1
|
Eckstein KN, Hergert JE, Uzcategui AC, Schoonraad SA, Bryant SJ, McLeod RR, Ferguson VL. Controlled Mechanical Property Gradients Within a Digital Light Processing Printed Hydrogel-Composite Osteochondral Scaffold. Ann Biomed Eng 2024; 52:2162-2177. [PMID: 38684606 DOI: 10.1007/s10439-024-03516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
Tissue engineered scaffolds are needed to support physiological loads and emulate the micrometer-scale strain gradients within tissues that guide cell mechanobiological responses. We designed and fabricated micro-truss structures to possess spatially varying geometry and controlled stiffness gradients. Using a custom projection microstereolithography (μSLA) system, using digital light projection (DLP), and photopolymerizable poly(ethylene glycol) diacrylate (PEGDA) hydrogel monomers, three designs with feature sizes < 200 μm were formed: (1) uniform structure with 1 MPa structural modulus ( E ) designed to match equilibrium modulus of healthy articular cartilage, (2) E = 1 MPa gradient structure designed to vary strain with depth, and (3) osteochondral bilayer with distinct cartilage ( E = 1 MPa) and bone ( E = 7 MPa) layers. Finite element models (FEM) guided design and predicted the local mechanical environment. Empty trusses and poly(ethylene glycol) norbornene hydrogel-infilled composite trusses were compressed during X-ray microscopy (XRM) imaging to evaluate regional stiffnesses. Our designs achieved target moduli for cartilage and bone while maintaining 68-81% porosity. Combined XRM imaging and compression of empty and hydrogel-infilled micro-truss structures revealed regional stiffnesses that were accurately predicted by FEM. In the infilling hydrogel, FEM demonstrated the stress-shielding effect of reinforcing structures while predicting strain distributions. Composite scaffolds made from stiff μSLA-printed polymers support physiological load levels and enable controlled mechanical property gradients which may improve in vivo outcomes for osteochondral defect tissue regeneration. Advanced 3D imaging and FE analysis provide insights into the local mechanical environment surrounding cells in composite scaffolds.
Collapse
Affiliation(s)
- Kevin N Eckstein
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, 427 UCB, Boulder, CO, 80309, USA
| | - John E Hergert
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA
| | - Asais Camila Uzcategui
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA
| | - Sarah A Schoonraad
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Robert R McLeod
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA
- Department of Electrical, Computer & Energy Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Virginia L Ferguson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, 427 UCB, Boulder, CO, 80309, USA.
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
2
|
Gonella S, Domingues MF, Miguel F, Moura CS, Rodrigues CAV, Ferreira FC, Silva JC. Fabrication and Characterization of Porous PEGDA Hydrogels for Articular Cartilage Regeneration. Gels 2024; 10:422. [PMID: 39057446 PMCID: PMC11276562 DOI: 10.3390/gels10070422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Functional articular cartilage regeneration remains an unmet medical challenge, increasing the interest for innovative biomaterial-based tissue engineering (TE) strategies. Hydrogels, 3D macromolecular networks with hydrophilic groups, present articular cartilage-like features such as high water content and load-bearing capacity. In this study, 3D porous polyethylene glycol diacrylate (PEGDA) hydrogels were fabricated combining the gas foaming technique and a UV-based crosslinking strategy. The 3D porous PEGDA hydrogels were characterized in terms of their physical, structural and mechanical properties. Our results showed that the size of the hydrogel pores can be modulated by varying the initiator concentration. In vitro cytotoxicity tests showed that 3D porous PEGDA hydrogels presented high biocompatibility both with human chondrocytes and osteoblast-like cells. Importantly, the 3D porous PEGDA hydrogels supported the viability and chondrogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cell (hBM-MSC)-based spheroids as demonstrated by the positive staining of typical cartilage extracellular matrix (ECM) (glycosaminoglycans (GAGs)) and upregulation of chondrogenesis marker genes. Overall, the produced 3D porous PEGDA hydrogels presented cartilage-like mechanical properties and supported MSC spheroid chondrogenesis, highlighting their potential as suitable scaffolds for cartilage TE or disease modelling strategies.
Collapse
Affiliation(s)
- Silvia Gonella
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.G.); (M.F.D.); (F.M.); (C.A.V.R.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Margarida F. Domingues
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.G.); (M.F.D.); (F.M.); (C.A.V.R.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Filipe Miguel
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.G.); (M.F.D.); (F.M.); (C.A.V.R.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carla S. Moura
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços—S. Martinho do Bispo, 3045-093 Coimbra, Portugal;
- CDRSP—Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - Carlos A. V. Rodrigues
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.G.); (M.F.D.); (F.M.); (C.A.V.R.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.G.); (M.F.D.); (F.M.); (C.A.V.R.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.G.); (M.F.D.); (F.M.); (C.A.V.R.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
Alizadeh Sardroud H, Chen X, Eames BF. Reinforcement of Hydrogels with a 3D-Printed Polycaprolactone (PCL) Structure Enhances Cell Numbers and Cartilage ECM Production under Compression. J Funct Biomater 2023; 14:313. [PMID: 37367278 DOI: 10.3390/jfb14060313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023] Open
Abstract
Hydrogels show promise in cartilage tissue engineering (CTE) by supporting chondrocytes and maintaining their phenotype and extracellular matrix (ECM) production. Under prolonged mechanical forces, however, hydrogels can be structurally unstable, leading to cell and ECM loss. Furthermore, long periods of mechanical loading might alter the production of cartilage ECM molecules, including glycosaminoglycans (GAGs) and collagen type 2 (Col2), specifically with the negative effect of stimulating fibrocartilage, typified by collagen type 1 (Col1) secretion. Reinforcing hydrogels with 3D-printed Polycaprolactone (PCL) structures offer a solution to enhance the structural integrity and mechanical response of impregnated chondrocytes. This study aimed to assess the impact of compression duration and PCL reinforcement on the performance of chondrocytes impregnated with hydrogel. Results showed that shorter loading periods did not significantly affect cell numbers and ECM production in 3D-bioprinted hydrogels, but longer periods tended to reduce cell numbers and ECM compared to unloaded conditions. PCL reinforcement enhanced cell numbers under mechanical compression compared to unreinforced hydrogels. However, the reinforced constructs seemed to produce more fibrocartilage-like, Col1-positive ECM. These findings suggest that reinforced hydrogel constructs hold potential for in vivo cartilage regeneration and defect treatment by retaining higher cell numbers and ECM content. To further enhance hyaline cartilage ECM formation, future studies should focus on adjusting the mechanical properties of reinforced constructs and exploring mechanotransduction pathways.
Collapse
Affiliation(s)
- Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - B Frank Eames
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
4
|
Alizadeh Sardroud H, Chen X, Eames BF. Applied Compressive Strain Governs Hyaline-like Cartilage versus Fibrocartilage-like ECM Produced within Hydrogel Constructs. Int J Mol Sci 2023; 24:ijms24087410. [PMID: 37108575 PMCID: PMC10138702 DOI: 10.3390/ijms24087410] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The goal of cartilage tissue engineering (CTE) is to regenerate new hyaline cartilage in joints and treat osteoarthritis (OA) using cell-impregnated hydrogel constructs. However, the production of an extracellular matrix (ECM) made of fibrocartilage is a potential outcome within hydrogel constructs when in vivo. Unfortunately, this fibrocartilage ECM has inferior biological and mechanical properties when compared to native hyaline cartilage. It was hypothesized that compressive forces stimulate fibrocartilage development by increasing production of collagen type 1 (Col1), an ECM protein found in fibrocartilage. To test the hypothesis, 3-dimensional (3D)-bioprinted hydrogel constructs were fabricated from alginate hydrogel impregnated with ATDC5 cells (a chondrogenic cell line). A bioreactor was used to simulate different in vivo joint movements by varying the magnitude of compressive strains and compare them with a control group that was not loaded. Chondrogenic differentiation of the cells in loaded and unloaded conditions was confirmed by deposition of cartilage specific molecules including glycosaminoglycans (GAGs) and collagen type 2 (Col2). By performing biochemical assays, the production of GAGs and total collagen was also confirmed, and their contents were quantitated in unloaded and loaded conditions. Furthermore, Col1 vs. Col2 depositions were assessed at different compressive strains, and hyaline-like cartilage vs. fibrocartilage-like ECM production was analyzed to investigate how applied compressive strain affects the type of cartilage formed. These assessments showed that fibrocartilage-like ECM production tended to reduce with increasing compressive strain, though its production peaked at a higher compressive strain. According to these results, the magnitude of applied compressive strain governs the production of hyaline-like cartilage vs. fibrocartilage-like ECM and a high compressive strain stimulates fibrocartilage-like ECM formation rather than hyaline cartilage, which needs to be addressed by CTE approaches.
Collapse
Affiliation(s)
- Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - B Frank Eames
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
5
|
Majood M, Shakeel A, Agarwal A, Jeevanandham S, Bhattacharya R, Kochhar D, Singh A, Kalyanasundaram D, Mohanty S, Mukherjee M. Hydrogel Nanosheets Confined 2D Rhombic Ice: A New Platform Enhancing Chondrogenesis. Biomed Mater 2022; 17. [PMID: 36044885 DOI: 10.1088/1748-605x/ac8e43] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/31/2022] [Indexed: 11/12/2022]
Abstract
Nanoconfinement within flexible interfaces is a key step towards exploiting confinement effects in several biological and technological systems wherein flexible 2D materials are frequently utilized but are arduous to prepare. Hitherto unreported, the synthesis of 2D Hydrogel nanosheets (HNS) using a template- and catalyst-free process is developed representing a fertile ground for fundamental structure-property investigations. In due course of time, nucleating folds propagating along the edges trigger co-operative deformations of HNS generating regions of nanoconfinement within trapped water islands. These severely constricting surfaces force water molecules to pack within the nanoscale regime of HNS almost parallel to the surface bringing about phase transition into puckered rhombic ice with AA and AB Bernal stacking pattern, which was mostly restricted to Molecular dynamics (MD) studies so far. Interestingly, under high lateral pressure and spatial inhomogeneity within nanoscale confinement, bilayer rhombic ice structures were formed with an in-plane lattice spacing of 0.31 nm. In this work, a systematic exploration of rhombic ice formation within HNS has been delineated using High-resolution transmission electron microscopy (HRTEM), and its ultrathin morphology was examined using Atomic Force Microscopy (AFM). Scanning Electron Microscopy (SEM) images revealed high porosity while mechanical testing presented young's modulus of 155 kPa with ~84% deformation, whereas contact angle suggested high hydrophilicity. The combinations of nanosheets, porosity, nanoconfinement, hydrophilicity, and mechanical strength, motivated us to explore their application as a scaffold for cartilage regeneration, by inducing chondrogenesis of human Wharton Jelly derived mesenchymal stem cells (hWJ MSCs). HNS promoted the formation of cell aggregates giving higher number of spheroid formation and a marked expression of chondrogenic markers (ColI, ColII, ColX, ACAN and S-100), thereby providing some cues for guiding chondrogenic differentiation.
