1
|
Bontempi M, Sancisi N, Marchiori G, Conconi M, Berni M, Cassiolas G, Giavaresi G, Parrilli A, Lopomo NF. Understanding the Structure-Function Relationship through 3D Imaging and Biomechanical Analysis: A Novel Methodological Approach Applied to Anterior Cruciate Ligaments. Biomimetics (Basel) 2024; 9:477. [PMID: 39194456 DOI: 10.3390/biomimetics9080477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Understanding the microstructure of fibrous tissues, like ligaments, is crucial due to their nonlinear stress-strain behavior from unique fiber arrangements. This study introduces a new method to analyze the relationship between the microstructure and function of anterior cruciate ligaments (ACL). We tested the procedure on two ACL samples, one from a healthy individual and one from an osteoarthritis patient, using a custom tensioning device within a micro-CT scanner. The samples were stretched and scanned at various strain levels (namely 0%, 1%, 2%, 3%, 4%, 6%, 8%) to observe the effects of mechanical stress on the microstructure. The micro-CT images were processed to identify and map fibers, assessing their orientations and volume fractions. A probabilistic mathematical model was then proposed to relate the geometric and structural characteristics of the ACL to its mechanical properties, considering fiber orientation and thickness. Our feasibility test indicated differences in mechanical behavior, fiber orientation, and volume distribution between ligaments of different origins. These indicative results align with existing literature, validating the proposed methodology. However, further research is needed to confirm these preliminary observations. Overall, our comprehensive methodology shows promise for improving ACL diagnosis and treatment and for guiding the creation of tissue-engineered grafts that mimic the natural properties and microstructure of healthy tissue, thereby enhancing integration and performance in biomedical applications.
Collapse
Affiliation(s)
- Marco Bontempi
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Nicola Sancisi
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Gregorio Marchiori
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Michele Conconi
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Matteo Berni
- Medical Technology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Giorgio Cassiolas
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Gianluca Giavaresi
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Annapaola Parrilli
- Center for X-ray Analytics, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | | |
Collapse
|
2
|
Liu X, Deng Y, Liang Z, Qiao D, Zhang W, Wang M, Li F, Liu J, Wu Y, Chen G, Liu Y, Tan W, Xing J, Huang W, Zhao D, Li Y. The alteration of the structure and macroscopic mechanical response of porcine patellar tendon by elastase digestion. Front Bioeng Biotechnol 2024; 12:1374352. [PMID: 38694621 PMCID: PMC11061363 DOI: 10.3389/fbioe.2024.1374352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Background: The treatment of patellar tendon injury has always been an unsolved problem, and mechanical characterization is very important for its repair and reconstruction. Elastin is a contributor to mechanics, but it is not clear how it affects the elasticity, viscoelastic properties, and structure of patellar tendon. Methods: The patellar tendons from six fresh adult experimental pigs were used in this study and they were made into 77 samples. The patellar tendon was specifically degraded by elastase, and the regional mechanical response and structural changes were investigated by: (1) Based on the previous study of elastase treatment conditions, the biochemical quantification of collagen, glycosaminoglycan and total protein was carried out; (2) The patellar tendon was divided into the proximal, central, and distal regions, and then the axial tensile test and stress relaxation test were performed before and after phosphate-buffered saline (PBS) or elastase treatment; (3) The dynamic constitutive model was established by the obtained mechanical data; (4) The structural relationship between elastin and collagen fibers was analyzed by two-photon microscopy and histology. Results: There was no statistical difference in mechanics between patellar tendon regions. Compared with those before elastase treatment, the low tensile modulus decreased by 75%-80%, the high tensile modulus decreased by 38%-47%, and the transition strain was prolonged after treatment. For viscoelastic behavior, the stress relaxation increased, the initial slope increased by 55%, the saturation slope increased by 44%, and the transition time increased by 25% after enzyme treatment. Elastin degradation made the collagen fibers of patellar tendon become disordered and looser, and the fiber wavelength increased significantly. Conclusion: The results of this study show that elastin plays an important role in the mechanical properties and fiber structure stability of patellar tendon, which supplements the structure-function relationship information of patellar tendon. The established constitutive model is of great significance to the prediction, repair and replacement of patellar tendon injury. In addition, human patellar tendon has a higher elastin content, so the results of this study can provide supporting information on the natural properties of tendon elastin degradation and guide the development of artificial patellar tendon biomaterials.
