1
|
Kim J, Kim JJ. Computational comparison study of virtual compression and shear test for estimation of apparent elastic moduli under various boundary conditions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3845. [PMID: 38979678 DOI: 10.1002/cnm.3845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/05/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024]
Abstract
Virtual compression tests based on finite element analysis are representative noninvasive methods to evaluate bone strength. However, owing to the characteristic porous structure of bones, the material obtained from micro-computed tomography images in the finite-element model is not uniformly distributed. These characteristics cause differences in the apparent elastic moduli depending on the boundary conditions and affect the accuracy of bone-strength evaluation. Therefore, this study aimed to evaluate and compare the apparent elastic moduli under various, virtual-compression and shear-test boundary conditions. Four, nonuniform models were constructed with increasing model complexity. For representative boundary conditions, two, different, testing directions, and constrained surfaces were applied. As a result, the apparent elastic moduli of the nonuniform model varied up to 55.2% based on where the constrained surface was located in the single-end-cemented condition. Additionally, when connectivity in the test direction was lost, the accuracy of the apparent elastic moduli was low. A graphical comparison showed that the equivalent-stress distribution was more advantageous for analyzing load transferability and physical behavior than the strain-energy distribution. These results clearly show that the prediction accuracy of the apparent elastic moduli can be guaranteed if the boundary condition on the constraint and loading surfaces of the nonuniform model are applied symmetrically and the connectivity of the elements in the testing direction is well maintained. This study will aid in precision improvement of bone-strength-indicator determination for osteoporosis prevention.
Collapse
Affiliation(s)
- Jisun Kim
- Department of Mechanical Engineering, Keimyung University, Daegu, Republic of Korea
| | - Jung Jin Kim
- Department of Mechanical Engineering, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
2
|
McPhee S, Kershaw LE, Daniel CR, Peña Fernández M, Cillán-García E, Taylor SE, Wolfram U. QCT-based computational bone strength assessment updated with MRI-derived 'hidden' microporosity. J Mech Behav Biomed Mater 2023; 147:106094. [PMID: 37741181 DOI: 10.1016/j.jmbbm.2023.106094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/25/2023]
Abstract
Microdamage accumulated through sustained periods of cyclic loading or single overloading events contributes to bone fragility through a reduction in stiffness and strength. Monitoring microdamage in vivo remains unattainable by clinical imaging modalities. As such, there are no established computational methods for clinical fracture risk assessment that account for microdamage that exists in vivo at any specific timepoint. We propose a method that combines multiple clinical imaging modalities to identify an indicative surrogate, which we term 'hidden porosity', that incorporates pre-existing bone microdamage in vivo. To do so, we use the third metacarpal bone of the equine athlete as an exemplary model for fatigue induced microdamage, which coalesces in the subchondral bone. N = 10 metacarpals were scanned by clinical quantitative computed tomography (QCT) and magnetic resonance imaging (MRI). We used a patch-based similarity method to quantify the signal intensity of a fluid sensitive MRI sequence in bone regions where microdamage coalesces. The method generated MRI-derived pseudoCT images which were then used to determine a pre-existing damage (Dpex) variable to quantify the proposed surrogate and which we incorporate into a nonlinear constitutive model for bone tissue. The minimum, median, and maximum detected Dpex of 0.059, 0.209, and 0.353 reduced material stiffness by 5.9%, 20.9%, and 35.3% as well as yield stress by 5.9%, 20.3%, and 35.3%. Limb-specific voxel-based finite element meshes were equipped with the updated material model. Lateral and medial condyles of each metacarpal were loaded to simulate physiological joint loading during gallop. The degree of detected Dpex correlated with a relative reduction in both condylar stiffness (p = 0.001, R2 > 0.74) and strength (p < 0.001, R2 > 0.80). Our results illustrate the complementary value of looking beyond clinical CT, which neglects the inclusion of microdamage due to partial volume effects. As we use clinically available imaging techniques, our results may aid research beyond the equine model on fracture risk assessment in human diseases such as osteoarthritis, bone cancer, or osteoporosis.
Collapse
Affiliation(s)
- Samuel McPhee
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Lucy E Kershaw
- Centre for Cardiovascular Sciences and Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK
| | - Carola R Daniel
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Marta Peña Fernández
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | | | - Sarah E Taylor
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Uwe Wolfram
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK.
| |
Collapse
|
3
|
Albert DL, Katzenberger MJ, Hunter RL, Agnew AM, Kemper AR. Effects of loading rate, age, and morphology on the material properties of human rib trabecular bone. J Biomech 2023; 156:111670. [PMID: 37352737 DOI: 10.1016/j.jbiomech.2023.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/21/2023] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
The material and morphometric properties of trabecular bone have been studied extensively in bones bearing significant weight, such as the appendicular long bones and spine. Less attention has been devoted to the ribs, where quantification of material properties is vital to understanding thoracic injury. The objective of this study was to quantify the compressive material properties of human rib trabecular bone and assess the effects of loading rate, age, and morphology on the material properties. Material properties were quantified via uniaxial compression tests performed on trabecular bone samples at two loading rates: 0.005 s-1 and 0.5 s-1. Morphometric parameters of each sample were quantified before testing using micro-computed tomography. Rib trabecular bone material properties were lower on average compared to trabecular bone from other anatomical locations. Morphometric parameters indicated an anisotropic structure with low connectivity and a sparser density of trabeculae in the rib compared to other locations. No significant differences in material properties were observed between the tested loading rates. Material properties were only significantly correlated with age at the 0.005 s-1 loading rate, and no morphometric parameter was significantly correlated with age. Trabecular separation and thickness were most strongly correlated with the material properties, indicating the sparser trabecular matrix likely contributed to the lower material property values compared to other sites. The novel trabecular bone material properties reported in this study can be used to improve the thoracic response and injury prediction of computational models.