Collapse
Affiliation(s)
- Misba Majood
- AICCRS, Amity University, Sector 125, Noida, Noida, Uttar Pradesh, 201313, INDIA
| | - Adeeba Shakeel
- AICCRS, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, INDIA
| | - Aakanksha Agarwal
- AICCRS, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, INDIA
| | | | | | - Dakshi Kochhar
- Amity University, Sector 125, Noida, Uttar Pradesh, 201313, INDIA
| | - Aarti Singh
- AICCRS, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, INDIA
| | | | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences Cardio-Thoracic Sciences Centre, Orbo Building, first floor,, Ansari Nagar, New Delhi, New Delhi, Delhi, 110029, INDIA
| | | |
Collapse
|
6
|
Zhang Y, Habibovic P. Delivering Mechanical Stimulation to Cells: State of the Art in Materials and Devices Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110267. [PMID: 35385176 DOI: 10.1002/adma.202110267] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Biochemical signals, such as growth factors, cytokines, and transcription factors are known to play a crucial role in regulating a variety of cellular activities as well as maintaining the normal function of different tissues and organs. If the biochemical signals are assumed to be one side of the coin, the other side comprises biophysical cues. There is growing evidence showing that biophysical signals, and in particular mechanical cues, also play an important role in different stages of human life ranging from morphogenesis during embryonic development to maturation and maintenance of tissue and organ function throughout life. In order to investigate how mechanical signals influence cell and tissue function, tremendous efforts have been devoted to fabricating various materials and devices for delivering mechanical stimuli to cells and tissues. Here, an overview of the current state of the art in the design and development of such materials and devices is provided, with a focus on their design principles, and challenges and perspectives for future research directions are highlighted.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
7
|
Gao J, Xia Z, Mary HB, Joseph J, Luo JN, Joshi N. Overcoming barriers for intra-articular delivery of disease-modifying osteoarthritis drugs. Trends Pharmacol Sci 2022; 43:171-187. [PMID: 35086691 PMCID: PMC8840969 DOI: 10.1016/j.tips.2021.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/27/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
Despite four decades of research in intra-articular drug delivery systems (DDS) and two decades of advances in disease-modifying osteoarthritis drugs (DMOADs), there is still no clinically available disease-modifying therapy for osteoarthritis (OA). Multiple barriers compromise intra-articular DMOAD delivery. Although multiple exciting approaches have been developed to overcome these barriers, there are still outstanding questions. We make several recommendations that can help in fully overcoming these barriers. Considering OA heterogeneity, we also propose a patient-centered, bottom-up workflow to guide preclinical development of DDS-based intra-articular DMOAD therapies. Overall, we expect this review to inspire paradigm-shifting innovations for developing next-generation DDS that can enable clinical translation of intra-articular DMOADs.
Collapse
Affiliation(s)
- Jingjing Gao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ziting Xia
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Helna B Mary
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - John Joseph
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - James N Luo
- Harvard Medical School, Boston, MA 02115, USA; Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Vernerey FJ, Lalitha Sridhar S, Muralidharan A, Bryant SJ. Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem Rev 2021; 121:11085-11148. [PMID: 34473466 DOI: 10.1021/acs.chemrev.1c00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogels are highly water-swollen molecular networks that are ideal platforms to create tissue mimetics owing to their vast and tunable properties. As such, hydrogels are promising cell-delivery vehicles for applications in tissue engineering and have also emerged as an important base for ex vivo models to study healthy and pathophysiological events in a carefully controlled three-dimensional environment. Cells are readily encapsulated in hydrogels resulting in a plethora of biochemical and mechanical communication mechanisms, which recapitulates the natural cell and extracellular matrix interaction in tissues. These interactions are complex, with multiple events that are invariably coupled and spanning multiple length and time scales. To study and identify the underlying mechanisms involved, an integrated experimental and computational approach is ideally needed. This review discusses the state of our knowledge on cell-hydrogel interactions, with a focus on mechanics and transport, and in this context, highlights recent advancements in experiments, mathematical and computational modeling. The review begins with a background on the thermodynamics and physics fundamentals that govern hydrogel mechanics and transport. The review focuses on two main classes of hydrogels, described as semiflexible polymer networks that represent physically cross-linked fibrous hydrogels and flexible polymer networks representing the chemically cross-linked synthetic and natural hydrogels. In this review, we highlight five main cell-hydrogel interactions that involve key cellular functions related to communication, mechanosensing, migration, growth, and tissue deposition and elaboration. For each of these cellular functions, recent experiments and the most up to date modeling strategies are discussed and then followed by a summary of how to tune hydrogel properties to achieve a desired functional cellular outcome. We conclude with a summary linking these advancements and make the case for the need to integrate experiments and modeling to advance our fundamental understanding of cell-matrix interactions that will ultimately help identify new therapeutic approaches and enable successful tissue engineering.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.,Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States.,Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States.,BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
9
|
Schoonraad SA, Fischenich KM, Eckstein KN, Crespo-Cuevas V, Savard LM, Muralidharan A, Tomaschke AA, Uzcategui AC, Randolph MA, McLeod RR, Ferguson VL, Bryant SJ. Biomimetic and mechanically supportive 3D printed scaffolds for cartilage and osteochondral tissue engineering using photopolymers and digital light processing. Biofabrication 2021; 13. [PMID: 34479218 DOI: 10.1088/1758-5090/ac23ab] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Successful 3D scaffold designs for musculoskeletal tissue engineering necessitate full consideration of the form and function of the tissues of interest. When designing structures for engineering cartilage and osteochondral tissues, one must reconcile the need to develop a mechanically robust system that maintains the health of cells embedded in the scaffold. In this work, we present an approach that decouples the mechanical and biochemical needs and allows for the independent development of the structural and cellular niches in a scaffold. Using the highly tuned capabilities of digital light processing-based stereolithography, structures with complex architectures are achieved over a range of effective porosities and moduli. The 3D printed structure is infilled with mesenchymal stem cells and soft biomimetic hydrogels, which are specifically formulated with extracellular matrix analogs and tethered growth factors to provide selected biochemical cues for the guided differentiation towards chondrogenesis and osteogenesis. We demonstrate the ability to utilize these structures to (a) infill a focal chondral defect and mitigate macroscopic and cellular level changes in the cartilage surrounding the defect, and (b) support the development of a stratified multi-tissue scaffold for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Sarah A Schoonraad
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO 80309, United States of America
| | - Kristine M Fischenich
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, United States of America
| | - Kevin N Eckstein
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, United States of America
| | - Victor Crespo-Cuevas
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, United States of America
| | - Lea M Savard
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, United States of America
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO 80309, United States of America
| | - Andrew A Tomaschke
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, United States of America
| | - Asais Camila Uzcategui
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO 80309, United States of America
| | - Mark A Randolph
- Department of Orthopaedic Surgery, Laboratory for Musculoskeletal Tissue Engineering, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Robert R McLeod
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO 80309, United States of America.,Department of Electrical, Computer and Energy Engineering, University of Colorado at Boulder, Boulder, CO 80309, United States of America
| | - Virginia L Ferguson
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO 80309, United States of America.,Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, United States of America.,BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309, United States of America
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO 80309, United States of America.,BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309, United States of America.,Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, United States of America
| |
Collapse
|
10
|
Yang T, Tamaddon M, Jiang L, Wang J, Liu Z, Liu Z, Meng H, Hu Y, Gao J, Yang X, Zhao Y, Wang Y, Wang A, Wu Q, Liu C, Peng J, Sun X, Xue Q. Bilayered scaffold with 3D printed stiff subchondral bony compartment to provide constant mechanical support for long-term cartilage regeneration. J Orthop Translat 2021; 30:112-121. [PMID: 34722154 PMCID: PMC8526903 DOI: 10.1016/j.jot.2021.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND/OBJECTIVE We seek to figure out the effect of stable and powerful mechanical microenvironment provided by Ti alloy as a part of subchondral bone scaffold on long-term cartilage regeneration.Methods: we developed a bilayered osteochondral scaffold based on the assumption that a stiff subchondral bony compartment would provide stable mechanical support for cartilage regeneration and enhance subchondral bone regeneration. The subchondral bony compartment was prepared from 3D printed Ti alloy, and the cartilage compartment was created from a freeze-dried collagen sponge, which was reinforced by poly-lactic-co-glycolic acid (PLGA). RESULTS In vitro evaluations confirmed the biocompatibility of the scaffold materials, while in vivo evaluations demonstrated that the mechanical support provided by 3D printed Ti alloy layer plays an important role in the long-term regeneration of cartilage by accelerating osteochondral formation and its integration with the adjacent host tissue in osteochondral defect model at rabbit femoral trochlea after 24 weeks. CONCLUSION Mechanical support provided by 3D printing Ti alloy promotes cartilage regeneration by promoting subchondral bone regeneration and providing mechanical support platform for cartilage synergistically. TRANSLATIONAL POTENTIAL STATEMENT The raw materials used in our double-layer osteochondral scaffolds are all FDA approved materials for clinical use. 3D printed titanium alloy scaffolds can promote bone regeneration and provide mechanical support for cartilage regeneration, which is very suitable for clinical scenes of osteochondral defects. In fact, we are conducting clinical trials based on our scaffolds. We believe that in the near future, the scaffold we designed and developed can be formally applied in clinical practice.
Collapse
Affiliation(s)
- Tao Yang
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| | - Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Le Jiang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Jing Wang
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
- Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, China
| | - Ziyu Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Zhongqun Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Haoye Meng
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yongqiang Hu
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jianming Gao
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xuan Yang
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yanxu Zhao
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yanling Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Aiyuan Wang
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Jiang Peng
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Qingyun Xue
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Orthopaedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, China
| |
Collapse
|
11
|
Leung S, Kim JJ, Musson DS, McGlashan SR, Cornish J, Anderson I, Shim VBK. A Novel In Vitro and In Silico System for Analyzing Complex Mechanobiological Behavior of Chondrocytes in Three-Dimensional Hydrogel Constructs. J Biomech Eng 2021; 143:084503. [PMID: 33972989 DOI: 10.1115/1.4051116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Indexed: 11/08/2022]
Abstract
Physiological loading is essential for the maintenance of articular cartilage through the regulation of tissue remodeling. To correctly understand the behavior of chondrocytes in their native environment, cell stimulating devices and bioreactors have been developed to examine the effect of mechanical stimuli on chondrocytes. This study describes the design and validation of a novel system for analyzing chondrocyte deformation patterns. This involves an in vitro mechanical device for a controlled application of multi-axial-loading regimes to chondrocyte-seeded agarose constructs and in silico models for analyzing chondrocyte deformation patterns. The computer-controlled device precisely applies compressive, tensile, and shear strains to hydrogel constructs using a customizable macro-based program. The synchronization of the displacements is shown to be accurate with a 1.2% error and is highly reproducible. The device design allows housing for up to eight novel designed free-swelling three-dimensional hydrogel constructs. Constructs include mesh ends and are optimized to withstand the application of up to 7% mechanical tensile and 15% shear strains. Constructs were characterized through mapping the strain within as mechanical load was applied and was validated using light microscopy methods, chondrocyte viability using live/dead imaging, and cell deformation strains. Images were then analyzed to determine the complex deformation strain patterns of chondrocytes under a range of dynamic mechanical stimulations. This is one of the first systems that have characterized construct strains to cellular strains. The features in this device make the system ideally suited for a systematic approach for the investigation of the response of chondrocytes to a complex physiologically relevant deformation profile.