Collapse
Affiliation(s)
- Xiaoyun Liu
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yuping Deng
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zeyu Liang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Qiao
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wentian Zhang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The School of Basic Medical Sciences, Fujian Medical University, Fujian, China
| | - Mian Wang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Orthopaedics, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Feifei Li
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiannan Liu
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaobing Wu
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangxin Chen
- Medical Image College, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yan Liu
- Department of Anatomy, Gannan Healthcare Vocational College, Ganzhou, China
| | - Wenchang Tan
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jian Xing
- Medical Image College, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dongliang Zhao
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yanbing Li
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Parrilli A, Grassi A, Orellana F, Lolli R, Marchiori G, Berni M, Fini M, Lopomo NF, Zaffagnini S. 3D visualization of the human anterior cruciate ligament combining micro-CT and histological analysis. Surg Radiol Anat 2024; 46:249-258. [PMID: 38265490 PMCID: PMC10861685 DOI: 10.1007/s00276-023-03295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE The study aimed to obtain a comprehensive 3D visualization of knee specimens, including the cruciate ligaments and corresponding femoral and tibial bone insertions using a non-destructive micro-CT method. METHODS Knee specimens were fixed in anatomical positions and chemically dehydrated before being scanned using micro-CT with a voxel size of 17.5 μm. RGBA (red, green, blue, alpha) transfer functions were applied to virtually colorize each structure. Following micro-CT scanning, the samples were rehydrated, decalcified, and trimmed based on micro-CT 3D reconstructions as references. Histological evaluations were performed on the trimmed samples. Histological and micro-CT images were registered to morphologically and densitometrically assess the 4-layer insertion of the ACL into the bone. RESULTS The output of the micro-CT images of the knee in extension and flexion allowed a clear differentiation of the morphologies of both soft and hard tissues, such as the ACL, femoral and tibial bones, and cartilage, and the subsequent creation of 3D composite models useful for accurately tracing the entire morphology of the ligament, including its fiber and bundle components, the trajectory between the femur and tibia, and the size, extension, and morphology of its insertions into the bones. CONCLUSION The implementation of the non-destructive micro-CT method allowed complete visualization of all the different components of the knee specimens. This allowed correlative imaging by micro-CT and histology, accurate planning of histological sections, and virtual anatomical and microstructural analysis. The micro-CT approach provided an unprecedented 3D level of detail, offering a viable means to study ACL anatomy.
Collapse
Affiliation(s)
- Annapaola Parrilli
- Center for X-Ray Analytics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| | | | - Federica Orellana
- Center for X-Ray Analytics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- University of Fribourg, Fribourg, Switzerland
| | | | | | - Matteo Berni
- IRCCS - Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Milena Fini
- IRCCS - Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | |
Collapse
|
4
|
Iannucci LE, Riak MB, Meitz E, Bersi MR, Gruev V, Lake SP. Effect of matrix properties on transmission and reflectance mode division-of-focal-plane Stokes polarimetry. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:102902. [PMID: 37441242 PMCID: PMC10334992 DOI: 10.1117/1.jbo.28.10.102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
Significance Division-of-focal-plane Stokes polarimetry is emerging as a powerful tool for the microstructural characterization of soft tissues. How individual extracellular matrix (ECM) properties influence polarimetric signals in reflectance or transmission modes of quantitative polarized light imaging (QPLI) is not well understood. Aim We aimed to investigate how ECM properties affect outcomes obtained from division-of-focal-plane polarimetric imaging in reflectance or transmission modes. Approach Tunable collagen gel phantoms were used to modulate ECM properties of anisotropy, collagen density, crosslinking, and absorber density; the effects of degree of linear polarization (DoLP) and angle of polarization (AoP) on polarimetry outcomes were assessed. A model biological tissue (i.e., bovine tendon) was similarly imaged and evaluated using both reflectance and transmission modes. Results Reflectance QPLI resulted in decreased DoLP compared with transmission mode. A 90 deg shift in AoP was observed between modes but yielded similar spatial patterns. Collagen density had the largest effect on outcomes besides anisotropy in both imaging modes. Conclusions Both imaging modes were sufficiently sensitive to detect structural anisotropy differences in gels of varying fiber alignment. Conclusions drawn from phantom experiments should carry over when interpreting data from more complex tissues and can help provide context for interpretation of other Stokes polarimetry data.
Collapse
Affiliation(s)
- Leanne E. Iannucci
- Washington University in St. Louis, McKelvey School of Engineering, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Matthew B. Riak
- Washington University in St. Louis, McKelvey School of Engineering, Department of Mechanical Engineering and Materials Science, St. Louis, Missouri, United States
| | - Ethan Meitz
- Washington University in St. Louis, McKelvey School of Engineering, Department of Mechanical Engineering and Materials Science, St. Louis, Missouri, United States
| | - Matthew R. Bersi
- Washington University in St. Louis, McKelvey School of Engineering, Department of Mechanical Engineering and Materials Science, St. Louis, Missouri, United States
| | - Viktor Gruev
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Champaign, Illinois, United States
| | - Spencer P. Lake
- Washington University in St. Louis, McKelvey School of Engineering, Department of Biomedical Engineering, St. Louis, Missouri, United States
- Washington University in St. Louis, McKelvey School of Engineering, Department of Mechanical Engineering and Materials Science, St. Louis, Missouri, United States
- Washington University in St. Louis, School of Medicine, Department of Orthopaedic Surgery, St. Louis, Missouri, United States
| |
Collapse
|
5
|
