1
|
Huang N, Lu H. Association between instantaneous heart rate sequence during the awake period and cardiovascular events: a study based on Sleep Heart Health Study. Minerva Cardiol Angiol 2024; 72:465-476. [PMID: 39254955 DOI: 10.23736/s2724-5683.24.06466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND Heart rate variability (HRV) has been reported to be associated with cardiovascular diseases (CVD), while few studies focused on the instantaneous heart rate (IHR). This study aimed to establish models to predict the occurrence of cardiovascular events based on the IHR sequence. METHODS A total of 2977 participants with useful electrocardiogram (ECG) data and free of CVD events at baseline from the Sleep Heart Health Study (SHHS) database were included in this retrospective cohort study. All IHR indicators were measured during the awake period before sleep. The logistic regression, random forest, and XGBoost methods were used to develop the predictive models. The model performance was quantified by calculating the area under the curve (AUC). RESULTS Of theses 2977 participants, 1460 (49.04%) participants had CVD events during the 15-year follow-up. Higher standard deviation of IHR (SDHR) (OR=0.906; 95% CI, 0.832-0.986), coefficient of variation of IHR (CVHR) (OR=0.910; 95% CI, 0.835-0.990), power in low frequency (LF) (OR=0.896; 95% CI, 0.822-0.975), power in high frequency (HF) (OR=0.872; 95% CI, 0.796-0.955), and total power (TP) (OR=0.887; 95% CI, 0.813-0.967) were associated with the lower risk of CVD events, while ratio of semi-minor axis and semi-major axis in Poincare plot (SDratio) (OR=1.105; 95% CI, 1.012-1.206) was related to the higher risk of CVD events. The AUCs of the logistic regression, random forest, and the XGBoost models were 0.734 (95% CI, 0.701-0.767), 0.794 (95% CI, 0.764-0.823) and 0.828 (95% CI, 0.801-0.855) in the testing set, respectively. CONCLUSIONS IHR sequences were important predictors of cardiovascular events. The IHR indicators should be paid more attention to in future clinical researches on CVD.
Collapse
Affiliation(s)
- Nan Huang
- Department of Cardiovascular Medicine, Liuzhou People's Hospital, Liuzhou, Guangxi, China -
| | - Haiou Lu
- Department of General Practice, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
2
|
Ding S, Chen Y, Huang C, Song L, Liang Z, Wei B. Perception and response of skeleton to mechanical stress. Phys Life Rev 2024; 49:77-94. [PMID: 38564907 DOI: 10.1016/j.plrev.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Mechanical stress stands as a fundamental factor in the intricate processes governing the growth, development, morphological shaping, and maintenance of skeletal mass. The profound influence of stress in shaping the skeletal framework prompts the assertion that stress essentially births the skeleton. Despite this acknowledgment, the mechanisms by which the skeleton perceives and responds to mechanical stress remain enigmatic. In this comprehensive review, our scrutiny focuses on the structural composition and characteristics of sclerotin, leading us to posit that it serves as the primary structure within the skeleton responsible for bearing and perceiving mechanical stress. Furthermore, we propose that osteocytes within the sclerotin emerge as the principal mechanical-sensitive cells, finely attuned to perceive mechanical stress. And a detailed analysis was conducted on the possible transmission pathways of mechanical stress from the extracellular matrix to the nucleus.
Collapse
Affiliation(s)
- Sicheng Ding
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yiren Chen
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Chengshuo Huang
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhen Liang
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Bo Wei
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
3
|
Roth L, Dogan S, Tuna BG, Aranyi T, Benitez S, Borrell-Pages M, Bozaykut P, De Meyer GRY, Duca L, Durmus N, Fonseca D, Fraenkel E, Gillery P, Giudici A, Jaisson S, Johansson M, Julve J, Lucas-Herald AK, Martinet W, Maurice P, McDonnell BJ, Ozbek EN, Pucci G, Pugh CJA, Rochfort KD, Roks AJM, Rotllan N, Shadiow J, Sohrabi Y, Spronck B, Szeri F, Terentes-Printzios D, Tunc Aydin E, Tura-Ceide O, Ucar E, Yetik-Anacak G. Pharmacological modulation of vascular ageing: A review from VascAgeNet. Ageing Res Rev 2023; 92:102122. [PMID: 37956927 DOI: 10.1016/j.arr.2023.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.