Collapse
Affiliation(s)
- Sophia Leung
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Jung-Joo Kim
- Department of Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea
| | - David S Musson
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Sue R McGlashan
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Jillian Cornish
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Iain Anderson
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Vickie B K Shim
- Auckland Bioengineering Institute, University of Auckland, Level 6, 70 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
12
|
Wilmoth RL, Ferguson VL, Bryant SJ. A 3D, Dynamically Loaded Hydrogel Model of the Osteochondral Unit to Study Osteocyte Mechanobiology. Adv Healthc Mater 2020; 9:e2001226. [PMID: 33073541 PMCID: PMC7677224 DOI: 10.1002/adhm.202001226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Osteocytes are mechanosensitive cells that orchestrate signaling in bone and cartilage across the osteochondral unit. The mechanisms by which osteocytes regulate osteochondral homeostasis and degeneration in response to mechanical cues remain unclear. This study introduces a novel 3D hydrogel bilayer composite designed to support osteocyte differentiation and bone matrix deposition in a bone-like layer and to recapitulate key aspects of the osteochondral unit's complex loading environment. The bilayer hydrogel is fabricated with a soft cartilage-like layer overlaying a stiff bone-like layer. The bone-like layer contains a stiff 3D-printed hydrogel structure infilled with a soft, degradable, cellular hydrogel. The IDG-SW3 cells embedded within the soft hydrogel mature into osteocytes and produce a mineralized collagen matrix. Under dynamic compressive strains, near-physiological levels of strain are achieved in the bone layer (≤ 0.08%), while the cartilage layer bears the majority of the strains (>99%). Under loading, the model induces an osteocyte response, measured by prostaglandin E2, that is frequency, but not strain, dependent: a finding attributed to altered fluid flow within the composite. Overall, this new hydrogel platform provides a novel approach to study osteocyte mechanobiology in vitro in an osteochondral tissue-mimetic environment.
Collapse
Affiliation(s)
- Rachel L Wilmoth
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, 80309-0427, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, 80309-0427, USA
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO, 80309-0596, USA
- Materials Science and Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO, 80309, USA
| | - Stephanie J Bryant
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO, 80309-0596, USA
- Materials Science and Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO, 80309, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO, 80309-0596, USA
| |
Collapse
|
13
|
Talaat W, Aryal Ac S, Al Kawas S, Samsudin ABR, Kandile NG, Harding DRK, Ghoneim MM, Zeiada W, Jagal J, Aboelnaga A, Haider M. Nanoscale Thermosensitive Hydrogel Scaffolds Promote the Chondrogenic Differentiation of Dental Pulp Stem and Progenitor Cells: A Minimally Invasive Approach for Cartilage Regeneration. Int J Nanomedicine 2020; 15:7775-7789. [PMID: 33116500 PMCID: PMC7567564 DOI: 10.2147/ijn.s274418] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Several scaffolds and cell sources are being investigated for cartilage regeneration. The aim of the study was to prepare nanocellulose-based thermosensitive injectable hydrogel scaffolds and assess their potential as 3D scaffolds allowing the chondrogenic differentiation of embedded human dental pulp stem and progenitor cells (hDPSCs). Materials and Methods The hydrogel-forming solutions were prepared by adding β-glycerophosphate (GP) to chitosan (CS) at different ratios. Nanocellulose (NC) suspension was produced from hemp hurd then added dropwise to the CS/GP mixture. In vitro characterization of the prepared hydrogels involved optimizing gelation and degradation time, mass-swelling ratio, and rheological properties. The hydrogel with optimal characteristics, NC-CS/GP-21, was selected for further investigation including assessment of biocompatibility. The chondrogenesis ability of hDPSCs embedded in NC-CS/GP-21 hydrogel was investigated in vitro and compared to that of bone marrow-derived mesenchymal stem cells (BMSCs), then was confirmed in vivo in 12 adult Sprague Dawley rats. Results The selected hydrogel showed stability in culture media, had a gelation time of 2.8 minutes, showed a highly porous microstructure by scanning electron microscope, and was morphologically intact in vivo for 14 days after injection. Histological and immunohistochemical analyses and real-time PCR confirmed the chondrogenesis ability of hDPSCs embedded in NC-CS/GP-21 hydrogel. Conclusion Our results suggest that nanocellulose–chitosan thermosensitive hydrogel is a biocompatible, injectable, mechanically stable and slowly degradable scaffold. hDPSCs embedded in NC-CS/GP-21 hydrogel is a promising, minimally invasive, stem cell-based strategy for cartilage regeneration.
Collapse
Affiliation(s)
- Wael Talaat
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.,Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Suez Canal University, Ismaillia 41522, Egypt
| | - Smriti Aryal Ac
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.,Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Sausan Al Kawas
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.,Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - A B Rani Samsudin
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.,Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nadia G Kandile
- Department of Chemistry, Faculty of Women, Ain Shams University, Heliopolis, Cairo 11757, Egypt
| | - David R K Harding
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Mohamed M Ghoneim
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Sinai University, Arish 45511, Egypt
| | - Waleed Zeiada
- Department of Civil and Environmental Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates.,Public Works Engineering Department, College of Engineering, Mansoura University, Mansoura 35516, Egypt
| | - Jayalakshmi Jagal
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed Aboelnaga
- Department of Surgery, Faculty of Medicine, Suez Canal University, Ismaillia 41522, Egypt
| | - Mohamed Haider
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 71526, Egypt
| |
Collapse
|
14
|
Richardson BM, Walker CJ, Macdougall LJ, Hoye JW, Randolph MA, Bryant SJ, Anseth KS. Viscoelasticity of hydrazone crosslinked poly(ethylene glycol) hydrogels directs chondrocyte morphology during mechanical deformation. Biomater Sci 2020; 8:3804-3811. [PMID: 32602512 PMCID: PMC8908465 DOI: 10.1039/d0bm00860e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Chondrocyte deformation influences disease progression and tissue regeneration in load-bearing joints. In this work, we found that viscoelasticity of dynamic covalent crosslinks temporally modulates the biophysical transmission of physiologically relevant compressive strains to encapsulated chondrocytes. Chondrocytes in viscoelastic alky-hydrazone hydrogels demonstrated (91.4 ± 4.5%) recovery of native rounded morphologies during mechanical deformation, whereas primarily elastic benzyl-hydrazone hydrogels significantly limited morphological recovery (21.2 ± 1.4%).
Collapse
Affiliation(s)
- Benjamin M Richardson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Aisenbrey EA, Bilousova G, Payne K, Bryant SJ. Dynamic mechanical loading and growth factors influence chondrogenesis of induced pluripotent mesenchymal progenitor cells in a cartilage-mimetic hydrogel. Biomater Sci 2020; 7:5388-5403. [PMID: 31626251 DOI: 10.1039/c9bm01081e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human induced pluripotent stem cells (iPSCs) have emerged as a promising alternative to bone-marrow derived mesenchymal stem/stromal cells for cartilage tissue engineering. However, the effect of biochemical and mechanical cues on iPSC chondrogenesis remains understudied. This study evaluated chondrogenesis of induced pluripotent mesenchymal progenitor cells (iPS-MPs) encapsulated in a cartilage-mimetic hydrogel under different culture conditions: free swelling versus dynamic compressive loading and different growth factors (TGFβ3 and/or BMP2). Human iPSCs were differentiated into iPS-MPs and chondrogenesis was evaluated by gene expression (qPCR) and protein expression (immunohistochemistry) after three weeks. In pellet culture, both TGFβ3 and BMP2 were required to promote chondrogenesis. However, the hydrogel in growth factor-free conditions promoted chondrogenesis, but rapidly progressed to hypertrophy. Dynamic loading in growth factor-free conditions supported chondrogenesis, but delayed the transition to hypertrophy. Findings were similar with TGFβ3, BMP2, and TGFβ3 + BMP2. Dynamic loading with TGFβ3, regardless of BMP2, was the only condition that promoted a stable chondrogenic phenotype (aggrecan + collagen II) accompanied by collagen X down-regulation. Positive TGFβRI expression with load-enhanced Smad2/3 signaling and low SMAD1/5/8 signaling was observed. In summary, this study reports a promising cartilage-mimetic hydrogel for iPS-MPs that when combined with appropriate biochemical and mechanical cues induces a stable chondrogenic phenotype.
Collapse
Affiliation(s)
- Elizabeth A Aisenbrey
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Ave, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|
16
|
Mechanical performance of elastomeric PGS scaffolds under dynamic conditions. J Mech Behav Biomed Mater 2019; 102:103474. [PMID: 31655336 DOI: 10.1016/j.jmbbm.2019.103474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 01/29/2023]
Abstract
In developing novel scaffolds, addressing mechanical properties is essential especially when future applications involve cyclic mechanical loading. Therefore, it is important to understand the behaviour of its physical properties with the evolution of its weight loss. Poly(glycerol sebacate) (PGS) is a promising material for tissue and biomedical engineering applications due to its biocompatibility, biodegradability and mechanical properties. To understand the impact of the hydrolytic degradation on the density, cross-linking degree and porosity; scaffolds with an average porosity of 93 ± 2% were synthetized by salt leaching technique and submitted to hydrolytic degradation. The scaffold showed a Young modulus of 17.3 ± 3.4 kPa, with a negligible energy loss during the mechanical solicitation. Moreover, a weight loss of 28 ± 2% followed by an increase in the swelling ratio of the scaffold was observed after 8 weeks of hydrolytic degradation. When submitted to cyclic mechanical loading-unloading, the PGS scaffolds present an outstanding fatigue behaviour under dry and wet conditions, with a remarkable resilience to the cyclic mechanical solicitation, and even after 1000 mechanical cycles, the construct was able to recover to its initial geometry. Overall, the PGS scaffolds demonstrate promising mechanical properties for biomedical applications, especially under dynamic conditions.