Collapse
Affiliation(s)
- Devon L Albert
- Virginia Tech, Center for Injury Biomechanics, United States.
| | | | - Randee L Hunter
- The Ohio State University, Injury Biomechanics Research Center, United States
| | - Amanda M Agnew
- The Ohio State University, Injury Biomechanics Research Center, United States
| | - Andrew R Kemper
- Virginia Tech, Center for Injury Biomechanics, United States
| |
Collapse
|
4
|
Biomechanical properties and clinical significance of cancellous bone in proximal femur: A review. Injury 2023:S0020-1383(23)00251-6. [PMID: 36922271 DOI: 10.1016/j.injury.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Trabecular bone plays an important role in the load-bearing capacity of the femur. Understanding the structural characteristics, biomechanics, and mechanical conduction of the trabecular bone is of great value in studying the mechanism of fractures and formulating surgical plans. The past decade has witnessed unprecedented progress in imaging, biomechanics and finite element analysis techniques, translating into a better understanding of trabecular bone. This article reviews the research progress achieved over the years regarding femoral trabecular bone, especially on factors influencing the strength of the proximal femoral cancellous bone and cancellous bone microfractures and provides a comprehensive overview of the latest findings on proximal femoral trabecular bone and their clinical significance.
Collapse
|
5
|
Mechanically induced histochemical and structural damage in the annulus fibrosus and cartilaginous endplate: a multi-colour immunofluorescence analysis. Cell Tissue Res 2022; 390:59-70. [PMID: 35790585 DOI: 10.1007/s00441-022-03649-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/02/2022] [Indexed: 11/02/2022]
Abstract
The annulus fibrosus (AF) and endplate (EP) are collagenous spine tissues that are frequently injured due to gradual mechanical overload. Macroscopic injuries to these tissues are typically a by-product of microdamage accumulation. Many existing histochemistry and biochemistry techniques are used to examine microdamage in the AF and EP; however, there are several limitations when used in isolation. Immunofluorescence may be sensitive to histochemical and structural damage and permits the simultaneous evaluation of multiple proteins-collagen I (COL I) and collagen II (COL II). This investigation characterized the histochemical and structural damage in initially healthy porcine spinal joints that were either unloaded (control) or loaded via biofidelic compression loading. The mean fluorescence area and mean fluorescence intensity of COL II significantly decreased (- 54.9 and - 44.8%, respectively) in the loaded AF (p ≤ 0.002), with no changes in COL I (p ≥ 0.471). In contrast, the EP displayed similar decreases in COL I and COL II fluorescence area (- 35.6 and - 37.7%, respectively) under loading conditions (p ≤ 0.027). A significant reduction (-31.1%) in mean fluorescence intensity was only observed for COL II (p = 0.043). The normalized area of pores was not altered on the endplate surface (p = 0.338), but a significant increase (+ 7.0%) in the void area was observed on the EP-subchondral bone interface (p = 0.002). Colocalization of COL I and COL II was minimal in all tissues (R < 0.34). In conclusion, the immunofluorescence analysis captured histochemical and structural damage in collagenous spine tissues, namely, the AF and EP.
Collapse
|
6
|
Li Z, Chen Z, Chen X, Zhao R. Effect of Surface Curvature on the Mechanical and Mass-Transport Properties of Additively Manufactured Tissue Scaffolds with Minimal Surfaces. ACS Biomater Sci Eng 2022; 8:1623-1643. [PMID: 35285609 DOI: 10.1021/acsbiomaterials.1c01438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design of scaffolds for tissue engineering has to consider two trade-off properties: mechanical and mass-transport properties. This is particularly true for additively manufactured scaffolds with the structures of minimal surfaces, and notably, the influence of the surface curvature of the structure on the mechanical and mass-transport properties remains unclear. This work presents our study on the scaffolds designed with the structure of triply periodic minimal surfaces (TPMS), with a focus on discovering the influence of surface curvature on the mechanical response and the mass-transport property or permeability of the scaffolds. Based on the entropy weight fuzzy comprehensive evaluation method, a model representative of both mechanical and permeable properties of scaffolds was developed; scanning electron microscopy (SEM) and finite element analysis (FEA) were also used to reveal the influence mechanism of curvature on structural fracture and deformation behavior. AlSi10Mg samples of scaffolds designed with different surface curvatures were manufactured using selective laser melting (SLM), and their mechanical and permeable properties were examined and characterized by both experiments and simulations. Our results illustrate that at the same porosity, the more concentrated the curvature distribution of the same type of unit, the better trade-off mechanical and mass-transport properties the scaffolds have. Particularly, at the porosity of 55%, the compressive elastic modulus and permeability of the Dte structure are increased by 2.03 times and 1.95 times compared with the Diamond unit, respectively. The fusion structure can greatly improve permeability performance at the cost of mechanical properties. Our results also show that porosity has the greatest influence on mechanical and permeable properties, followed by the surface curvature. The study illustrates that the surface curvature has a significant influence on the mechanical and permeable properties of scaffolds, and that the developed scaffold performance evaluation scheme is an effective means for the optimization and evaluation of scaffold performance.
