1
|
Mottareale R, Frascogna C, La Verde G, Arrichiello C, Muto P, Netti PA, Fusco S, Panzetta V, Pugliese M. Impact of ionizing radiation on cell-ECM mechanical crosstalk in breast cancer. Front Bioeng Biotechnol 2024; 12:1408789. [PMID: 38903185 PMCID: PMC11187264 DOI: 10.3389/fbioe.2024.1408789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
The stiffness of the extracellular matrix plays a crucial role in cell motility and spreading, influencing cell morphology through cytoskeleton organization and transmembrane proteins' expression. In this context, mechanical characterization of both cells and the extracellular matrix gains prominence for enhanced diagnostics and clinical decision-making. Here, we investigate the combined effect of mechanotransduction and ionizing radiations on altering cells' mechanical properties, analysing mammary cell lines (MCF10A and MDA-MB-231) after X-ray radiotherapy (2 and 10 Gy). We found that ionizing radiations sensitively affect adenocarcinoma cells cultured on substrates mimicking cancerous tissue stiffness (15 kPa), inducing an increased structuration of paxillin-rich focal adhesions and cytoskeleton: this process translates in the augmentation of tension at the actin filaments level, causing cellular stiffness and consequently affecting cytoplasmatic/nuclear morphologies. Deeper exploration of the intricate interplay between mechanical factors and radiation should provide novel strategies to orient clinical outcomes.
Collapse
Affiliation(s)
- Rocco Mottareale
- Department of Physics “E. Pancini”, University of Naples Federico II, Naples, Italy
- Institute of Applied Sciences and Intelligent Systems E. Caianiello (CNR-ISASI), Pozzuoli, Italy
| | - Crescenzo Frascogna
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Giuseppe La Verde
- Department of Physics “E. Pancini”, University of Naples Federico II, Naples, Italy
| | - Cecilia Arrichiello
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, Naples, Italy
| | - Paolo Muto
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, Naples, Italy
| | - Paolo A. Netti
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Sabato Fusco
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Naples, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Valeria Panzetta
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
2
|
Du Y, Cheng D, Yang Z, Liu Y, Zhao Q, Sun M, Li H, Zhao X. A Simulation of the Mechanical Testing of the Cell Membrane and Cytoskeleton. MICROMACHINES 2024; 15:431. [PMID: 38675243 PMCID: PMC11052030 DOI: 10.3390/mi15040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
Cell models play a crucial role in analyzing the mechanical response of cells and quantifying cellular damage incurred during micromanipulation. While traditional models can capture the overall mechanical behavior of cells, they often lack the ability to discern among distinct cellular components. Consequently, by employing dissipative particle dynamics, this study constructed a triangular network-like representation of the cell membrane along with cross-linked cytoskeletal chains. The mechanical properties of both the membrane and cytoskeleton were then analyzed through a series of simulated mechanical tests, validated against real-world experiments. The investigation utilized particle-tracking rheology to monitor changes in the mean square displacements of membrane particles over time, facilitating the analysis of the membrane's storage and loss moduli. Additionally, the cytoskeletal network's storage and loss moduli were examined via a double-plate oscillatory shear experiment. The simulation results revealed that both the membrane and cytoskeleton exhibit viscoelastic behavior, as evidenced by the power-law dependency of their storage and loss moduli on frequency. Furthermore, indentation and microinjection simulations were conducted to examine the overall mechanical properties of cells. In the indentation experiments, an increase in the shear modulus of the membrane's WLCs correlated with a higher Young's modulus for the entire cell. Regarding the microinjection experiment, augmenting the microinjection speed resulted in reduced deformation of the cell at the point of membrane rupture and a lower percentage of high strain.
Collapse
Affiliation(s)
- Yue Du
- The School of Computer and Information Science, Qinghai University of Science and Technology, Xining 810016, China;
- The Department of Computer Technology and Application, Qinghai University, Xining 810016, China
| | - Dai Cheng
- Institute of Robotics and Automatic Information System, The Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (D.C.); (Z.Y.); (Y.L.); (Q.Z.); (M.S.)
| | - Zhanli Yang
- Institute of Robotics and Automatic Information System, The Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (D.C.); (Z.Y.); (Y.L.); (Q.Z.); (M.S.)