Collapse
|
17
|
Diaz-Rodriguez P, Erndt-Marino JD, Gharat T, Munoz Pinto DJ, Samavedi S, Bearden R, Grunlan MA, Saunders WB, Hahn MS. Toward zonally tailored scaffolds for osteochondral differentiation of synovial mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 2019; 107:2019-2029. [PMID: 30549205 PMCID: PMC6934364 DOI: 10.1002/jbm.b.34293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/22/2018] [Accepted: 11/10/2018] [Indexed: 12/15/2022]
Abstract
Synovium-derived mesenchymal stem cells (SMSCs) are an emerging cell source for regenerative medicine applications, including osteochondral defect (OCD) repair. However, in contrast to bone marrow MSCs, scaffold compositions which promote SMSC chondrogenesis/osteogenesis are still being identified. In the present manuscript, we examine poly(ethylene) glycol (PEG)-based scaffolds containing zonally-specific biochemical cues to guide SMSC osteochondral differentiation. Specifically, SMSCs were encapsulated in PEG-based scaffolds incorporating glycosaminoglycans (hyaluronan or chondroitin-6-sulfate [CSC]), low-dose of chondrogenic and osteogenic growth factors (TGFβ1 and BMP2, respectively), or osteoinductive poly(dimethylsiloxane) (PDMS). Initial studies suggested that PEG-CSC-TGFβ1 scaffolds promoted enhanced SMSC chondrogenic differentiation, as assessed by significant increases in Sox9 and aggrecan. Conversely, PEG-PDMS-BMP2 scaffolds stimulated increased levels of osteoblastic markers with significant mineral deposition. A "Transition" zone formulation was then developed containing a graded mixture of the chondrogenic and osteogenic signals present in the PEG-CSC-TGFβ1 and PEG-PDMS-BMP2 constructs. SMSCs within the "Transition" formulation displayed a phenotypic profile similar to hypertrophic chondrocytes, with the highest expression of collagen X, intermediate levels of osteopontin, and mineralization levels equivalent to "bone" formulations. Overall, these results suggest that a graded transition from PEG-CSC-TGFβ1 to PEG-PDMS-BMP2 scaffolds elicits a gradual SMSC phenotypic shift from chondrocyte to hypertrophic chondrocyte to osteoblast-like. As such, further development of these scaffold formulations for use in SMSC-based OCD repair is warranted. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2019-2029, 2019.
Collapse
Affiliation(s)
| | - Josh D Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Tanmay Gharat
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Dany J Munoz Pinto
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Satyavrata Samavedi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Robert Bearden
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - W Brian Saunders
- Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Mariah S Hahn
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
18
|
Aisenbrey EA, Tomaschke AA, Schoonraad SA, Fischenich KM, Wahlquist JA, Randolph MA, Ferguson VL, Bryant SJ. Assessment and prevention of cartilage degeneration surrounding a focal chondral defect in the porcine model. Biochem Biophys Res Commun 2019; 514:940-945. [PMID: 31088681 DOI: 10.1016/j.bbrc.2019.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
Abstract
Focal defects in articular cartilage are unable to self-repair and, if left untreated, are a leading risk factor for osteoarthritis. This study examined cartilage degeneration surrounding a defect and then assessed whether infilling the defect prevents degeneration. We created a focal chondral defect in porcine osteochondral explants and cultured them ex vivo with and without dynamic compressive loading to decouple the role of loading. When compared to a defect in a porcine knee four weeks post-injury, this model captured loss in sulfated glycosaminoglycans (sGAGs) along the defect's edge that was observed in vivo, but this loss was not load dependent. Loading, however, reduced the indentation modulus of the surrounding cartilage. After infilling with in situ polymerized hydrogels that were soft (100 kPa) or stiff (1 MPa) and which produced swelling pressures of 13 and 310 kPa, respectively, sGAG loss was reduced. This reduction correlated with increased hydrogel stiffness and swelling pressure, but was not affected by loading. This ex vivo model recapitulates sGAG loss surrounding a defect and, when infilled with a mechanically supportive hydrogel, degeneration is minimized.
Collapse
Affiliation(s)
- Elizabeth A Aisenbrey
- Department of Chemical and Biological Engineering, 3415 Colorado Ave, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Andrew A Tomaschke
- Department of Mechanical Engineering, 1111 Engineering Dr, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Sarah A Schoonraad
- Materials Science and Engineering Program, 3415 Colorado Ave, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Kristine M Fischenich
- Department of Mechanical Engineering, 1111 Engineering Dr, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Joseph A Wahlquist
- Department of Mechanical Engineering, 1111 Engineering Dr, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Mark A Randolph
- Department of Orthopaedic Surgery, Laboratory for Musculoskeletal Tissue Engineering, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, 1111 Engineering Dr, University of Colorado at Boulder, Boulder, CO, 80309, USA; Materials Science and Engineering Program, 3415 Colorado Ave, University of Colorado at Boulder, Boulder, CO, 80309, USA; BioFrontiers Institute, 3415 Colorado Ave, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, 3415 Colorado Ave, University of Colorado at Boulder, Boulder, CO, 80309, USA; Materials Science and Engineering Program, 3415 Colorado Ave, University of Colorado at Boulder, Boulder, CO, 80309, USA; BioFrontiers Institute, 3415 Colorado Ave, University of Colorado at Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
19
|
de Groot SC, Sliedregt K, van Benthem PPG, Rivolta MN, Huisman MA. Building an Artificial Stem Cell Niche: Prerequisites for Future 3D-Formation of Inner Ear Structures-Toward 3D Inner Ear Biotechnology. Anat Rec (Hoboken) 2019; 303:408-426. [PMID: 30635991 PMCID: PMC7065153 DOI: 10.1002/ar.24067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/03/2018] [Accepted: 08/23/2018] [Indexed: 01/19/2023]
Abstract
In recent years, there has been an increased interest in stem cells for the purpose of regenerative medicine to deliver a wide range of therapies to treat many diseases. However, two‐dimensional cultures of stem cells are of limited use when studying the mechanism of pathogenesis of diseases and the feasibility of a treatment. Therefore, research is focusing on the strengths of stem cells in the three‐dimensional (3D) structures mimicking organs, that is, organoids, or organ‐on‐chip, for modeling human biology and disease. As 3D technology advances, it is necessary to know which signals stem cells need to multiply and differentiate into complex structures. This holds especially true for the complex 3D structure of the inner ear. Recent work suggests that although other factors play a role, the extracellular matrix (ECM), including its topography, is crucial to mimic a stem cell niche in vitro and to drive stem cells toward the formation of the tissue of interest. Technological developments have led to the investigation of biomaterials that closely resemble the native ECM. In the fast forward moving research of organoids and organs‐on‐chip, the inner ear has hardly received attention. This review aims to provide an overview, by describing the general context in which cells, matrix and morphogens cooperate in order to build a tissue, to facilitate research in 3D inner ear technology. Anat Rec, 303:408–426, 2020. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
| | - Karen Sliedregt
- Wageningen University and Research, Wageningen, the Netherlands
| | - Peter Paul G van Benthem
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Marcelo N Rivolta
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Margriet A Huisman
- Hair Science Institute, Maastricht, Maastricht, the Netherlands.,Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
20
|
Kamaldinov T, Erndt-Marino J, Diaz-Rodriguez P, Chen H, Gharat T, Munoz-Pinto D, Arduini B, Hahn MS. Tuning Forkhead Box D3 overexpression to promote specific osteogenic differentiation of human embryonic stem cells while reducing pluripotency in a three-dimensional culture system. J Tissue Eng Regen Med 2018; 12:2256-2265. [PMID: 30350469 DOI: 10.1002/term.2757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
Clinical use of human embryonic stem cells (hESCs) in bone regeneration applications requires that their osteogenic differentiation be highly controllable as well as time- and cost-effective. The main goals of the current work were thus (a) to assess whether overexpression of pluripotency regulator Forkhead Box D3 (FOXD3) can enhance the osteogenic commitment of hESCs seeded in three-dimensional (3D) scaffolds and (b) to evaluate if the degree of FOXD3 overexpression regulates the strength and specificity of hESC osteogenic commitment. In conducting these studies, an interpenetrating hydrogel network consisting of poly(ethylene glycol) diacrylate and collagen I was utilized as a 3D culture platform. Expression of osteogenic, chondrogenic, pluripotency, and germ layer markers by encapsulated hESCs was measured after 2 weeks of culture in osteogenic medium in the presence or absence doxycycline-induced FOXD3 transgene expression. Towards the first goal, FOXD3 overexpression initiated 24 hr prior to hESC encapsulation, relative to unstimulated controls, resulted in upregulation of osteogenic markers and enhanced calcium deposition, without promoting off-target effects. However, when initiation of FOXD3 overexpression was increased from 24 to 48 hr prior to encapsulation, hESC osteogenic commitment was not further enhanced and off-target effects were noted. Specifically, relative to 24-hr prestimulation, initiation of FOXD3 overexpression 48 hr prior to encapsulation yielded increased expression of pluripotency markers while reducing mesodermal but increasing endodermal germ layer marker expression. Combined, the current results indicate that the controlled overexpression of FOXD3 warrants further investigation as a mechanism to guide enhanced hESC osteogenic commitment.
Collapse
Affiliation(s)
- Timothy Kamaldinov
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Josh Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | - Hongyu Chen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Tanmay Gharat
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Dany Munoz-Pinto
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Brigitte Arduini
- Rensselaer Center for Stem Cell Research, Rensselaer Polytechnic Institute, Troy, New York
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
21
|
Aisenbrey EA, Bryant SJ. The role of chondroitin sulfate in regulating hypertrophy during MSC chondrogenesis in a cartilage mimetic hydrogel under dynamic loading. Biomaterials 2018; 190-191:51-62. [PMID: 30391802 DOI: 10.1016/j.biomaterials.2018.10.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 01/29/2023]
Abstract
Mesenchymal stem cells (MSCs) are promising for cartilage regeneration, but readily undergo terminal differentiation. The aim of this study was two-fold: a) investigate physiochemical cues from a cartilage-mimetic hydrogel under dynamic compressive loading on MSC chondrogenesis and hypertrophy and b) identify whether Smad signaling and p38 MAPK signaling mediate hypertrophy during MSC chondrogenesis. Human MSCs were encapsulated in photoclickable poly(ethylene glycol) hydrogels containing chondroitin sulfate and RGD, cultured under dynamic compressive loading or free swelling for three weeks, and evaluated by qPCR and immunohistochemistry. Loading inhibited hypertrophy in the cartilage-mimetic hydrogel indicated by a reduction in pSmad 1/5/8, Runx2, and collagen X proteins, while maintaining chondrogenesis by pSmad 2/3 and collagen II proteins. Inhibiting pSmad 1/5/8 under free swelling culture significantly reduced collagen X protein, similar to the loading condition. Chondroitin sulfate was necessary for load-inhibited hypertrophy and correlated with enhanced S100A4 expression, which is downstream of the osmotic responsive transcription factor NFAT5. Inhibiting p38 MAPK under loading reduced S100A4 expression, and upregulated Runx2 and collagen X protein. Findings from this study indicate that chondroitin sulfate with dynamic loading create physiochemical cues that support MSC chondrogenesis and attenuate hypertrophy through Smad 1/5/8 inhibition and p38 MAPK upregulation.
