1
|
Tommasino A, Dell’Aquila F, Redivo M, Pittorino L, Mattaroccia G, Tempestini F, Santucci S, Casenghi M, Giovannelli F, Rigattieri S, Berni A, Barbato E. Comprehensive Risk Assessment of LAD Disease Progression in CCTA: The CLAP Score Study. J Cardiovasc Dev Dis 2024; 11:338. [PMID: 39590181 PMCID: PMC11595042 DOI: 10.3390/jcdd11110338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND a wider left main bifurcation angle (LMBA) has been linked to severe plaque development in the proximal left anterior descending artery (LAD). This study aimed to identify predictors of severe proximal LAD stenosis and major adverse cardiovascular events (MACE) using coronary computed tomography angiography (CCTA). METHODS from an initial cohort of 650 consecutive patients, we analyzed 499 patients who met the inclusion criteria after exclusions. Plaque morphology and characteristics were assessed by CCTA, and MACE occurrences were recorded at follow-up. A predictive score for LAD disease progression (CLAP score) was developed and validated. RESULTS severe proximal LAD stenosis was detected in 32% (160/499) of patients by CCTA. MACE occurred in 12.5% of patients at follow-up. Significant predictors of MACE were LMBA > 80° (HR: 4.47; 95% CI: 3.80-6.70; p < 0.001), diabetes (HR: 2.94; 95% CI: 1.54-4.63; p = 0.031), chronic kidney disease (HR: 1.71; 95% CI: 1.31-6.72; p = 0.041), high-risk plaques (HR: 2.30; 95% CI: 1.45-3.64; p < 0.01), obstructive CAD (HR: 2.50; 95% CI: 1.50 to 4.10, p = 0.01), and calcium score (CAC) (HR: 1.05; 95% CI: 1.02-1.08, p = 0.004). The CLAP score demonstrated good discriminatory power in both the development (AUC 0.91; 95% CI: 0.86-0.96) and validation cohorts (AUC 0.85; 95% CI: 0.79-0.91); Conclusions: LMBA > 80°, diabetes, chronic kidney disease, obstructive CAD, CAC score >180 and high-risk plaques were significant predictors of MACE in CCTA patients. The CLAP score effectively predicted LAD disease progression, aiding in risk stratification and optimization of intervention strategies for suspected coronary artery disease.
Collapse
Affiliation(s)
- Antonella Tommasino
- Division of Cardiology, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (F.D.); (M.R.); (L.P.); (G.M.); (F.T.); (S.S.); (M.C.); (F.G.); (S.R.); (A.B.); (E.B.)
| | - Federico Dell’Aquila
- Division of Cardiology, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (F.D.); (M.R.); (L.P.); (G.M.); (F.T.); (S.S.); (M.C.); (F.G.); (S.R.); (A.B.); (E.B.)
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Marco Redivo
- Division of Cardiology, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (F.D.); (M.R.); (L.P.); (G.M.); (F.T.); (S.S.); (M.C.); (F.G.); (S.R.); (A.B.); (E.B.)
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Luca Pittorino
- Division of Cardiology, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (F.D.); (M.R.); (L.P.); (G.M.); (F.T.); (S.S.); (M.C.); (F.G.); (S.R.); (A.B.); (E.B.)
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Giulia Mattaroccia
- Division of Cardiology, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (F.D.); (M.R.); (L.P.); (G.M.); (F.T.); (S.S.); (M.C.); (F.G.); (S.R.); (A.B.); (E.B.)
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Federica Tempestini
- Division of Cardiology, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (F.D.); (M.R.); (L.P.); (G.M.); (F.T.); (S.S.); (M.C.); (F.G.); (S.R.); (A.B.); (E.B.)
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Stefano Santucci
- Division of Cardiology, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (F.D.); (M.R.); (L.P.); (G.M.); (F.T.); (S.S.); (M.C.); (F.G.); (S.R.); (A.B.); (E.B.)
| | - Matteo Casenghi
- Division of Cardiology, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (F.D.); (M.R.); (L.P.); (G.M.); (F.T.); (S.S.); (M.C.); (F.G.); (S.R.); (A.B.); (E.B.)
| | - Francesca Giovannelli
- Division of Cardiology, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (F.D.); (M.R.); (L.P.); (G.M.); (F.T.); (S.S.); (M.C.); (F.G.); (S.R.); (A.B.); (E.B.)
| | - Stefano Rigattieri
- Division of Cardiology, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (F.D.); (M.R.); (L.P.); (G.M.); (F.T.); (S.S.); (M.C.); (F.G.); (S.R.); (A.B.); (E.B.)
| | - Andrea Berni
- Division of Cardiology, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (F.D.); (M.R.); (L.P.); (G.M.); (F.T.); (S.S.); (M.C.); (F.G.); (S.R.); (A.B.); (E.B.)
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Emanuele Barbato
- Division of Cardiology, Sant’Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (F.D.); (M.R.); (L.P.); (G.M.); (F.T.); (S.S.); (M.C.); (F.G.); (S.R.); (A.B.); (E.B.)
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| |
Collapse
|
2
|
Tsugu T, Tanaka K, Nagatomo Y, Tsugu M, De Mey J. Unexpected Computed Tomography Derived Fractional Flow Reserve Decline Due to a Short Left Main Coronary Artery and a Wide Bifurcation Angle. Echocardiography 2024; 41:e15948. [PMID: 39387103 DOI: 10.1111/echo.15948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Affiliation(s)
- Toshimitsu Tsugu
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Kaoru Tanaka
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Yuji Nagatomo
- Department of Cardiology, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Mayuko Tsugu
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Johan De Mey
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Mansouri P, Nematipour E, Rajablou N, Ghorashi SM, Azari S, Omidi N. Left anterior descending coronary artery-left circumflex coronary artery bifurcation angle and severity of coronary artery disease; is there any correlation? A cross-sectional study. Health Sci Rep 2024; 7:e2182. [PMID: 38868537 PMCID: PMC11168269 DOI: 10.1002/hsr2.2182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/05/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Background and Aims The aim of this study is to evaluate the association of coronary computed tomography angiography derived (CCTA) plaque characteristics and the left anterior descending coronary artery (LAD) and left circumflex coronary artery (LCX) bifurcation angle with severity of coronary artery disease (CAD). Methods All the stable patients with suspected CAD who underwent CCTA between January to December 2021 were included. Correlation between CCTA-derived aggregated plaque volume (APV), LAD-LCX angle, remodeling index (RI), coronary calcium score with Gensini score in conventional angiography were assessed. One hundred and twenty-two patients who underwent both CCTA and coronary angiography were analyzed. Results Our analysis showed that the median (percentile 25% to percentile 75%) of the APV, LAD-LCx angle, and calcium score were 31% (17%-47%), 58° (39°-89°), and 31 (0-186), respectively. Also, the mean ± SD of the RI was 1.05 ± 0.20. Significant correlation between LAD-LCx bifurcation angle (0.0001-0.684), APV (0.002-0.281), RI (0.0001-0.438), and calcium score (0.016-0.217) with Gensini score were detected. There was a linear correlation between the mean LAD-LCx bifurcation angle and the Gensini score. The sensitivity and specificity for the cut-off value of 47.5° for the LAD-LCX angle were 86.7% and 82.1%, respectively. Conclusion There is a direct correlation between the LAD-LCx angle and the Gensini score. In addition to plaque characteristics, anatomic-based CCTA-derived indices can be used to identify patients at higher risk for CAD.
Collapse
Affiliation(s)
- Pejman Mansouri
- Tehran Heart Center, Cardiovascular Disease Research InstituteTehran University of Medical SciencesTehranIran
| | - Ebrahim Nematipour
- Tehran Heart Center, Cardiovascular Disease Research InstituteTehran University of Medical SciencesTehranIran
| | - Nadia Rajablou
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Seyyed Mojtaba Ghorashi
- Tehran Heart Center, Cardiovascular Disease Research InstituteTehran University of Medical SciencesTehranIran
| | - Samad Azari
- Hospital Management Research Center, Health Management Research InstituteIran University of Medical SciencesTehranIran
- Research Center for Emergency and Disaster ResilienceRed Crescent Society of the Islamic Republic of IranTehranIran
| | - Negar Omidi
- Cardiovascular Imaging Departement, Tehran Heart Center, School of Medicin, Tehran University of Medical SciencesTehran heart centerTehranIran
- Cardiac Primary Prevention Research Center, Cardiovascular Institute, Tehran University of Medical ScienceTehran heart centerTehranIran
| |
Collapse
|
4
|
Chaichana T, Reeve G, Jaisan C, Chakrabandhu Y. Modelling and assessing new SME digital business status for visualising virtual economics and sustainability economic indicators: Empirical evidence from poultry business. Heliyon 2024; 10:e30624. [PMID: 38756572 PMCID: PMC11096974 DOI: 10.1016/j.heliyon.2024.e30624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
SMEs are generally recognised as financial contributors to regional economic development. Despite the enormous contributions of digital SMEs to sustainable economic growth and regional development have not yet been reported. This paper assesses and models SME businesses to gain a digital business status and model. These days, visualising economic growth is challenging and powerful to identify business performance and realise sustainable regional development. This research analyses empirical data obtained from a poultry business to form a standard model for implementing a new SME digital business model and status. This standard model is a guideline to measure the other SME businesses and productions. Localisation of the SDGs was analysed using thematic analysis. Mathematical computation is used to visualise virtual economic growth geographically. Hence, our digital business model and status demonstrated business performance, management, and economic growth.
Collapse
Affiliation(s)
- Thanapong Chaichana
- Chiang Mai University, Chiang Mai, 52000, Thailand
- Navamindradhiraj University, Bangkok, 10300, Thailand
- Department of Research and Medical Innovation, Faculty of Medicine, Vajira Hospital, Bangkok, 10300, Thailand
| | - Graham Reeve
- School of Mathematics, Computer Science and Engineering, Liverpool Hope University, Liverpool, England, L16 9JD, United Kingdom
| | | | | |
Collapse
|
5
|
Wu B, Kheiwa A, Swamy P, Mamas MA, Tedford RJ, Alasnag M, Parwani P, Abramov D. Clinical Significance of Coronary Arterial Dominance: A Review of the Literature. J Am Heart Assoc 2024; 13:e032851. [PMID: 38639360 PMCID: PMC11179863 DOI: 10.1161/jaha.123.032851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Coronary dominance describes the anatomic variation of coronary arterial supply, notably as it relates to perfusion of the inferior cardiac territories. Differences in the development and outcome in select disease states between coronary dominance patterns are increasingly recognized. In particular, observational studies have identified higher prevalence of poor outcomes in left coronary dominance in the setting of ischemic, conduction, and valvular disease. In this qualitative literature review, we summarize anatomic, physiologic, and clinical implications of differences in coronary dominance to highlight current understanding and gaps in the literature that should warrant further studies.