Collapse
Affiliation(s)
- Zhitong Li
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| | - Zhaobo Chen
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| | - Xiongbiao Chen
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A9, Canada
| | - Runchao Zhao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| |
Collapse
|
7
|
Sacher SE, Hunt HB, Lekkala S, Lopez KA, Potts J, Heilbronner AK, Stein EM, Hernandez CJ, Donnelly E. Distributions of Microdamage Are Altered Between Trabecular Rods and Plates in Cancellous Bone From Men With Type 2 Diabetes Mellitus. J Bone Miner Res 2022; 37:740-752. [PMID: 35064941 PMCID: PMC9833494 DOI: 10.1002/jbmr.4509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/13/2023]
Abstract
Individuals with type 2 diabetes mellitus (T2DM) have an increased risk of fragility fracture despite exhibiting normal to high bone mineral density (BMD). Conditions arising from T2DM, such as reduced bone turnover and alterations in microarchitecture, may contribute to skeletal fragility by influencing bone morphology and microdamage accumulation. The objectives of this study were (i) to characterize the effect of T2DM on microdamage quantity and morphology in cancellous bone, and (ii) relate the accumulation of microdamage to the cancellous microarchitecture. Cancellous specimens from the femoral neck were collected during total hip arthroplasty (T2DM: n = 22, age = 65 ± 9 years, glycated hemoglobin [HbA1c] = 7.00% ± 0.98%; non-diabetic [non-DM]: n = 25, age = 61 ± 8 years, HbA1c = 5.50% ± 0.4%), compressed to 3% strain, stained with lead uranyl acetate to isolate microdamage, and scanned with micro-computed tomography (μCT). Individual trabeculae segmentation was used to isolate rod-like and plate-like trabeculae and their orientations with respect to the loading axis. The T2DM group trended toward a greater BV/TV (+27%, p = 0.07) and had a more plate-like trabecular architecture (+8% BVplates , p = 0.046) versus non-DM specimens. Rods were more damaged relative to their volume compared to plates in the non-DM group (DVrods /BVrods versus DVplates /BVplates : +49%, p < 0.0001), but this difference was absent in T2DM specimens. Longitudinal rods were more damaged in the non-DM group (DVlongitudinal rods /BVlongitudinal rods : +73% non-DM versus T2DM, p = 0.027). Total damage accumulation (DV/BV) and morphology (DS/DV) did not differ in T2DM versus non-DM specimens. These results provide evidence that cancellous microarchitecture does not explain fracture risk in T2DM, pointing to alterations in material matrix properties. In particular, cancellous bone from men with T2DM may have an attenuated ability to mitigate microdamage accumulation through sacrificial rods. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sara E Sacher
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Heather B Hunt
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Sashank Lekkala
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Kelsie A Lopez
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Jesse Potts
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Alison K Heilbronner
- Department of Medicine, Endocrinology and Metabolic Bone Service, Hospital for Special Surgery, New York, NY, USA
| | - Emily M Stein
- Department of Medicine, Endocrinology and Metabolic Bone Service, Hospital for Special Surgery, New York, NY, USA
| | - Christopher J Hernandez
- Research Division, Hospital for Special Surgery, New York, NY, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.,Research Division, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
8
|
Huang T, Redline S, Gordon CM, Schernhammer E, Curhan GC, Paik JM. Self-reported sleep characteristics and risk for incident vertebral and hip fracture in women. Sleep Health 2022; 8:234-241. [PMID: 35241403 PMCID: PMC8995338 DOI: 10.1016/j.sleh.2021.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To examine the relationships between self-reported sleep characteristics and risk of incident vertebral fracture and hip fracture in women. DESIGN Longitudinal cohort study. SETTING Nurses' Health Studies (NHS: 2002-2014, NHSII: 2001-2015). PARTICIPANTS Total 122,254 female registered nurses (46,129 NHS, 76,125 NHSII) without prior history of fracture. EXPOSURE Sleep was characterized by 4 sleep-related domains-sleep duration, sleep difficulty, snoring, and excessive daytime sleepiness-assessed by self-reported questionnaires. OUTCOMES Self-reports of vertebral fracture were confirmed by medical record review and hip fracture was assessed by biennial questionnaires. RESULTS Over 12-14 years of follow-up, 569 incident vertebral fracture cases (408 in NHS, 161 in NHSII) and 1,881 hip fracture cases (1,490 in NHS, 391 in NHSII) were documented. In the pooled analysis, the multivariable-adjusted HR (95% CI) for vertebral fracture was 1.20 (0.86, 1.66) for sleep duration ≤5 hours vs. 7 hours and 0.82 (0.60, 1.12) for ≥9 vs. 7 hours; 1.63 (0.93, 2.87) for sleep difficulties all-the-time vs. none/little-of-the-time (p-trend = 0.005); 1.47 (1.05, 2.05) for snoring every night/week vs. never/occasionally (p-trend = 0.03), and 2.20 (1.49, 3.25) for excessive daytime sleepiness daily vs. never (p-trend < 0.001). In contrast, associations were not observed with hip fracture risk. CONCLUSION Poorer sleep characteristics were associated with risk of vertebral fracture. Our study highlights the importance of multiple dimensions of sleep in the development of vertebral fractures. Further research is warranted to understand the role of sleep in bone health that may differ by fracture site, as well as sleep interventions that may reduce the risk of fracture.