Collapse
Affiliation(s)
- Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Sonia Benitez
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Biochemistry, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Perinur Bozaykut
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkiye
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Nergiz Durmus
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkiye
| | - Diogo Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Košice, Slovakia
| | - Philippe Gillery
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | | | - Josep Julve
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Endocrinology, Diabetes and Nutrition group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Barry J McDonnell
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Emine Nur Ozbek
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christopher J A Pugh
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin, Ireland
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands
| | - Noemi Rotllan
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Pathophysiology of lipid-related diseases, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Yahya Sohrabi
- Molecular Cardiology, Dept. of Cardiology I - Coronary and Peripheral Vascular Disease, University Hospital Münster, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czechia
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Flora Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elif Tunc Aydin
- Department of Cardiology, Hospital of Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkiye
| | - Olga Tura-Ceide
- Biomedical Research Institute-IDIBGI, Girona, Spain; Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Eda Ucar
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Acıbadem Mehmet Aydinlar University, Istanbul, Turkiye.
| |
Collapse
|
4
|
Abstract
Arterial stiffness is a strong predictor of cardiovascular events and all-cause mortality in middle-aged and old adults. Arterial stiffness has been limited to being an intermediate marker of atherosclerotic cardiovascular events in adolescents and young adult studies. The paucity of normative longitudinal data and repeated gold-standard assessments of arterial stiffness among the young population has occasioned a huge knowledge gap in its clinical utility. This review summarizes recent longitudinal evidence in a large adolescent population, supporting the value of arterial stiffness as a novel risk factor for hypertension, overweight/obesity and insulin resistance. Preventing or decreasing arterial stiffness during adolescence may confer cardiometabolic health benefits in later life, but further pathological and mechanistic research is needed. The review also offers suggestions for incorporating arterial stiffness measures into routine paediatric and young adult clinical practice.
Collapse
|
5
|
Wu X, Ya J, Zhou D, Ding Y, Ji X, Meng R. Pathogeneses and Imaging Features of Cerebral White Matter Lesions of Vascular Origins. Aging Dis 2021; 12:2031-2051. [PMID: 34881084 PMCID: PMC8612616 DOI: 10.14336/ad.2021.0414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/14/2021] [Indexed: 01/10/2023] Open
Abstract
White matter lesion (WML), also known as white matter hyperintensities or leukoaraiosis, was first termed in 1986 to describe the hyperintense signals on T2-weighted imaging (T2WI) and fluid-attenuated inversion recovery (FLAIR) maps. Over the past decades, a growing body of pathophysiological findings regarding WMLs have been discovered and discussed. Currently, the generally accepted WML pathogeneses mainly include hypoxia-ischemia, endothelial dysfunction, blood-brain barrier disruption, and infiltration of inflammatory mediators or cytokines. However, none of them can explain the whole dynamics of WML formation. Herein, we primarily focus on the pathogeneses and neuroimaging features of vascular WMLs. To achieve this goal, we searched papers with any type published in PubMed from 1950 to 2020 and cross-referenced the keywords including “leukoencephalopathy”, “leukoaraiosis”, “white matter hyperintensity”, “white matter lesion”, “pathogenesis”, “pathology”, “pathophysiology”, and “neuroimaging”. Moreover, references of the selected articles were browsed and searched for additional pertinent articles. We believe this work will supply the robust references for clinicians to further understand the different WML patterns of varying vascular etiologies and thus make customized treatment.
Collapse
Affiliation(s)
- Xiaoqin Wu
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,3Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingyuan Ya
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,3Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,4Division of Clinical Neuroscience, Queen's Medical Center School of Medicine, the University of Nottingham, Nottingham NG7 2UH, UK
| | - Da Zhou
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,3Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- 3Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,5Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Xunming Ji
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,3Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Meng
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,3Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Schmelzer CEH, Duca L. Elastic fibers: formation, function, and fate during aging and disease. FEBS J 2021; 289:3704-3730. [PMID: 33896108 DOI: 10.1111/febs.15899] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 01/09/2023]
Abstract
Elastic fibers are extracellular components of higher vertebrates and confer elasticity and resilience to numerous tissues and organs such as large blood vessels, lungs, and skin. Their formation and maturation take place in a complex multistage process called elastogenesis. It requires interactions between very different proteins but also other molecules and leads to the deposition and crosslinking of elastin's precursor on a scaffold of fibrillin-rich microfibrils. Mature fibers are exceptionally resistant to most influences and, under healthy conditions, retain their biomechanical function over the life of the organism. However, due to their longevity, they accumulate damages during aging. These are caused by proteolytic degradation, formation of advanced glycation end products, calcification, oxidative damage, aspartic acid racemization, lipid accumulation, carbamylation, and mechanical fatigue. The resulting changes can lead to diminution or complete loss of elastic fiber function and ultimately affect morbidity and mortality. Particularly, the production of elastokines has been clearly shown to influence several life-threatening diseases. Moreover, the structure, distribution, and abundance of elastic fibers are directly or indirectly influenced by a variety of inherited pathological conditions, which mainly affect organs and tissues such as skin, lungs, or the cardiovascular system. A distinction can be made between microfibril-related inherited diseases that are the result of mutations in diverse microfibril genes and indirectly affect elastogenesis, and elastinopathies that are linked to changes in the elastin gene. This review gives an overview on the formation, structure, and function of elastic fibers and their fate over the human lifespan in health and disease.