Collapse
Affiliation(s)
- Bovey Wu
- Department of MedicineLoma Linda University Medical CenterLoma LindaCAUSA
| | - Ahmed Kheiwa
- Department of CardiologyLoma Linda University Medical CenterLoma LindaCAUSA
| | - Pooja Swamy
- Department of CardiologyLoma Linda University Medical CenterLoma LindaCAUSA
| | - Mamas A. Mamas
- Keele Cardiovascular Research Group, Centre for Prognosis ResearchKeele UniversityStoke‐on‐TrentUnited Kingdom
| | - Ryan J. Tedford
- Department of Medicine, Division of CardiologyMedical University of South CarolinaCharlestonSCUSA
| | - Mirvat Alasnag
- Cardiac CenterKing Fahd Armed Forces HospitalJeddahSaudi Arabia
| | - Purvi Parwani
- Department of CardiologyLoma Linda University Medical CenterLoma LindaCAUSA
| | - Dmitry Abramov
- Department of CardiologyLoma Linda University Medical CenterLoma LindaCAUSA
| |
Collapse
|
6
|
Ashrafee A, Yashfe SMS, Khan NS, Islam MT, Azam MG, Arafat MT. Design of experiment approach to identify the dominant geometrical feature of left coronary artery influencing atherosclerosis. Biomed Phys Eng Express 2024; 10:035008. [PMID: 38430572 DOI: 10.1088/2057-1976/ad2f59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/01/2024] [Indexed: 03/04/2024]
Abstract
Background and Objective. Coronary artery geometry heavily influences local hemodynamics, potentially leading to atherosclerosis. Consequently, the unique geometrical configuration of an individual by birth can be associated with future risk of atherosclerosis. Although current researches focus on exploring the relationship between local hemodynamics and coronary artery geometry, this study aims to identify the order of influence of the geometrical features through systematic experiments, which can reveal the dominant geometrical feature for future risk assessment.Methods. According to Taguchi's method of design of experiment (DoE), the left main stem (LMS) length (lLMS), curvature (kLMS), diameter (dLMS) and the bifurcation angle between left anterior descending (LAD) and left circumflex (LCx) artery (αLAD-LCx) of two reconstructed patient-specific left coronary arteries (LCA) were varied in three levels to create L9 orthogonal array. Computational fluid dynamic (CFD) simulations with physiological boundary conditions were performed on the resulting eighteen LCA models. Average helicity intensity (h2) and relative atheroprone area (RAA) of near-wall hemodynamic descriptors were analyzed.Results. The proximal LAD (LADproximal) was identified to be the most atheroprone region of the left coronary artery due to higherh2,large RAA of time averaged wall shear stress (TAWSS < 0.4 Pa), oscillatory shear index (OSI ∼ 0.5) and relative residence time (RRT > 4.17 Pa-1). In both patient-specific cases, based onh2and TAWSS,dlmsis the dominant geometric parameter while based on OSI and RRT,αLAD-LCxis the dominant one influencing hemodynamic condition in proximal LAD (p< 0.05). Based on RRT, the rank of the geometrical factors is:αLAD-LCx>dLMS>lLMS>kLMS, indicating thatαLAD-LCxis the most dominant geometrical factor affecting hemodynamics at proximal LAD which may influence atherosclerosis.Conclusion. The proposed identification of the rank of geometrical features of LCA and the dominant feature may assist clinicians in predicting the possibility of atherosclerosis, of an individual, long before it will occur. This study can further be translated to be used to rank the influence of several arterial geometrical features at different arterial locations to explore detailed relationships between the arterial geometrical features and local hemodynamics.
Collapse
Affiliation(s)
- Adiba Ashrafee
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka - 1205, Bangladesh
| | - Syed Muiz Sadat Yashfe
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka - 1205, Bangladesh
| | - Nusrat S Khan
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka - 1205, Bangladesh
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Md Tariqul Islam
- Department of Radiology and Imaging, Sheikh Hasina National Institute of Burn & Plastic Surgery, Dhaka - 1205, Bangladesh
| | - M G Azam
- Department of Cardiology, National Institute of Cardiovascular Diseases (NICVD), Dhaka - 1207, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka - 1205, Bangladesh
| |
Collapse
|
7
|
Tsugu T, Tanaka K, Belsack D, Nagatomo Y, Tsugu M, Argacha JF, Cosyns B, Buls N, De Maeseneer M, De Mey J. Impact of vessel morphology on CT-derived fractional-flow-reserve in non-obstructive coronary artery disease in right coronary artery. Eur Radiol 2024; 34:1836-1845. [PMID: 37658136 PMCID: PMC10873436 DOI: 10.1007/s00330-023-09972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVES Computed tomography (CT)-derived fractional flow reserve (FFRCT) decreases continuously from proximal to distal segments of the vessel due to the influence of various factors even in non-obstructive coronary artery disease (NOCAD). It is known that FFRCT is dependent on vessel-length, but the relationship with other vessel morphologies remains to be explained. PURPOSE To investigate morphological aspects of the vessels that influence FFRCT in NOCAD in the right coronary artery (RCA). METHODS A total of 443 patients who underwent both FFRCT and invasive coronary angiography, with < 50% RCA stenosis, were evaluated. Enrolled RCA vessels were classified into two groups according to distal FFRCT: FFRCT ≤ 0.80 (n = 60) and FFRCT > 0.80 (n = 383). Vessel morphology (vessel length, lumen diameter, lumen volume, and plaque volume) and left-ventricular mass were assessed. The ratio of lumen volume and vessel length was defined as V/L ratio. RESULTS Whereas vessel-length was almost the same between FFRCT ≤ 0.80 and > 0.80, lumen volume and V/L ratio were significantly lower in FFRCT ≤ 0.80. Distal FFRCT correlated with plaque-related parameters (low-attenuation plaque, intermediate-attenuation plaque, and calcified plaque) and vessel-related parameters (proximal and distal vessel diameter, vessel length, lumen volume, and V/L ratio). Among all vessel-related parameters, V/L ratio showed the highest correlation with distal FFRCT (r = 0.61, p < 0.0001). Multivariable analysis showed that calcified plaque volume was the strongest predictor of distal FFRCT, followed by V/L ratio (β-coefficient = 0.48, p = 0.03). V/L ratio was the strongest predictor of a distal FFRCT ≤ 0.80 (cut-off 8.1 mm3/mm, AUC 0.88, sensitivity 90.0%, specificity 76.7%, 95% CI 0.84-0.93, p < 0.0001). CONCLUSIONS Our study suggests that V/L ratio can be a measure to predict subclinical coronary perfusion disturbance. CLINICAL RELEVANCE STATEMENT A novel marker of the ratio of lumen volume to vessel length (V/L ratio) is the strongest predictor of a distal CT-derived fractional flow reserve (FFRCT) and may have the potential to improve the diagnostic accuracy of FFRCT. KEY POINTS • Physiological FFRCT decline depends not only on vessel length but also on the lumen volume in non-obstructive coronary artery disease in the right coronary artery. • FFRCT correlates with plaque-related parameters (low-attenuation plaque, intermediate-attenuation plaque, and calcified plaque) and vessel-related parameters (proximal and distal vessel diameter, vessel length, lumen volume, and V/L ratio). • Of vessel-related parameters, V/L ratio is the strongest predictor of a distal FFRCT and an optimal cut-off value of 8.1 mm3/mm.
Collapse
Affiliation(s)
- Toshimitsu Tsugu
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Jette, Brussels, Belgium.
| | - Kaoru Tanaka
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Jette, Brussels, Belgium
| | - Dries Belsack
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Jette, Brussels, Belgium
| | - Yuji Nagatomo
- Department of Cardiology, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Mayuko Tsugu
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Jette, Brussels, Belgium
| | - Jean-François Argacha
- Cardiology, Centrum Voor Hart- en Vaatziekten, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Bernard Cosyns
- Cardiology, Centrum Voor Hart- en Vaatziekten, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Nico Buls
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Jette, Brussels, Belgium
| | - Michel De Maeseneer
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Jette, Brussels, Belgium
| | - Johan De Mey
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Jette, Brussels, Belgium
| |
Collapse
|
8
|
Wang Q, Ouyang H, Lv L, Gui L, Yang S, Hua P. Left main coronary artery morphological phenotypes and its hemodynamic properties. Biomed Eng Online 2024; 23:9. [PMID: 38254133 PMCID: PMC10804578 DOI: 10.1186/s12938-024-01205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Atherosclerosis may be linked to morphological defects that lead to variances in coronary artery hemodynamics. Few objective strategies exit at present for generalizing morphological phenotypes of coronary arteries in terms of hemodynamics. We used unsupervised clustering (UC) to classify the morphology of the left main coronary artery (LM) and looked at how hemodynamic distribution differed between phenotypes. METHODS In this study, 76 LMs were obtained from 76 patients. After LMs were reconstructed with coronary computed tomography angiography, centerlines were used to extract the geometric characteristics. Unsupervised clustering was carried out using these characteristics to identify distinct morphological phenotypes of LMs. The time-averaged wall shear stress (TAWSS) for each phenotype was investigated by means of computational fluid dynamics (CFD) analysis of the left coronary artery. RESULTS We identified four clusters (i.e., four phenotypes): Cluster 1 had a shorter stem and thinner branches (n = 26); Cluster 2 had a larger bifurcation angle (n = 10); Cluster 3 had an ostium at an angulation to the coronary sinus and a more curved stem, and thick branches (n = 10); and Cluster 4 had an ostium at an angulation to the coronary sinus and a flatter stem (n = 14). TAWSS features varied widely across phenotypes. Nodes with low TAWSS (L-TAWSS) were typically found around the branching points of the left anterior descending artery (LAD), particularly in Cluster 2. CONCLUSION Our findings demonstrated that UC is a powerful technique for morphologically classifying LMs. Different LM phenotypes exhibited distinct hemodynamic characteristics in certain regions. This morphological clustering method could aid in identifying people at high risk for developing coronary atherosclerosis, hence facilitating early intervention.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cardio-Vascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou, 510120, China
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Hua Ouyang
- Department of Cardio-Vascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou, 510120, China
| | - Lei Lv
- Department of Cardio-Vascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou, 510120, China
- Department of Cardiac and Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Long Gui
- Department of Cardio-Vascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou, 510120, China
| | - Songran Yang
- Department of Biobank and Bioinformatics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou, 510120, China.
| | - Ping Hua
- Department of Cardio-Vascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
9
|
Korte J, Klopp ES, Berg P. Multi-Dimensional Modeling of Cerebral Hemodynamics: A Systematic Review. Bioengineering (Basel) 2024; 11:72. [PMID: 38247949 PMCID: PMC10813503 DOI: 10.3390/bioengineering11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
The Circle of Willis (CoW) describes the arterial system in the human brain enabling the neurovascular blood supply. Neurovascular diseases like intracranial aneurysms (IAs) can occur within the CoW and carry the risk of rupture, which can lead to subarachnoid hemorrhage. The assessment of hemodynamic information in these pathologies is crucial for their understanding regarding detection, diagnosis and treatment. Multi-dimensional in silico approaches exist to evaluate these hemodynamics based on patient-specific input data. The approaches comprise low-scale (zero-dimensional, one-dimensional) and high-scale (three-dimensional) models as well as multi-scale coupled models. The input data can be derived from medical imaging, numerical models, literature-based assumptions or from measurements within healthy subjects. Thus, the most realistic description of neurovascular hemodynamics is still controversial. Within this systematic review, first, the models of the three scales (0D, 1D, 3D) and second, the multi-scale models, which are coupled versions of the three scales, were discussed. Current best practices in describing neurovascular hemodynamics most realistically and their clinical applicablility were elucidated. The performance of 3D simulation entails high computational expenses, which could be reduced by analyzing solely the region of interest in detail. Medical imaging to establish patient-specific boundary conditions is usually rare, and thus, lower dimensional models provide a realistic mimicking of the surrounding hemodynamics. Multi-scale coupling, however, is computationally expensive as well, especially when taking all dimensions into account. In conclusion, the 0D-1D-3D multi-scale approach provides the most realistic outcome; nevertheless, it is least applicable. A 1D-3D multi-scale model can be considered regarding a beneficial trade-off between realistic results and applicable performance.
Collapse
Affiliation(s)
- Jana Korte
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, 39106 Magdeburg, Germany
| | - Ehlar Sophie Klopp
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
- Department of Medical Engineering, University of Magdeburg, 39106 Magdeburg, Germany
| | - Philipp Berg
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
- Department of Medical Engineering, University of Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
10
|
Kotian S, Jain N, Methekar N, Nikam S. Influence of Wavy Arteries and Veins on Hemodynamic Characteristics: A Numerical Study. Crit Rev Biomed Eng 2024; 52:1-16. [PMID: 38523438 DOI: 10.1615/critrevbiomedeng.2023050535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The present work is focused on the study of hemodynamic characteristics for tortuous arteries/veins. Tortuosity in arteries/veins is defined by introducing waviness in the wall of the tube. Analysis is further extended for bifurcated veins with and without wavy walls. Waviness is defined by two geometric parameters; pitch and depth of the wave. Four different combinations of pitch and depth are studied and compared with a plain straight wall. The present study is carried out numerically by using a computational fluid dynamics tool. Hemodynamics for a steady flow of blood is investigated through pressure, velocity, and wall shear stress distribution. Waviness in the wall of arteries/veins creates a recirculation zone at the crest and trough of the wall. Occurrence of the recirculation zone leads to reduction in velocity which in turn reduces wall shear stress. Variation in the magnitude of the velocity and corresponding wall shear stress at the crest and trough of the wavy wall depends on the pitch and depth of the artery/veins (tube).