| | - Yaowei Liu
- Institute of Robotics and Automatic Information System, The Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (D.C.); (Z.Y.); (Y.L.); (Q.Z.); (M.S.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Qili Zhao
- Institute of Robotics and Automatic Information System, The Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (D.C.); (Z.Y.); (Y.L.); (Q.Z.); (M.S.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Mingzhu Sun
- Institute of Robotics and Automatic Information System, The Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (D.C.); (Z.Y.); (Y.L.); (Q.Z.); (M.S.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Haifeng Li
- The School of Computer and Information Science, Qinghai University of Science and Technology, Xining 810016, China;
- The Department of Computer Technology and Application, Qinghai University, Xining 810016, China
| | - Xin Zhao
- Institute of Robotics and Automatic Information System, The Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; (D.C.); (Z.Y.); (Y.L.); (Q.Z.); (M.S.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| |
Collapse
|
3
|
Zheng X, Gao Z, Pan Y, Zhang S, Chen R. The exact phenomenon and early signaling events of the endothelial cytoskeleton response to ultrasound. Biochem Biophys Res Commun 2023; 681:144-151. [PMID: 37774572 DOI: 10.1016/j.bbrc.2023.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Low-intensity ultrasound can be applied for medical imaging and disease treatment in clinical and experimental studies. However, the biological effects of ultrasound on blood vessels, especially endothelial cells (ECs) are still unclear. In this study, the laws of endothelial cytoskeleton changes under ultrasound induction are investigated. ECs are exposed to low-intensity ultrasound, and the cytoskeletal morphology is analyzed by a filamentous (F)-actin staining technique. We further analyze the characteristics of cytoskeleton rupture using indirect immunofluorescence techniques and cytoskeleton electron microscopy. Finally, the biological effects induced by ultrasound at the tissue level are investigated in an ex vivo blood-vessel model. Significant changes in cytoskeletal structure are detected when induced by ultrasound, including cytoskeletal rupture, blebbing and apoptosis. Moreover, a temporal threshold of ECs injury under different ultrasonic intensities is established. This study illustrates a pattern of significant changes in the cytoskeletal structure of ECs induced by ultrasound. The finding serves as a guide for selecting a safe threshold for clinical ultrasound applications.
Collapse
Affiliation(s)
- Xiaobing Zheng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Zujie Gao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yunfan Pan
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shuguang Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ruiqing Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Bergen J, Karasova M, Bileck A, Pignitter M, Marko D, Gerner C, Del Favero G. Exposure to dietary fatty acids oleic and palmitic acid alters structure and mechanotransduction of intestinal cells in vitro. Arch Toxicol 2023; 97:1659-1675. [PMID: 37117602 PMCID: PMC10182945 DOI: 10.1007/s00204-023-03495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Intestinal cells are continuously exposed to food constituents while adapting to peristaltic movement and fluid shear stress. Oleic acid (OA) and palmitic acid (PA) are among the most prevalent fatty acids with respect to dietary lipids. Despite the central importance of dietary lipids for a balanced diet, awareness about potential detrimental effects related to excessive consumption is increasing; this includes toxicity, metabolic deregulation, and, particularly for cancer cells, a benefit from the uptake of fatty acids related to promotion of metastasis. Expanding on this, we started elucidating the effects of OA and PA (25-500 µM) on non-transformed human intestinal epithelial cells (HCEC-1CT) in comparison to colon carcinoma cells (HCT116), with regard to the mechanosensory apparatus. Hence, intestinal cells' motility is on the one side essential to ensure adaption to peristaltic movement and barrier function, but also to enable metastatic progression. Incubation with both OA and PA (≥ 25 µM) significantly decreased membrane fluidity of HCT116 cells, whereas the effect on HCEC-1CT was more limited. Application of rhodamine-labelled PA demonstrated that the fatty acid is incorporated into the plasma membrane of HCT116, which could not be observed in the non-tumorigenic cell line. Down-streaming into the intracellular compartment, a pronounced rearrangement of actin cytoskeleton was evident in both cell lines (OA and PA; 25 and 100 µM). This was accompanied by a variation of translocation efficiency of the mechanosensitive co-transcription factor YAP1, albeit with a stronger effect seen for PA and the cancer cells. Untargeted proteomic analysis confirmed that exposure to OA and PA could alter the response capacity of HCT116 cells to fluid shear stress. Taken together, OA and PA were able to functionally modulate the mechanosensory apparatus of intestinal cells, implying a novel role for dietary fatty acids in the regulation of intestinal pathophysiology.
Collapse
Affiliation(s)
- Janice Bergen
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Martina Karasova
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria.
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Scorpion Peptide Smp24 Exhibits a Potent Antitumor Effect on Human Lung Cancer Cells by Damaging the Membrane and Cytoskeleton In Vivo and In Vitro. Toxins (Basel) 2022; 14:toxins14070438. [PMID: 35878176 PMCID: PMC9318729 DOI: 10.3390/toxins14070438] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022] Open
Abstract
Smp24, a cationic antimicrobial peptide identified from the venom gland of the Egyptian scorpion Scorpio maurus palmatus, shows variable cytotoxicity on various tumor (KG1a, CCRF-CEM and HepG2) and non-tumor (CD34+, HRECs, HACAT) cell lines. However, the effects of Smp24 and its mode of action on lung cancer cell lines remain unknown. Herein, the effect of Smp24 on the viability, membrane disruption, cytoskeleton, migration and invasion, and MMP-2/-9 and TIMP-1/-2 expression of human lung cancer cells have been evaluated. In addition, its in vivo antitumor role and acute toxicity were also assessed. In our study, Smp24 was found to suppress the growth of A549, H3122, PC-9, and H460 with IC50 values from about 4.06 to 7.07 µM and show low toxicity to normal cells (MRC-5) with 14.68 µM of IC50. Furthermore, Smp24 could induce necrosis of A549 cells via destroying the integrity of the cell membrane and mitochondrial and nuclear membranes. Additionally, Smp24 suppressed cell motility by damaging the cytoskeleton and altering MMP-2/-9 and TIMP-1/-2 expression. Finally, Smp24 showed effective anticancer protection in a A549 xenograft mice model and low acute toxicity. Overall, these findings indicate that Smp24 significantly exerts an antitumor effect due to its induction of membrane defects and cytoskeleton disruption. Accordingly, our findings will open an avenue for developing scorpion venom peptides into chemotherapeutic agents targeting lung cancer cells.