Chang PS, Solon LF, Lake SP, Castile RM, Hill JR, Brophy RH. Mechanical and Microstructural Properties of Meniscus Roots Vary by Location. Am J Sports Med 2022; 50:2733-2739. [PMID: 35862621 DOI: 10.1177/03635465221106746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Despite the growing awareness of the clinical significance of meniscus root tears, there are relatively limited biomechanical and microstructural data available on native meniscus roots that could improve our understanding of why they are injured and how to best treat them. PURPOSE/HYPOTHESIS The purpose of the study was to measure the material and microstructural properties of meniscus roots using mechanical testing and quantitative polarized light imaging. The hypothesis was that these properties vary by location (medial vs lateral, anterior vs posterior) and by specific root (anteromedial vs anterolateral, posteromedial vs posterolateral). STUDY DESIGN Descriptive laboratory study. METHODS Anterior and posterior meniscus roots of the medial and lateral meniscus were isolated from 22 cadavers (10 female, 12 male; mean ± SD age, 47.1 ± 5.1 years) and loaded in uniaxial tension. Quantitative polarized light imaging was used to measure collagen fiber organization and realignment under load. Samples were subjected to preconditioning, stress-relaxation, and a ramp to failure. Time-dependent relaxation behavior was quantified. Modulus values were computed in the toe and linear regions of the stress-strain curves. The degree of linear polarization (DoLP) and angle of polarization-measures of the strength and direction of collagen alignment, respectively-were calculated during the stress-relaxation test and at specific strain values throughout the ramp to failure (zero, transition, and linear strain). RESULTS Anterior roots had larger moduli than posterior roots in the toe (P = .007) and linear (P < .0001) regions and larger average DoLP values at all points of the ramp to failure (zero, P = .016; transition, P = .004; linear, P = .002). Posterior roots had larger values across all regions in terms of standard deviation angle of polarization (P < .001). Lateral roots had greater modulus values versus medial roots in the toe (P = .027) and linear (P = .014) regions. Across all strain points, posterolateral roots had smaller mean DoLP values than posteromedial roots. CONCLUSION Posterior meniscus roots have smaller modulus values and more disorganized collagen alignment at all strain levels when compared with anterior roots. Posterolateral roots have lower strength of collagen alignment versus posteromedial roots. CLINICAL RELEVANCE These data findings may explain at least in part the relative paucity of anterior meniscus root tears and the predominance of traumatic posterolateral roots tears as compared with degenerative posteromedial root tears.
Collapse
Affiliation(s)
- Peter S Chang
- Department of Orthopedic Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Lorenzo F Solon
- Department of Mechanical Engineering, and Material Science, Washington University in St. Louis, St Louis, Missouri, USA
| | - Spencer P Lake
- Department of Mechanical Engineering, and Material Science, Washington University in St. Louis, St Louis, Missouri, USA
| | - Ryan M Castile
- Department of Mechanical Engineering, and Material Science, Washington University in St. Louis, St Louis, Missouri, USA
| | - J Ryan Hill
- Department of Orthopedic Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Robert H Brophy
- Department of Orthopedic Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| |
Collapse
|
6
|
Solon LF, Castile RM, Smith MV, Lake SP. Mechanical properties and microstructural organization of common ulnar collateral ligament grafts: Palmaris longus and gracilis tendons. J Orthop Res 2022; 40:1865-1871. [PMID: 34786748 DOI: 10.1002/jor.25209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 02/04/2023]
Abstract
Ulnar collateral ligament (UCL) injuries are becoming increasingly common. The palmaris longus (PL) and gracilis (GR) tendons are the most common grafts used in UCL reconstructions. While clinical studies have demonstrated relatively similar outcomes for either graft, there is little quantitative data describing these grafts from a material perspective, specifically the mechanical and microstructural properties of these tissues and how they respond under dynamic loading. The purpose of this descriptive laboratory study was to quantify and compare the mechanical and microstructural properties of PL and GR tendons. A total of 13 PL and 11 GR cadaveric human tendons were obtained. Each specimen was divided into three subregions and subjected to preconditioning, ramp-and-hold stress-relaxation and ramp-to-failure testing. Mechanical parameters were computed for each sample, and a polarized light imaging technique was used to simultaneously evaluate dynamic microstructural properties during testing. The PL had larger toe- and linear-region modulus values than the GR. Within the GR, the distal subregion had stronger collagen alignment than the proximal subregion at the zero, transition and linear portions of the stress-strain curve. The PL and GR, have similar mechanical properties and similar microstructural alignment under load. The PL graft has similar properties throughout its length whereas the GR properties exhibited slight differences in strength of alignment along its length. The PL and GR exhibit larger moduli values and more strongly/uniformly aligned collagenous microstructure when qualitatively compared to data previously published on the native UCL.
Collapse
Affiliation(s)
- Lorenzo F Solon
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ryan M Castile
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Matthew V Smith
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Castile RM, Cannon PC, Smith MV, Brophy RH, Lake SP. Donor age and sex have limited effects on the mechanical and microstructural properties of human connective tissues. J Orthop Res 2022; 40:1844-1852. [PMID: 34676910 DOI: 10.1002/jor.25200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 02/04/2023]
Abstract
Connective tissues, such as tendons, ligaments, and capsules, play a large role in locomotion and joint stability and are often subjected to traumatic injuries and degeneration. The purpose of this study was to evaluate if the mechanical and microstructural properties of connective tissues correlate with the age and sex of the human donor. Dissected samples were prepared for mechanical testing, consisting of 10 cycles of preconditioning, a stress-relaxation ramp and hold, and a quasi-static ramp to failure. During the testing protocol, the microstructural organization of tissues was analyzed using quantitative polarized light imaging. A linear mixed model was used to assess whether tissue type, donor age, or donor sex were significantly associated with mechanical and microstructural tissue properties. Tissue type had a significant effect on all parameters, while donor age and sex did not. Groupings by tissue type (i.e., tendon vs. ligament vs. capsule) were evident for microstructural data, with tendons having a tighter grouping and ligaments having a larger spread of values. The interaction of tissue type and age yielded a significant effect for linear modulus only (p = 0.007), with the palmaris tendon appearing to have the largest contribution to this effect. There were no significant interaction effects between sex and tissue type or donor age. Donor age appears to affect linear modulus in some, but not all, tissue types. Otherwise, age and sex do not have significant effects on the mechanical and microstructural properties of the range of connective tissues that were analyzed in this study.