Collapse
Affiliation(s)
| | - Nishant Jain
- Department of Mechanical Engineering, K.J. Somaiya College of Engineering, SVU, Mumbai, India
| | - Nachiket Methekar
- Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Shailesh Nikam
- Department of Mechanical Engineering, K.J. Somaiya College of Engineering, Mumbai 400077, India
| |
Collapse
|
11
|
Rongchang F, Kun W, Hui W. Study of the mechanism of action of sand therapy on atherosclerosis based on the two-phase flow-Casson model. Biomed Mater Eng 2024; 35:165-178. [PMID: 38043001 DOI: 10.3233/bme-230134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
BACKGROUND Sand therapy is a non-pharmacological physiotherapy method that uses the natural environment and resources of Xinjiang to treat through the heat transfer and magnetic effects of sand. OBJECTIVE Employing the two-phase flow-Casson blood flow model, we investigate the mechanism of atherosclerosis prevention via sand therapy, offering a biomechanical theoretical rationale for the prevention of atherosclerosis through sand therapy via the prism of computational fluid dynamics (CFD). METHODS Sand therapy experiments were conducted to obtain popliteal artery blood flow velocity, and blood was considered as a two-phase flow composed of plasma and red blood cells, and CFD method was applied to analyze the hemodynamic effects of Casson's blood viscosity model before and after sand therapy. RESULTS (1) The blood flow velocity increased by 0.24 m/s and 0.04 m/s at peak systolic and diastolic phases, respectively, after sand therapy; the axial velocity of blood vessels increased by 28.56% after sand therapy. (2) The average red blood cell viscosity decreased by 0.00014 Pa ⋅ s after sand therapy. (3) The low wall shear stress increased by 1.09 Pa and the high wall shear stress reached 41.47 Pa after sand therapy. (4) The time-averaged wall shear stress, shear oscillation index and relative retention time were reduced after sand therapy. CONCLUSION The increase of blood flow velocity after sand therapy can reduce the excessive deposition of cholesterol and other substances, the decrease of erythrocyte viscosity is beneficial to the migration of erythrocytes to the vascular center, the increase of low wall shear stress has a positive effect on the prevention of atherosclerosis, and the decrease of time-averaged wall shear stress, shear oscillation index and relative retention time can reduce the occurrence of thrombosis.
Collapse
Affiliation(s)
- Fu Rongchang
- College of Intelligent Manufacturing Modern Industry, School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Wang Kun
- College of Intelligent Manufacturing Modern Industry, School of Mechanical Engineering, Xinjiang University, Urumqi, China
| | - Wu Hui
- College of Intelligent Manufacturing Modern Industry, School of Mechanical Engineering, Xinjiang University, Urumqi, China
| |
Collapse
|
12
|
Oran E, Abo-Serie E, Jewkes J, Henry M, Oran B. Design and optimisation of an Intra-Aortic Shrouded rotor axial pump. J Biomech 2024; 162:111858. [PMID: 37989028 DOI: 10.1016/j.jbiomech.2023.111858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
Undesirable side effects in patients with a LVAD (Left Ventricular Assist Device) pump fitted include blood damage, thrombosis, blood traumatisation, and End-Organ Disfunctions. These side effects have generally been attributed to the high wall shear stresses and the induced turbulent flow. In this study, we introduce a novel design to address these effects by lowering the rotational speed and providing an optimum flow path design to minimise blood damage. We present an initial scheme for a new Intra-Aortic Shrouded Rotary Axial Pump and develop a sequence of pump geometries, for which the Taguchi Design Optimisation Method has been applied. We apply CFD tools to simulate the pressure rise, pump performance, hydraulic efficiency, wall shear stress, exposure time and mass flow rate. A prototype pump has been tested in a mock cardiovascular circuit using a water-glycerol solution. The optimum design delivered the desired pressure/mass flow rate characteristics at a significantly low rpm (2900 rpm). As a result, the estimated blood damage index is low, matching the design requirements. The theoretical performance was matched by experimental results.
Collapse
Affiliation(s)
- Elif Oran
- Coventry University, Centre for Fluid and Complex Systems, Coventry, UK
| | - Essam Abo-Serie
- University of Leicester, School of Engineering, Leicester, UK.
| | - James Jewkes
- University of Leicester, School of Engineering, Leicester, UK
| | - Manus Henry
- Coventry University, Centre for Fluid and Complex Systems, Coventry, UK; University of Oxford, Department of Engineering Science, Oxford, UK
| | - Bulent Oran
- Medicana International Hospital, Department of Pediatric Cardiology, Izmir, Turkey
| |
Collapse
|
13
|
Zuin M, Chatzizisis YS, Beier S, Shen C, Colombo A, Rigatelli G. Role of secondary flows in coronary artery bifurcations before and after stenting: What is known so far? CARDIOVASCULAR REVASCULARIZATION MEDICINE 2023; 55:83-87. [PMID: 37385893 DOI: 10.1016/j.carrev.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Coronary arteries are uniformly exposed to traditional cardiovascular risk factors. However, atherosclerotic lesions occur in preferential regions of the coronary tree, especially in areas with disturbed local blood flow, such as coronary bifurcations. Over the latest years, secondary flows have been linked to the inception and progression of atherosclerosis. Most of these novel findings have been obtained in the field of computational fluid dynamic (CFD) analysis and biomechanics but remain poorly understood by cardiovascular interventionalists, despite the important impact that they may have in clinical practice. We aimed to summarize the current available data regarding the pathophysiological role of secondary flows in coronary artery bifurcation, providing an interpretation of these findings from an interventional perspective.
Collapse
Affiliation(s)
- Marco Zuin
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| | | | - Susann Beier
- School of Mechanical and Manufacturing Engineering, UNSW, Sydney, NSW 2053, Australia
| | - Chi Shen
- School of Mechanical and Manufacturing Engineering, UNSW, Sydney, NSW 2053, Australia
| | - Andrea Colombo
- School of Mechanical and Manufacturing Engineering, UNSW, Sydney, NSW 2053, Australia
| | - Gianluca Rigatelli
- Interventional Cardiology, Department of Cardiology, Aulss6 Euganea, Ospedali Riuniti Padova Sud, Monselice, Italy
| |
Collapse
|
14
|
Sun L, Ding L, Li L, Yin N, Yang N, Zhang Y, Xing X, Zhang Z, Dong C. Hemodynamic Characteristics of Cardiovascular System in Simulated Zero and Partial Gravities Based on CFD Modeling and Simulation. Life (Basel) 2023; 13:407. [PMID: 36836765 PMCID: PMC9961252 DOI: 10.3390/life13020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Zero and partial gravities (ZPG) increase cardiovascular risk, while the corresponding theoretical foundation remains uncertain. In the article, the ZPG were generated through a rotating frame with two degrees of freedom in combination with the random walk algorithm. A precise 3D geometric configuration of the cardiovascular system was developed, and the Navier-Stokes laminar flow and solid mechanics were used as governing equations for blood flow and the surrounding tissue in the cardiovascular system. The ZPG were designed into governing equations through the volume force term. The computational fluid dynamics' (CFD) simulations in combination with proper boundary conditions were carried out to investigate the influences of ZPG on the distribution of blood flow velocity, pressure, and shear stress in the cardiovascular system. The findings show that as simulated gravity gradually decreases from 0.7 g to 0.5 g to 0.3 g to 0 g, as opposed to normal gravity of 1 g, the maximum values of blood flow velocity, pressure, and shear stress on the walls of the aorta and its ramification significantly increase, which would lead to cardiovascular diseases. The research will lay a theoretical foundation for the comprehension of the ZPG effect on cardiovascular risk and the development of effective prevention and control measures under the circumstance of ZPG.
Collapse
Affiliation(s)
- Lei Sun
- Laboratory of Virtual Reality and Simulation Technology, Shandong Sport University, Jinan 250102, China
- China National Football Academy, Shandong Sport University, Rizhao 276827, China
| | - Lijie Ding
- Laboratory of Virtual Reality and Simulation Technology, Shandong Sport University, Jinan 250102, China
- Department of Health Service and Management, Shandong Sport University, Jinan 250102, China
| | - Lei Li
- Department of BioMedical Engineering, University of Groningen, 9713 Groningen, The Netherlands
| | - Ningning Yin
- School of Sports Art, Shandong Sport University, Jinan 250102, China
| | - Nianen Yang
- College of Sports and Health, Shandong Sport University, Rizhao 276827, China
| | - Yi Zhang
- Department of Health Service and Management, Shandong Sport University, Jinan 250102, China
| | - Xiaodong Xing
- Laboratory of Virtual Reality and Simulation Technology, Shandong Sport University, Jinan 250102, China
- Department of Health Service and Management, Shandong Sport University, Jinan 250102, China
| | - Zhiyong Zhang
- Department of Health Service and Management, Shandong Sport University, Jinan 250102, China
| | - Chen Dong
- Laboratory of Virtual Reality and Simulation Technology, Shandong Sport University, Jinan 250102, China
- Department of Health Service and Management, Shandong Sport University, Jinan 250102, China
| |
Collapse
|
15
|
Tsugu T, Tanaka K, Nagatomo Y, Belsack D, Devos H, Buls N, Cosyns B, Argacha JF, De Maeseneer M, De Mey J. Impact of coronary bifurcation angle on computed tomography derived fractional flow reserve in coronary vessels with no apparent coronary artery disease. Eur Radiol 2023; 33:1277-1285. [PMID: 36114847 PMCID: PMC9889442 DOI: 10.1007/s00330-022-09125-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/04/2022] [Accepted: 08/19/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Computed tomography (CT) derived fractional flow reserve (FFRCT) decreases from the proximal to the distal part due to a variety of factors. The energy loss due to the bifurcation angle may potentially contribute to a progressive decline in FFRCT. However, the association of the bifurcation angle with FFRCT is still not entirely understood. This study aimed to investigate the impact of various bifurcation angles on FFRCT decline below the clinically crucial relevance of 0.80 in vessels with no apparent coronary artery disease (CAD). METHODS A total of 83 patients who underwent both CT angiography including FFRCT and invasive coronary angiography, exhibiting no apparent CAD were evaluated. ΔFFRCT was defined as the change in FFRCT from the proximal to the distal in the left anterior descending artery (LAD) and left circumflex artery (LCX). The bifurcation angle was calculated from three-dimensional volume rendered images. Vessel morphology and plaque characteristics were also assessed. RESULTS ΔFFRCT significantly correlated with the bifurcation angle (LAD angle, r = 0.35, p = 0.001; LCX angle, r = 0.26, p = 0.02) and vessel length (LAD angle, r = 0.30, p = 0.005; LCX angle, r = 0.49, p < 0.0001). In LAD, vessel length was the strongest predictor for distal FFRCT of ≤ 0.80 (β-coefficient = 0.55, p = 0.0003), immediately followed by the bifurcation angle (β-coefficient = 0.24, p = 0.02). The bifurcation angle was a good predictor for a distal FFRCT ≤ 0.80 (LAD angle, cut-off 31.0°, AUC 0.70, sensitivity 74%, specificity 68%; LCX angle, cut-off 52.6°, AUC 0.86, sensitivity 88%, specificity 85%). CONCLUSIONS In vessels with no apparent CAD, vessel length was the most influential factor on FFRCT, directly followed by the bifurcation angle. KEY POINTS • Both LAD and LCX bifurcation angles are factors influencing FFR CT. • Bifurcation angle is one of the predictors of a distal FFRCT of ≤ 0.80 and an optimal cut-off value of 31.0° for the LAD and 52.6° for the LCX. • Bifurcation angle should be taken into consideration when interpreting numerical values of FFRCT.