Collapse
Affiliation(s)
- Tianyi Huang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Catherine M Gordon
- Division of Adolescent/Young Adult Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Eva Schernhammer
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA; Department of Epidemiology, Medical University of Vienna, Vienna, Austria
| | - Gary C Curhan
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Julie M Paik
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; New England Geriatric Research Education and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
9
|
Huang T, Tworoger SS, Redline S, Curhan GC, Paik JM. Obstructive Sleep Apnea and Risk for Incident Vertebral and Hip Fracture in Women. J Bone Miner Res 2020; 35:2143-2150. [PMID: 32909307 PMCID: PMC7719618 DOI: 10.1002/jbmr.4127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/09/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
Recent studies suggest a positive association between obstructive sleep apnea (OSA), a disorder associated with intermittent hypoxia and sleep fragmentation, and derangements in bone metabolism. However, no prospective study to date has investigated the association between OSA and fracture risk in women. We conducted a prospective study examining the relation between OSA and risk of incident vertebral fracture (VF) and hip fracture (HF) in the Nurses' Health Study. History of physician-diagnosed OSA was assessed by self-reported questionnaires. A previous validation study demonstrated high concordance between self-reports and medical record identification of OSA. OSA severity was further categorized according to the presence or absence of self-reported sleepiness. Self-reports of VF were confirmed by medical record review. Self-reported HF was assessed by biennial questionnaires. Cox proportional-hazards models estimated the hazard ratio for fracture according to OSA status, adjusted for potential confounders, including BMI, physical activity, calcium intake, history of osteoporosis, and falls, and use of sleep medications. Among 55,264 women without prior history of fracture, physician-diagnosed OSA was self-reported in 1.3% in 2002 and increased to 3.3% by 2012. Between 2002 and 2014, 461 incident VF cases and 921 incident HF cases were documented. The multivariable-adjusted hazard ratio (HR) for confirmed VF for women with history of OSA was 2.00 (95% CI, 1.29-3.12) compared with no OSA history, with the strongest association observed for OSA with daytime sleepiness (HR 2.86; 95% CI, 1.31-6.21). No association was observed between OSA history and self-reported HF risk (HR 0.83; 95% CI, 0.49-1.43). History of OSA is independently associated with higher risk of confirmed VF but did not have a statistically significant association with self-reported HF in women. Further research is warranted in understanding the role of OSA and intermittent hypoxia in bone metabolism and health that may differ by fracture site. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tianyi Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gary C Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Julie M Paik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,New England Geriatric Research Education and Clinical Center, VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
10
|
Zhao S, Arnold M, Ma S, Abel RL, Cobb JP, Hansen U, Boughton O. Standardizing compression testing for measuring the stiffness of human bone. Bone Joint Res 2018; 7:524-538. [PMID: 30258572 PMCID: PMC6138811 DOI: 10.1302/2046-3758.78.bjr-2018-0025.r1] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Objectives The ability to determine human bone stiffness is of clinical relevance in many fields, including bone quality assessment and orthopaedic prosthesis design. Stiffness can be measured using compression testing, an experimental technique commonly used to test bone specimens in vitro. This systematic review aims to determine how best to perform compression testing of human bone. Methods A keyword search of all English language articles up until December 2017 of compression testing of bone was undertaken in Medline, Embase, PubMed, and Scopus databases. Studies using bulk tissue, animal tissue, whole bone, or testing techniques other than compression testing were excluded. Results A total of 4712 abstracts were retrieved, with 177 papers included in the analysis; 20 studies directly analyzed the compression testing technique to improve the accuracy of testing. Several influencing factors should be considered when testing bone samples in compression. These include the method of data analysis, specimen storage, specimen preparation, testing configuration, and loading protocol. Conclusion Compression testing is a widely used technique for measuring the stiffness of bone but there is a great deal of inter-study variation in experimental techniques across the literature. Based on best evidence from the literature, suggestions for bone compression testing are made in this review, although further studies are needed to establish standardized bone testing techniques in order to increase the comparability and reliability of bone stiffness studies. Cite this article: S. Zhao, M. Arnold, S. Ma, R. L. Abel, J. P. Cobb, U. Hansen, O. Boughton. Standardizing compression testing for measuring the stiffness of human bone. Bone Joint Res 2018;7:524–538. DOI: 10.1302/2046-3758.78.BJR-2018-0025.R1.
Collapse
Affiliation(s)
- S Zhao
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK
| | - M Arnold
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK
| | - S Ma
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK and Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - R L Abel
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK
| | - J P Cobb
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK
| | - U Hansen
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - O Boughton
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK and Department of Mechanical Engineering, Imperial College London, London, UK
| |
Collapse
|
11
|
Alliston T, Hernandez CJ, Findlay DM, Felson DT, Kennedy OD. Bone marrow lesions in osteoarthritis: What lies beneath. J Orthop Res 2018; 36:1818-1825. [PMID: 29266428 PMCID: PMC8607515 DOI: 10.1002/jor.23844] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is the most common joint disease in the United States, affecting more than 30 million people, and is characterized by cartilage degeneration in articulating joints. OA can be viewed as a group of overlapping disorders, which result in functional joint failure. However, the precise cellular and molecular events within which lead to these clinically observable changes are neither well understood nor easily measurable. It is now clear that multiple factors, in multiple joint tissues, contribute to degeneration. Changes in subchondral bone are recognized as a hallmark of OA, but are normally associated with late-stage disease when degeneration is well established. However, early changes such as Bone Marrow Lesions (BMLs) in OA are a relatively recent discovery. BMLs are patterns from magnetic resonance images (MRI) that have been linked with pain and cartilage degeneration. Their potential utility in predicting progression, or as a target for therapy, is not yet fully understood. Here, we will review the current state-of-the-art in this field under three broad headings: (i) BMLs in symptomatic OA: malalignment, joint pain, and disease progression; (ii) biological considerations for bone-cartilage crosstalk in joint disease; and (iii) mechanical factors that may underlie BMLs and drive their communication with other joint tissues. Thus, this review will provide insights on this topic from a clinical, biological, and mechanical perspective. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1818-1825, 2018.