Collapse
Affiliation(s)
- Ryan M Castile
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Paul C Cannon
- Statistics and Data Science, Bringham Young University - Idaho, Rexburg, Idaho, USA
| | - Matthew V Smith
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Robert H Brophy
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Spencer P Lake
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Klemt C, Bounajem G, Tirumala V, Xiong L, Oganesyan R, Kwon YM. Posterior Tibial Slope Increases Anterior Cruciate Ligament Stress in Bi-Cruciate Retaining Total Knee Arthroplasty: In Vivo Kinematic Analysis. J Knee Surg 2022; 35:788-797. [PMID: 33111270 DOI: 10.1055/s-0040-1718602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The study design involved here is experimental in nature. The resection of the anterior cruciate ligament (ACL) during conventional total knee arthroplasty (TKA) has been considered a potential factor leading to abnormal in vivo knee kinematics. Bi-cruciate retaining (BCR) TKA designs allow the preservation of the ACL with the potential to restore native knee kinematics. This study aimed to investigate the effect of posterior tibial slope (PTS) on stress experienced by the ACL during weight bearing sit-to-stand (STS) and single-leg deep lunge. The ACL elongation patterns were measured in 30 unilateral BCR TKA patients during weight-bearing STS and single-leg deep lunge using a validated dual fluoroscopic tracking technique. The minimum normalized stress within the anteromedial (AM) and posterolateral (PL) bundle of the ACL during weight-bearing STS and single-leg deep lunge was found at a PTS of 3.7 degrees. The maximum AM and PL bundle stresses were observed at a PTS of 8.5 and 9.3 degrees, respectively during STS and at 8.4, and 9.1 degrees, respectively during single-leg deep lunge. There was a significant positive correlation between PTS and stress observed within the AM and PL bundle of the ACL during weight-bearing STS (R 2 = 0.37; p < 0.01; R2 = 0.36; p = 0.01) and single-leg deep lunge (R 2 = 0.42; p < 0.01; R 2 = 0.40; p < 0.01). The study demonstrates that PTS of operated BCR TKA knees has a significant impact on the stress experienced by the preserved ACL during weight-bearing STS and single-leg deep lunge. This suggests that avoiding excessive PTS may be one of the surgical implant alignment factors to consider during surgery to minimize increased loading of the preserved ACL.
Collapse
Affiliation(s)
- Christian Klemt
- Department of Orthopaedic Surgery, Bioengineering Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Georges Bounajem
- Department of Orthopaedic Surgery, Bioengineering Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Venkatsaiakhil Tirumala
- Department of Orthopaedic Surgery, Bioengineering Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Liang Xiong
- Department of Orthopaedic Surgery, Bioengineering Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ruben Oganesyan
- Department of Orthopaedic Surgery, Bioengineering Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Young-Min Kwon
- Department of Orthopaedic Surgery, Bioengineering Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Eekhoff JD, Abraham JA, Schott HR, Solon LF, Ulloa GE, Zellers JA, Cannon PC, Lake SP. Fascicular elastin within tendon contributes to the magnitude and modulus gradient of the elastic stress response across tendon type and species. Acta Biomater 2022; 163:91-105. [PMID: 35306182 DOI: 10.1016/j.actbio.2022.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/19/2022]
Abstract
Elastin, the main component of elastic fibers, has been demonstrated to significantly influence tendon mechanics using both elastin degradation studies and elastinopathic mouse models. However, it remains unclear how prior results differ between species and functionally distinct tendons and, in particular, how results translate to human tendon. Differences in function between fascicular and interfascicular elastin are also yet to be fully elucidated. Therefore, this study evaluated the quantity, structure, and mechanical contribution of elastin in functionally distinct tendons across species. Tendons with an energy-storing function had slightly more elastin content than tendons with a positional function, and human tendon had at least twice the elastin content of other species. While distinctions in the organization of elastic fibers between fascicles and the interfascicular matrix were observed, differences in structural arrangement of the elastin network between species and tendon type were limited. Mechanical testing paired with enzyme-induced elastin degradation was used to evaluate the contribution of elastin to tendon mechanics. Across all tendons, elastin degradation affected the elastic stress response by decreasing stress values while increasing the modulus gradient of the stress-strain curve. Only the contributions of elastin to viscoelastic properties varied between tendon type and species, with human tendon and energy-storing tendon being more affected. These data suggest that fascicular elastic fibers contribute to the tensile mechanical response of tendon, likely by regulating collagen engagement under load. Results add to prior findings and provide evidence for a more mechanistic understanding of the role of elastic fibers in tendon. STATEMENT OF SIGNIFICANCE: Elastin has previously been shown to influence the mechanical properties of tendon, and degraded or abnormal elastin networks caused by aging or disease may contribute to pain and an increased risk of injury. However, prior work has not fully determined how elastin contributes differently to tendons with varying functional demands, as well as within distinct regions of tendon. This study determined the effects of elastin degradation on the tensile elastic and viscoelastic responses of tendons with varying functional demands, hierarchical structures, and elastin content. Moreover, volumetric imaging and protein quantification were used to thoroughly characterize the elastin network in each distinct tendon. The results presented herein can inform tendon-specific strategies to maintain or restore native properties in elastin-degraded tissue.