Collapse
Affiliation(s)
- Toshimitsu Tsugu
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Jette, Brussels, Belgium.
| | - Kaoru Tanaka
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Jette, Brussels, Belgium
| | - Yuji Nagatomo
- Department of Cardiology, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Dries Belsack
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Jette, Brussels, Belgium
| | - Hannes Devos
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Jette, Brussels, Belgium
| | - Nico Buls
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Jette, Brussels, Belgium
| | - Bernard Cosyns
- Cardiology, Centrum voor Hart-en Vaatziekten, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jean-François Argacha
- Cardiology, Centrum voor Hart-en Vaatziekten, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Michel De Maeseneer
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Jette, Brussels, Belgium
| | - Johan De Mey
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Jette, Brussels, Belgium
| |
Collapse
|
16
|
Tsugu T, Tanaka K, Nagatomo Y, Belsack D, Argacha JF, Cosyns B, De Maeseneer M, De Mey J. Impact of ramus coronary artery on computed tomography derived fractional flow reserve (FFR CT ) in no apparent coronary artery disease. Echocardiography 2023; 40:103-112. [PMID: 36607158 DOI: 10.1111/echo.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The ramus artery contributes to the development of turbulence, which may influence computed tomography (CT) derived fractional flow reserve (FFRCT ) even without coronary artery disease (CAD). The relationship between ramus-induced turbulence and FFRCT is unclear. METHOD AND RESULTS A total of 120 patients with <20% coronary stenosis assessed by both FFRCT and invasive coronary angiography were evaluated. The patients were divided into three groups: absent-ramus (n = 72), small-ramus that could not be analyzed by FFRCT (n = 18), and large-ramus that could be analyzed by FFRCT (n = 30). FFRCT measurements were performed at the proximal and distal segments of the left anterior descending (LAD), left circumflex (LCX), and ramus artery. With absent-ramus and small-absent ramus groups, FFRCT was measured at the distal end of the left main trunk at the same level for the proximal segments of the LAD and LCX. In absent-ramus group, proximal FFRCT showed no significant differences between three vessels (LAD = .96 ± .02; MID = .97 ± .02; LCX = .97 ± .02). However, in small and large-ramus groups, proximal FFRCT was significantly higher in the ramus artery than LAD and LCX (small-ramus, LAD = .95 ± .03, Ramus = .97 ± .02, LCX = .95 ± .03; large-ramus: LAD = .95 ± .03, Ramus = .98 ± .01; LCX = .96 ± .03; p < .05). A large ramus was associated with a higher prevalence of a distal FFRCT ≤.80 (odds ratio 7.0, 95% CI 1.2-40.1, p = .03). A proximal ramus diameter predicted distal FFRCT ≤.80 (cut-off 2.1 mm, AUC .76, sensitivity 100%, specificity 52%, 95% CI .61-.90). CONCLUSIONS The presence of a large-ramus artery may cause an FFRCT decline in no apparent CAD.
Collapse
Affiliation(s)
- Toshimitsu Tsugu
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Kaoru Tanaka
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Yuji Nagatomo
- Department of Cardiology, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Dries Belsack
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jean-François Argacha
- Cardiology, Centrum voor Hart- en Vaatziekten, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Bernard Cosyns
- Cardiology, Centrum voor Hart- en Vaatziekten, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | | | - Johan De Mey
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
17
|
Geerlings-Batt J, Gupta A, Sun Z. Investigation of the Relationship between Right Coronary Artery-Aorta Angle and Coronary Artery Disease and Associated Risk Factors. J Clin Med 2023; 12:1051. [PMID: 36769698 PMCID: PMC9917625 DOI: 10.3390/jcm12031051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
At the level of the left coronary artery tree, there is evidence showing an association between bifurcation angle and coronary artery disease (CAD), and this motivated us to explore similar associations at the level of the right coronary artery (RCA). The purpose of this study was to determine whether there is a relationship between RCA-aorta angle and CAD and age, sex, body mass index, smoking status, hypertension, and high blood cholesterol. The coronary computed tomography angiography datasets and CAD risk factor checklists of 250 patients were retrospectively reviewed, with RCA-aorta angles measured via multiplanar reformation images. Independent t-tests were used to compare mean RCA-aorta angle measurements between groups, correlations between continuous variables were assessed using Pearson and Spearman correlations, and a general linear model was used to adjust for potentially confounding variables. Coronary angle measurements were conducted by two independent assessors with very strong intraclass correlation (r=0.999, p<0.001). A significantly smaller mean RCA-aorta angle was observed in the CAD group (79.07 ± 24.88°) compared to the normal group (92.08 ± 19.51°, p=0.001), in smokers (76.63 ± 22.94°) compared to non-smokers (85.25 ± 23.84°, p=0.016), and a narrow RCA-aorta angle was negatively correlated with BMI (r=-0.174, p=0.010). This study suggests a relationship between narrow RCA-aorta angles and CAD, smoking, and increasing BMI.
Collapse
Affiliation(s)
- Jade Geerlings-Batt
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6845, Australia
| | - Ashu Gupta
- Medical Imaging Department, Fiona Stanley Hospital, Perth, WA 6150, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
18
|
Sadid SR, Kabir MS, Mahmud ST, Islam MS, Islam AHMW, Arafat MT. Segmenting 3D geometry of left coronary artery from coronary CT angiography using deep learning for hemodynamic evaluation. Biomed Phys Eng Express 2022; 8. [DOI: 10.1088/2057-1976/ac9e03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Abstract
While coronary CT angiography (CCTA) is crucial for detecting several coronary artery diseases, it fails to provide essential hemodynamic parameters for early detection and treatment. These parameters can be easily obtained by performing computational fluid dynamic (CFD) analysis on the 3D artery geometry generated by CCTA image segmentation. As the coronary artery is small in size, manually segmenting the left coronary artery from CCTA scans is a laborious, time-intensive, error-prone, and complicated task which also requires a high level of expertise. Academics recently proposed various automated segmentation techniques for combatting these issues. To further aid in this process, we present CoronarySegNet, a deep learning-based framework, for autonomous and accurate segmentation as well as generation of 3D geometry of the left coronary artery. The design is based on the original U-net topology and includes channel-aware attention blocks as well as deep residual blocks with spatial dropout that contribute to feature map independence by eliminating 2D feature maps rather than individual components. We trained, tested, and statistically evaluated our model using CCTA images acquired from various medical centers across Bangladesh and the Rotterdam Coronary Artery Algorithm Evaluation challenge dataset to improve generality. In empirical assessment, CoronarySegNet outperforms several other cutting-edge segmentation algorithms, attaining dice similarity coefficient of 0.78 on an average while being highly significant (p < 0.05). Additionally, both the 3D geometries generated by machine learning and semi-automatic method were statistically similar. Moreover, hemodynamic evaluation performed on these 3D geometries showed comparable results.
Collapse
|
19
|
Padhee S, Johnson M, Yi H, Banerjee T, Yang Z. Machine Learning for Aiding Blood Flow Velocity Estimation Based on Angiography. Bioengineering (Basel) 2022; 9:622. [PMID: 36354533 PMCID: PMC9687909 DOI: 10.3390/bioengineering9110622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/28/2024] Open
Abstract
Computational fluid dynamics (CFD) is widely employed to predict hemodynamic characteristics in arterial models, while not friendly to clinical applications due to the complexity of numerical simulations. Alternatively, this work proposed a framework to estimate hemodynamics in vessels based on angiography images using machine learning (ML) algorithms. First, the iodine contrast perfusion in blood was mimicked by a flow of dye diffusing into water in the experimentally validated CFD modeling. The generated projective images from simulations imitated the counterpart of light passing through the flow field as an analogy of X-ray imaging. Thus, the CFD simulation provides both the ground truth velocity field and projective images of dye flow patterns. The rough velocity field was estimated using the optical flow method (OFM) based on 53 projective images. ML training with least absolute shrinkage, selection operator and convolutional neural network was conducted with CFD velocity data as the ground truth and OFM velocity estimation as the input. The performance of each model was evaluated based on mean absolute error and mean squared error, where all models achieved or surpassed the criteria of 3 × 10-3 and 5 × 10-7 m/s, respectively, with a standard deviation less than 1 × 10-6 m/s. Finally, the interpretable regression and ML models were validated with over 613 image sets. The validation results showed that the employed ML model significantly reduced the error rate from 53.5% to 2.5% on average for the v-velocity estimation in comparison with CFD. The ML framework provided an alternative pathway to support clinical diagnosis by predicting hemodynamic information with high efficiency and accuracy.
Collapse
Affiliation(s)
- Swati Padhee
- Department of Computer Science and Engineering, Wright State University, Dayton, OH 45435, USA
| | - Mark Johnson
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA
| | - Hang Yi
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA
| | - Tanvi Banerjee
- Department of Computer Science and Engineering, Wright State University, Dayton, OH 45435, USA
| | - Zifeng Yang
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
20
|
Rahma AG, Yousef K, Abdelhamid T. Blood flow CFD simulation on a cerebral artery of a stroke patient. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Abstract
The purpose of this paper is to conduct a numerical simulation of the stroke patient's cerebral arteries and investigate the flow parameters due to the presence of stenosis. The computational fluid dynamics (CFD) simulations are based on simplified and realistic cerebral artery models. The seven simplified models (benchmarks) include straight cylindrical vessels with idealized stenosis with variable d/D (0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1). The realistic model of the cerebral artery is based on magnetic resonance imaging (MRI) for patient-specific cerebral arteries. The simulation for the realistic model of the cerebral artery is performed at boundary conditions measured by ultrasonography of the input and the output flow profiles (velocity and pressure). The obtained CFD results of the benchmarks are validated with actual data from the literature. Furthermore, a previous vascular contraction is assumed to be exist and the effect of this contraction area ratio on the blood flow regime is discussed and highlighted. Furthermore, CFD results show that a certain vascular contraction area critically affects the blood flow which shows increasing the wall shear stress WSS at the stenosis site. An increase in the blood velocity and vortex appears after the contraction zone, this lead to vessel occlusion and strokes.
Article highlights
The pressure drop across the arterial contraction is reduced when the area ratio d/D is increased.
In some cases, the vortex can prevent blood flow from crossing, this leads to vessel occlusion especially at low d/D
The WSS near the contraction area is high. Increasing the WSS can cause embolism that leads to lead to vessel occlusion.
Collapse
|
21
|
Rafiei A, Saidi M. Aneurysm geometric features effect on the hemodynamic characteristics of blood flow in coronary artery: CFD simulation on CT angiography-based model. Med Biol Eng Comput 2022; 60:3357-3375. [DOI: 10.1007/s11517-022-02676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
|
22
|
Relationship between Coronary Arterial Geometry and the Presence and Extend of Atherosclerotic Plaque Burden: A Review Discussing Methodology and Findings in the Era of Cardiac Computed Tomography Angiography. Diagnostics (Basel) 2022; 12:diagnostics12092178. [PMID: 36140578 PMCID: PMC9497479 DOI: 10.3390/diagnostics12092178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022] Open
Abstract
Coronary artery disease (CAD) represents a modern pandemic associated with significant morbidity and mortality. The multi-faceted pathogenesis of this entity has long been investigated, highlighting the contribution of systemic factors such as hyperlipidemia and hypertension. Nevertheless, recent research has drawn attention to the importance of geometrical features of coronary vasculature on the complexity and vulnerability of coronary atherosclerosis. Various parameters have been investigated so far, including vessel-length, coronary artery volume index, cross-sectional area, curvature, and tortuosity, using primarily invasive coronary angiography (ICA) and recently non-invasive cardiac computed tomography angiography (CCTA). It is clear that there is correlation between geometrical parameters and both the haemodynamic alterations augmenting the atherosclerosis-prone environment and the extent of plaque burden. The purpose of this review is to discuss the currently available literature regarding this issue and propose a potential non-invasive imaging biomarker, the geometric risk score, which could be of importance to allow the early detection of individuals at increased risk of developing CAD.