Collapse
Affiliation(s)
- Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 MEDyC, SFR CAP-Sante, Université de Reims Champagne-Ardenne, France
| |
Collapse
|
7
|
Heinz A. Elastic fibers during aging and disease. Ageing Res Rev 2021; 66:101255. [PMID: 33434682 DOI: 10.1016/j.arr.2021.101255] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/29/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Elastic fibers are essential constituents of the extracellular matrix of higher vertebrates and endow several tissues and organs including lungs, skin and blood vessels with elasticity and resilience. During the human lifespan, elastic fibers are exposed to a variety of enzymatic, chemical and biophysical influences, and accumulate damage due to their low turnover. Aging of elastin and elastic fibers involves enzymatic degradation, oxidative damage, glycation, calcification, aspartic acid racemization, binding of lipids and lipid peroxidation products, carbamylation and mechanical fatigue. These processes can trigger an impairment or loss of elastic fiber function and are associated with severe pathologies. There are different inherited or acquired pathological conditions, which influence the structure and function of elastic fibers and microfibrils predominantly in the cardiorespiratory system and skin. Inherited elastic-fiber pathologies have a direct or indirect impact on elastic-fiber formation due to mutations in the fibrillin genes (fibrillinopathies), in the elastin gene (elastinopathies) or in genes encoding proteins that are associated with microfibrils or elastic fibers. Acquired elastic-fiber pathologies appear age-related or as a result of multiple factors impairing tissue homeostasis. This review gives an overview on the fate of elastic fibers over the human lifespan in health and disease.
Collapse
|
8
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 362] [Impact Index Per Article: 120.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
9
|
Prevel R, Roubaud-Baudron C, Tellier E, Le Besnerais M, Kaplanski G, Veyradier A, Benhamou Y, Coppo P. [Endothelial dysfunction in thrombotic thrombocytopenic purpura: therapeutic perspectives]. Rev Med Interne 2021; 42:202-209. [PMID: 33455838 DOI: 10.1016/j.revmed.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/19/2020] [Accepted: 12/26/2020] [Indexed: 01/05/2023]
Abstract
Immune Thrombotic Thrombocytopenic Purpura (iTTP) is a rare but severe disease with a mortality rate of almost 100 % in the absence of adequate treatment. iTTP is caused by a severe deficiency in ADAMTS13 activity due to the production of inhibitory antibodies. Age has been shown to be a major prognostic factor. iTTP patients in the elderly (60yo and over) have more frequent organ involvement, especially heart and kidney failures compared with younger patients. They also have non-specific neurologic symptoms leading to a delayed diagnosis. Factors influencing this impaired survival among older patients remain unknown so far. Alteration of the functional capacity of involved organs could be part of the explanation as could be the consequences of vascular aging. In fact, severe ADAMTS13 deficiency is necessary but likely not sufficient for iTTP physiopathology. A second hit leading to endothelial activation is thought to play a central role in iTTP. Interestingly, the mechanisms involved in endothelial activation may share common features with those involved in vascular aging, potentially leading to endothelial dysfunction. It could thus be interesting to better investigate the causes of mid- and long-term mortality among older iTTP patients to confirm whether inflammation and endothelial activation really impact vascular aging and long-term mortality in those patients, in addition to their presumed role at iTTP acute phase. If so, further insights into the mechanisms involved could lead to new therapeutic targets.
Collapse
Affiliation(s)
- R Prevel
- CHU Bordeaux, Pôle de Gérontologie Clinique, 33000 Bordeaux, France; CHU Bordeaux, FHU Acronim 33000 Bordeaux, France; University Bordeaux, INSERM 1045 CRCTB 33000 Bordeaux, France
| | - C Roubaud-Baudron
- CHU Bordeaux, Pôle de Gérontologie Clinique, 33000 Bordeaux, France; University Bordeaux, INSERM UMR 1053 Bariton 33000 Bordeaux, France
| | - E Tellier
- Vascular Research Center of Marseille, Inserm, UMRS_1076, Aix-Marseille Université, Marseille, France
| | - M Le Besnerais
- Service de Médecine Interne, CHU Charles Nicolle, Rouen, France; INSERM U1096, UFR médecine pharmacie Rouen, Rouen, France
| | - G Kaplanski
- Vascular Research Center of Marseille, Inserm, UMRS_1076, Aix-Marseille Université, Marseille, France; Aix-Marseille université, 13284, Service de médecine interne, hôpital de la Conception, AP-HM, 147, boulevard Baille, 13385 Marseille cedex 05, France; Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), Paris, France
| | - A Veyradier
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), Paris, France; Hématologie biologique, Hôpital Lariboisière, AP-HP, Université Paris Diderot, Paris, France
| | - Y Benhamou
- Service de Médecine Interne, CHU Charles Nicolle, Rouen, France; INSERM U1096, UFR médecine pharmacie Rouen, Rouen, France; Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), Paris, France
| | - P Coppo
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), Paris, France; Service d'Hématologie, Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), AP-HP.6, Paris, France.