Collapse
Affiliation(s)
- Elizabeth A Aisenbrey
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0596, USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0596, USA; BioFrontiers Institute, University of Colorado, Boulder, CO 80309-0596, USA; Material Science and Engineering Program, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
22
|
Condylar Degradation from Decreased Occlusal Loading following Masticatory Muscle Atrophy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6947612. [PMID: 29992158 PMCID: PMC5994330 DOI: 10.1155/2018/6947612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
Objective The masticatory muscles are the most important contributor to bite force, and the temporomandibular joint (TMJ) receives direct occlusal loading. The present study aimed to investigate condylar remodeling after masseter muscle atrophy in rats. Methods Sixty 5-week-old female Sprague-Dawley rats were divided into the following 3 groups: the control group, soft diet (SD) group, and botulinum toxin (BTX) group. The cross-sectional area (CSA) of the masseter muscles was investigated as well as atrogin-1/MuRF-1 expression. Changes in the condylar head were evaluated by H-E, toluidine blue staining, and contour measurements. The biomechanical sensitive factors PTHrP Ihh, Col2a1, and ColX of condylar cartilage were detected by immunohistochemical staining and western blotting. Furthermore, micro-CT and tartrate-resistant acid phosphatase (TRAP) staining were performed to determine the osteopenia in subchondral bone. Results The histological and protein analysis demonstrated muscle hypofunction in the SD and BTX groups. Condylar cartilage contour was diminished due to different treatments; the immunohistochemistry and protein examination showed that the expressions of PTHrP, Ihh, Col2a1, and ColX were suppressed in condylar cartilage. A steady osteoporosis in subchondral bone was found only in the BTX group. Conclusion The current results suggested that a steady relationship between muscular dysfunction and condylar remodeling exists.
Collapse
|
23
|
Aisenbrey EA, Tomaschke A, Kleinjan E, Muralidharan A, Pascual-Garrido C, McLeod RR, Ferguson VL, Bryant SJ. A Stereolithography-Based 3D Printed Hybrid Scaffold for In Situ Cartilage Defect Repair. Macromol Biosci 2018; 18:10.1002/mabi.201700267. [PMID: 29266791 PMCID: PMC5959280 DOI: 10.1002/mabi.201700267] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/05/2017] [Indexed: 11/12/2022]
Abstract
Damage to articular cartilage can over time cause degeneration to the tissue surrounding the injury. To address this problem, scaffolds that prevent degeneration and promote neotissue growth are needed. A new hybrid scaffold that combines a stereolithography-based 3D printed support structure with an injectable and photopolymerizable hydrogel for delivering cells to treat focal chondral defects is introduced. In this proof of concept study, the ability to a) infill the support structure with an injectable hydrogel precursor solution, b) incorporate cartilage cells during infilling using a degradable hydrogel that promotes neotissue deposition, and c) minimize damage to the surrounding cartilage when the hybrid scaffold is placed in situ in a focal chondral defect in an osteochondral plug that is cultured under mechanical loading is demonstrated. With the ability to independently control the properties of the structure and the injectable hydrogel, this hybrid scaffold approach holds promise for treating chondral defects.
Collapse
Affiliation(s)
- Elizabeth A Aisenbrey
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Andrew Tomaschke
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Eric Kleinjan
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Archish Muralidharan
- Material Science and Engineering Program, University of Colorado, Boulder, CO, 80309, USA
| | | | - Robert R McLeod
- Department of Electrical, Computing and Energy Engineering, Material Science and Engineering Program, University of Colorado, Boulder, CO, 80309, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, Material Science and Engineering Program, BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, Material Science and Engineering Program, BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
24
|
Armiento AR, Stoddart MJ, Alini M, Eglin D. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater 2018; 65:1-20. [PMID: 29128537 DOI: 10.1016/j.actbio.2017.11.021] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/05/2017] [Accepted: 11/07/2017] [Indexed: 12/27/2022]
Abstract
Articular cartilage is commonly described as a tissue that is made of up to 80% water, is devoid of blood vessels, nerves, and lymphatics, and is populated by only one cell type, the chondrocyte. At first glance, an easy tissue for clinicians to repair and for scientists to reproduce in a laboratory. Yet, chondral and osteochondral defects currently remain an open challenge in orthopedics and tissue engineering of the musculoskeletal system, without considering osteoarthritis. Why do we fail in repairing and regenerating articular cartilage? Behind its simple and homogenous appearance, articular cartilage hides a heterogeneous composition, a high level of organisation and specific biomechanical properties that, taken together, make articular cartilage a unique material that we are not yet able to repair or reproduce with high fidelity. This review highlights the available therapies for cartilage repair and retraces the research on different biomaterials developed for tissue engineering strategies. Their potential to recreate the structure, including composition and organisation, as well as the function of articular cartilage, intended as cell microenvironment and mechanically competent replacement, is described. A perspective of the limitations of the current research is given in the light of the emerging technologies supporting tissue engineering of articular cartilage. STATEMENT OF SIGNIFICANCE The mechanical properties of articular tissue reflect its functionally organised composition and the recreation of its structure challenges the success of in vitro and in vivo reproduction of the native cartilage. Tissue engineering and biomaterials science have revolutionised the way scientists approach the challenge of articular cartilage repair and regeneration by introducing the concept of the interdisciplinary approach. The clinical translation of the current approaches are not yet fully successful, but promising results are expected from the emerging and developing new generation technologies.
Collapse
Affiliation(s)
- A R Armiento
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - M J Stoddart
- AO Research Institute Davos, Davos Platz, Switzerland; University Medical Center, Albert-Ludwigs University, Freiburg, Germany.
| | - M Alini
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - D Eglin
- AO Research Institute Davos, Davos Platz, Switzerland.
| |
Collapse
|
25
|
Chu S, Sridhar SL, Akalp U, Skaalure SC, Vernerey FJ, Bryant SJ. * Understanding the Spatiotemporal Degradation Behavior of Aggrecanase-Sensitive Poly(ethylene glycol) Hydrogels for Use in Cartilage Tissue Engineering. Tissue Eng Part A 2017; 23:795-810. [PMID: 28351221 DOI: 10.1089/ten.tea.2016.0490] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Enzyme-sensitive hydrogels are promising cell delivery vehicles for cartilage tissue engineering. However, a better understanding of their spatiotemporal degradation behavior and its impact on tissue growth is needed. The goal of this study was to combine experimental and computational approaches to provide new insights into spatiotemporal changes in hydrogel crosslink density and extracellular matrix (ECM) growth and how these changes influence the evolving macroscopic properties as a function of time. Hydrogels were designed from aggrecanase-sensitive peptide crosslinks using a simple and robust thiol-norbornene photoclick reaction. To study the influence of variations in cellular activity of different donors, chondrocytes were isolated from either juvenile or adult bovine donors. Initial studies were performed to validate and calibrate the model against experiments. Through this process, two key features were identified. These included spatial variations in the hydrogel crosslink density in the immediate vicinity of the cell and the presence of cell clustering within the construct. When these spatial heterogeneities were incorporated into the computational model along with model inputs of initial hydrogel properties and cellular activity (i.e., enzyme and ECM production rates), the model was able to capture the spatial and temporal evolution of ECM growth that was observed experimentally for both donors. In this study, the juvenile chondrocytes produced an interconnected matrix within the cell clusters leading to overall improved ECM growth, while the adult chondrocytes resulted in poor ECM growth. Overall, the computational model was able to capture the spatiotemporal ECM growth of two different donors and provided new insights into the importance of spatial heterogeneities in facilitating ECM growth. Our long-term goal is to use this model to predict optimal hydrogel designs for a wide range of donors and improve cartilage tissue engineering.
Collapse
Affiliation(s)
- Stanley Chu
- 1 Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado
| | | | - Umut Akalp
- 2 Department of Mechanical Engineering, University of Colorado , Boulder, Colorado
| | - Stacey C Skaalure
- 1 Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado
| | - Franck J Vernerey
- 2 Department of Mechanical Engineering, University of Colorado , Boulder, Colorado.,4 Material Science and Engineering Program, University of Colorado , Boulder, Colorado
| | - Stephanie J Bryant
- 1 Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado.,3 BioFrontiers Institute, University of Colorado , Boulder, Colorado.,4 Material Science and Engineering Program, University of Colorado , Boulder, Colorado
| |
Collapse
|
26
|
Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel. Sci Rep 2017; 7:45018. [PMID: 28332587 PMCID: PMC5362895 DOI: 10.1038/srep45018] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/17/2017] [Indexed: 12/14/2022] Open
Abstract
Autologous chondrocyte implantation for cartilage repair represents a challenge because strongly limited by chondrocytes' poor expansion capacity in vitro. Mesenchymal stem cells (MSCs) can differentiate into chondrocytes, while mechanical loading has been proposed as alternative strategy to induce chondrogenesis excluding the use of exogenous factors. Moreover, MSC supporting material selection is fundamental to allow for an active interaction with cells. Here, we tested a novel thermo-reversible hydrogel composed of 8% w/v methylcellulose (MC) in a 0.05 M Na2SO4 solution. MC hydrogel was obtained by dispersion technique and its thermo-reversibility, mechanical properties, degradation and swelling were investigated, demonstrating a solution-gelation transition between 34 and 37 °C and a low bulk degradation (<20%) after 1 month. The lack of any hydrogel-derived immunoreaction was demonstrated in vivo by mice subcutaneous implantation. To induce in vitro chondrogenesis, MSCs were seeded into MC solution retained within a porous polyurethane (PU) matrix. PU-MC composites were subjected to a combination of compression and shear forces for 21 days in a custom made bioreactor. Mechanical stimulation led to a significant increase in chondrogenic gene expression, while histological analysis detected sulphated glycosaminoglycans and collagen II only in loaded specimens, confirming MC hydrogel suitability to support load induced MSCs chondrogenesis.
Collapse
|
27
|
Son KH, Lee JW. Synthesis and Characterization of Poly(Ethylene Glycol) Based Thermo-Responsive Hydrogels for Cell Sheet Engineering. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E854. [PMID: 28773974 PMCID: PMC5456593 DOI: 10.3390/ma9100854] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 11/30/2022]
Abstract
The swelling properties and thermal transition of hydrogels can be tailored by changing the hydrophilic-hydrophobic balance of polymer networks. Especially, poly(N-isopropylacrylamide) (PNIPAm) has received attention as thermo-responsive hydrogels for tissue engineering because its hydrophobicity and swelling property are transited around body temperature (32 °C). In this study, we investigated the potential of poly(ethylene glycol) diacrylate (PEGDA) as a hydrophilic co-monomer and crosslinker of PNIPAm to enhance biological properties of PNIPAm hydrogels. The swelling ratios, lower critical solution temperature (LCST), and internal pore structure of the synthesized p(NIPAm-co-PEGDA) hydrogels could be varied with changes in the molecular weight of PEGDA and the co-monomer ratios (NIPAm to PEGDA). We found that increasing the molecular weight of PEGDA showed an increase of pore sizes and swelling ratios of the hydrogels. In contrast, increasing the weight ratio of PEGDA under the same molecular weight condition increased the crosslinking density and decreased the swelling ratios of the hydrogels. Further, to evaluate the potential of these hydrogels as cell sheets, we seeded bovine chondrocytes on the p(NIPAm-co-PEGDA) hydrogels and observed the proliferation of the seed cells and their detachment as a cell sheet upon a decrease in temperature. Based on our results, we confirmed that p(NIPAm-co-PEGDA) hydrogels could be utilized as cell sheets with enhanced cell proliferation performance.