Collapse
|
23
|
Geerlings-Batt J, Sun Z. Evaluation of the Relationship between Left Coronary Artery Bifurcation Angle and Coronary Artery Disease: A Systematic Review. J Clin Med 2022; 11:jcm11175143. [PMID: 36079071 PMCID: PMC9457427 DOI: 10.3390/jcm11175143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Recent studies have suggested a relationship between wide left coronary artery bifurcation (left anterior descending [LAD]-left circumflex [LCx]) angle and coronary artery disease (CAD). Current literature is multifaceted. Different studies have analysed this relationship using computational fluid dynamics, by considering CAD risk factors, and from simple causal-comparative and correlational perspectives. Hence, the purpose of this systematic review was to critically evaluate the current literature and determine whether there is sufficient evidence available to prove the relationship between LAD-LCx angle and CAD. Five electronic databases (ProQuest, Scopus, PubMed, CINAHL Plus with Full Text, and Emcare) were used to locate relevant texts, which were then screened according to predefined eligibility criteria. Thirteen eligible articles were selected for review. Current evidence suggests individuals with a wide LAD-LCx angle experience altered haemodynamics at the bifurcation site compared to those with narrower angles, which likely facilitates a predisposition to developing CAD. However, further research is required to determine causality regarding relationships between LAD-LCx angle and CAD risk factors. Insufficient valid evidence exists to support associations between LAD-LCx angle and degree of coronary stenosis, and future haemodynamic analyses should explore more accurate coronary artery modelling, as well as CAD progression in already stenosed bifurcations.
Collapse
|
24
|
WU HUI, FU RONGCHANG, LI XIANZHENG, YANG XIAOYU. EFFECTS OF SAND THERAPY ON FLUID DYNAMICS OF BLOOD IN THE POPLITEAL ARTERY BASED ON THE EULER MULTIPHASE MODEL. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422500440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effect of sand therapy on the hemodynamics of the popliteal artery (POA) was investigated to elucidate its mechanism in atherosclerosis physiotherapy. The hemodynamic parameters of the POA before and after sand therapy were obtained from 58 subjects and statistically analyzed. A three-dimensional finite element model of POA bifurcation was established. Blood was regarded as a triple-phase flow composed of plasma, red blood cells (RBCs), and white blood cells (WBCs). Using computational fluid dynamics (CFD), blood flow velocity, wall shear stress (WSS), and blood cell volume distribution before and after sand therapy were calculated. Sand therapy could reduce the vortex and reflux in blood vessels. The maximum increase in blood axial velocity was 34.38%. The maximum WSS increased by 22.82 Pa and the blood cells gradually moved away from the vessel wall and toward the axis of the blood vessel. The reduction in vortex and reflux, and the increase in blood axial velocity after sand therapy are beneficial in reducing the accumulation of cholesterol and other substances, thereby alleviating the formation of atherosclerotic plaques and lipid streaks. The rise in WSS slows the tendency of arterial vascular thickening in regions of low WSS. The movement of blood cells to the axis of blood vessels can reduce the possibility of thrombosis caused by blood cells squeezing on the blood vessel walls. These findings suggest that sand therapy may slow atherosclerosis progression.
Collapse
Affiliation(s)
- HUI WU
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, Urumqi, P. R. China
| | - RONGCHANG FU
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, Urumqi, P. R. China
| | - XIANZHENG LI
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, Urumqi, P. R. China
| | - XIAOYU YANG
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, Urumqi, P. R. China
| |
Collapse
|
25
|
Adikari D, Gharleghi R, Zhang S, Jorm L, Sowmya A, Moses D, Ooi SY, Beier S. A new and automated risk prediction of coronary artery disease using clinical endpoints and medical imaging-derived patient-specific insights: protocol for the retrospective GeoCAD cohort study. BMJ Open 2022; 12:e054881. [PMID: 35725256 PMCID: PMC9214399 DOI: 10.1136/bmjopen-2021-054881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Coronary artery disease (CAD) is the leading cause of death worldwide. More than a quarter of cardiovascular events are unexplained by current absolute cardiovascular disease risk calculators, and individuals without clinical risk factors have been shown to have worse outcomes. The 'anatomy of risk' hypothesis recognises that adverse anatomical features of coronary arteries enhance atherogenic haemodynamics, which in turn mediate the localisation and progression of plaques. We propose a new risk prediction method predicated on CT coronary angiography (CTCA) data and state-of-the-art machine learning methods based on a better understanding of anatomical risk for CAD. This may open new pathways in the early implementation of personalised preventive therapies in susceptible individuals as a potential key in addressing the growing burden of CAD. METHODS AND ANALYSIS GeoCAD is a retrospective cohort study in 1000 adult patients who have undergone CTCA for investigation of suspected CAD. It is a proof-of-concept study to test the hypothesis that advanced image-derived patient-specific data can accurately predict long-term cardiovascular events. The objectives are to (1) profile CTCA images with respect to variations in anatomical shape and associated haemodynamic risk expressing, at least in part, an individual's CAD risk, (2) develop a machine-learning algorithm for the rapid assessment of anatomical risk directly from unprocessed CTCA images and (3) to build a novel CAD risk model combining traditional risk factors with these novel anatomical biomarkers to provide a higher accuracy CAD risk prediction tool. ETHICS AND DISSEMINATION The study protocol has been approved by the St Vincent's Hospital Human Research Ethics Committee, Sydney-2020/ETH02127 and the NSW Population and Health Service Research Ethics Committee-2021/ETH00990. The project outcomes will be published in peer-reviewed and biomedical journals, scientific conferences and as a higher degree research thesis.
Collapse
Affiliation(s)
- Dona Adikari
- Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, The Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Ramtin Gharleghi
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, Australia
| | - Shisheng Zhang
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, Australia
| | - Louisa Jorm
- Centre for Big Data Research in Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Arcot Sowmya
- School of Computer Science and Engineering, The University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel Moses
- School of Computer Science and Engineering, The University of New South Wales, Sydney, New South Wales, Australia
- Department of Medical Imaging, The Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Sze-Yuan Ooi
- Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
- Cardiology Department, The Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Susann Beier
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Tsugu T, Tanaka K, Nagatomo Y, Belsack D, De Maeseneer M, De Mey J. Paradoxical changes of coronary computed tomography derived fractional flow reserve. Echocardiography 2022; 39:398-403. [DOI: 10.1111/echo.15307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Toshimitsu Tsugu
- Department of Radiology Universitair Ziekenhuis Brussel Brussels Belgium
| | - Kaoru Tanaka
- Department of Radiology Universitair Ziekenhuis Brussel Brussels Belgium
| | - Yuji Nagatomo
- Department of Cardiology National Defense Medical College Hospital Tokorozawa Japan
| | - Dries Belsack
- Department of Radiology Universitair Ziekenhuis Brussel Brussels Belgium
| | | | - Johan De Mey
- Department of Radiology Universitair Ziekenhuis Brussel Brussels Belgium
| |
Collapse
|
27
|
Hemodynamics Challenges for the Navigation of Medical Microbots for the Treatment of CVDs. MATERIALS 2021; 14:ma14237402. [PMID: 34885556 PMCID: PMC8658690 DOI: 10.3390/ma14237402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 01/03/2023]
Abstract
Microbots have been considered powerful tools in minimally invasive medicine. In the last few years, the topic has been highly studied by researchers across the globe to further develop the capabilities of microbots in medicine. One of many applications of these devices is performing surgical procedures inside the human circulatory system. It is expected that these microdevices traveling along the microvascular system can remove clots, deliver drugs, or even look for specific cells or regions to diagnose and treat. Although many studies have been published about this subject, the experimental influence of microbot morphology in hemodynamics of specific sites of the human circulatory system is yet to be explored. There are numerical studies already considering some of human physiological conditions, however, experimental validation is vital and demands further investigations. The roles of specific hemodynamic variables, the non-Newtonian behavior of blood and its particulate nature at small scales, the flow disturbances caused by the heart cycle, and the anatomy of certain arteries (i.e., bifurcations and tortuosity of vessels of some regions) in the determination of the dynamic performance of microbots are of paramount importance. This paper presents a critical analysis of the state-of-the-art literature related to pulsatile blood flow around microbots.
Collapse
|
28
|
Shen C, Gharleghi R, Li DD, Stevens M, Dokos S, Beier S. Secondary flow in bifurcations - Important effects of curvature, bifurcation angle and stents. J Biomech 2021; 129:110755. [PMID: 34601214 DOI: 10.1016/j.jbiomech.2021.110755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 12/27/2022]
Abstract
Coronary bifurcations have complex flow patterns including secondary flow zones and helical flow, which directly affect pathophysiological mechanisms such as the development of atherosclerosis. The objective of this study was to generate insights into the effects of curvature, bifurcation angle and the presence of stents on flow patterns and resulting haemodynamics in coronary left main bifurcations. The blood flow and associated metrics were modelled in both idealised and patient-specific bifurcations with varying curvature and bifurcation angles with and without stents, resulting in a total of 128 geometries considered. The results showed that larger curvature of bifurcating vessels has a significant influence on secondary flow, especially with distance to the bifurcation region, causing a skew, spin and asymmetry of Dean vortices, an increase in helical flow intensity with symmetry loss, and a decrease in adversely low time-average wall shear stress (TAWSS). Generally, asymmetric flow patterns coincided with adversely low TAWSS regions. In identical stented geometries, the presence of the stents induced local recirculation immediately adjacent to the stent struts, thus generating adversely low TAWSS in these areas, with some effect on the overall secondary flow. Overall, the effect of stents outweighed the effect of curvature and BA. This new knowledge contributes to a better understanding of the joint effects of curvature, bifurcation angle, and stents on flow patterns and haemodynamics in coronary bifurcations.
Collapse
Affiliation(s)
- C Shen
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney NSW 2052, Australia.
| | - R Gharleghi
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney NSW 2052, Australia
| | - D D Li
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney NSW 2052, Australia
| | - M Stevens
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney NSW 2052, Australia
| | - S Dokos
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney NSW 2052, Australia
| | - S Beier
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
29
|
Owen DG, de Oliveira DC, Neale EK, Shepherd DET, Espino DM. Numerical modelling of blood rheology and platelet activation through a stenosed left coronary artery bifurcation. PLoS One 2021; 16:e0259196. [PMID: 34731193 PMCID: PMC8565790 DOI: 10.1371/journal.pone.0259196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/14/2021] [Indexed: 01/09/2023] Open
Abstract
Coronary bifurcations are prone to atherosclerotic plaque growth, experiencing regions of reduced wall shear stress (WSS) and increased platelet adhesion. This study compares effects across different rheological approaches on hemodynamics, combined with a shear stress exposure history model of platelets within a stenosed porcine bifurcation. Simulations used both single/multiphase blood models to determine which approach best predicts phenomena associated with atherosclerosis and atherothrombosis. A novel Lagrangian platelet tracking model was used to evaluate residence time and shear history of platelets indicating likely regions of thrombus formation. Results show a decrease in area of regions with pathologically low time-averaged WSS with the use of multiphase models, particularly in a stenotic bifurcation. Significant non-Newtonian effects were observed due to low-shear and varying hematocrit levels found on the outer walls of the bifurcation and distal to the stenosis. Platelet residence time increased 11% in the stenosed artery, with exposure times to low-shear sufficient for red blood cell aggregation (>1.5 s). increasing the risk of thrombosis. This shows stenotic artery hemodynamics are inherently non-Newtonian and multiphase, with variations in hematocrit (0.163-0.617) and elevated vorticity distal to stenosis (+15%) impairing the function of the endothelium via reduced time-averaged WSS regions, rheological properties and platelet activation/adhesion.