Collapse
|
6
|
Jia C, Shi J, Han T, Yu ACH, Qin P. Spatiotemporal Dynamics and Mechanisms of Actin Cytoskeletal Re-modeling in Cells Perforated by Ultrasound-Driven Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:760-777. [PMID: 35190224 DOI: 10.1016/j.ultrasmedbio.2021.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
To develop new strategies for improving the efficacy and biosafety of sonoporation-based macromolecule delivery, it is essential to understand the mechanisms underlying plasma membrane re-sealing and function recovery of the cells perforated by ultrasound-driven microbubbles. However, we lack a clear understanding of the spatiotemporal dynamics of the disrupted actin cytoskeleton and its role in the re-sealing of sonoporated cells. Here we used a customized experimental setup for single-pulse ultrasound (133.33-µs duration and 0.70-MPa peak negative pressure) exposure to microbubbles and for real-time recording of single-cell (human umbilical vein endothelial cell) responses by laser confocal microscopic imaging. We found that in reversibly sonoporated cells, the locally disrupted actin cytoskeleton, which was spatially correlated with the perforated plasma membrane, underwent three successive phases (expansion; contraction and re-sealing; and recovery) to re-model and that each phase of the disrupted actin cytoskeleton was approximately synchronized with that of the perforated plasma membrane. Moreover, compared with the closing time of the perforated plasma membrane, the same time was used for the re-sealing of the actin cytoskeleton in mildly sonoporated cells and a longer time was required in moderately sonoporated cells. Further, the generation, directional migration, accumulation and re-polymerization of globular actin polymers during the three phases drove the re-modeling of the actin cytoskeleton. However, in irreversibly sonoporated cells, the actin cytoskeleton, which underwent expansion and no contraction, was progressively de-polymerized and could not be re-sealed. Finally, we found that intracellular calcium transients were essential for the recruitment of globular actin and the re-modeling of the actin cytoskeleton. These results provide new insight into the role of actin cytoskeleton dynamics in the re-sealing of sonoporated cells and serve to guide the design of new strategies for sonoporation-based delivery.
Collapse
Affiliation(s)
- Caixia Jia
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianmin Shi
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Han
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Alfred C H Yu
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo, Ontario, Canada
| | - Peng Qin
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Affiliation(s)
- Jeffrey M Levine
- Jeffrey M. Levine, MD, AGSF, CMD, CWS-P, is a wound consultant for the New Jewish Home in Manhattan and Advantage Surgical and Wound Care based in El Segundo, California; and Associate Clinical Professor of Geriatrics and Palliative Care, Mount Sinai Beth Israel Medical Center, New York, New York. Barbara Delmore, PhD, RN, CWCN, MAPWCA, IIWCC-NYU, FAAN, is Senior Nurse Scientist, Center for Innovations in the Advancement of Care (CIAC) and Clinical Assistant Professor, Hansjörg Wyss, Department of Plastic Surgery, NYU Langone Health, New York, New York. Jill Cox, PhD, RN, APN-c, CWOCN, FAAN, is Clinical Associate Professor, School of Nursing, Rutgers University, Newark, New Jersey, and Wound/Ostomy/Continence Advanced Practice Nurse, Englewood Hospital and Medical Center, Englewood, New Jersey. Submitted July 9, 2021; accepted in revised form October 8, 2021; published online ahead of print November 1, 2021
| | | | | |
Collapse
|
8
|
Cytoskeleton Response to Ionizing Radiation: A Brief Review on Adhesion and Migration Effects. Biomedicines 2021; 9:biomedicines9091102. [PMID: 34572287 PMCID: PMC8465203 DOI: 10.3390/biomedicines9091102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
The cytoskeleton is involved in several biological processes, including adhesion, motility, and intracellular transport. Alterations in the cytoskeletal components (actin filaments, intermediate filaments, and microtubules) are strictly correlated to several diseases, such as cancer. Furthermore, alterations in the cytoskeletal structure can lead to anomalies in cells’ properties and increase their invasiveness. This review aims to analyse several studies which have examined the alteration of the cell cytoskeleton induced by ionizing radiations. In particular, the radiation effects on the actin cytoskeleton, cell adhesion, and migration have been considered to gain a deeper knowledge of the biophysical properties of the cell. In fact, the results found in the analysed works can not only aid in developing new diagnostic tools but also improve the current cancer treatments.