Collapse
Affiliation(s)
- Jeremy D Eekhoff
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, MSC: 1185-208-125, St. Louis, MO 63130, United States
| | - James A Abraham
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, United States
| | - Hayden R Schott
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, United States
| | - Lorenzo F Solon
- Department of Biology, Washington University in St. Louis, United States
| | - Gabriella E Ulloa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, United States
| | - Jennifer A Zellers
- Department of Physical Therapy, Washington University in St. Louis School of Medicine, United States
| | - Paul C Cannon
- Department of Mathematics, Brigham Young University - Idaho, United States
| | - Spencer P Lake
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, MSC: 1185-208-125, St. Louis, MO 63130, United States; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, United States; Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, , United States.
| |
Collapse
|
10
|
Badawy CR, Jan K, Beck EC, Fleet N, Taylor J, Ford K, Waterman BR. Contemporary Principles for Postoperative Rehabilitation and Return to Sport for Athletes Undergoing Anterior Cruciate Ligament Reconstruction. Arthrosc Sports Med Rehabil 2022; 4:e103-e113. [PMID: 35141542 PMCID: PMC8811493 DOI: 10.1016/j.asmr.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
Despite advancements in our understanding of anterior cruciate ligament (ACL) injury prevention and nonsurgical management, ACL reconstruction continues to occur at an alarming rate. Among athletic patients, individuals participating in basketball, soccer, and football have the highest incidence of ACL injury, often requiring surgical intervention. To ensure the optimal treatment strategy for return to sport and prevention of secondary graft re-tear, it is important to tailor to the specific demands of the injured athlete and apply evidence-based best practices and rehabilitation principles. The purpose of this review is to provide readers with a brief background regarding ACL injuries, a focused review of clinical outcome studies after ACL reconstruction, and an updated framework with expert-guided recommendations for postoperative rehabilitation and return to sporting activity. Currently, there is no gold standard for rehabilitation after ACL reconstruction, highlighting the need for robust studies evaluating the best modalities for athlete rehabilitation, as well as determining the efficacy of new tools for improving therapy including blood flow restriction therapy and neuromuscular electrical stimulation. Based on clinical experience, a renewed focus on objective, criteria-based milestones may maximize the ability of return to preinjury levels of athletic function.
Collapse
Affiliation(s)
- Charles R Badawy
- Department of Orthopedic Surgery, Wake Forest Baptist Health, Winston-Salem, North Carolina, U.S.A
| | - Kyleen Jan
- University of Illinois College of Medicine, Chicago, Illinois, U.S.A
| | - Edward C Beck
- Department of Orthopedic Surgery, Wake Forest Baptist Health, Winston-Salem, North Carolina, U.S.A
| | - Niles Fleet
- Department of Athletics, Wake Forest University, Winston-Salem, North Carolina, U.S.A
| | - Jeffrey Taylor
- Department of Physical Therapy, High Point University, High Point, North Carolina, U.S.A
| | - Kevin Ford
- Department of Physical Therapy, High Point University, High Point, North Carolina, U.S.A
| | - Brian R Waterman
- Department of Orthopedic Surgery, Wake Forest Baptist Health, Winston-Salem, North Carolina, U.S.A
| |
Collapse
|
11
|
Kiapour AM, Flannery SW, Murray MM, Miller PE, Fleming BC, Sant N, Portilla G, Sanborn R, Freiberger C, Henderson R, Barnett S, Ecklund K, Yen YM, Kramer DE, Micheli LJ, Fleming BC. Regional Differences in Anterior Cruciate Ligament Signal Intensity After Surgical Treatment. Am J Sports Med 2021; 49:3833-3841. [PMID: 34668789 PMCID: PMC8829819 DOI: 10.1177/03635465211047554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Magnetic resonance-based measurements of signal intensity have been used to track healing of surgically treated anterior cruciate ligaments (ACLs). However, it is unknown how the signal intensity values in different regions of the ligament or graft change during healing. HYPOTHESES (1) Normalized signal intensity of the healing graft or repaired ACL is heterogeneous; (2) temporal changes in normalized signal intensity values differ among the tibial, middle, and femoral regions; and (3) there are no differences in regional normalized signal intensity values 2 years postoperatively among grafts, repaired ACLs, and contralateral native ACLs. STUDY DESIGN Cohort study; Level of evidence, 2. METHODS Magnetic resonance imaging scans were analyzed from patients in a trial comparing ACL reconstruction (n = 35) with bridge-enhanced ACL repair (n = 65). The ACLs were segmented from images acquired at 6, 12, and 24 months postoperatively and were partitioned into 3 sections along the longitudinal axis (femoral, middle, and tibial). Linear mixed modeling was used to compare location-specific differences in normalized ligament signal intensity among time points (6, 12, and 24 months) and groups (ACL reconstruction, repair, and contralateral native ACL). RESULTS For grafts, the middle region had a higher mean normalized signal intensity when compared with the femoral region at all time points (P < .01) but compared with the tibial region only at 6 months (P < .01). For repaired ACLs, the middle region had a higher mean normalized signal intensity versus the femoral region at all time points (P < .01) but versus the tibial region only at 6 and 12 months (P < .04). From 6 to 24 months, the grafts showed the greatest reduction in normalized signal intensity in the femoral and middle regions (vs tibial regions; P < .01), while there were no regional differences in repaired ACLs. At 2 years after surgery, repaired ACLs had a lower normalized signal intensity in the tibial region as compared with reconstructed grafts and contralateral native ACLs (P < .01). CONCLUSION The results suggest that graft remodeling is location specific. Repaired ACLs were more homogeneous, with lower or comparable normalized signal intensity values at 2 years as compared with the contralateral native ACL and reconstructed grafts.