Collapse
Affiliation(s)
- David G. Owen
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Diana C. de Oliveira
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Emma K. Neale
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Duncan E. T. Shepherd
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Daniel M. Espino
- Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
Kamangar S. Numerical simulation of pulsatile blood flow characteristics in a multi stenosed coronary artery. Biomed Mater Eng 2021; 32:309-321. [PMID: 33998530 DOI: 10.3233/bme-211234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Coronary artery disease is reported as one of the most common sources of death all over the world. The presence of stenosis (plaque) in the coronary arteries results in the restriction of blood supply, which leads to myocardial infarction. OBJECTIVE The aim of this study was to investigate the effect of multi stenosis on hemodynamics parameters in idealized coronary artery models with varying degrees of stenosis and interspace distance between the stenosis. METHODS A finite volume-based software package (Ansys CFX version 17.2) was employed to model the blood flow. The hemodynamic stenosis parameters of blood, such as the pressure, velocity, and wall shear stress were obtained. RESULTS The computed results showed that the pressure drop is maximum across the 90% area stenosis (AS). The pressure drop is increased as the distance between the proximal and distal stenosis is decreased across the proximal stenosis for the model P70_D70 during the systolic period of the cardiac cycle. A recirculation zone is formed behind the stenosis and is restricted by the occurrence of distal stenosis as the interspacing distance decreases, which could lead to further progression of stenosis in the flow-disturbed area. The wall shear stress was found to increase as the distance between the proximal and distal stenosis is increased across the distal stenosis. The maximum wall shear stress was found at 90% AS. CONCLUSIONS In the clinical diagnosis, an overestimation of distal stenosis severity could be possible. Furthermore, the low wall shear stress zone in between the proximal and distal stenosis may help atherosclerotic growth or merge adjacent stenosis.
Collapse
Affiliation(s)
- Sarfaraz Kamangar
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, Abha, Kingdom Saudi Arabia.,Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha, Kingdom Saudi Arabia E-mail:
| |
Collapse
|
31
|
Hossain T, Anan N, Arafat MT. The effects of plaque morphological characteristics on the post-stenotic flow in left main coronary artery bifurcation. Biomed Phys Eng Express 2021; 7. [PMID: 34425569 DOI: 10.1088/2057-1976/ac202c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Local post-stenotic hemodynamics has critical influence in the atherosclerotic plaque progression occurring in susceptible arterial sites, in particular the left main coronary artery (LMCA) bifurcation. Understanding the effects of plaque morphological characteristics: stenosis severity (SS), eccentricity index (EI) and lesion length (LL) on the post-stenotic flow behavior can significantly improve treatment planning. In order to investigate these effects, we have employed computational fluid dynamics (CFD) simulations in twenty computer-generated and five patient-specific LMCA models and the hemodynamic parameters: velocity, pressure (P), wall pressure gradient (WPG), wall shear stress (WSS), time averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT) and helicity intensity (h2) were analyzed. Our results revealed that the effect of stenosis eccentricity varied significantly for different values of stenosis severity and lesion length. Regions with low WSS, low TAWSS and high RRT were more prominent in models having higher stenosis severity. For smaller lesion length, at low and moderate stenosis severity, surface area with low TAWSS and high RRT decreased with increasing eccentricity index, whereas for high stenosis severity models, low TAWSS region and average RRT values increased with eccentricity. However, for models with longer lesion length, regions with high OSI and RRT overall increased gradually with eccentricity. The helicity intensity (h2) of all models remained very low except at the most eccentric model with longer lesion length. The presence of very high helical flow in this model suggests the possibility of atheroprotective flow. It can be concluded that all plaque morphological characteristics covered under this investigation play an important role in plaque progression.
Collapse
Affiliation(s)
- Tahura Hossain
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka-1216, Bangladesh
| | - Noushin Anan
- Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka-1216, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1205, Bangladesh
| |
Collapse
|
32
|
Numerical Study of the Unsteady Flow in Simplified and Realistic Iliac Bifurcation Models. FLUIDS 2021. [DOI: 10.3390/fluids6080284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases are a major cause of death and disability worldwide and they are commonly associated with the occurrence of atherosclerotic plaque deposition in the vessel walls, a process denoted as atherosclerosis. This is a chronic and progressive inflammatory disease of large-/medium-sized blood vessels that affects blood flow profiles, with the abdominal aorta and its branches being one of the locations prone to the development of this pathology, due to their curvatures and bifurcations. In this regard, the effect of flow patterns was studied and compared for both a simplified three-dimensional model of aorta bifurcation on the iliac arteries and a realistic model of iliac bifurcation, which was constructed from a computational tomography medical image. The flow patterns were analyzed in terms of velocity and wall shear stress distribution, but a special focus was given to the size and location of the recirculation zone. The simulations were performed using the Computational Fluid Dynamics software, FLUENT, taking into account the cardiac cycle profile at the infrarenal aorta. The shear stress and the velocity distribution observed for both models indicated that higher shear stress occurred along the flow divider wall (inner wall) and low shear stress occurred along the outer walls. In addition, the results demonstrated that the wall shear stress profiles were deeply affected by the transient profile of the cardiac cycle, with the deceleration phase being the most critical phase to the occurrence of backflow.
Collapse
|
33
|
Bax AM, van Rosendael AR, Ma X, van den Hoogen IJ, Gianni U, Tantawy SW, Hollenberg EJ, Andreini D, Al-Mallah MH, Budoff MJ, Cademartiri F, Chinnaiyan K, Choi JH, Conte E, Marques H, de Araújo Gonçalves P, Gottlieb I, Hadamitzky M, Leipsic JA, Maffei E, Pontone G, Shin S, Kim YJ, Lee BK, Chun EJ, Sung JM, Lee SE, Virmani R, Samady H, Stone PH, Berman DS, Min JK, Narula J, Lin FY, Chang HJ, Shaw LJ. Comparative differences in the atherosclerotic disease burden between the epicardial coronary arteries: quantitative plaque analysis on coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging 2021; 22:322-330. [PMID: 33215192 DOI: 10.1093/ehjci/jeaa275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
AIMS Anatomic series commonly report the extent and severity of coronary artery disease (CAD), regardless of location. The aim of this study was to evaluate differences in atherosclerotic plaque burden and composition across the major epicardial coronary arteries. METHODS AND RESULTS A total of 1271 patients (age 60 ± 9 years; 57% men) with suspected CAD prospectively underwent coronary computed tomography angiography (CCTA). Atherosclerotic plaque volume was quantified with categorization by composition (necrotic core, fibrofatty, fibrous, and calcified) based on Hounsfield Unit density. Per-vessel measures were compared using generalized estimating equation models. On CCTA, total plaque volume was lowest in the LCx (10.0 ± 29.4 mm3), followed by the RCA (32.8 ± 82.7 mm3; P < 0.001), and LAD (58.6 ± 83.3 mm3; P < 0.001), even when correcting for vessel length or volume. The prevalence of ≥2 high-risk plaque features, such as positive remodelling or spotty calcification, occurred less in the LCx (3.8%) when compared with the LAD (21.4%) or RCA (10.9%, P < 0.001). In the LCx, the most stenotic lesion was categorized as largely calcified more often than in the RCA and LAD (55.3% vs. 39.4% vs. 32.7%; P < 0.001). Median diameter stenosis was also lowest in the LCx (16.2%) and highest in the LAD (21.3%; P < 0.001) and located more distal along the LCx when compared with the RCA and LAD (P < 0.001). CONCLUSION Atherosclerotic plaque, irrespective of vessel volume, varied across the epicardial coronary arteries; with a significantly lower burden and different compositions in the LCx when compared with the LAD and RCA. These volumetric and compositional findings support a diverse milieu for atherosclerotic plaque development and may contribute to a varied acute coronary risk between the major epicardial coronary arteries.
Collapse
Affiliation(s)
- A Maxim Bax
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Alexander R van Rosendael
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiaoyue Ma
- Department of Healthcare Policy and Research, New York-Presbyterian Hospital and the Weill Cornell Medical College, New York, NY, USA
| | - Inge J van den Hoogen
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Umberto Gianni
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Sara W Tantawy
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Emma J Hollenberg
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Daniele Andreini
- Department of Medicine, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Mouaz H Al-Mallah
- Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Matthew J Budoff
- Department of Medicine, Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Filippo Cademartiri
- Department of Radiology, Cardiovascular Imaging Center, SDN IRCCS, Naples, Italy
| | | | - Jung Hyun Choi
- Division of Cardiology, Department of Internal Medicine, Pusan University Hospital, Busan, South Korea
| | - Edoardo Conte
- Department of Medicine, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Hugo Marques
- Department of Radiology,UNICA, Unit of Cardiovascular Imaging, Hospital da Luz, Nova Medical School, Lisboa, Portugal
| | - Pedro de Araújo Gonçalves
- Department of Radiology,UNICA, Unit of Cardiovascular Imaging, Hospital da Luz, Nova Medical School, Lisboa, Portugal.,Department of Cardiology, NOVA Medical School, Lisboa, Portugal
| | - Ilan Gottlieb
- Department of Radiology, Casa de Saude São Jose, Rio de Janeiro, Brazil
| | - Martin Hadamitzky
- Department of Radiology and Nuclear Medicine, German Heart Center, Munich, Germany
| | - Jonathon A Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Erica Maffei
- Department of Radiology, Area Vasta 1/ASUR Marche, Urbino, Italy
| | - Gianluca Pontone
- Department of Medicine, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Sanghoon Shin
- Division of Cardiology, Department of Internal Medicine, Ewha Woman's University Seoul Hospital, Seoul, Korea
| | - Yong-Jin Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | - Byoung Kwon Lee
- Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ju Chun
- Department of Radiology, Seoul National University Bundang Hospital, Sungnam, South Korea
| | - Ji Min Sung
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea.,Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Sang-Eun Lee
- Division of Cardiology, Department of Internal Medicine, Ewha Woman's University Seoul Hospital, Seoul, Korea.,Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Renu Virmani
- Department of Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Habib Samady
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Peter H Stone
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel S Berman
- Department of Imaging and Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | - Jagat Narula
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, NY, USA
| | - Fay Y Lin
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Hyuk-Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea.,Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Leslee J Shaw
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
34
|
Carpenter HJ, Gholipour A, Ghayesh MH, Zander AC, Psaltis PJ. In Vivo Based Fluid-Structure Interaction Biomechanics of the Left Anterior Descending Coronary Artery. J Biomech Eng 2021; 143:081001. [PMID: 33729476 DOI: 10.1115/1.4050540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/25/2022]
Abstract
A fluid-structure interaction-based biomechanical model of the entire left anterior descending coronary artery is developed from in vivo imaging via the finite element method in this paper. Included in this investigation is ventricle contraction, three-dimensional motion, all angiographically visible side branches, hyper/viscoelastic artery layers, non-Newtonian and pulsatile blood flow, and the out-of-phase nature of blood velocity and pressure. The fluid-structure interaction model is based on in vivo angiography of an elite athlete's entire left anterior descending coronary artery where the influence of including all alternating side branches and the dynamical contraction of the ventricle is investigated for the first time. Results show the omission of side branches result in a 350% increase in peak wall shear stress and a 54% decrease in von Mises stress. Peak von Mises stress is underestimated by up to 80% when excluding ventricle contraction and further alterations in oscillatory shear indices are seen, which provide an indication of flow reversal and has been linked to atherosclerosis localization. Animations of key results are also provided within a video abstract. We anticipate that this model and results can be used as a basis for our understanding of the interaction between coronary and myocardium biomechanics. It is hoped that further investigations could include the passive and active components of the myocardium to further replicate in vivo mechanics and lead to an understanding of the influence of cardiac abnormalities, such as arrythmia, on coronary biomechanical responses.