Collapse
Affiliation(s)
- Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, 34, Namdong-daero 774beon-gil, Namdong-gu, Incheon 21565, Korea.
| | - Jin Woo Lee
- Department of Molecular Medicine, School of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea.
| |
Collapse
|
28
|
Akalp U, Bryant SJ, Vernerey FJ. Tuning tissue growth with scaffold degradation in enzyme-sensitive hydrogels: a mathematical model. SOFT MATTER 2016; 12:7505-20. [PMID: 27548744 PMCID: PMC5341105 DOI: 10.1039/c6sm00583g] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Despite tremendous advances in the field of tissue engineering, a number of obstacles remain that hinder its successful translation to the clinic. One challenge that relates to the use of cells encapsulated in a hydrogel is identifying a hydrogel design that can provide an appropriate environment for cells to successfully synthesize and deposit new matrix molecules while providing a mechanical support that can resist physiological loads at the early stage of implementation. A solution to this problem has been to balance tissue growth and hydrogel degradation. However, identifying this balance is difficult due to the complexity of coupling diffusion, deposition, and degradation mechanisms. Very little is known about the complex behavior of these mechanisms, emphasizing the need for a rigorous mathematical approach that can assist and guide experimental advances. To address this issue, this paper discusses a model for interstitial growth based on mixture theory, that can capture the coupling between cell-mediated hydrogel degradation (i.e., hydrogels containing enzyme-sensitive crosslinks) and the transport of extracellular matrix (ECM) molecules released by encapsulated cells within a hydrogel. Taking cartilage tissue engineering as an example, the model investigates the role of enzymatic degradation on ECM diffusion and its impact on two important outcomes: the extent of ECM transport (and deposition) and the evolution of the hydrogel's mechanical integrity. Numerical results based on finite element analysis show that if properly tuned, enzymatic degradation yields the appearance of a highly localized degradation front propagating away from the cell, which can be immediately followed by a front of growing neotissue. We show that this situation is key to maintaining mechanical properties (e.g., stiffness) while allowing for deposition of new ECM molecules. Overall, our study suggests a hydrogel design that could enable successful tissue engineering (e.g., of cartilage, bone, etc.) where mechanical integrity is important.
Collapse
Affiliation(s)
- Umut Akalp
- Department of Mechanical Engineering, Department of Chemical and Biological Engineering, Program of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado, USA.
| | | | | |
Collapse
|
29
|
Neumann AJ, Quinn T, Bryant SJ. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering. Acta Biomater 2016; 39:1-11. [PMID: 27180026 DOI: 10.1016/j.actbio.2016.05.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 11/30/2022]
Abstract
UNLABELLED Photopolymerizable and hydrolytically labile poly(ethylene glycol) (PEG) hydrogels formed from photo-clickable reactions were investigated as cell delivery platforms for cartilage tissue engineering (TE). PEG hydrogels were formed from thiol-norbornene PEG macromers whereby the crosslinks contained caprolactone segments with hydrolytically labile ester linkages. Juvenile bovine chondrocytes encapsulated in the hydrogels were cultured for up to four weeks and assessed biochemically and histologically, using standard destructive assays, and for mechanical and ultrasound properties, as nondestructive assays. Bulk degradation of acellular hydrogels was confirmed by a decrease in compressive modulus and an increase in mass swelling ratio over time. Chondrocytes deposited increasing amounts of sulfated glycosaminoglycans and collagens in the hydrogels with time. Spatially, collagen type II and aggrecan were present in the neotissue with formation of a territorial matrix beginning at day 21. Nondestructive measurements revealed an 8-fold increase in compressive modulus from days 7 to 28, which correlated with total collagen content. Ultrasound measurements revealed changes in the constructs over time, which differed from the mechanical properties, and appeared to correlate with ECM structure and organization shown by immunohistochemical analysis. Overall, non-destructive and destructive measurements show that this new hydrolytically degradable PEG hydrogel is promising for cartilage TE. STATEMENT OF SIGNIFICANCE Designing synthetic hydrogels whose degradation matches tissue growth is critical to maintaining mechanical integrity as the hydrogel degrades and new tissue forms, but is challenging due to the nature of the hydrogel crosslinks that inhibit diffusion of tissue matrix molecules. This study details a promising, new, photo-clickable and synthetic hydrogel whose degradation supports cartilaginous tissue matrix growth leading to the formation of a territorial matrix, concomitant with an increase in mechanical properties. Nondestructive assays based on mechanical and ultrasonic properties were also investigated using a novel instrument and found to correlate with matrix deposition and evolution. In sum, this study presents a new hydrogel platform combined with nondestructive assessments, which together have potential for in vitro cartilage tissue engineering.
Collapse
Affiliation(s)
- Alexander J Neumann
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Timothy Quinn
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA; BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
30
|
Bioactive TGF-β1/HA Alginate-Based Scaffolds for Osteochondral Tissue Repair: Design, Realization and Multilevel Characterization. J Appl Biomater Funct Mater 2016; 14:e42-52. [DOI: 10.5301/jabfm.5000249] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2015] [Indexed: 11/20/2022] Open
Abstract
Background The design of an appropriate microenvironment for stem cell differentiation constitutes a multitask mission and a critical step toward the clinical application of tissue substitutes. With the aim of producing a bioactive material for orthopedic applications, a transforming growth factor-β (TGF- β1)/hydroxyapatite (HA) association within an alginate-based scaffold was investigated. The bioactive scaffold was carefully designed to offer specific biochemical cues for an efficient and selective cell differentiation toward the bony and chondral lineages. Methods Highly porous alginate scaffolds were fabricated from a mixture of calcium cross-linked alginates by means of a freeze-drying technique. In the chondral layer, the TGF in citric acid was mixed with an alginate/alginate-sulfate solution. In the bony layer, HA granules were added as bioactive signal, to offer an osteoinductive surface to the cells. Optical and scanning electron microscopy analyses were performed to assess the macro-micro architecture of the biphasic scaffold. Different mechanical tests were conducted to evaluate the elastic modulus of the grafts. For the biological validation of the developed prototype, mesenchymal stem cells were loaded onto the samples; cellular adhesion, proliferation and in vivo biocompatibility were evaluated. Results and conclusions The results successfully demonstrated the efficacy of the designed osteochondral graft, which combined interesting functional properties and biomechanical performances, thus becoming a promising candidate for osteochondral tissue-engineering applications.
Collapse
|
31
|
Aisenbrey EA, Bryant SJ. Mechanical loading inhibits hypertrophy in chondrogenically differentiating hMSCs within a biomimetic hydrogel. J Mater Chem B 2016; 4:3562-3574. [PMID: 27499854 PMCID: PMC4972607 DOI: 10.1039/c6tb00006a] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three dimensional hydrogels are a promising vehicle for delivery of adult human bone-marrow derived mesenchymal stem cells (hMSCs) for cartilage tissue engineering. One of the challenges with using this cell type is the default pathway is terminal differentiation, a hypertrophic phenotype and precursor to endochondral ossification. We hypothesized that a synthetic hydrogel consisting of extracellular matrix (ECM) analogs derived from cartilage when combined with dynamic loading provides physiochemical cues for achieving a stable chondrogenic phenotype. Hydrogels were formed from crosslinked poly(ethylyene glycol) as the base chemistry and to which (meth)acrylate functionalized ECM analogs of RGD (cell adhesion peptide) and chondroitin sulfate (ChS, a negatively charged glycosaminoglycan) were introduced. Bone-marrow derived hMSCs from three donors were encapsulated in the hydrogels and cultured under free swelling conditions or under dynamic com pressive loading with 2.5 ng/ml TGF-β3. hMSC differentiation was assessed by quantitative PCR and immunohistochemistry. Nine hydrogel formulations were initially screened containing 0, 0.1 or 1mM RGD and 0, 1 or 2wt% ChS. After 21 days, the 1% ChS and 0.1 mM RGD hydrogel had the highest collagen II gene expression, but this was accompanied by high collagen X gene expression. At the protein level, collagen II was detected in all formulations with ECM analogs, but minimally detectable in the hydrogel without ECM analogs. Collagen X protein was present in all formulations. The 0.1 mM RGD and 1% ChS formulation was selected and subjected to five loading regimes: no loading, 5% strain 0.3Hz (1.5%/s), 10% strain 0.3 Hz (3%/s), 5% strain 1 Hz (5%/s), and 10% strain 1Hz (10%/s). After 21 days, ~70-90% of cells stained positive for collagen II protein regardless of the culture condition. On the contrary, only ~20-30% of cells stained positive for collagen X protein under 3 and 5%/s loading conditions, which was accompanied by minimal staining for RunX2. The other culture conditions had more cells staining positive for collagen X (40-60%) and was accompanied by positive staining for RunX2. In summary, a cartilage-like biomimetic hydrogel supports chondrogenesis of hMSCs, but dynamic loading only under select strain rates is able to inhibit hypertrophy.
Collapse
Affiliation(s)
- E A Aisenbrey
- University of Colorado,Boulder. Chemical and Biological Engineering, UCB 596. Boulder, CO. 80309
| | - S J Bryant
- University of Colorado,Boulder. Chemical and Biological Engineering, UCB 596. Boulder, CO. 80309
| |
Collapse
|
32
|
Panadero J, Lanceros-Mendez S, Ribelles JG. Differentiation of mesenchymal stem cells for cartilage tissue engineering: Individual and synergetic effects of three-dimensional environment and mechanical loading. Acta Biomater 2016; 33:1-12. [PMID: 26826532 DOI: 10.1016/j.actbio.2016.01.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/17/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022]
Abstract
Chondrogenesis of dedifferentiated chondrocytes and mesenchymal stem cells is influenced not only by soluble molecules like growth factors, but also by the cell environment itself. The latter is achieved through both mechanical cues - which act as stimulation factor and influences nutrient transport - and adhesion to extracellular matrix cues - which determine cell shape. Although the effects of soluble molecules and cell environment have been intensively addressed, few observations and conclusions about the interaction between the two have been achieved. In this work, we review the state of the art on the single effects between mechanical and biochemical cues, as well as on the combination of the two. Furthermore, we provide a discussion on the techniques currently used to determine the mechanical properties of materials and tissues generated in vitro, their limitations and the future research needs to properly address the identified problems. STATEMENT OF SIGNIFICANCE The importance of biomechanical cues in chondrogenesis is well known. This paper reviews the existing literature on the effect of mechanical stimulation on chondrogenic differentiation of mesenchymal stem cells in order to regenerate hyaline cartilage. Contradictory results found with respect to the effect of different modes of external loading can be explained by the different properties of the scaffolding system that holds the cells, which determine cell adhesion and morphology and spatial distribution of cells, as well as the stress transmission to the cells. Thus, this review seeks to provide an insight into the interplay between external loading program and scaffold properties during chondrogenic differentiation. The review of the literature reveals an important gap in the knowledge in this field and encourages new experimental studies. The main issue is that in each of the few cases in which the interplay is investigated, just two groups of scaffolds are compared, leaving intermediate adhesion conditions out of study. The authors propose broader studies implementing new high-throughput techniques for mechanical characterization of tissue engineering constructs and the inclusion of fatigue analysis as support methodology to more exhaustive mechanical characterization.