Collapse
Affiliation(s)
- Ata M. Kiapour
- Department of Orthopaedic Surgery and Sports Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Sean W. Flannery
- Department of Orthopaedics, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence RI 02818
| | - Martha M. Murray
- Department of Orthopaedic Surgery and Sports Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Patricia E. Miller
- Department of Orthopaedic Surgery and Sports Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Braden C. Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence RI 02818
| | - Nicholas Sant
- Investigation performed at Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriela Portilla
- Investigation performed at Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryan Sanborn
- Investigation performed at Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christina Freiberger
- Investigation performed at Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachael Henderson
- Investigation performed at Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel Barnett
- Investigation performed at Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kirsten Ecklund
- Investigation performed at Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi-Meng Yen
- Investigation performed at Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis E Kramer
- Investigation performed at Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lyle J Micheli
- Boston Children's Hospital Boston, Massachusetts, USA.,Investigation performed at Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Braden C Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA.,Investigation performed at Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Patel RM, Castile RM, Jenkins MJ, Lake SP, Brophy RH. Microstructural and Mechanical Properties of the Anterolateral Ligament of the Knee. Am J Sports Med 2021; 49:172-182. [PMID: 33381993 DOI: 10.1177/0363546520974381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The variable anatomy and controversy of the anterolateral ligament (ALL) reflect the complex relationship among the anterolateral knee structures. PURPOSE/HYPOTHESIS The purpose was to quantify the microstructural and mechanical properties of the ALL as compared with the anterolateral capsule (ALC) and lateral collateral ligament (LCL). The primary hypotheses were that (1) there is no difference in these properties between the ALL and ALC and (2) the LCL has significantly different properties from the ALL and ALC. STUDY DESIGN Descriptive laboratory study. METHODS The LCL, ALL, and ALC were harvested from 25 cadaveric knees. Mechanical testing and microstructural analyses were performed using quantitative polarized light imaging. The average degree of linear polarization (AVG DoLP; mean strength of collagen alignment) and standard deviation of the angle of polarization (STD AoP; degree of variation in collagen angle orientation) were calculated. RESULTS Linear region moduli were not different between the ALC and ALL (3.75 vs 3.66 MPa, respectively; P > .99). AVG DoLP values were not different between the ALC and ALL in the linear region (0.10 vs 0.10; P > .99). Similarly, STD AoP values were not different between the ALC and ALL (24.2 vs 21.7; P > .99). The LCL had larger modulus, larger AVG DoLP, and smaller STD AoP values than the ALL and ALC. Of 25 knee specimens, 3 were observed to have a distinct ALL, which exhibited larger modulus, larger AVG DoLP, and smaller STD AoP values as compared with nondistinct ALL samples. CONCLUSION There were no differences in the mechanical and microstructural properties between the ALL and ALC. The ALC and ALL exhibited comparably weak and disperse collagen alignment. However, when a distinct ALL was present, the properties were suggestive of a ligamentous structure. CLINICAL RELEVANCE The properties of the ALL are similar to those of a ligament only when a distinct ALL is present, but otherwise, for the majority of specimens, ALL properties are closer to those of the capsule. Variability in the ligamentous structure of the ALL suggests that it may be more important in some patients than others and reconstruction may be considered in selective patients. Further study is needed to better understand its selective role and optimal indications for reconstruction.
Collapse
Affiliation(s)
- Ronak M Patel
- Washington University in St Louis, St Louis, Missouri, USA
| | - Ryan M Castile
- Washington University in St Louis, St Louis, Missouri, USA
| | | | - Spencer P Lake
- Washington University in St Louis, St Louis, Missouri, USA
| | | |
Collapse
|
13
|
Castile RM, Jenkins MJ, Lake SP, Brophy RH. Microstructural and Mechanical Properties of Grafts Commonly Used for Cruciate Ligament Reconstruction. J Bone Joint Surg Am 2020; 102:1948-1955. [PMID: 32740264 DOI: 10.2106/jbjs.19.01395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Injuries to the anterior cruciate ligament and posterior cruciate ligament are common, and often are treated with reconstruction. Limited quantitative data are available describing material properties of grafts used for reconstructions such as the bone-patellar tendon-bone (BPTB), hamstring tendon (HS), and quadriceps tendon (QT). The purpose of this study was to quantify and compare microstructural and mechanical properties of BPTB, HS, and QT grafts. METHODS Forty specimens (13 BPTB, 13 HS, and 14 QT grafts) from 24 donors were used. Specimens were subjected to preconditioning, stress relaxation, and ramp to failure. Mechanical parameters were calculated for each sample, and polarization imaging was used to evaluate the direction and strength of collagen fiber alignment during testing. RESULTS QT had the largest modulus values, and HS had the smallest. BPTB exhibited the least disperse collagen organization, while HS were the least strongly aligned. Microstructural properties showed more strongly aligned collagen with increasing load for all grafts. All tissues showed stress relaxation and subtle microstructural changes during the hold period. CONCLUSIONS The mechanical and microstructural properties differed significantly among BPTB, HS, and QT grafts. QT exhibited the largest moduli and greatest strength of collagen alignment, while HS had the smallest moduli and least strongly aligned collagen. CLINICAL RELEVANCE This study identified mechanical and microstructural differences among common grafts and between these grafts and the cruciate ligaments they replace. Further research is needed to properly interpret the clinical relevance of these differences.