Collapse
Affiliation(s)
- Harry J Carpenter
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alireza Gholipour
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mergen H Ghayesh
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Anthony C Zander
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia
| |
Collapse
|
35
|
Wang Y, Zhan J, Bian W, Tang X, Zeng M. Local hemodynamic analysis after coronary stent implantation based on Euler-Lagrange method. J Biol Phys 2021; 47:143-170. [PMID: 34046777 DOI: 10.1007/s10867-021-09571-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/27/2021] [Indexed: 12/01/2022] Open
Abstract
Coronary stents are deployed to treat the coronary artery disease (CAD) by reopening stenotic regions in arteries to restore blood flow, but the risk of the in-stent restenosis (ISR) is high after stent implantation. One of the reasons is that stent implantation induces changes in local hemodynamic environment, so it is of vital importance to study the blood flow in stented arteries. Based on regarding the red blood cell (RBC) as a rigid solid particle and regarding the blood (including RBCs and plasma) as particle suspensions, a non-Newtonian particle suspensions model is proposed to simulate the realistic blood flow in this work. It considers the blood's flow pattern and non-Newtonian characteristic, the blood cell-cell interactions, and the additional effects owing to the bi-concave shape and rotation of the RBC. Then, it is compared with other four common hemodynamic models (Newtonian single-phase flow model, Newtonian Eulerian two-phase flow model, non-Newtonian single-phase flow model, non-Newtonian Eulerian two-phase flow model), and the comparison results indicate that the models with the non-Newtonian characteristic are more suitable to describe the realistic blood flow. Afterwards, based on the non-Newtonian particle suspensions model, the local hemodynamic environment in stented arteries is investigated. The result shows that the stent strut protrusion into the flow stream would be likely to produce the flow stagnation zone. And the stent implantation can make the pressure gradient distribution uneven. Besides, the wall shear stress (WSS) of the region adjacent to every stent strut is lower than 0.5 Pa, and along the flow direction, the low-WSS zone near the strut behind is larger than that near the front strut. What's more, in the regions near the struts in the proximal of the stent, the RBC particle stagnation zone is easy to be formed, and the erosion and deposition of RBCs are prone to occur. These hemodynamic analyses illustrate that the risk of ISR is high in the regions adjacent to the struts in the proximal and the distal ends of the stent when compared with struts in other positions of the stent. So the research can provide a suggestion on the stent design, which indicates that the strut structure in these positions of a stent should be optimized further.
Collapse
Affiliation(s)
- Yuchen Wang
- Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Jingmei Zhan
- Xi'an Zhuoqia Medical Device Co., Ltd, Xi'an, 710018, Shaanxi, China
| | - Weiguo Bian
- The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiaoli Tang
- Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Min Zeng
- Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| |
Collapse
|
36
|
KOT MAEL, ELMABOUD YABD. HYBRID NANOFLUID FLOWS THROUGH A VERTICAL DISEASED CORONARY ARTERY WITH HEAT TRANSFER. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421500123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gold nanoparticles (AuNPs) are now widely used because of their synthesis compatibility and less toxicity in several biomedical applications such as cancer treatment. From the fluid mechanics point of view, we examine the behavior of a mixture of gold and Titanium Oxide nanoparticles, which suspended in the blood as a base fluid in the diseased coronary artery. The main goal of this paper is to examine and shed light on the hybrid nanofluid flows through a vertical diseased artery in the presence of the catheter tube with heat transfer. The mathematical model is established and then solved with the Laplace and the finite Hankel transforms. The inverse of the transformed functions has been calculated numerically. The velocity, the pressure, the impedance and the heat transfer are discussed graphically. It is noteworthy to mention that the mixture of the nanoparticles dispersed in the blood needs high pressure to push it. The impedance of blood is proportional to the overall volume concentration of the nanoparticles and Reynolds number.
Collapse
Affiliation(s)
- M. A. EL KOT
- Department of Mathematics, College of Sciences and Arts, Dhahran Aljanoub, King Khalid University, Saudi Arabia
- Department of Mathematics and Computer Science, Faculty of Science, Suez University, Suez, Egypt
| | - Y. ABD ELMABOUD
- University of Jeddah, College of Science and Arts at Khulis, Department of Mathematics, Jeddah, Saudi Arabia
- Mathematics Department, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, Egypt
| |
Collapse
|
37
|
Fluid-structure interactions (FSI) based study of low-density lipoproteins (LDL) uptake in the left coronary artery. Sci Rep 2021; 11:4803. [PMID: 33637804 PMCID: PMC7910311 DOI: 10.1038/s41598-021-84155-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/12/2021] [Indexed: 11/08/2022] Open
Abstract
The purpose of this study is to compare the effect of the different physical factors on low-density lipoproteins (LDL) accumulation from flowing blood to the arterial wall of the left coronary arteries. The three-dimensional (3D) computational model of the left coronary arterial tree is reconstructed from a patient-specific computed tomography angiography (CTA) image. The endothelium of the coronary artery is represented by a shear stress dependent three-pore model. Fluid–structure interaction (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$FSI$$\end{document}FSI) based numerical method is used to study the LDL transport from vascular lumen into the arterial wall. The results show that the high elastic property of the arterial wall decreases the complexity of the local flow field in the coronary bifurcation system. The places of high levels of LDL uptake coincide with the regions of low wall shear stress. In addition, hypertension promotes LDL uptake from flowing blood in the arterial wall, while the thickened arterial wall decreases this process. The present computer strategy combining the methods of coronary CTA image 3D reconstruction, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$FSI$$\end{document}FSI simulation, and three-pore modeling was illustrated to be effective on the simulation of the distribution and the uptake of LDL. This may have great potential for the early prediction of the local atherosclerosis lesion in the human left coronary artery.
Collapse
|
38
|
Abstract
Atherosclerosis is one of the main causes of cardiovascular events, namely, myocardium infarction and cerebral stroke, responsible for a great number of deaths every year worldwide. This pathology is caused by the progressive accumulation of low-density lipoproteins, cholesterol, and other substances on the arterial wall, narrowing its lumen. To date, many hemodynamic studies have been conducted experimentally and/or numerically; however, this disease is not yet fully understood. For this reason, the research of this pathology is still ongoing, mainly, resorting to computational methods. These have been increasingly used in biomedical research of atherosclerosis because of their high-performance hardware and software. Taking into account the attempts that have been made in computational techniques to simulate realistic conditions of blood flow in both diseased and healthy arteries, the present review aims to give an overview of the most recent numerical studies focused on coronary arteries, by addressing the blood viscosity models, and applied physiological flow conditions. In general, regardless of the boundary conditions, numerical studies have been contributed to a better understanding of the development of this disease, its diagnosis, and its treatment.
Collapse
|
39
|
Kamangar S, Anjum Badruddin I, Anqi AE, Ahamed Saleel C, Tirth V, Yunus Khan T, Anas Khan M, Mallick Z, Salman Ahmed N. Influence of bifurcation angle in left coronary artery with stenosis: A CFD analysis. Biomed Mater Eng 2020; 31:339-349. [DOI: 10.3233/bme-201107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: The left coronary artery commonly known as LCA gets divided into two branches, such as the left circumflex (LCX) and left anterior descending (LAD) at a particular angle. This angle is varies from person to person. The present computational study contributes remarkable expertise about the influence of this angle variation on the hemodynamic parameters in the presence of 80% area stenosis at the LAD branch. OBJECTIVE: This study aimed to compare the effect of the bifurcation angle on hemodynamic parameters in the left coronary artery with 80% stenosis. METHOD: Computational models of left coronary bifurcation angles of 30°, 60°, 90°, 120° were developed to understand the flow behavior of left coronary artery branches. The 80% area stenosis (AS) is considered at the LAD branch immediate to bifurcation. RESULTS: Measurements of pressure, velocity and wall shear stress were carried out corresponding to various bifurcation angles. It was found that the drop-in pressure increases as the angle increases from narrow to wider. A slight elevation in the velocity at the stenosis was observed. In addition, the obtained results further reveal a recirculation region immediately after the plaque, which leads to more deposition of plaque in the flow obstructed area. It is known that the shear stress at the arterial wall across the stenosis increases as the angle of bifurcation increases from narrow to wider. CONCLUSIONS: The bifurcation of the left coronary artery and size of the stenosis have a notable impact on the pressure and wall shear stress. These two factors should be given due consideration by cardiologists to assess the complexity of stenosis in the LCA branches.
Collapse
Affiliation(s)
| | | | - Ali E. Anqi
- , King Khalid University, , Kingdom of Saudi Arabia
| | | | - Vineet Tirth
- , King Khalid University, , Kingdom of Saudi Arabia
| | | | | | - Z. Mallick
- , King Khalid University, , Kingdom of Saudi Arabia
| | | |
Collapse
|
40
|
Bahrami S, Norouzi M. Hemodynamic impacts of hematocrit level by two-way coupled FSI in the left coronary bifurcation. Clin Hemorheol Microcirc 2020; 76:9-26. [DOI: 10.3233/ch-200854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cardiovascular disease is now under the influence of several factors that encourage researchers to investigate the flow of these vessels. Oscillation influences the blood circulation in the volume of red blood cells (RBC) strongly. Therefore, in this study, its effects have been considered on hemodynamic parameters in the elastic wall and coronary bifurcation. In this study, a 3D geometry of non-Newtonian and pulsatile blood circulation is considered in the left coronary artery bifurcation. The Casson model with various hematocrits is analyzed in elastic and rigid walls. The wall shear stress (WSS) cannot show the stenosis artery alone, therefore, the oscillatory shear index (OSI) is represented as a hemodynamic parameter of WSS individually of time. The results are determined using two-way fluid-structure interaction (FSI) coupling method using an arbitrary Lagrangian-Eulerian method. The most prominent difference in velocity happened in the bifurcation and at hematocrit 30 with yield stress 6.59E-04 Pa. The backflow and vortex flow in the LCx branch grown with increasing shear rates. The likelihood of plaque generation at the ending of the LM branch is observed in hematocrits 10 and 20, while the WSS magnitude is normal in the hematocrit 60 with the greatest yield stress in the bifurcation. The shear stress among the rigid and elastic models is the highest at the ending of the LM branch. The wall shear stress magnitude among the models decreased at most of 24.49% by dividing the flow. Time-independent results for models showed that there is the highest value of OSI at the bifurcation, which then quickly dropped.
Collapse
Affiliation(s)
- Saeed Bahrami
- Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Semnan, Iran
| | - Mahmood Norouzi
- Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Semnan, Iran
| |
Collapse
|
41
|
Tajeddini F, Nikmaneshi MR, Firoozabadi B, Pakravan HA, Ahmadi Tafti SH, Afshin H. High precision invasive FFR, low-cost invasive iFR, or non-invasive CFR?: optimum assessment of coronary artery stenosis based on the patient-specific computational models. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3382. [PMID: 32621661 DOI: 10.1002/cnm.3382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/15/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
The objective of this paper is to apply computational fluid dynamic (CFD) as a complementary tool for clinical tests to not only predict the present and future status of left coronary artery stenosis but also to evaluate some clinical hypotheses. In order to assess the present status of the coronary artery stenosis severity, and thereby selecting the most appropriate type of treatment for each patient, fractional flow reserve (FFR), instantaneous wave free-ratio (iFR), and coronary flow reserve (CFR) are calculated. To examine FFR, iFR, and CFR results, the effect of geometric features of stenoses, including diameter reduction (%), lesion length (LL), and minimum lumen diameter (MLD), is studied on them. It is observed that FFR is a more conservative index than iFR and CFR to assess the severity of coronary stenosis. In addition, it is seen that FFR, iFR, and CFR decrease by increasing LL and decreasing MLD. Therefore, the morphological indices, LL/MLD and LL/MLD̂4, with the calculated conservative cut-off values equal to 5.5 and 3.6, are considered. Next, some controversial clinical hypotheses about the assessment of the severity of coronary stenosis are evaluated numerically. These include the examination of FFR, iFR, and CFR accuracies, investigating the effect of coronary hyperemia on iFR, as well as the reliability of the hybrid iFR-FFR decision-making strategy. The presented numerical model can also be used as a predictive tool to identify the atherosuseptible sites of arteries by calculating the time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT).