Collapse
|
9
|
Wang J, Li J, Liu J, Lin M, Mao S, Wang Y, Luo Y. Adsorption Force of Fibronectin: A Balance Regulator to Transmission of Cell Traction Force and Fluid Shear Stress. Biomacromolecules 2021; 22:3264-3273. [PMID: 34225453 DOI: 10.1021/acs.biomac.1c00375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Osteoblasts actively generate cell traction force (CTF) to sense chemical and mechanical microenvironments. Fluid shear stress (FSS) is a principle mechanical stimulus for bone modeling/remodeling. FSS and CTF share common interconnected elements for force transmission, among which the role of the protein-material interfacial force (Fad) remains unclear. Here, we found that, on the low Fad surface (5.47 ± 1.31 pN/FN), CTF overwhelmed Fad to partially desorb FN, and FSS exacerbated the desorption, resulting in disassembly of the actin cytoskeleton and focal adhesions (FAs) to reduce CTF and establishment of a new mechanical balance at the FN-material interface. Contrarily, on the high Fad surface (27.68 ± 5.24 pN/FN), pure CTF or the combination of CTF and FSS induced no FN desorption, and FSS promoted assembly of actin cytoskeletons and disassembly of FAs, regaining new mechanical balance at the cell-FN interface. These results indicate that Fad is a mechanical regulator for transmission of CTF and FSS, which has never been reported before.
Collapse
Affiliation(s)
- Jinfeng Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Junyao Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Manping Lin
- Key Laboratory of Emergency and Trauma, Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Shilong Mao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yuanliang Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yanfeng Luo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and Lab for Smart & Bioinspired Materials, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
10
|
Role of microRNAs in Pressure Ulcer Immune Response, Pathogenesis, and Treatment. Int J Mol Sci 2020; 22:ijms22010064. [PMID: 33374656 PMCID: PMC7793489 DOI: 10.3390/ijms22010064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Pressure ulcers are preventable, yet highly prevalent, chronic wounds that have significant patient morbidity and high healthcare costs. Like other chronic wounds, they are characterized by impaired wound healing due to dysregulated immune processes. This review will highlight key biochemical pathways in the pathogenesis of pressure injury and how this signaling leads to impaired wound healing. This review is the first to comprehensively describe the current literature on microRNA (miRNA, miR) regulation of pressure ulcer pathophysiology.
Collapse
|
11
|
Díaz JM, Dozois CM, Avelar-González FJ, Hernández-Cuellar E, Pokharel P, de Santiago AS, Guerrero-Barrera AL. The Vacuolating Autotransporter Toxin (Vat) of Escherichia coli Causes Cell Cytoskeleton Changes and Produces Non-lysosomal Vacuole Formation in Bladder Epithelial Cells. Front Cell Infect Microbiol 2020; 10:299. [PMID: 32670893 PMCID: PMC7332727 DOI: 10.3389/fcimb.2020.00299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Urinary tract infections (UTIs) affect more than 150 million people, with a cost of over 3.5 billion dollars, each year. Escherichia coli is associated with 70–80% of UTIs. Uropathogenic E. coli (UPEC) has virulence factors including adhesins, siderophores, and toxins that damage host cells. Vacuolating autotransporter toxin (Vat) is a member of serine protease autotransporter proteins of Enterobacteriaceae (SPATEs) present in some uropathogenic E. coli (UPEC) strains. Vat has been identified in 20–36% of UPEC and is present in almost 68% of urosepsis isolates. However, the mechanism of action of Vat on host cells is not well-known. Thus, in this study the effect of Vat in a urothelium model of bladder cells was investigated. Several toxin concentrations were tested for different time periods, resulting in 15–47% of cellular damage as measured by the LDH assay. Vat induced vacuole formation on the urothelium model in a time-dependent manner. Vat treatment showed loss of the intercellular contacts on the bladder cell monolayer, observed by Scanning Electron Microscopy. This was also shown using antibodies against ZO-1 and occludin by immunofluorescence. Additionally, changes in permeability of the epithelial monolayer was demonstrated with a fluorescence-based permeability assay. Cellular damage was also evaluated by the identification of cytoskeletal changes produced by Vat. Thus, after Vat treatment, cells presented F-actin distribution changes and loss of stress fibers in comparison with control cells. Vat also modified tubulin, but it was not found to affect Arp3 distribution. In order to find the nature of the vacuoles generated by Vat, the Lysotracker deep red fluorescent dye for the detection of acidic organelles was used. Cells treated with Vat showed generation of some vacuoles without acidic content. An ex vivo experiment with mouse bladder exposed to Vat demonstrated loss of integrity of the urothelium. In conclusion, Vat induced cellular damage, vacuole formation, and urothelial barrier dysregulation of bladder epithelial cells. Further studies are needed to elucidate the role of these vacuoles induced by Vat and their relationship with the pathogenesis of urinary tract infection.