Collapse
|
33
|
Zhou W, Liu G, Yang S, Ye S. Investigation for Effects of Cyclical Dynamic Compression on Matrix Metabolite and Mechanical Properties of Chondrocytes Cultured in Alginate. J HARD TISSUE BIOL 2016. [DOI: 10.2485/jhtb.25.351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Shuhua Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Shunan Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
34
|
Tatman PD, Gerull W, Sweeney-Easter S, Davis JI, Gee AO, Kim DH. Multiscale Biofabrication of Articular Cartilage: Bioinspired and Biomimetic Approaches. TISSUE ENGINEERING PART B-REVIEWS 2015. [PMID: 26200439 DOI: 10.1089/ten.teb.2015.0142] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Articular cartilage is the load-bearing tissue found inside all articulating joints of the body. It vastly reduces friction and allows for smooth gliding between contacting surfaces. The structure of articular cartilage matrix and cellular composition is zonal and is important for its mechanical properties. When cartilage becomes injured through trauma or disease, it has poor intrinsic healing capabilities. The spectrum of cartilage injury ranges from isolated areas of the joint to diffuse breakdown and the clinical appearance of osteoarthritis. Current clinical treatment options remain limited in their ability to restore cartilage to its normal functional state. This review focuses on the evolution of biomaterial scaffolds that have been used for functional cartilage tissue engineering. In particular, we highlight recent developments in multiscale biofabrication approaches attempting to recapitulate the complex 3D matrix of native articular cartilage tissue. Additionally, we focus on the application of these methods to engineering each zone of cartilage and engineering full-thickness osteochondral tissues for improved clinical implantation. These methods have shown the potential to control individual cell-to-scaffold interactions and drive progenitor cell differentiation into a chondrocyte lineage. The use of these bioinspired nanoengineered scaffolds hold promise for recreation of structure and function on the whole tissue level and may represent exciting new developments for future clinical applications for cartilage injury and restoration.
Collapse
Affiliation(s)
- Philip David Tatman
- 1 Department of Bioengineering, University of Washington , Seattle, Washington
| | - William Gerull
- 1 Department of Bioengineering, University of Washington , Seattle, Washington
| | - Sean Sweeney-Easter
- 1 Department of Bioengineering, University of Washington , Seattle, Washington
| | - Jeffrey Isaac Davis
- 1 Department of Bioengineering, University of Washington , Seattle, Washington
| | - Albert O Gee
- 2 Department of Orthopedics and Sports Medicine, University of Washington , Seattle, Washington
| | - Deok-Ho Kim
- 1 Department of Bioengineering, University of Washington , Seattle, Washington.,3 Institute for Stem Cell and Regenerative Medicine, University of Washington , Seattle, Washington
| |
Collapse
|
35
|
Correia V, Panadero JA, Ribeiro C, Sencadas V, Rocha JG, Gomez Ribelles JL, Lanceros-Méndez S. Design and validation of a biomechanical bioreactor for cartilage tissue culture. Biomech Model Mechanobiol 2015; 15:471-8. [PMID: 26153426 DOI: 10.1007/s10237-015-0698-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/26/2015] [Indexed: 11/28/2022]
Abstract
Specific tissues, such as cartilage, undergo mechanical solicitation under their normal performance in human body. In this sense, it seems necessary that proper tissue engineering strategies of these tissues should incorporate mechanical solicitations during cell culture, in order to properly evaluate the influence of the mechanical stimulus. This work reports on a user-friendly bioreactor suitable for applying controlled mechanical stimulation--amplitude and frequency--to three-dimensional scaffolds. Its design and main components are described, as well as its operation characteristics. The modular design allows easy cleaning and operating under laminar hood. Different protocols for the sterilization of the hermetic enclosure are tested and ensure lack of observable contaminations, complying with the requirements to be used for cell culture. The cell viability study was performed with KUM5 cells.
Collapse
Affiliation(s)
- V Correia
- Centro/Departamento de Física da Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Algoritmi Research Centre, Universidade do Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
| | - J A Panadero
- Centro/Departamento de Física da Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - C Ribeiro
- Centro/Departamento de Física da Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - V Sencadas
- Centro/Departamento de Física da Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - J G Rocha
- Algoritmi Research Centre, Universidade do Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
| | - J L Gomez Ribelles
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.,Ciber en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - S Lanceros-Méndez
- Centro/Departamento de Física da Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
36
|
Steinmetz NJ, Aisenbrey EA, Westbrook KK, Qi HJ, Bryant SJ. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering. Acta Biomater 2015; 21:142-53. [PMID: 25900444 DOI: 10.1016/j.actbio.2015.04.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 12/15/2022]
Abstract
A bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer. Under a compressive load, the variation in hydrogel stiffness within each layer produced high strains in the soft cartilage-like layer, low strains in the stiff bone-like layer, and moderate strains in the interfacial layer. When hMSC-laden hydrogels were cultured statically in osteochondral differentiation media, the local biochemical and matrix stiffness cues were not sufficient to spatially guide hMSC differentiation after 21 days. However dynamic mechanical stimulation led to differentially high expression of collagens with collagen II in the cartilage-like layer, collagen X in the interfacial layer and collagen I in the bone-like layer and mineral deposits localized to the bone layer. Overall, these findings point to external mechanical stimulation as a potent regulator of hMSC differentiation toward osteochondral cellular phenotypes.
Collapse
|
37
|
Yu F, Cao X, Li Y, Chen X. Diels-Alder Click-Based Hydrogels for Direct Spatiotemporal Postpatterning via Photoclick Chemistry. ACS Macro Lett 2015; 4:289-292. [PMID: 35596333 DOI: 10.1021/mz5007427] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Click chemistry not only has been applied to the design of hydrogel scaffolds for 3D cell culture, but also is an efficient way for hydrogel postfunctionalization and spatiotemporal patterning. To the best of our knowledge, only azide-alkyne cycloaddition (SPAAC) has been exploited by combining photoinitiated thiol-ene click reaction to realize the 3D patterning of hydrogels. In this work, the cyclohexene derivative, which "clicked" by functional groups between furyl and maleimide, were successfully functionalized by thiol-modified molecules or peptides through thiol-ene click reaction. It illustrates a hydrogel that formed via Diels-Alder (DA) click chemistry between furyl-modified hyaluronic acid and bimaleimide functional PEG molecule can be allowed for the directly photoactivated thiol-ene chemistry for hydrogel spatiotemporal patterning. Since the cyclohexene derivatives produced by DA reaction can be employed in all subsequent 3D network patterning by using photoclick reactions, it suggests a new way to design and postfunctionalize all of the DA click-based hydrogels with specific regional bioactive cues.
Collapse
Affiliation(s)
- Feng Yu
- School
of Materials Science and Engendering, South China University of Technology, Guangzhou, 510641, People’s Republic of China
- National Engineering
Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, People’s Republic of China
| | - Xiaodong Cao
- School
of Materials Science and Engendering, South China University of Technology, Guangzhou, 510641, People’s Republic of China
- National Engineering
Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, People’s Republic of China
- Guangdong
Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Yuli Li
- National Engineering
Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, People’s Republic of China
- Guangdong
Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Xiaofeng Chen
- School
of Materials Science and Engendering, South China University of Technology, Guangzhou, 510641, People’s Republic of China
- National Engineering
Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, People’s Republic of China
- Guangdong
Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| |
Collapse
|
38
|
Liu J, Lin H, Li X, Fan Y, Zhang X. Chondrocytes behaviors within type I collagen microspheres and bulk hydrogels: an in vitro study. RSC Adv 2015. [DOI: 10.1039/c5ra04496k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell niche, which is considered to be critical to the proliferation and differentiation of cells, is one of the most important aspects for the design and development of ideal scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Jun Liu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Hai Lin
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xiupeng Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| |
Collapse
|
39
|
Farnsworth NL, Mead BE, Antunez LR, Palmer AE, Bryant SJ. Ionic osmolytes and intracellular calcium regulate tissue production in chondrocytes cultured in a 3D charged hydrogel. Matrix Biol 2014; 40:17-26. [DOI: 10.1016/j.matbio.2014.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 08/03/2014] [Accepted: 08/06/2014] [Indexed: 01/18/2023]
|
40
|
Xu Q, Li B, Yuan L, Dong Z, Zhang H, Wang H, Sun J, Ge S, Jin Y. Combination of platelet-rich plasma within periodontal ligament stem cell sheets enhances cell differentiation and matrix production. J Tissue Eng Regen Med 2014; 11:627-636. [DOI: 10.1002/term.1953] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/17/2014] [Accepted: 07/17/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Qiu Xu
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi People's Republic of China
- Department of Periodontology, School of Stomatology; Zunyi Medical Collage; Guizhou People's Republic of China
| | - Bei Li
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi People's Republic of China
- Research and Development Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi People's Republic of China
| | - Lin Yuan
- Department of Stomatology; First Affiliated Hospital, Guangzhou Medical University; Guangdong People's Republic of China
| | - Zhiwei Dong
- Department of Oral and Maxillofacial Surgery; General Hospital of Shenyang Military Area Command; Liaoning People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi People's Republic of China
| | - Han Wang
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi People's Republic of China
- Department of Stomatology; First Affiliated Hospital, Guangzhou Medical University; Guangdong People's Republic of China
| | - Jin Sun
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi People's Republic of China
- Department of Stomatology; First Affiliated Hospital, Guangzhou Medical University; Guangdong People's Republic of China
| | - Song Ge
- Department of Periodontology, School of Stomatology; Zunyi Medical Collage; Guizhou People's Republic of China
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi People's Republic of China
- Research and Development Centre for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi People's Republic of China
| |
Collapse
|
41
|
Magdeldin T, López-Dávila V, Villemant C, Cameron G, Drake R, Cheema U, Loizidou M. The efficacy of cetuximab in a tissue-engineered three-dimensional in vitro model of colorectal cancer. J Tissue Eng 2014; 5:2041731414544183. [PMID: 25383169 PMCID: PMC4221936 DOI: 10.1177/2041731414544183] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/20/2014] [Indexed: 02/04/2023] Open
Abstract
The preclinical development process of chemotherapeutic drugs is often carried out in two-dimensional monolayer cultures. However, a considerable amount of evidence demonstrates that two-dimensional cell culture does not accurately reflect the three-dimensional in vivo tumour microenvironment, specifically with regard to gene expression profiles, oxygen and nutrient gradients and pharmacokinetics. With this objective in mind, we have developed and established a physiologically relevant three-dimensional in vitro model of colorectal cancer based on the removal of interstitial fluid from collagen type I hydrogels. We employed the RAFT™ (Real Architecture For 3D Tissue) system for producing three-dimensional cultures to create a controlled reproducible, multiwell testing platform. Using the HT29 and HCT116 cell lines to model epidermal growth factor receptor expressing colorectal cancers, we characterized three-dimensional cell growth and morphology in addition to the anti-proliferative effects of the anti–epidermal growth factor receptor chemotherapeutic agent cetuximab in comparison to two-dimensional monolayer cultures. Cells proliferated well for 14 days in three-dimensional culture and formed well-defined cellular aggregates within the concentrated collagen matrix. Epidermal growth factor receptor expression levels revealed a twofold and threefold increase in three-dimensional cultures for both HT29 and HCT116 cells in comparison to two-dimensional monolayers, respectively (p < 0.05; p < 0.01). Cetuximab efficacy was significantly lower in HT29 three-dimensional cultures in comparison to two-dimensional monolayers, whereas HCT116 cells in both two-dimension and three-dimension were non-responsive to treatment in agreement with their KRAS mutant status. In summary, these results confirm the use of a three-dimensional in vitro cancer model as a suitable drug-screening platform for in vitro pharmacological testing.