Collapse
Affiliation(s)
- Ryan M Castile
- Departments of Mechanical Engineering & Materials Science (R.M.C., M.J.J., and S.P.L.) and Orthopaedic Surgery (S.P.L. and R.H.B.), Washington University in St. Louis, St. Louis, Missouri
| | | | | | | |
Collapse
|
14
|
Owen King N, Gruev V, Lake SP. Implementation of a logarithmic division-of-focal-plane polarimeter to quantify changes in collagen alignment at varying levels of illumination. APPLIED OPTICS 2020; 59:7813-7820. [PMID: 32976451 DOI: 10.1364/ao.398362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
We examine the impact of illumination, aperture, and sample thickness on two division-of-focal-plane (DoFP) polarimeters, one created using a standard 3 T pixel and the other with a forward-biased, logarithmic pixel. Across all measured metrics the logarithmic DoFP polarimeter was better able to track real-time changes in collagen alignment than the standard DoFP polarimeter.
Collapse
|
15
|
Readioff R, Geraghty B, Comerford E, Elsheikh A. A full-field 3D digital image correlation and modelling technique to characterise anterior cruciate ligament mechanics ex vivo. Acta Biomater 2020; 113:417-428. [PMID: 32652225 DOI: 10.1016/j.actbio.2020.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
It is limiting to use conventional methods when characterising material properties of complex biological tissues with inhomogeneous and anisotropic structure, such as the anterior cruciate ligament (ACL) in the knee joint. This study aims to develop and utilise a three-dimensional digital image correlation method (3D DIC) for the purpose of determining material properties of femur-ACL-tibia complex across the surface without any contact between the tissue and the loading equipment. A full-field (360° view) 3D DIC test setup consisting of six digital single-lens reflex cameras was developed and ACL specimens from skeletally mature dog knee joints were tested. The six cameras were arranged into three pairs and the cameras within each pair were positioned with 25° in between to obtain the desired stereovision output. The test setup was calibrated twice: first to obtain the intrinsic and extrinsic parameters within camera pairs, and second to align the 3D surfaces from each camera pair in order to generate the full view of the ACLs. Using the undeformed 3D surfaces of the ligaments, ACL-specific finite element models were generated. Longitudinal deformation of ligaments under tensile loads obtained from the 3D DIC, and this was analysed to serve as input for the inverse finite element analysis. As a result, hyperelastic coefficients from the first-order Ogden model that characterise ACL behaviour were determined with a marginal error of <1.5%. This test setup and methodology provides a means to accurately determine inhomogeneous and anisotropic material properties of ACL. The methodology described in this study could be adopted to investigate other biological and cultured tissues with complex structure. STATEMENT OF SIGNIFICANCE: Determining the material properties of soft tissues with complex anatomical structure, such as the anterior cruciate ligament (ACL), is important to better understand their contribution to musculoskeletal biomechanics. Current conventional methods for characterising material properties of the ACL are often limited to a contact measurement approach, however an improved understanding of the mechanics of this complex tissue is vital in terms of preventing injury and developing novel therapies. This article reports the development and utilisation of non-contact optical methodology involving full-field three-dimensional digital image correlation and finite element analysis to accurately investigate material properties of the ACL, in a controlled environment. This technique reduces inaccuracies due to specimen clamping and more importantly considers the inhomogeneous nature of the examined tissue.
Collapse
|
16
|
Otani T, Kobayashi Y, Tanaka M. Computational study of kinematics of the anterior cruciate ligament double-bundle structure during passive knee flexion–extension. Med Eng Phys 2020; 83:56-63. [DOI: 10.1016/j.medengphy.2020.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 05/28/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
|
17
|
Bologna E, Di Paola M, Dayal K, Deseri L, Zingales M. Fractional-order nonlinear hereditariness of tendons and ligaments of the human knee. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190294. [PMID: 32389091 DOI: 10.1098/rsta.2019.0294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
In this paper the authors introduce a nonlinear model of fractional-order hereditariness used to capture experimental data obtained on human tendons of the knee. Creep and relaxation data on fibrous tissues have been obtained and fitted with logarithmic relations that correspond to power-laws with nonlinear dependence of the coefficients. The use of a proper nonlinear transform allows one to use Boltzmann superposition in the transformed variables yielding a fractional-order model for the nonlinear material hereditariness. The fundamental relations among the nonlinear creep and relaxation functions have been established, and the results from the equivalence relations have been contrasted with measures obtained from the experimental data. Numerical experiments introducing polynomial and harmonic stress and strain histories have been reported to assess the provided equivalence relations. This article is part of the theme issue 'Advanced materials modelling via fractional calculus: challenges and perspectives'.