Collapse
Affiliation(s)
- Juan Manuel Díaz
- Departamento de Morfología, Universidad Autónoma de Aguascalientes (UAA), Aguascalientes, Mexico
| | - Charles M Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Fappier Santé Biotechnologie, Laval, QC, Canada
| | | | | | - Pravil Pokharel
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Fappier Santé Biotechnologie, Laval, QC, Canada
| | | | | |
Collapse
|
12
|
Alvarez-Elizondo MB, Barenholz-Cohen T, Weihs D. Sodium pyruvate pre-treatment prevents cell death due to localised, damaging mechanical strains in the context of pressure ulcers. Int Wound J 2019; 16:1153-1163. [PMID: 31407500 DOI: 10.1111/iwj.13173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022] Open
Abstract
We demonstrate sodium pyruvate (NaPy) pre-treatment as a successful approach for pressure ulcer (PU) prevention by averting their aetiological origin-cell-level damage and death by large, sustained mechanical loads. We evaluated the NaPy pre-treatment effect on permeability changes in the cell's plasma membrane (PM) following application of in vitro damaging-level strains. Fibroblasts or myoblasts, respectively, models for superficial or deep-tissue damage were grown in 0 or 1 mM NaPy, emulating typical physiological or cell culture conditions. Cells were pre-treated for 4 hours with 0 to 5 mM NaPy prior to 3-hour sustained, damaging-level loads (12% strain). PM permeability was quantified by the cell uptake of small (4 kDa), fluorescent dextran compared with unstrained control using fluorescence-activated cell sorting (FACS). Pre-treatment with 1 mM, and especially 5 mM, NaPy significantly reduces damage to PM integrity. Long-term NaPy pre-exposure can improve protective treatment, affecting fibroblasts and myoblasts differently. Pre-treating with NaPy, a natural cell metabolite, allows cells under damaging-level mechanical loads to maintain their PM integrity, that is, to avoid loss of homeostasis and inevitable, eventual cell death, by preventing initial, microscale stages of PU formation. This pre-treatment may be applied prior to planned periods of immobility, for example, planned surgery or transport, to prolong safe time in a position by preventing initial cell damage that can cascade and lead to PU formation.
Collapse
Affiliation(s)
| | - Tamar Barenholz-Cohen
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Daphne Weihs
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
13
|
Jasińska-Konior K, Wiecheć O, Sarna M, Panek A, Swakoń J, Michalik M, Urbańska K, Elas M. Increased elasticity of melanoma cells after low-LET proton beam due to actin cytoskeleton rearrangements. Sci Rep 2019; 9:7008. [PMID: 31065009 PMCID: PMC6504917 DOI: 10.1038/s41598-019-43453-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/16/2019] [Indexed: 01/08/2023] Open
Abstract
Cellular response to non-lethal radiation stress include perturbations in DNA repair, angiogenesis, migration, and adhesion, among others. Low-LET proton beam radiation has been shown to induce somewhat different biological response than photon radiation. For example, we have shown that non-lethal doses of proton beam radiation inhibited migration of cells and that this effect persisted long-term. Here, we have examined cellular elasticity and actin cytoskeleton organization in BLM cutaneous melanoma and Mel270 uveal melanoma cells. Proton beam radiation increased cellular elasticity to a greater extent than X-rays and both types of radiation induced changes in actin cytoskeleton organization. Vimentin level increased in BLM cells after both types of radiation. Our data show that cell elasticity increased substantially after low-LET proton beam and persisted long after radiation. This may have significant consequences for the migratory properties of melanoma cells, as well as for the cell susceptibility to therapy.
Collapse
Affiliation(s)
- Katarzyna Jasińska-Konior
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, Kraków, Poland
| | - Olga Wiecheć
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, Kraków, Poland
| | - Michał Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, Kraków, Poland
| | - Agnieszka Panek
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Kraków, Poland
| | - Jan Swakoń
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Kraków, Poland
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, Kraków, Poland
| | - Krystyna Urbańska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, Kraków, Poland
| | - Martyna Elas
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, Kraków, Poland.
| |
Collapse
|
14
|
Lipofuscin-mediated photodynamic stress induces adverse changes in nanomechanical properties of retinal pigment epithelium cells. Sci Rep 2018; 8:17929. [PMID: 30560899 PMCID: PMC6298986 DOI: 10.1038/s41598-018-36322-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/12/2018] [Indexed: 01/10/2023] Open
Abstract
Retinal pigment epithelium (RPE) is an important part of the blood-retina barrier (BRB) that separates the retina from the choroid. Although melanin granules contribute to the mechanical stability of the BRB complex, it is unknown if the age pigment lipofuscin affects mechanical properties of the tissue. To address this issue the effect of sub-lethal photic stress mediated by phagocytized lipofuscin granules, isolated from RPE of human donors, on morphology and mechanical properties of ARPE-19 cells was investigated. Nanomechanical analysis using atomic force spectroscopy revealed that irradiation of cells containing lipofuscin granules with blue light induced significant softening of the cells, which was accompanied by substantial reorganization of the cell cytoskeleton due to peroxidation of cellular proteins. Our results indicate that lipofuscin-mediated photic stress can cause significant modification of the RPE cells with the potential to disturb biological function of the BRB complex.