Collapse
Affiliation(s)
- Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, CA, USA
| | - Christopher J Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York. Hospital for Special Surgery, New York, New York
| | - David M. Findlay
- Discipline of Orthopaedics and Trauma, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - David T. Felson
- Clinical Epidemiology Research and Training Unit Boston University School of Medicine, Boston, Massachusetts, USA
| | - Oran D. Kennedy
- Department of Anatomy and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland,Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
12
|
Bai L, Xu K, Li D, Ta D, Le LH, Wang W. Fatigue evaluation of long cortical bone using ultrasonic guided waves. J Biomech 2018; 77:83-90. [PMID: 29961583 DOI: 10.1016/j.jbiomech.2018.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Bone fatigue fracture is a progressive disease due to stress concentration. This study aims to evaluate the long bone fatigue damage using the ultrasonic guided waves. Two-dimensional finite-difference time-domain method was employed to simulate the ultrasonic guided wave propagation in the long bone under different elastic modulus. The experiment was conducted on a 3.8 mm-thick bovine bone plate. The phase velocities of two fundamental guided modes, A1 and S1, were measured by using the axial transmission technique. Simulation shows that the phase velocities of guided modes A1 and S1 decrease with the increasing of the fatigue damage. After 20,000 cycles of fatigue loading on the bone plate, the average phase velocities of A1 and S1 modes were 6.6% and 5.3% respectively, lower than those of the intact bone. The study suggests that ultrasonic guided waves can be potentially used to evaluate the fatigue damage in long bones.
Collapse
Affiliation(s)
- Liang Bai
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Kailiang Xu
- Institut Langevin, ESPCI Paris, CNRS UMR 7587, INSERM U979, 17 Rue Moreau, 75012 Paris, France.
| | - Dan Li
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China.
| | - Lawrence H Le
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Weiqi Wang
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Abstract
The mechanical properties of bone are fundamental to the ability of our skeletons to support movement and to provide protection to our vital organs. As such, deterioration in mechanical behavior with aging and/or diseases such as osteoporosis and diabetes can have profound consequences for individuals' quality of life. This article reviews current knowledge of the basic mechanical behavior of bone at length scales ranging from hundreds of nanometers to tens of centimeters. We present the basic tenets of bone mechanics and connect them to some of the arcs of research that have brought the field to recent advances. We also discuss cortical bone, trabecular bone, and whole bones, as well as multiple aspects of material behavior, including elasticity, yield, fracture, fatigue, and damage. We describe the roles of bone quantity (e.g., density, porosity) and bone quality (e.g., cross-linking, protein composition), along with several avenues of future research.
Collapse
Affiliation(s)
- Elise F Morgan
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA;
| | - Ginu U Unnikrisnan
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA;
| | - Amira I Hussein
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA;
| |
Collapse
|
14
|
Levrero-Florencio F, Pankaj P. Using Non-linear Homogenization to Improve the Performance of Macroscopic Damage Models of Trabecular Bone. Front Physiol 2018; 9:545. [PMID: 29867581 PMCID: PMC5966630 DOI: 10.3389/fphys.2018.00545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
Realistic macro-level finite element simulations of the mechanical behavior of trabecular bone, a cellular anisotropic material, require a suitable constitutive model; a model that incorporates the mechanical response of bone for complex loading scenarios and includes post-elastic phenomena, such as plasticity (permanent deformations) and damage (permanent stiffness reduction), which bone is likely to experience. Some such models have been developed by conducting homogenization-based multiscale finite element simulations on bone micro-structure. While homogenization has been fairly successful in the elastic regime and, to some extent, in modeling the macroscopic plastic response, it has remained a challenge with respect to modeling damage. This study uses a homogenization scheme to upscale the damage behavior from the tissue level (microscale) to the organ level (macroscale) and assesses the suitability of different damage constitutive laws. Ten cubic specimens were each subjected to 21 strain-controlled load cases for a small range of macroscopic post-elastic strains. Isotropic and anisotropic criteria were considered, density and fabric relationships were used in the formulation of the damage law, and a combined isotropic/anisotropic law with tension/compression asymmetry was formulated, based on the homogenized results, as a possible alternative to the currently used single scalar damage criterion. This computational study enhances the current knowledge on the macroscopic damage behavior of trabecular bone. By developing relationships of damage progression with bone's micro-architectural indices (density and fabric) the study also provides an aid for the creation of more precise macroscale continuum models, which are likely to improve clinical predictions.