| | | |
Collapse
|
10
|
Hu B, Boakye‐Yiadom KO, Yu W, Yuan Z, Ho W, Xu X, Zhang X. Nanomedicine Approaches for Advanced Diagnosis and Treatment of Atherosclerosis and Related Ischemic Diseases. Adv Healthc Mater 2020; 9:e2000336. [PMID: 32597562 DOI: 10.1002/adhm.202000336] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) remain one of the major causes of mortality worldwide. In response to this and other worldwide health epidemics, nanomedicine has emerged as a rapidly evolving discipline that involves the development of innovative nanomaterials and nanotechnologies and their applications in therapy and diagnosis. Nanomedicine presents unique advantages over conventional medicines due to the superior properties intrinsic to nanoscopic therapies. Once used mainly for cancer therapies, recently, tremendous progress has been made in nanomedicine that has led to an overall improvement in the treatment and diagnosis of CVDs. This review elucidates the pathophysiology and potential targets of atherosclerosis and associated ischemic diseases. It may be fruitful to pursue future work in the nanomedicine-mediated treatment of CVDs based on these targets. A comprehensive overview is then provided featuring the latest preclinical and clinical outcomes in cardiovascular imaging, biomarker detection, tissue engineering, and nanoscale delivery, with specific emphasis on nanoparticles, nanostructured scaffolds, and nanosensors. Finally, the challenges and opportunities regarding the future development and clinical translation of nanomedicine in related fields are discussed. Overall, this review aims to provide a deep and thorough understanding of the design, application, and future development of nanomedicine for atherosclerosis and related ischemic diseases.
Collapse
Affiliation(s)
- Bin Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Kofi Oti Boakye‐Yiadom
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wei Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zi‐Wei Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - William Ho
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xiaoyang Xu
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
11
|
de la Torre JC. Hemodynamic Instability in Heart Failure Intensifies Age-Dependent Cognitive Decline. J Alzheimers Dis 2020; 76:63-84. [PMID: 32444552 DOI: 10.3233/jad-200296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This review attempts to examine two key elements in the evolution of cognitive impairment in the elderly who develop heart failure. First, major left side heart parts can structurally and functionally deteriorate from aging wear and tear to provoke hemodynamic instability where heart failure worsens or is initiated; second, heart failure is a major inducer of cognitive impairment and Alzheimer's disease in the elderly. In heart failure, when the left ventricular myocardium of an elderly person does not properly contract, it cannot pump out adequate blood to the brain, raising the risk of cognitive impairment due to the intensification of chronic brain hypoperfusion. Chronic brain hypoperfusion originates from chronically reduced cardiac output which progresses as heart failure worsens. Other left ventricular heart parts, including atrium, valves, myocardium, and aorta can contribute to the physiological shortfall of cardiac output. It follows that hemodynamic instability and perfusion changes occurring from the aging heart's blood pumping deficiency will, in time, damage vulnerable brain cells linked to specific cognitive regulatory sites, diminishing neuronal energy metabolism to a level where progressive cognitive impairment is the outcome. Could cognitive impairment progress be reversed with a heart transplant? Evidence is presented detailing the errant hemodynamic pathways leading to cognitive impairment during aging as an offshoot of inefficient structural and functional heart parts and their contribution to heart failure.
Collapse
Affiliation(s)
- Jack C de la Torre
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.,University of Valencia, Valencia, Spain
| |
Collapse
|
12
|
Immune thrombotic thrombocytopenic purpura in older patients: prognosis and long-term survival. Blood 2020; 134:2209-2217. [PMID: 31530564 DOI: 10.1182/blood.2019000748] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/10/2019] [Indexed: 12/30/2022] Open
Abstract
Older age is associated with increased mortality in immune thrombotic thrombocytopenic purpura (iTTP). Yet, data are scarce regarding iTTP occurring among older patients. To assess clinical features and long-term impact of iTTP on mortality in older patients (>60 years old), characteristics and prognoses of adult iTTP patients enrolled in the French Reference Center for Thrombotic Microangiopathies registry between 2000 and 2016 were described according to age (<60 years old or ≥60 years old). Long-term mortality of iTTP older survivors was compared with that of non-iTTP geriatric subjects. Comparing, respectively, older iTTP patients (N = 71) with younger patients (N = 340), time from hospital admission to diagnosis was longer (P < .0001); at diagnosis, delirium (P = .034), behavior impairment (P = .045), renal involvement (P < .0001), and elevated troponin level (P = .025) were more important whereas cytopenias were less profound (platelet count, 22 × 103/mm3 [9-57] vs 13 × 103/mm3 [9-21], respectively [P = .002]; hemoglobin level, 9 g/dL [8-11] vs 8 g/dL [7-10], respectively [P = .0007]). Short- and mid-term mortalities were higher (P < .0001) and increased for every 10 years of age range. Age ≥60 years, cardiac involvement, increased plasma creatinine level, and total plasma exchange volume were independently associated with 1-month mortality. Compared with a non-iTTP geriatric population, older survivors showed an increased long-term mortality (hazard ratio = 3.44; P < .001). In conclusion, older iTTP patients have atypical neurological presentation delaying the diagnosis. Age negatively impacts short-term but also long-term mortality.