Collapse
|
15
|
Zhao S, Wang Y, Zhang X, Zheng L, Zhu B, Yao S, Yang L, Du J. Melatonin Protects Against Hypoxia/Reoxygenation-Induced Dysfunction of Human Umbilical Vein Endothelial Cells Through Inhibiting Reactive Oxygen Species Generation. ACTA CARDIOLOGICA SINICA 2018; 34:424-431. [PMID: 30271093 PMCID: PMC6160513 DOI: 10.6515/acs.201809_34(5).20180708a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/08/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypoxia/reoxygenation (H/R) in human umbilical vein endothelial cells (HUVECs) induces oxidative stress and eventually leads to vascular injury. OBJECTIVE The aim of this study was to examine the effect of melatonin on HUVECs injured by H/R and explore the underlying mechanisms. MATERIALS AND METHODS A model of HUVECs under hypoxia/reoxygenation was established. Cell migration and adhesive ability was measured by wound healing and adhesion assays. Cell proliferation was measured by EdU assay. Production of reactive oxygen species (ROS) was evaluated by CM-H2DCFDA staining. Actin cytoskeleton rearrangement was examined by immunofluorescence. Western blotting analysis were used to analyze P38 and HSP27 phosphorylation levels. RESULTS H/R inhibited HUVEC proliferation, cell migratory and adhesive capacities, whereas melatonin (1~100 μM) inhibited these effects in a dose-dependent manner. Melatonin alone did not affect HUVEC viability, however, it inhibited the increase in ROS production and cytoskeleton disruption elicited by H/R, and it dose-dependently prevented H/R-induced upregulation of P38 and HSP27 phosphorylation. In addition, the ROS scavenger N-acetyl-L-cysteine markedly inhibited increased phosphorylation levels of P38 and HSP27 under H/R. CONCLUSIONS Melatonin may have a potential clinical effect in trials of H/R-induced vascular injury through its antioxidant property.
Collapse
Affiliation(s)
- Shuo Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166
| | | | | | | | | | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166
| |
Collapse
|
16
|
Petty HR. Frontiers of Complex Disease Mechanisms: Membrane Surface Tension May Link Genotype to Phenotype in Glaucoma. Front Cell Dev Biol 2018; 6:32. [PMID: 29682502 PMCID: PMC5897435 DOI: 10.3389/fcell.2018.00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Although many monogenic diseases are understood based upon structural changes of gene products, less progress has been made concerning polygenic disease mechanisms. This article presents a new interdisciplinary approach to understand complex diseases, especially their genetic polymorphisms. I focus upon primary open angle glaucoma (POAG). Although elevated intraocular pressure (IOP) and oxidative stress are glaucoma hallmarks, the linkages between these factors and cell death are obscure. Reactive oxygen species (ROS) promote the formation of oxidatively truncated phosphoglycerides (OTP), free fatty acids, lysophosphoglycerides, oxysterols, and other chemical species that promote membrane disruption and decrease membrane surface tension. Several POAG-linked gene polymorphisms identify proteins that manage damaged lipids and/or influence membrane surface tension. POAG-related genes expected to participate in these processes include: ELOVL5, ABCA1, APOE4, GST, CYP46A1, MYOC, and CAV. POAG-related gene products are expected to influence membrane surface tension, strength, and repair. I propose that heightened IOP overcomes retinal ganglion cell (RGC) membrane compressive strength, weakened by damaged lipid accumulation, to form pores. The ensuing structural failure promotes apoptosis and blindness. The linkage between glaucoma genotype and phenotype is mediated by physical events. Force balancing between the IOP and compressive strength regulates pore nucleation; force balancing between pore line tension and membrane surface tension regulates pore growth. Similar events may contribute to traumatic brain injury, Alzheimer's disease, and macular degeneration.
Collapse
Affiliation(s)
- Howard R Petty
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Nanomechanical Phenotype of Melanoma Cells Depends Solely on the Amount of Endogenous Pigment in the Cells. Int J Mol Sci 2018; 19:ijms19020607. [PMID: 29463035 PMCID: PMC5855829 DOI: 10.3390/ijms19020607] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 01/07/2023] Open
Abstract
Cancer cells have unique nanomechanical properties, i.e., they behave as if they were elastic. This property of cancer cells is believed to be one of the main reasons for their facilitated ability to spread and metastasize. Thus, the so-called nanomechanical phenotype of cancer cells is viewed as an important indicator of the cells’ metastatic behavior. One of the most highly metastatic cancer cells are melanoma cells, which have a very unusual property: they can synthesize the pigment melanin in large amounts, becoming heavily pigmented. So far, the role of melanin in melanoma remains unclear, particularly the impact of the pigment on metastatic behavior of melanoma cells. Importantly, until recently the potential mechanical role of melanin in melanoma metastasis was completely ignored. In this work, we examined melanoma cells isolated from hamster tumors containing endogenous melanin pigment. Applying an array of advanced microscopy and spectroscopy techniques, we determined that melanin is the dominating factor responsible for the mechanical properties of melanoma cells. Our results indicate that the nanomechanical phenotype of melanoma cells may be a reliable marker of the cells’ metastatic behavior and point to the important mechanical role of melanin in the process of metastasis of melanoma.