Collapse
Affiliation(s)
- Francesc Levrero-Florencio
- Computational Cardiovascular Science, Department of Computer Science, University of Oxford, Oxford, United Kingdom.,Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - Pankaj Pankaj
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Hernandez CJ. Bone Mechanical Function and the Gut Microbiota. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1033:249-270. [DOI: 10.1007/978-3-319-66653-2_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
De Vecchis R, Ariano C, Di Biase G, Noutsias M. Thiazides and Osteoporotic Spinal Fractures: A Suspected Linkage Investigated by Means of a Two-Center, Case-Control Study. J Clin Med Res 2017; 9:943-949. [PMID: 29038673 PMCID: PMC5633096 DOI: 10.14740/jocmr3193w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/22/2017] [Indexed: 01/23/2023] Open
Abstract
Background An alleged association of chronic use of thiazide diuretics with an increased risk of bone fragility fractures has been highlighted by a relatively recent prospective cohort study. However, the concept that thiazides exert a beneficial effect on osteoporosis is still a predominant view. This effect would be mediated by the decrease in renal clearance of calcium ions, a pharmacological feature recognized for a long time now to this class of drugs, as opposed to the increase in calcium urinary excretion attributed instead to loop diuretics, i.e. furosemide and similar drugs. The purpose of this retrospective study was to attempt to clarify whether regular use of thiazide diuretics as antihypertensive therapeutics is associated with a significantly increased risk of osteoporotic fractures in female patients aged 65 or over. Methods In this two-center retrospective study, we followed up a cohort of female patients with (n = 80) and without (n = 158) thiazide-induced hyponatremia. Results A total of 48 osteoporotic fractures were recorded during a median follow-up period of 57.5 months. By means of univariate regression analysis, an association was found between thiazide-induced hyponatremia and increased risk of vertebral fractures (odds ratio (OR): 7.6; 95% confidence interval (CI): 3.755 - 15.39; P < 0.0001). Multivariate regression analysis, however, showed that age (OR: 1.823; 95% CI: 1.211 - 2.743) and body mass index (OR: 0.156; 95% CI: 0.038 - 0.645) were the only independent predictors of osteoporotic fractures. No association of a history of thiazide-induced hyponatremia and risk of fracture was noticeable in the final model. Conclusions Because thiazide-induced hyponatremia was associated with spinal fractures in univariate but not multivariate analysis, a possible explanation is that hyponatremia may be a confounder of the relation between body mass and spinal fractures. Indeed, reduced body mass especially among elderly women with small body build may confer heightened risk of thiazide-induced hyponatremia because of decreased bone sodium available for exchange with the serum sodium. Thus, occurrence of hyponatremia could only serve as an indirect surrogate marker for osteoporosis risk.
Collapse
Affiliation(s)
- Renato De Vecchis
- Cardiology Unit, Presidio Sanitario Intermedio "Elena d'Aosta", via Cagnazzi 29, 80137 Napoli, Italy
| | - Carmelina Ariano
- Cardiology Unit, Presidio Sanitario Intermedio "Elena d'Aosta", via Cagnazzi 29, 80137 Napoli, Italy.,Division of Cardiology, Casa di Cura "Sollievo della Sofferenza", viale Cappuccini 2, 71013 San Giovanni Rotondo, Italy
| | - Giuseppina Di Biase
- Division of Geriatrics, Neurorehabilitation Unit, Clinic "S. Maria del Pozzo", via Pomigliano 40, 80049 Somma Vesuviana, Italy
| | - Michel Noutsias
- Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle, Ernst-Grube-Straße 40, D-06120 Halle, Germany
| |
Collapse
|
17
|
Effect of including damage at the tissue level in the nonlinear homogenisation of trabecular bone. Biomech Model Mechanobiol 2017; 16:1681-1695. [PMID: 28500359 PMCID: PMC5599493 DOI: 10.1007/s10237-017-0913-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/21/2017] [Indexed: 02/05/2023]
Abstract
Being able to predict bone fracture or implant stability needs a proper constitutive model of trabecular bone at the macroscale in multiaxial, non-monotonic loading modes. Its macroscopic damage behaviour has been investigated experimentally in the past, mostly with the restriction of uniaxial cyclic loading experiments for different samples, which does not allow for the investigation of several load cases in the same sample as damage in one direction may affect the behaviour in other directions. Homogenised finite element models of whole bones have the potential to assess complicated scenarios and thus improve clinical predictions. The aim of this study is to use a homogenisation-based multiscale procedure to upscale the damage behaviour of bone from an assumed solid phase constitutive law and investigate its multiaxial behaviour for the first time. Twelve cubic specimens were each submitted to nine proportional strain histories by using a parallel code developed in-house. Evolution of post-elastic properties for trabecular bone was assessed for a small range of macroscopic plastic strains in these nine load cases. Damage evolution was found to be non-isotropic, and both damage and hardening were found to depend on the loading mode (tensile, compression or shear); both were characterised by linear laws with relatively high coefficients of determination. It is expected that the knowledge of the macroscopic behaviour of trabecular bone gained in this study will help in creating more precise continuum FE models of whole bones that improve clinical predictions.
Collapse
|
18
|
Paik JM, Rosen HN, Gordon CM, Curhan GC. Diuretic Use and Risk of Vertebral Fracture in Women. Am J Med 2016; 129:1299-1306. [PMID: 27542612 PMCID: PMC5118092 DOI: 10.1016/j.amjmed.2016.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/09/2016] [Accepted: 07/12/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Vertebral fracture is the most common type of osteoporotic fracture. While thiazide diuretics, which are commonly prescribed for the treatment of hypertension, decrease calciuria, they may also induce hyponatremia, which has been associated with increased vertebral fracture risk. Loop diuretics increase calciuria, which would reduce bone mineral density and increase vertebral fracture risk, but they rarely cause hyponatremia. Recent studies on diuretics and fractures did not include or specifically examine vertebral fracture. The few studies of diuretics and vertebral fracture have been limited by cases defined by self-report or administrative data, relatively small number of cases, study design that was not prospective, and lack of long-term follow-up with updated information on diuretic use. METHODS We conducted a prospective cohort study of thiazide diuretic use, loop diuretic use, and risk of incident clinical vertebral fracture in 55,780 women, 55-82 years of age, participating in the Nurses' Health Study, without a prior history of any fracture. Diuretic use was assessed by questionnaire every 4 years. Self-reported vertebral fracture was confirmed by medical record review. Cox proportional-hazards models were used to simultaneously adjust for potential confounders. RESULTS Our analysis included 420 incident vertebral fracture cases documented between 2002 and 2012. The multivariate-adjusted relative risk of clinical vertebral fracture for women taking thiazides compared with women not taking thiazides was 1.47 (95% confidence interval, 1.18-1.85). The multivariate adjusted relative risk of vertebral fracture for women taking loop diuretics compared with women not taking loop diuretics was 1.59 (95% confidence interval, 1.12-2.25). CONCLUSION Thiazide diuretics and loop diuretics are each independently associated with increased risk of vertebral fracture in women.