Collapse
|
13
|
Fhayli W, Boëté Q, Kihal N, Cenizo V, Sommer P, Boyle WA, Jacob MP, Faury G. Dill Extract Induces Elastic Fiber Neosynthesis and Functional Improvement in the Ascending Aorta of Aged Mice with Reversal of Age-Dependent Cardiac Hypertrophy and Involvement of Lysyl Oxidase-Like-1. Biomolecules 2020; 10:E173. [PMID: 31979322 PMCID: PMC7072659 DOI: 10.3390/biom10020173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/16/2023] Open
Abstract
Elastic fibers (90% elastin, 10% fibrillin-rich microfibrils) are synthesized only in early life and adolescence mainly by the vascular smooth muscle cells through the cross-linking of its soluble precursor, tropoelastin. Elastic fibers endow the large elastic arteries with resilience and elasticity. Normal vascular aging is associated with arterial remodeling and stiffening, especially due to the end of production and degradation of elastic fibers, leading to altered cardiovascular function. Several pharmacological treatments stimulate the production of elastin and elastic fibers. In particular, dill extract (DE) has been demonstrated to stimulate elastin production in vitro in dermal equivalent models and in skin fibroblasts to increase lysyl oxidase-like-1 (LOXL-1) gene expression, an enzyme contributing to tropoelastin crosslinking and elastin formation. Here, we have investigated the effects of a chronic treatment (three months) of aged male mice with DE (5% or 10% v/v, in drinking water) on the structure and function of the ascending aorta. DE treatment, especially at 10%, of aged mice protected pre-existing elastic lamellae, reactivated tropoelastin and LOXL-1 expressions, induced elastic fiber neo-synthesis, and decreased the stiffness of the aging aortic wall, probably explaining the reversal of the age-related cardiac hypertrophy also observed following the treatment. DE could thus be considered as an anti-aging product for the cardiovascular system.
Collapse
Affiliation(s)
- Wassim Fhayli
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000 Grenoble, France; (W.F.); (Q.B.)
| | - Quentin Boëté
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000 Grenoble, France; (W.F.); (Q.B.)
| | - Nadjib Kihal
- Laboratoire de Phytochimie et de Pharmacologie, Département de Chimie, Université de Jijel, Jijel 18000, Algeria;
| | | | - Pascal Sommer
- Institut de Biologie et Chimie des Protéines UMR5305—LBTI, CNRS, 69367 Lyon, France;
| | - Walter A. Boyle
- Department of Anesthesiology and Critical Care Medicine Division, Washington University School of Medicine, St Louis, MO 63110, USA;
| | - Marie-Paule Jacob
- INSERM, U1148, and Hopital Bichat-Claude Bernard, 75018 Paris, France;
| | - Gilles Faury
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38000 Grenoble, France; (W.F.); (Q.B.)
| |
Collapse
|
14
|
Fhayli W, Boëté Q, Harki O, Briançon-Marjollet A, Jacob MP, Faury G. Rise and fall of elastic fibers from development to aging. Consequences on arterial structure-function and therapeutical perspectives. Matrix Biol 2019; 84:41-56. [PMID: 31493460 DOI: 10.1016/j.matbio.2019.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/03/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
In the arteries of vertebrates, evolution has given rise to resilient macromolecular structures, elastin and elastic fibers, capable of sustaining an elevated blood pressure and smoothening the discontinuous blood flow and pressure generated by the heart. Elastic fibers are produced only during development and childhood, before being progressively degraded by mechanical stress and enzymatic activities during adulthood and aging. During this period, arterial elastic fiber calcification and loading of lipids also occur, all of these events conducting to arteriosclerosis. This leads to a progressive dysfunction of the large elastic arteries inducing elevated blood pressure as well as altered hemodynamics and organ perfusion, which induce more global malfunctions of the body during normal aging. Additionally, some arterial conditions occur more frequently with advancing age, such as atherosclerosis or aneurysms, which are called age-related diseases or pathological aging. The physiological or pathological degradation of elastic fibers and function of elastic arteries seemed to be rather inevitable over time. However, during the recent years, different molecules - including several ATP-dependent potassium channel openers, such as minoxidil - have been shown to re-induce elastin production and elastic fiber assembly, leading to improvements in the arterial structure and function or in organ perfusion. This review summarizes the changes in the arterial elastic fibers and structure from development until aging, and presents some of the potential pharmacotherapies leading to elastic fiber neosynthesis and arterial function improvement.