Collapse
|
18
|
Wang X, Wang L, Garcia JGN, Dudek SM, Shekhawat GS, Dravid VP. The Significant Role of c-Abl Kinase in Barrier Altering Agonists-mediated Cytoskeletal Biomechanics. Sci Rep 2018; 8:1002. [PMID: 29343719 PMCID: PMC5772358 DOI: 10.1038/s41598-018-19423-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022] Open
Abstract
Exploration of human pulmonary artery endothelial cell (EC) as a prototypical biomechanical system has important pathophysiologic relevance because this cell type plays a key role in the development of a wide variety of clinical conditions. The complex hierarchical organization ranging from the molecular scale up to the cellular level has an intimate and intricate relationship to the barrier function between lung tissue and blood. To understand the innate molecule-cell-tissue relationship across varied length-scales, the functional role of c-Abl kinase in the cytoskeletal nano-biomechanics of ECs in response to barrier-altering agonists was investigated using atomic force microscopy. Concurrently, the spatially specific arrangement of cytoskeleton structure and dynamic distribution of critical proteins were examined using scanning electron microscopy and immunofluorescence. Reduction in c-Abl expression by siRNA attenuates both thrombin- and sphingosine 1-phosphate (S1P)-mediated structural changes in ECs, specifically spatially-defined changes in elastic modulus and distribution of critical proteins. These results indicate that c-Abl kinase is an important determinant of cortical actin-based cytoskeletal rearrangement. Our findings directly bridge the gap between kinase activity, structural complexity, and functional connectivity across varied length-scales, and suggest that manipulation of c-Abl kinase activity may be a potential target for the treatment of pulmonary barrier disorders.
Collapse
Affiliation(s)
- X Wang
- Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin, 300384, China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, China.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - L Wang
- Department of Medicine, University of Illinois, Chicago, IL, 60612, USA
| | - J G N Garcia
- Department of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - S M Dudek
- Department of Medicine, University of Illinois, Chicago, IL, 60612, USA.
| | - G S Shekhawat
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - V P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
19
|
Nakamura M, Verboon JM, Parkhurst SM. Prepatterning by RhoGEFs governs Rho GTPase spatiotemporal dynamics during wound repair. J Cell Biol 2017; 216:3959-3969. [PMID: 28923977 PMCID: PMC5716286 DOI: 10.1083/jcb.201704145] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/17/2017] [Accepted: 08/24/2017] [Indexed: 12/30/2022] Open
Abstract
During wound repair, Rho GTPases form dynamic spatial and temporal patterns surrounding the wound and coordinate the cytoskeletal response. Nakamura et al. show that Rho GTPase arrays form in response to prepatterning by RhoGEFs, which depends on annexin B9. Like tissues, single cells are subjected to continual stresses and damage. As such, cells have a robust wound repair mechanism comprised of dynamic membrane resealing and cortical cytoskeletal remodeling. One group of proteins, the Rho family of small guanosine triphosphatases (GTPases), is critical for this actin and myosin cytoskeletal response in which they form distinct dynamic spatial and temporal patterns/arrays surrounding the wound. A key mechanistic question, then, is how these GTPase arrays are formed. Here, we show that in the Drosophila melanogaster cell wound repair model Rho GTPase arrays form in response to prepatterning by Rho guanine nucleotide exchange factors (RhoGEFs), a family of proteins involved in the activation of small GTPases. Furthermore, we show that Annexin B9, a member of a class of proteins associated with the membrane resealing, is involved in an early, Rho family–independent, actin stabilization that is integral to the formation of one RhoGEF array. Thus, Annexin proteins may link membrane resealing to cytoskeletal remodeling processes in single cell wound repair.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jeffrey M Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
20
|
Otero DP, Domínguez DV, Fernández LH, Magariño AS, González VJ, Klepzing JG, Montesinos JB. Preventing facial pressure ulcers in patients under non-invasive mechanical ventilation: a randomised control trial. J Wound Care 2017; 26:128-136. [DOI: 10.12968/jowc.2017.26.3.128] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- D. Peña Otero
- Professor, University General Hospital Gregorio Marañón; Gregorio Marañón Healthcare Research Institute–Nursing Department (IiSGM); Centre for Health Sciences San Rafael–Antonio Nebrija University, Madrid, Spain
| | | | | | - A. Santano Magariño
- Director Nursing Department, University General Hospital Puerta de Hierro, Madrid, Spain
| | | | | | - J.V. Beneit Montesinos
- Director, Professor, Clinic Complutense University; Complutense University, Madrid, Spain
| |
Collapse
|
21
|
Sarna M, Olchawa M, Zadlo A, Wnuk D, Sarna T. The nanomechanical role of melanin granules in the retinal pigment epithelium. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:801-807. [PMID: 27979745 DOI: 10.1016/j.nano.2016.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/09/2016] [Accepted: 11/29/2016] [Indexed: 11/16/2022]
Abstract
Nanomechanical properties of cells and tissues, in particular their elasticity, play an important role in different physiological and pathological processes. Recently, we have demonstrated that melanin granules dramatically modify nanomechanical properties of melanoma cells making them very stiff and, as a result, less aggressive. Although the mechanical effect of melanin granules was demonstrated in pathological cells, it was never studied in the case of normal cells. In this work, we analyzed the impact of melanin granules on nanomechanical properties of primary retinal pigment epithelium tissue fragments isolated from porcine eyes. The obtained results clearly show that melanin granules are responsible for the exceptional nanomechanical properties of the tissue. Our findings suggest that melanin granules in the retinal pigment epithelium may play an important role in sustaining the stiffness of this single cell layer, which functions as a natural mechanical barrier separating the retina from the choroid.