Collapse
Affiliation(s)
- Tarig Magdeldin
- Cancer Nanotechnology Group, UCL Division of Surgery and Interventional Science, London, UK ; Tissue Repair and Engineering Centre, Institute of Orthopaedics and Musculoskeletal Sciences, UCL Division of Surgery and Interventional Science, Stanmore, UK
| | - Víctor López-Dávila
- Cancer Nanotechnology Group, UCL Division of Surgery and Interventional Science, London, UK
| | | | | | | | - Umber Cheema
- Tissue Repair and Engineering Centre, Institute of Orthopaedics and Musculoskeletal Sciences, UCL Division of Surgery and Interventional Science, Stanmore, UK
| | - Marilena Loizidou
- Cancer Nanotechnology Group, UCL Division of Surgery and Interventional Science, London, UK
| |
Collapse
|
42
|
Park IK, Cho CS. Stem Cell-assisted Approaches for Cartilage Tissue Engineering. Int J Stem Cells 2014; 3:96-102. [PMID: 24855547 DOI: 10.15283/ijsc.2010.3.2.96] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2010] [Indexed: 12/31/2022] Open
Abstract
The regeneration of damaged articular cartilage remains challenging due to its poor intrinsic capacity for repair. Tissue engineering of articular cartilage is believed to overcome the current limitations of surgical treatment by offering functional regeneration in the defect region. Selection of proper cell sources and ECM-based scaffolds, and incorporation of growth factors or mechanical stimuli are of primary importance to successfully produce artificial cartilage for tissue repair. When designing materials for cartilage tissue engineering, biodegradability and biocompatibility are the key factors in selecting material candidates, for either synthetic or natural polymers. The unique environment of cartilage makes it suitable to use a hydrogel with high water content in the cross-linked or thermosensitive (injectable) form. Moreover, design of composite scaffolds from two polymers with complementary physicochemical and biological properties has been explored to provide residing chondrocytes with a combination of the merits that each component contributes.
Collapse
Affiliation(s)
- In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, The Research Institute of Medical Science, Chonnam National University, Gwangju
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
43
|
Kwon HJ, Yasuda K, Gong JP, Ohmiya Y. Polyelectrolyte hydrogels for replacement and regeneration of biological tissues. Macromol Res 2014. [DOI: 10.1007/s13233-014-2045-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
44
|
Yu F, Cao X, Li Y, Zeng L, Zhu J, Wang G, Chen X. Diels–Alder crosslinked HA/PEG hydrogels with high elasticity and fatigue resistance for cell encapsulation and articular cartilage tissue repair. Polym Chem 2014. [DOI: 10.1039/c4py00473f] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gelation time of Diels–Alder crosslinked HA/PEG hydrogels can be reduced to an appropriate level for cell encapsulation and survival. At the same time, the DA click reaction makes the gel highly resilient and resistant to cyclic compression loading, which biomimics native articular cartilage biomechanical functions.
Collapse
Affiliation(s)
- Feng Yu
- School of Materials Science and Engendering
- South China University of Technology
- Guangzhou, PR China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
- Guangzhou, PR China
| | - Xiaodong Cao
- School of Materials Science and Engendering
- South China University of Technology
- Guangzhou, PR China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
- Guangzhou, PR China
| | - Yuli Li
- School of Materials Science and Engendering
- South China University of Technology
- Guangzhou, PR China
- Guangdong Province Key Laboratory of Biomedical Engineering
- South China University of Technology
| | - Lei Zeng
- School of Materials Science and Engendering
- South China University of Technology
- Guangzhou, PR China
- Guangdong Province Key Laboratory of Biomedical Engineering
- South China University of Technology
| | - Jiehua Zhu
- School of Materials Science and Engendering
- South China University of Technology
- Guangzhou, PR China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
- Guangzhou, PR China
| | - Gang Wang
- School of Materials Science and Engendering
- South China University of Technology
- Guangzhou, PR China
- Guangdong Province Key Laboratory of Biomedical Engineering
- South China University of Technology
| | - Xiaofeng Chen
- School of Materials Science and Engendering
- South China University of Technology
- Guangzhou, PR China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
- Guangzhou, PR China
| |
Collapse
|
45
|
Panadero J, Vikingsson L, Gomez Ribelles J, Sencadas V, Lanceros-Mendez S. Fatigue prediction in fibrin poly-ε-caprolactone macroporous scaffolds. J Mech Behav Biomed Mater 2013; 28:55-61. [DOI: 10.1016/j.jmbbm.2013.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/30/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
|
46
|
Comparison of photopolymerizable thiol-ene PEG and acrylate-based PEG hydrogels for cartilage development. Biomaterials 2013; 34:9969-79. [PMID: 24060418 DOI: 10.1016/j.biomaterials.2013.09.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/05/2013] [Indexed: 12/25/2022]
Abstract
When designing hydrogels for tissue regeneration, differences in polymerization mechanism and network structure have the potential to impact cellular behavior. Poly(ethylene glycol) hydrogels were formed by free-radical photopolymerization of acrylates (chain-growth) or thiol-norbornenes (step-growth) to investigate the impact of hydrogel system (polymerization mechanism and network structure) on the development of engineered tissue. Bovine chondrocytes were encapsulated in hydrogels and cultured under free swelling or dynamic compressive loading. In the acrylate system immediately after encapsulation chondrocytes exhibited high levels of intracellular ROS concomitant with a reduction in hydrogel compressive modulus and higher variability in cell deformation upon compressive strain; findings that were not observed in the thiol-norbornene system. Long-term the quantity of sulfated glycosaminoglycans and total collagen was greater in the acrylate system, but the quality resembled that of hypertrophic cartilage with positive staining for aggrecan, collagens I, II, and X and collagen catabolism. The thiol-norbornene system led to hyaline-like cartilage production especially under mechanical loading with positive staining for aggrecan and collagen II and minimal staining for collagens I and X and collagen catabolism. Findings from this study confirm that the polymerization mechanism and network structure have long-term effects on the quality of engineered cartilage, especially under mechanical loading.
Collapse
|
47
|
Dhote V, Vernerey FJ. Mathematical model of the role of degradation on matrix development in hydrogel scaffold. Biomech Model Mechanobiol 2013; 13:167-83. [PMID: 23636471 DOI: 10.1007/s10237-013-0493-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/02/2013] [Indexed: 01/18/2023]
Abstract
Despite tremendous advances in the field of tissue engineering, a number of obstacles are still hindering its successful translation to the clinic. One of these challenges has been to design cell-laden scaffolds that can provide an appropriate environment for cells to successfully synthesize new tissue while providing a mechanical support that can resist physiological loads at the early stage of in situ implementation. A solution to this problem has been to balance tissue growth and scaffold degradation by creating new hydrogel systems that possess both hydrolytic and enzymatic degradation behaviors. Very little is known, however, about the complex behavior of these systems, emphasizing the need for a rigorous mathematical approach that can eventually assist and guide experimental advances. This paper introduces a mathematical and numerical formulation based on mixture theory, to describe the degradation, swelling, and transport of extracellular matrix (ECM) molecules released by cartilage cells (chondrocytes) within a hydrogel scaffold. The model particularly investigates the relative roles of hydrolytic and enzymatic degradations on ECM diffusion and their impacts on two important outcomes: the extent of ECM transport (and deposition) and the evolution of the scaffold's mechanical integrity. Numerical results based on finite element show that if properly tuned, enzymatic degradation differs from hydrolytic degradation in that it can create a degradation front that is key to maintaining scaffold stiffness while allowing ECM deposition. These results therefore suggest a hydrogel design that could enable successful in situ cartilage tissue engineering.
Collapse
Affiliation(s)
- Valentin Dhote
- , 1111 Engineering Dr. 428, UCB, ECOT 422, Boulder, CO, 80303, USA
| | | |
Collapse
|
48
|
Kock LM, Geraedts J, Ito K, van Donkelaar CC. Low agarose concentration and TGF-β3 distribute extracellular matrix in tissue-engineered cartilage. Tissue Eng Part A 2013; 19:1621-31. [PMID: 23469833 DOI: 10.1089/ten.tea.2012.0541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The mechanical properties of articular cartilage are dominated by the interterritorial matrix, as the matrix in this region is stiffer, greater in volume, and more interconnected compared to that in the pericellular and territorial region. Hence, tissue-engineered constructs in which a newly synthesized matrix accumulates in the pericellular and territorial regions may be of a lower mechanical quality compared to constructs in which the interterritorial region contains abundant matrix. OBJECTIVE In this study, we explored the extent to which matrix distribution may be modulated by altering the agarose concentration and the presence of the transforming growth factor-β (TGF-β) and how this affects the mechanical properties of cultured cartilage constructs. METHODS Cartilage development in constructs with agarose concentrations varying from 1%, 2%, and 3% (study 1) and in constructs with no or very low agarose concentrations of 0.25%, 0.5%, and 1% (study 2) were compared. In both studies, the effect of TGF-β3 was compared to fetal bovine serum. After 21 and 42 days of culture, the matrix content and distribution were analyzed and mechanical properties were assessed at day 42. RESULTS Culture in lower agarose concentrations did not significantly influence the matrix content per wet weight, but did result in a more homogeneous distribution. Constructs cultured with less agarose also showed a higher equilibrium modulus. The presence of TGF-β3 resulted in an increased extracellular matrix (ECM) deposition, a more homogeneous matrix distribution, and an equilibrium modulus. CONCLUSIONS Culturing with no or low agarose concentrations and TGF-β3 is favorable for cartilage tissue-engineering studies, because both stimulate the formation of a more homogeneous ECM and consequently result in improved mechanical properties.
Collapse
Affiliation(s)
- Linda M Kock
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | |
Collapse
|
49
|
Farnsworth NL, Antunez LR, Bryant SJ. Dynamic compressive loading differentially regulates chondrocyte anabolic and catabolic activity with age. Biotechnol Bioeng 2013; 110:2046-57. [DOI: 10.1002/bit.24860] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/25/2013] [Accepted: 02/01/2013] [Indexed: 01/02/2023]
|
50
|
Ko CY, Yang CY, Yang SR, Ku KL, Tsao CK, Chwei-Chin Chuang D, Chu IM, Cheng MH. Cartilage formation through alterations of amphiphilicity of poly(ethylene glycol)–poly(caprolactone) copolymer hydrogels. RSC Adv 2013. [DOI: 10.1039/c3ra42406e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|