Collapse
Affiliation(s)
- Wassim Fhayli
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | - Quentin Boëté
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | - Olfa Harki
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | | | - Marie-Paule Jacob
- INSERM, U1148, and Hopital Bichat-Claude Bernard, 46 rue Henri Huchard, 75877 Paris, France
| | - Gilles Faury
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France.
| |
Collapse
|
15
|
Hodis S. Pulse wave velocity as a diagnostic index: The effect of wall thickness. Phys Rev E 2018; 97:062401. [PMID: 30011489 DOI: 10.1103/physreve.97.062401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 11/07/2022]
Abstract
Vascular compliance is a major determinant of wave propagation within the vascular system, and hence the measurement of pulse wave velocity (PWV) is commonly used clinically as a method of detecting vascular stiffening. The accuracy of that assessment is important because vascular stiffening is a major risk factor for hypertension. PWV is usually measured by timing a pressure wave as it travels from the carotid artery to the femoral or radial artery and estimating the distance that it traveled in each case to obtain the required velocity. A major assumption on which this technique is based is that the vessel wall thickness h is negligibly small compared with the vessel radius a. The extent to which this assumption is satisfied in the cardiovascular system is not known because the ratio h/a varies widely across different regions of the vascular tree and under different pathological conditions. Using the PWV as a diagnostic test without knowing the effect of wall thickness on the measurement could lead to error when interpreting the PWV value as an index of vessel wall compliance. The aim of the present study was to extend the validity of the current practice of assessing wall stiffness by developing a method of analysis that goes beyond the assumption of a thin wall. We analyzed PWVs calculated with different wall models, depending on the ratio of wall thickness to vessel radius and the results showed that PWV is not reliable when it is estimated with the classic thin wall theory if the vessel wall is not around 25% of vessel radius. If the arterial wall is thicker than 25% of vessel radius, then the wave velocity calculated with the thin wall theory could be overestimated and in the clinical setting, this could lead to a false positive. For thicker walls, a thick wall model presented here should be considered to account for the stresses within the wall thickness that become dominant compared with the wall inertia.
Collapse
Affiliation(s)
- Simona Hodis
- Department of Mathematics, Texas A&M University, Kingsville, TX 78363, USA
| |
Collapse
|
16
|
Sainio A, Järveläinen H. Extracellular Matrix Macromolecules as Potential Targets of Cardiovascular Pharmacotherapy. ADVANCES IN PHARMACOLOGY 2018; 81:209-240. [DOI: 10.1016/bs.apha.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Iulita MF, Noriega de la Colina A, Girouard H. Arterial stiffness, cognitive impairment and dementia: confounding factor or real risk? J Neurochem 2017; 144:527-548. [PMID: 28991365 DOI: 10.1111/jnc.14235] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022]
Abstract
Large artery stiffness is a frequent condition that arises with ageing, and is accelerated by the presence of co-morbidities like hypertension, obesity and diabetes. Although epidemiological studies have indicated an association between arterial stiffness, cognitive impairment and dementia, the precise effects of stiff arteries on the brain remains obscure. This is because, in humans, arterial stiffness is often accompanied by other factors such as age, high blood pressure, atherosclerosis and inflammation, which could themselves damage the brain independently of stiffness. Therefore, the question remains: is arterial stiffness a true risk for cognitive decline? Or, is it a confounding factor? In this review, we provide an overview of arterial stiffness and its impact on brain function based on human and animal studies. We summarize the evidence linking arterial stiffness to cognitive dysfunction and dementia, and discuss the role of new animal models to better understand the mechanisms by which arterial stiffness affects the brain. We close with an overview of treatments to correct stiffness and discuss the challenges to translate them to real patient care. This article is part of the Special Issue "Vascular Dementia".
Collapse
Affiliation(s)
- M Florencia Iulita
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, 2900, Edouard-Montpetit, Canada
| | - Adrián Noriega de la Colina
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, 4545, Chemin Queen Mary, Canada
| | - Hélène Girouard
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2900, Edouard-Montpetit, Canada
| |
Collapse
|
18
|
Xu X, Wang B, Ren C, Hu J, Greenberg DA, Chen T, Xie L, Jin K. Age-related Impairment of Vascular Structure and Functions. Aging Dis 2017; 8:590-610. [PMID: 28966804 PMCID: PMC5614324 DOI: 10.14336/ad.2017.0430] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/30/2017] [Indexed: 12/12/2022] Open
Abstract
Among age-related diseases, cardiovascular and cerebrovascular diseases are major causes of death. Vascular dysfunction is a key characteristic of these diseases wherein age is an independent and essential risk factor. The present work will review morphological alterations of aging vessels in-depth, which includes the discussion of age-related microvessel loss and changes to vasculature involving the capillary basement membrane, intima, media, and adventitia as well as the accompanying vascular dysfunctions arising from these alterations.