Collapse
Affiliation(s)
- Julie M. Paik
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Harold N. Rosen
- Endocrinology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Catherine M. Gordon
- Division of Adolescent and Transition Medicine, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH
| | - Gary C. Curhan
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA
| |
Collapse
|
19
|
Kreipke TC, Garrison JG, Easley J, Turner AS, Niebur GL. The roles of architecture and estrogen depletion in microdamage risk in trabecular bone. J Biomech 2016; 49:3223-3229. [PMID: 27544617 DOI: 10.1016/j.jbiomech.2016.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 01/23/2023]
Abstract
Bone quantity, or density, has insufficient power to discriminate fracture risk in individuals. Additional measures of bone quality, such as microarchitectural characteristics and bone tissue properties, including the presence of damage, may improve the diagnosis of fracture risk. Microdamage and microarchitecture are two aspects of trabecular bone quality that are interdependent, with several microarchitectural changes strongly correlated to damage risk after compensating for bone density. This study aimed to delineate the effects of microarchitecture and estrogen depletion on microdamage susceptibility in trabecular bone using an ovariectomized sheep model to mimic post-menopausal osteoporosis. The propensity for microdamage formation in trabecular bone of the distal femur was studied using a sequence of compressive and torsional overloads. Ovariectomy had only minor effects on the microarchitecture at this anatomic site. Microdamage was correlated to bone volume fraction and structure model index (SMI), and ovariectomy increased the sensitivity to these parameters. The latter may be due to either increased resorption cavities acting as stress concentrations or to altered bone tissue properties. Pre-existing damage was also correlated to new damage formation. However, sequential loading primarily generated new cracks as opposed to propagating existing cracks, suggesting that pre-existing microdamage contributes to further damage of bone by shifting load bearing to previously undamaged trabeculae, which are subsequently damaged. The transition from plate-like to rod-like trabeculae, indicated by SMI, dictates this shift, and may be a hallmark of bone that is already predisposed to accruing greater levels of damage through compromised microarchitecture.
Collapse
Affiliation(s)
- Tyler C Kreipke
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, 147 Multidisciplinary Engineering Research, University of Notre Dame, Notre Dame 46556, IN, USA
| | - Jacqueline G Garrison
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, 147 Multidisciplinary Engineering Research, University of Notre Dame, Notre Dame 46556, IN, USA
| | - Jeremiah Easley
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - A Simon Turner
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Glen L Niebur
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, 147 Multidisciplinary Engineering Research, University of Notre Dame, Notre Dame 46556, IN, USA.
| |
Collapse
|
20
|
Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach. J Mech Behav Biomed Mater 2016; 61:384-396. [DOI: 10.1016/j.jmbbm.2016.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/28/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
|
21
|
Berke IM, Miola JP, David MA, Smith MK, Price C. Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing. PLoS One 2016; 11:e0150268. [PMID: 26930293 PMCID: PMC4773178 DOI: 10.1371/journal.pone.0150268] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/11/2016] [Indexed: 12/17/2022] Open
Abstract
In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues.
Collapse
Affiliation(s)
- Ian M. Berke
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Joseph P. Miola
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Michael A. David
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Melanie K. Smith
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
22
|
Endo K, Yamada S, Todoh M, Takahata M, Iwasaki N, Tadano S. Structural strength of cancellous specimens from bovine femur under cyclic compression. PeerJ 2016; 4:e1562. [PMID: 26855856 PMCID: PMC4741075 DOI: 10.7717/peerj.1562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/14/2015] [Indexed: 11/20/2022] Open
Abstract
The incidence of osteoporotic fractures was estimated as nine million worldwide in 2000, with particular occurrence at the proximity of joints rich in cancellous bone. Although most of these fractures spontaneously heal, some fractures progressively collapse during the early post-fracture period. Prediction of bone fragility during progressive collapse following initial fracture is clinically important. However, the mechanism of collapse, especially the gradual loss of the height in the cancellous bone region, is not clearly proved. The strength of cancellous bone after yield stress is difficult to predict since structural and mechanical strength cannot be determined a priori. The purpose of this study was to identify whether the baseline structure and volume of cancellous bone contributed to the change in cancellous bone strength under cyclic loading. A total of fifteen cubic cancellous bone specimens were obtained from two 2-year-old bovines and divided into three groups by collection regions: femoral head, neck, and proximal metaphysis. Structural indices of each 5-mm cubic specimen were determined using micro-computed tomography. Specimens were then subjected to five cycles of uniaxial compressive loading at 0.05 mm/min with initial 20 N loading, 0.3 mm displacement, and then unloading to 0.2 mm with 0.1 mm displacement for five successive cycles. Elastic modulus and yield stress of cancellous bone decreased exponentially during five loading cycles. The decrease ratio of yield stress from baseline to fifth cycle was strongly correlated with bone volume fraction (BV/TV, r = 0.96, p < 0.01) and structural model index (SMI, r = − 0.81, p < 0.01). The decrease ratio of elastic modulus from baseline to fifth cycle was also correlated with BV/TV (r = 0.80, p < 0.01) and SMI (r = − 0.78, p < 0.01). These data indicate that structural deterioration of cancellous bone is associated with bone strength after yield stress. This study suggests that baseline cancellous bone structure estimated from adjacent non-fractured bone contributes to the cancellous bone strength during collapse.