Collapse
Affiliation(s)
- Farshad Tajeddini
- Center of Excellence in Energy Conversion, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Reza Nikmaneshi
- Center of Excellence in Energy Conversion, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bahar Firoozabadi
- Center of Excellence in Energy Conversion, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | | | | | - Hossein Afshin
- Center of Excellence in Energy Conversion, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
42
|
Feng J, Wang N, Wang Y, Tang X, Yuan J. Haemodynamic mechanism of formation and distribution of coronary atherosclerosis: A lesion-specific model. Proc Inst Mech Eng H 2020; 234:1187-1196. [PMID: 32748686 DOI: 10.1177/0954411920947972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coronary arterial disease, as the most devastated cardiovascular disease, is caused by the atherosclerosis in the coronary arteries, which blocks the blood flow to the heart, resulting in the deficient supply of oxygen and nutrition to the heart, and eventually leading to heart failure. To date, haemodynamic mechanisms for atherosclerosis development are not fully understood although it is believed that the haemodynamic disturbance at the region of the arterial bifurcation, particular, bifurcation angle, plays an important role in the atherosclerosis development. In this study, two types of computational fluid dynamics models, lesion-specific and idealized models, combined with the computer tomography imaging techniques, are used to explore the mechanism of formation and distribution of the atherosclerosis around the bifurcation of left coronary artery and its association with the bifurcation angle. The lesion-specific model is used to characterize the effect of personalized features on the haemodynamic performance, while the idealized model is focusing on the effect of single factor, bifurcation angle, on the haemodynamic performance. The simulated results from both types of the models, combined with the clinical observation, revealed that the three key areas around the bifurcations are prone to formation of the atherosclerosis. Unlike the idealized models, lesion-specific modelling results did not show the significant correlation between the wall shear stress and bifurcation angle, although the mean value of the wall shear stress in smaller bifurcation angles (less than 90°) is higher than that with larger bifurcation angles (greater than 90°). In conclusion, lesion-specific computational fluid dynamics modelling is an efficient and convenient way to predict the haemodynamic performance around the bifurcation region, allowing the comprehensive information for the clinicians to predict the atherosclerosis development. The idealized models, which only focus on single parameter, may not provide the sufficient and reliable information for the clinical application. A novel multi-parameters modelling technique, therefore, is suggested to be developed in future, allowing the effects of many parameters on the haemodynamic performance to be evaluated.
Collapse
Affiliation(s)
- Jiling Feng
- Department of Engineering, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Nannan Wang
- Department of Mechanical Design, College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Yiliang Wang
- Department of Mechanical Design, College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Xiaoxian Tang
- Radiology Department, Shanxi Provincial People’s Hospital, Taiyuan, P.R. China
| | - Jie Yuan
- Radiology Department, Shanxi Provincial People’s Hospital, Taiyuan, P.R. China
| |
Collapse
|
43
|
Owen DG, Schenkel T, Shepherd DET, Espino DM. Assessment of surface roughness and blood rheology on local coronary haemodynamics: a multi-scale computational fluid dynamics study. J R Soc Interface 2020; 17:20200327. [PMID: 32781935 PMCID: PMC7482556 DOI: 10.1098/rsif.2020.0327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/23/2020] [Indexed: 01/04/2023] Open
Abstract
The surface roughness of the coronary artery is associated with the onset of atherosclerosis. The study applies, for the first time, the micro-scale variation of the artery surface to a 3D coronary model, investigating the impact on haemodynamic parameters which are indicators for atherosclerosis. The surface roughness of porcine coronary arteries have been detailed based on optical microscopy and implemented into a cylindrical section of coronary artery. Several approaches to rheology are compared to determine the benefits/limitations of both single and multiphase models for multi-scale geometry. Haemodynamic parameters averaged over the rough/smooth sections are similar; however, the rough surface experiences a much wider range, with maximum wall shear stress greater than 6 Pa compared to the approximately 3 Pa on the smooth segment. This suggests the smooth-walled assumption may neglect important near-wall haemodynamics. While rheological models lack sufficient definition to truly encompass the micro-scale effects occurring over the rough surface, single-phase models (Newtonian and non-Newtonian) provide numerically stable and comparable results to other coronary simulations. Multiphase models allow for phase interactions between plasma and red blood cells which is more suited to such multi-scale models. These models require additional physical laws to govern advection/aggregation of particulates in the near-wall region.
Collapse
Affiliation(s)
- David G. Owen
- Department of Mechanical Engineering, University of Birmingham, UK
| | - Torsten Schenkel
- Department of Engineering and Mathematics, Materials and Engineering Research Institute MERI, Sheffield Hallam University, Sheffield, UK
| | | | - Daniel M. Espino
- Department of Mechanical Engineering, University of Birmingham, UK
| |
Collapse
|
44
|
Influence of Artery Straightening on Local Hemodynamics in Left Anterior Descending (LAD) Artery after Stent Implantation. Cardiol Res Pract 2020; 2020:6970817. [PMID: 32550022 PMCID: PMC7261340 DOI: 10.1155/2020/6970817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 04/20/2020] [Indexed: 11/29/2022] Open
Abstract
Objectives The study investigates local hemodynamic environment changes caused by straightening phenomenon and the relationship between straightening phenomenon and in-stent restenosis. Background Intravascular intervention is an effective treatment in restoring the normal flow conditions and vascular lumen. Unfortunately, in-stent restenosis often occurs in a subset of patients after stent implantation and limits the success of stent implantation outcomes. The implanted stent usually causes artery straightening locally, rather than coinciding and adjusting to the physiological curve exactly. Artery straightening would apparently modify the artery geometry and therefore alter the local hemodynamic environment, which may result in intimal hyperplasia and restenosis after stenting implantation. Methods In the current investigation, we verify the hypothesis that the artery straightening influences the local hemodynamic state using the different 3D CT models. Flow analysis for blood in the left anterior descending coronary artery and the straightening model is simulated numerically. Result The current results reveal that the straightening phenomenon alters the distribution of wall shear stress and flow patterns, decreases the wall shear stress (WSS), and increases the oscillatory shear index (OSI) and the relative residence time (RRT), especially at the proximal and distal areas of stenting. Conclusions The local straightened geometry established after stent implantation was likely to generate portions of the stenting area to a high risk of neointimal hyperplasia and subsequent restenosis.
Collapse
|
45
|
Zuin M, Rigatelli G, Vassilev D, Ronco F, Rigatelli A, Roncon L. Computational fluid dynamic-derived wall shear stress of non-significant left main bifurcation disease may predict acute vessel thrombosis at 3-year follow-up. Heart Vessels 2020; 35:297-306. [PMID: 31482218 DOI: 10.1007/s00380-019-01494-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023]
Abstract
Wall shear stress (WSS) plays a pivotal role on plaque progression in coronary artery disease. We assess the prognostic role of baseline mean WSS in developing a bifurcation-located myocardial infarction (B-MI) over the following 3 years in angiographically non-significant LM bifurcation disease. For this purpose, we retrospectively reviewed the procedural and medical records of consecutive patients evaluated in our center from 1st January 2014 to 1st January 2019 who had a non-significant LM bifurcation disease as evaluated at coronary computed tomography angiography (CCTA) and confirmed by coronary angiography. Each bifurcation model was reconstructed on the patient-specific geometries derived from the CCTA. The population was divided into two groups: patients with (n = 12) and without B-MI (n = 20) over the following 3 years. Both the mean WSSprox of each branch and the WSSentire_lesion of each vessel, adjusted for the respective mean lesions lengths and 3-dimensional percentage of stenosis (DS%), resulted in independent predictors of 3-year B-MI. Multivariate Cox-regression analysis confirmed that a baseline mean WSSentire_model ≥ 5.05 Pa (HR 1.98, 95% CI 1.83-2.10, p = 0.001) was a predictor of 3-year B-MI independently from the entire mean lesions lengths (HR 1.56. 95% CI 1.43.1.68, p = 0.002) and DS% (HR 1.26, 95% CI 1.18-1.37, p = 0.03). In conclusion, in patients with angiographically non-significant LM bifurcation disease, both the mean WSSprox of each branch and WSSentire_lesion of each stenotic vessel predicted the occurrence of B-MI over the following 3 years. Moreover, the WSSentire_bifurcation ≥ 5.05 Pa seems to be a predictor of 3-year B-MI independently from the DS% and lesions lengths.
Collapse
Affiliation(s)
- Marco Zuin
- Section of Internal and Cardiopulmonary Medicine, Faculty of Medicine, University of Ferrara, Ferrara, Italy
- Division of Cardiology, Santa Maria Della Misericordia Hospital, Rovigo, Italy
| | - Gianluca Rigatelli
- Department of Cardiovascular Diagnosis and Endoluminal Interventions, Santa Maria Della Misericordia Hospital, Viale Tre Martiri, 45100, Rovigo, Italy.
| | - Dobrin Vassilev
- "Alexandrovska" University Hospital, Medical University, Sofia, Bulgaria
| | - Federico Ronco
- Interventional Cardiology, Cardiology Department, Mestre General Hospital, Mestre, Italy
| | - Alberto Rigatelli
- Department of Emergency, Borgo Trento University Hospital, Verona, Italy
| | - Loris Roncon
- Division of Cardiology, Santa Maria Della Misericordia Hospital, Rovigo, Italy
| |
Collapse
|
46
|
Nagargoje M, Gupta R. Effect of asymmetry on the flow behavior in an idealized arterial bifurcation. Comput Methods Biomech Biomed Engin 2020; 23:232-247. [DOI: 10.1080/10255842.2019.1711068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mahesh Nagargoje
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Raghvendra Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
47
|
Computational analysis of the coronary artery hemodynamics with different anatomical variations. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Kamangar S, Salman Ahmed N, Badruddin IA, Al-Rawahi N, Husain A, Govindaraju K, Yunus Khan T. Effect of stenosis on hemodynamics in left coronary artery based on patient-specific CT scan. Biomed Mater Eng 2019; 30:463-473. [DOI: 10.3233/bme-191067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Doutel E, Viriato N, Carneiro J, Campos JBLM, Miranda JM. Geometrical effects in the hemodynamics of stenotic and non-stenotic left coronary arteries-numerical and in vitro approaches. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3207. [PMID: 30983149 DOI: 10.1002/cnm.3207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/09/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Atherosclerosis is a common cardiovascular disease found in the left coronary artery (LCA), closely linked to local hemodynamic, which, in turn, is highly influenced by the artery geometry. The hemodynamics in the LCA was studied in a patient-specific geometry without any sign of disease using both numerical and in vitro approaches. The influence of non-planarity was evaluated through two models of the patient-specific LCA that deviate from its original geometry in their planarity. Afterwards, in all models, irregular stenoses were created by a procedure in which the stenosis emerges by diffusion from low wall shear stress (WSS) areas. The WSS distribution and flow patterns were evaluated in all the models. The experimental results validate the numerical code developed to study the blood flow assuming a steady state Newtonian behavior. Comparison between the planar and non-planar idealized LCA revealed no significant differences in low WSS regions forming stenotic regions with identical shape. In the patient-specific LCA, the low WSS regions are not consistent with the idealized models leading to a different stenosis shape. The results revealed that the non-planarity has an unquestionable effect in helicity. It was also demonstrated that eccentricity of the vessels cross section and the position of the apex in relation to the axis of the parent branch contribute to the flow patterns observed. Numerical results of pulsatile blood flow assuming a non-Newtonian behavior, in the patient-specific LCA, reinforce the non-planarity effect in local hemodynamics.
Collapse
Affiliation(s)
- Erica Doutel
- Altice Labs, Rua Eng° José Ferreira Pinto Basto, Aveiro, Portugal
| | - Nuno Viriato
- INEGI, Institute of Mechanical Engineering, FEUP, Faculty of Engineering, University of Porto, Porto, Portugal
| | - João Carneiro
- Transport Phenomena Research Center, Chemical Engineering Department, Faculty of Engineering, University of Porto, Porto, Portugal
| | - João B L M Campos
- Transport Phenomena Research Center, Chemical Engineering Department, Faculty of Engineering, University of Porto, Porto, Portugal
| | - João M Miranda
- Transport Phenomena Research Center, Chemical Engineering Department, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
50
|
Lu S, Zhang S. Atherosclerosis research: the impact of physiological parameters on vascular wall stress. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0737-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|