Collapse
Affiliation(s)
- Xianglai Xu
- 1Zhongshan Hospital, Fudan University, Shanghai 200032, China.,2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Brian Wang
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Changhong Ren
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.,4Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University. Beijing, China
| | - Jiangnan Hu
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | | | - Tianxiang Chen
- 6Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liping Xie
- 3Department of Urology, the First Affiliated Hospital, Zhejiang University, Zhejiang Province, China
| | - Kunlin Jin
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| |
Collapse
|
19
|
Iurciuc S, Cimpean AM, Mitu F, Heredea R, Iurciuc M. Vascular aging and subclinical atherosclerosis: why such a "never ending" and challenging story in cardiology? Clin Interv Aging 2017; 12:1339-1345. [PMID: 28883714 PMCID: PMC5574695 DOI: 10.2147/cia.s141265] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The true onset of atherosclerosis remains one of the biggest challenges for cardiologists. Is atheroma plaque development considered the earliest step of vascular aging? If so, when it starts? Before or after birth? If it starts before birth or early during childhood, it seems that Thomas Sydenham was right: "A man is as old as his arteries." Except disorganization of elastic fibers, less is known about the morphology of vascular aging and also about the molecular events influencing the age of arteries, arterial stiffness, and their role in the appearance of future complications. Cellular and molecular events responsible for the switch from physiologic to pathologic aging of human arteries are less known. Epigenetic, genetic, and environmental influences at the onset of early vascular aging (EVA) should specifically influence the process. This paper briefly reviews the controversial data regarding vascular aging with an emphasis on the less known facts about the morphology of EVA.
Collapse
Affiliation(s)
- Stela Iurciuc
- Department of Preventive Medicine, Angiogenesis Research Center, "Victor Babes" University of Medicine and Pharmacy.,Clinical Emergency County Hospital "Pius Brînzeu,"
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, "Victor Babes" University of Medicine and Pharmacy, Timisoara
| | - Florin Mitu
- Department of Cardiology, "Grigore T Popa" University of Medicine and Pharmacy, Iasi
| | - Rodica Heredea
- Department of Pathology, Louis Turcanu Children Hospital, Timisoara, Romania
| | - Mircea Iurciuc
- Department of Preventive Medicine, Angiogenesis Research Center, "Victor Babes" University of Medicine and Pharmacy.,Clinical Emergency County Hospital "Pius Brînzeu,"
| |
Collapse
|
20
|
|
21
|
Increased stiffness and cell-matrix interactions of abdominal aorta in two experimental nonhypertensive models: long-term chemically sympathectomized and sinoaortic denervated rats. J Hypertens 2014; 32:652-8. [PMID: 24356541 DOI: 10.1097/hjh.0000000000000073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RATIONALE Sinoaortic denervated (SAD) and chemically sympathectomized (SNX) rats are characterized by a decrease in arterial distensibility without hypertension and would, thus, be relevant for analyzing arterial wall stiffening independently of blood pressure level. The fibronectin network, which plays a pivotal role in cell-matrix interactions, is a major determinant of arterial stiffness. We hypothesized that in SAD and SNX rats, arterial stiffness is increased, due to alterations of cell-matrix anchoring leading to spatial reorganization of the extracellular matrix. METHODS The intrinsic elastic properties of the arterial wall were evaluated in vivo by the relationship between incremental elastic modulus determined by echotracking and circumferential wall stress. The changes of cell-extracellular matrix links in the abdominal aorta were evaluated by studying fibronectin, vascular integrin receptors, and ultrastructural features of the aorta by immunochemistry. RESULTS In both experimental conditions, wall stiffness increased, associated with different modifications of cell-extracellular matrix adhesion. In SAD rats, increased media cross-sectional area was coupled with an increase of muscle cell attachments to its extracellular matrix via fibronectin and its α5-β1 integrin. In SNX rats, reduced media cross-sectional area was associated with upregulation of αv-β3 integrin and more extensive connections between dense bands and elastic fibers despite the disruption of the elastic lamellae. CONCLUSION In aorta of SNX and SAD rats, a similar arterial stiffness is associated to different structural alterations. An increase in αvβ3 or α5β1 integrins together with the already reported increase in the proportion of less distensible (collagen) to more distensible (elastin) components in both models contributes to remodeling and stiffening of the abdominal aorta.
Collapse
|
22
|
Mechanical events within the arterial wall under the forces of pulsatile flow: A review. J Mech Behav Biomed Mater 2011; 4:1595-602. [DOI: 10.1016/j.jmbbm.2011.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 11/19/2022]
|
23
|
Hodis S, Zamir M. Coupled radial and longitudinal displacements and stresses within the arterial wall in pulsatile flow under tethered and free-wall conditions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:051923. [PMID: 21728587 DOI: 10.1103/physreve.83.051923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 11/06/2010] [Indexed: 05/31/2023]
Abstract
An analytical solution is presented of the governing equations for the coupled radial and longitudinal displacements and stresses within the finite thickness of the arterial wall in pulsatile flow. The results are used to examine the extent of coupling between the radial and longitudinal dynamics within the vessel wall, particularly when the wall is fully tethered. In the case of a free wall, it is found that the dynamics in the two directions are fairly decoupled from each other when the wavelength is at least of the order of 100 times the vessel radius. At 10 times the vessel radius, however, there is strong coupling between the two. These findings are consistent with expectations in the case of a free wall where the long-wave approximation has been applied in the past. In the case of a tethered wall, however, the results indicate that in general the long-wave approximation is strictly valid only when the combination of wall material and tethering allow the wave to be long.