Collapse
Affiliation(s)
- Kaori Endo
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine , Sapporo , Japan
| | - Satoshi Yamada
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University , Sapporo , Japan
| | - Masahiro Todoh
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University , Sapporo , Japan
| | - Masahiko Takahata
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine , Sapporo , Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine , Sapporo , Japan
| | - Shigeru Tadano
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University , Sapporo , Japan
| |
Collapse
|
23
|
Goff MG, Lambers FM, Sorna RM, Keaveny TM, Hernandez CJ. Finite element models predict the location of microdamage in cancellous bone following uniaxial loading. J Biomech 2015; 48:4142-4148. [PMID: 26522622 DOI: 10.1016/j.jbiomech.2015.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/10/2015] [Accepted: 10/18/2015] [Indexed: 10/22/2022]
Abstract
High-resolution finite element models derived from micro-computed tomography images are often used to study the effects of trabecular microarchitecture and loading mode on tissue stress, but the degree to which existing finite element methods correctly predict the location of tissue failure is not well characterized. In the current study, we determined the relationship between the location of highly strained tissue, as determined from high-resolution finite element models, and the location of tissue microdamage, as determined from three-dimensional fluoroscopy imaging, which was performed after the microdamage was generated in-vitro by mechanical testing. Fourteen specimens of human vertebral cancellous bone were assessed (8 male donors, 2 female donors, 47-78 years of age). Regions of stained microdamage, were 50-75% more likely to form in highly strained tissue (principal strains exceeding 0.4%) than elsewhere, and generally the locations of the regions of microdamage were significantly correlated (p<0.05) with the locations of highly strained tissue. This spatial correlation was stronger for the largest regions of microdamage (≥1,000,000μm(3) in volume); 87% of large regions of microdamage were located near highly strained tissue. Together, these findings demonstrate that there is a strong correlation between regions of microdamage and regions of high strain in human cancellous bone, particularly for the biomechanically more important large instances of microdamage.
Collapse
Affiliation(s)
- M G Goff
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - F M Lambers
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - R M Sorna
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - T M Keaveny
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - C J Hernandez
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Hospital for Special Surgery, New York City, NY, USA.
| |
Collapse
|
24
|
Ren L, Yang P, Wang Z, Zhang J, Ding C, Shang P. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level. J Mech Behav Biomed Mater 2015; 50:104-22. [DOI: 10.1016/j.jmbbm.2015.04.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/12/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023]
|
25
|
Goff MG, Lambers FM, Nguyen TM, Sung J, Rimnac CM, Hernandez CJ. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces. Bone 2015; 79:8-14. [PMID: 26008609 PMCID: PMC4501884 DOI: 10.1016/j.bone.2015.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/29/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
Abstract
Impaired bone toughness is increasingly recognized as a contributor to fragility fractures. At the tissue level, toughness is related to the ability of bone tissue to resist the development of microscopic cracks or other tissue damage. While most of our understanding of microdamage is derived from studies of cortical bone, the majority of fragility fractures occur in regions of the skeleton dominated by cancellous bone. The development of tissue microdamage in cancellous bone may differ from that in cortical bone due to differences in microstructure and tissue ultrastructure. To gain insight into how microdamage accumulates in cancellous bone we determined the changes in number, size and location of microdamage sites following different amounts of cyclic compressive loading. Human vertebral cancellous bone specimens (n=32, 10 male donors, 6 female donors, age 76 ± 8.8, mean ± SD) were subjected to sub-failure cyclic compressive loading and microdamage was evaluated in three-dimensions. Only a few large microdamage sites (the largest 10%) accounted for 70% of all microdamage caused by cyclic loading. The number of large microdamage sites was a better predictor of reductions in Young's modulus caused by cyclic loading than overall damage volume fraction (DV/BV). The majority of microdamage volume (69.12 ± 7.04%) was located more than 30 μm (the average erosion depth) from trabecular surfaces, suggesting that microdamage occurs primarily within interstitial regions of cancellous bone. Additionally, microdamage was less likely to be near resorption cavities than other bone surfaces (p<0.05), challenging the idea that stress risers caused by resorption cavities influence fatigue failure of cancellous bone. Together, these findings suggest that reductions in apparent level mechanical performance during fatigue loading are the result of only a few large microdamage sites and that microdamage accumulation in fatigue is likely dominated by heterogeneity in tissue material properties rather than stress concentrations caused by micro-scale geometry.
Collapse
Affiliation(s)
- M G Goff
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - F M Lambers
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - T M Nguyen
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - J Sung
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - C M Rimnac
- Departments of Mechanical and Aerospace Engineering and Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - C J Hernandez
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Hospital for Special Surgery, New York City, NY, USA.
| |
Collapse
|
26
|
Prot M, Dubois G, Cloete TJ, Saletti D, Laporte S. Fracture characterization in cancellous bone specimens via surface difference evaluation of 3D registered pre- and post-compression micro-CT scans. Comput Methods Biomech Biomed Engin 2015; 18 Suppl 1:2030-1. [DOI: 10.1080/10255842.2015.1069608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- M. Prot
- LBM/Institut de Biomécanique Humaine Georges Charpark, Arts et Métiers ParisTech, Paris, France
| | - G. Dubois
- LBM/Institut de Biomécanique Humaine Georges Charpark, Arts et Métiers ParisTech, Paris, France
| | - T. J. Cloete
- Blast Impact and Survivability Research Unit (BISRU), Department of Mechanical Engineering, University of Cape Town (UCT), Rondebosch, South Africa
| | | | - S. Laporte
- LBM/Institut de Biomécanique Humaine Georges Charpark, Arts et Métiers ParisTech, Paris, France
| |
Collapse
|