published systems biology formulation, accounting for biochemical regulatory mechanisms such as the rank-rankl-opg pathway, is cast into a multiscale framework coupled to a poromicromechanical model. The latter gives access to the vascular and lacunar pore pressures arising from macroscopic loading. Extensive experimental data on the biological consequences of this loading strongly suggest that the aforementioned pore pressures, together with the loading frequency, are essential drivers of bone remodeling. The novel approach presented here allows for satisfactory simulation of the evolution of bone tissue under various loading conditions, and for different species; including scenarios such as mechanical dis- and overuse of murine and human bone, or in osteocyte-free bone.
Collapse
Affiliation(s)
- Maria-Ioana Pastrama
- Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), Karlsplatz 13/202, Vienna A-1040, Austria; KU Leuven, Department of Movement Sciences, Human Movement Biomechanics Research Group, Tervuursevest 101, 3001 Leuven, Belgium
| | - Stefan Scheiner
- Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), Karlsplatz 13/202, Vienna A-1040, Austria.
| | - Peter Pivonka
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George St, Brisbane 4000, QLD, Australia; St. Vincent's Department of Surgery, The University of Melbourne, Clinical Science Building, 29 Regent Street, VIC 3065, Australia
| | - Christian Hellmich
- Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), Karlsplatz 13/202, Vienna A-1040, Austria
| |
Collapse
|
50
|
Computational Investigation on the Biomechanical Responses of the Osteocytes to the Compressive Stimulus: A Poroelastic Model. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4071356. [PMID: 29581973 PMCID: PMC5822791 DOI: 10.1155/2018/4071356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/02/2017] [Accepted: 12/19/2017] [Indexed: 11/17/2022]
Abstract
Osteocytes, the major type of bone cells embedded in the bone matrix and surrounded by the lacunar and canalicular system, can serve as biomechanosensors and biomechanotranducers of the bone. Theoretical analytical methods have been employed to investigate the biomechanical responses of osteocytes in vivo; the poroelastic properties have not been taken into consideration in the three-dimensional (3D) finite element model. In this study, a 3D poroelastic idealized finite element model was developed and was used to predict biomechanical behaviours (maximal principal strain, pore pressure, and fluid velocity) of the osteocyte-lacunar-canalicular system under 150-, 1000-, 3000-, and 5000-microstrain compressive loads, respectively, representing disuse, physiological, overuse, and pathological overload loading stimuli. The highest local strain, pore pressure, and fluid velocity were found to be highest at the proximal region of cell processes. These data suggest that the strain, pore pressure, and fluid velocity of the osteocyte-lacunar-canalicular system increase with the global loading and that the poroelastic material property affects the biomechanical responses to the compressive stimulus. This new model can be used to predict the mechanobiological behaviours of osteocytes under the four different compressive loadings and may provide an insight into the mechanisms of mechanosensation and mechanotransduction of the bone.
Collapse
|