Collapse
Affiliation(s)
- S Hodis
- Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
24
|
Abstract
A considerable body of evidence indicates that elevated resting heart rate is an independent, modifiable risk factor for cardiovascular events and mortality in patients with coronary artery disease. Elevated heart rate can produce adverse effects in several ways. Firstly, myocardial oxygen consumption is increased at high heart rates, but the time available for myocardial perfusion is reduced, increasing the likelihood of myocardial ischemia. Secondly, exposure of the large elastic arteries to cyclical stretch is increased at high heart rates. This effect can increase the rate at which components of the arterial wall deteriorate. Elastin fibers, which have an extremely slow rate of turnover in adult life, might be particularly vulnerable. Thirdly, elevated heart rate can predispose the myocardium to arrhythmias, and favor the development and progression of coronary atherosclerosis, by adversely affecting the balance between systolic and diastolic flow. Comparisons of the effects of the specific heart-rate-lowering drug ivabradine with those of β-blockers could help clarify the pathophysiological effects of elevated heart rate. Effective heart rate control among patients with coronary artery disease is uncommon in clinical practice, representing a missed therapeutic opportunity.
Collapse
Affiliation(s)
- Kim M Fox
- Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK.
| | | |
Collapse
|
25
|
Hodis S, Zamir M. Pulse wave velocity as a diagnostic index: the pitfalls of tethering versus stiffening of the arterial wall. J Biomech 2011; 44:1367-73. [PMID: 21334629 DOI: 10.1016/j.jbiomech.2010.12.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 12/26/2010] [Accepted: 12/27/2010] [Indexed: 11/29/2022]
Abstract
Pulse wave velocity (PWV) is often used as a clinical index of aging, vascular disease, or age related hypertension. This practice is based on the assumption that a higher wave speed indicates vascular stiffening. This assumption is well grounded in the physics of pulsatile flow of an incompressible fluid where it is fully established that a pulse wave travels faster in a tube of stiffer wall, the wave speed becoming infinite in the mathematical limit of a rigid wall. However, in this paper we point out that the physical principal of higher pulse wave velocity in a stiffer tube is strictly valid only when the wall is free from outside constraints, which in the physiological setting is present in the form of tethering of the vessel wall. The use of PWV as an index of arterial stiffening may thus lose its validity if tethering is involved. A solution of the problem of vessel wall mechanics as they arise from the physiological pulsatile flow problem is presented for the purpose of resolving this issue. The vessel wall is considered to have finite thickness with or without tethering and with a range of mechanical properties ranging from viscoelastic to stiff. The results show that, indeed, while the wave speed becomes infinite in the mathematical limit of a rigid free wall, the opposite actually happens if the vessel wall is tethered. Here the wave speed actually diminishes as the degree of tethering increases. This dichotomy in the effects of tethering versus stiffening of the arterial wall may clearly lead to error in the interpretation of PWV as an index of vessel wall stiffness. In particular, a normal value of PWV may lead to the conclusion that vessel wall stiffening is absent while this value may in fact have been lowered by tethering. In other words, the diagnostic test may lead to a false negative diagnosis. Our results indicate that the reason for which PWV is lower in a tethered wall compared with that in a free wall of the same stiffness is that the radial movements of the wall are greatly reduced by tethering. More precisely, the results show that PWV depends strongly on the ratio of radial to axial displacements and that this ratio is much lower in a tethered wall than it is in a free wall of the same stiffness.
Collapse
Affiliation(s)
- S Hodis
- Department of Applied Mathematics, University of Western Ontario, London, Canada N6A 5B7
| | | |
Collapse
|
26
|
Role of extracellular matrix in vascular remodeling of hypertension. Curr Opin Nephrol Hypertens 2010; 19:187-94. [PMID: 20040870 DOI: 10.1097/mnh.0b013e328335eec9] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Arterial stiffness due to alterations in extracellular matrix is one of the mechanisms responsible for increased peripheral resistance in hypertension. Recent evidence points to arterial stiffness as an independent predictor of cardiovascular events. This review focuses on recent advances in the biology of extracellular matrix proteins involved in hypertension-associated vascular changes. RECENT FINDINGS The vascular extracellular matrix is a complex heterogeneous tissue comprising collagens, elastin, glycoproteins, and proteoglycans. These constituents not only provide mechanical integrity to the vessel wall but also possess a repertoire of insoluble ligands that induce cell signaling to control proliferation, migration, differentiation, and survival. It is now evident that it is not only the quantity but also the quality of the new synthesized extracellular matrix that determines changes in vascular stiffness in hypertension. Also, the control of cross-linking and the interactions between the extracellular matrix and vascular cells seem to be important. SUMMARY It is now evident that some of the currently used antihypertensive therapies can correct vascular stiffness and fibrosis. A better understanding of molecular mechanisms underlying alterations in extracellular matrix in hypertension will provide insights into novel therapies to reduce arterial stiffness and will identify new roles of established antihypertensive drugs.
Collapse
|
27
|
Intermittent versus constant aerobic exercise: effects on arterial stiffness. Eur J Appl Physiol 2009; 108:801-9. [DOI: 10.1007/s00421-009-1285-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|