Collapse
Affiliation(s)
- Michal Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Poland; Laboratory of Imaging and Atomic Force Spectroscopy, Malopolska Centre of Biotechnology, Jagiellonian University, Poland.
| | - Magdalena Olchawa
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Poland
| | - Andrzej Zadlo
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Poland
| |
Collapse
|
22
|
Weihs D, Gefen A, Vermolen FJ. Review on experiment-based two- and three-dimensional models for wound healing. Interface Focus 2016; 6:20160038. [PMID: 27708762 DOI: 10.1098/rsfs.2016.0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Traumatic and chronic wounds are a considerable medical challenge that affects many populations and their treatment is a monetary and time-consuming burden in an ageing society to the medical systems. Because wounds are very common and their treatment is so costly, approaches to reveal the responses of a specific wound type to different medical procedures and treatments could accelerate healing and reduce patient suffering. The effects of treatments can be forecast using mathematical modelling that has the predictive power to quantify the effects of induced changes to the wound-healing process. Wound healing involves a diverse and complex combination of biophysical and biomechanical processes. We review a wide variety of contemporary approaches of mathematical modelling of gap closure and wound-healing-related processes, such as angiogenesis. We provide examples of the understanding and insights that may be garnered using those models, and how those relate to experimental evidence. Mathematical modelling-based simulations can provide an important visualization tool that can be used for illustrational purposes for physicians, patients and researchers.
Collapse
Affiliation(s)
- Daphne Weihs
- Faculty of Biomedical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| | - Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering , Tel Aviv University , Tel Aviv 6997801 , Israel
| | - Fred J Vermolen
- Department of Applied Mathematics , Delft University of Technology , Delft , The Netherlands
| |
Collapse
|
23
|
Gefen A, Weihs D. Cytoskeleton and plasma-membrane damage resulting from exposure to sustained deformations: A review of the mechanobiology of chronic wounds. Med Eng Phys 2016; 38:828-33. [DOI: 10.1016/j.medengphy.2016.05.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022]
|
24
|
The Emergence of Physiology and Form: Natural Selection Revisited. BIOLOGY 2016; 5:biology5020015. [PMID: 27534726 PMCID: PMC4929529 DOI: 10.3390/biology5020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/23/2022]
Abstract
Natural Selection describes how species have evolved differentially, but it is descriptive, non-mechanistic. What mechanisms does Nature use to accomplish this feat? One known way in which ancient natural forces affect development, phylogeny and physiology is through gravitational effects that have evolved as mechanotransduction, seen in the lung, kidney and bone, linking as molecular homologies to skin and brain. Tracing the ontogenetic and phylogenetic changes that have facilitated mechanotransduction identifies specific homologous cell-types and functional molecular markers for lung homeostasis that reveal how and why complex physiologic traits have evolved from the unicellular to the multicellular state. Such data are reinforced by their reverse-evolutionary patterns in chronic degenerative diseases. The physiologic responses of model organisms like Dictyostelium and yeast to gravity provide deep comparative molecular phenotypic homologies, revealing mammalian Target of Rapamycin (mTOR) as the final common pathway for vertical integration of vertebrate physiologic evolution; mTOR integrates calcium/lipid epistatic balance as both the proximate and ultimate positive selection pressure for vertebrate physiologic evolution. The commonality of all vertebrate structure-function relationships can be reduced to calcium/lipid homeostatic regulation as the fractal unit of vertebrate physiology, demonstrating the primacy of the unicellular state as the fundament of physiologic evolution.
Collapse
|