Collapse
Affiliation(s)
- E Bologna
- Dipartimento di Ingegneria, Viale delle Scienze ed.8, 90128 Palermo, Italy
- Bio/NanoMechanics for Medical Sciences Laboratory, Viale delle Scienze ed.8, 90128 Palermo, Italy
| | - M Di Paola
- Dipartimento di Ingegneria, Viale delle Scienze ed.8, 90128 Palermo, Italy
| | - K Dayal
- Department of Civil and Environmental Engineering, Carnegie Mellon University Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Nonlinear Analysis, Carnegie Mellon University Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University Pittsburgh, Pittsburgh, PA 15213, USA
| | - L Deseri
- Department of Mechanical Engineering, University of Pittsburgh, Benedum Hall, Pittsburgh, PA, USA
- Dipartimento Civile, ambientale e meccanica, Università degli Studi di Trento, Via Mesiano, 77 - 38123 Trento, Italy
- Department of Mechanical Engineering, Department of Civil & Env. Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA
- The Methodist Hospital Research Institute, Department of Nanomedicine, 6565 Fannin St., MS B-490, Houston, TX 77030, USA
| | - M Zingales
- Dipartimento di Ingegneria, Viale delle Scienze ed.8, 90128 Palermo, Italy
- Bio/NanoMechanics for Medical Sciences Laboratory, Viale delle Scienze ed.8, 90128 Palermo, Italy
| |
Collapse
|
18
|
Ruan D, Zhu T, Huang J, Le H, Hu Y, Zheng Z, Tang C, Chen Y, Ran J, Chen X, Yin Z, Qian S, Pioletti D, Heng BC, Chen W, Shen W, Ouyang HW. Knitted Silk-Collagen Scaffold Incorporated with Ligament Stem/Progenitor Cells Sheet for Anterior Cruciate Ligament Reconstruction and Osteoarthritis Prevention. ACS Biomater Sci Eng 2019; 5:5412-5421. [PMID: 33464061 DOI: 10.1021/acsbiomaterials.9b01041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Current surgical management of anterior cruciate ligament (ACL) rupture still remains an intractable challenge in ACL regeneration due to the weak self-healing capability of ACL. Inadequate cell numbers and vascularization within the articular cavity contribute mainly to the poor prognosis. This time, we fabricated a new tissue engineering scaffold by adding ligament stem/progenitor cell (LSPC) sheets to our previous knitted silk-collagen sponge scaffold, which overcame these limitations by providing sufficient numbers of seed cells and a natural extracellular matrix to facilitate regeneration. LSPCs display excellent proliferation and multilineage differentiation capacity. Upon ectopic implantation, the knitted silk-collagen sponge scaffold incorporated with an LSPC sheet exhibited less immune cells but more fibroblast-like cells, deposited ECM and neovascularization, and better tissue ingrowth. In a rabbit model, we excised the ACL and performed a reconstructive surgery with our scaffold. Increased expression of ligament-specific genes and better collagen fibril formation could be observed after orthotopic transplantation. After 6 months, the LSPC sheet group showed better results on ligament regeneration and ligament-bone healing. Furthermore, no obvious cartilage and meniscus degeneration were observed at 6 months postoperation. In conclusion, these results indicated that the new tissue engineering scaffold can promote ACL regeneration and slow down the progression of osteoarthritis, thus suggesting its high clinical potential as an ideal graft in ACL reconstruction.
Collapse
Affiliation(s)
- Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | - Ting Zhu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Department of Cardiothoracic Surgery, Shaoxing People's Hospital, Shaoxin Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, People's Republic of China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Huihui Le
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | - Yejun Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Zefeng Zheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Department of Orthopedic Surgery, Children's Hospital, Zhejiang University School of Medicine, Zhejiang, 310052, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Yangwu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | - Xiao Chen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Shengjun Qian
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | | | | | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Laboratory of Biomechanical Orthopedics, EPFL, Lausanne, Switzerland.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Hong-Wei Ouyang
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| |
Collapse
|
19
|
Marchiori G, Parrilli A, Sancisi N, Berni M, Conconi M, Luzi L, Cassiolas G, Zaffagnini S, Lopomo N. Integration of micro-CT and uniaxial loading to analyse the evolution of 3D microstructure under increasing strain: application to the Anterior Cruciate Ligament. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2018.11.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Smith MV, Castile RM, Brophy RH, Dewan A, Bernholt D, Lake SP. Mechanical Properties and Microstructural Collagen Alignment of the Ulnar Collateral Ligament During Dynamic Loading. Am J Sports Med 2019; 47:151-157. [PMID: 30495972 DOI: 10.1177/0363546518812416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The ulnar collateral ligament (UCL) microstructural organization and collagen fiber realignment in response to load are unknown. PURPOSE/HYPOTHESIS The purpose was to describe the real-time microstructural collagen changes in the anterior bundle (AB) and posterior bundle (PB) of the UCL with tensile load. It was hypothesized that the UCL AB is stronger and stiffer with more highly aligned collagen during loading when compared with the UCL PB. STUDY DESIGN Descriptive laboratory study. METHODS The AB and PB from 34 fresh cadaveric specimens were longitudinally sectioned to allow uniform light passage for quantitative polarized light imaging. Specimens were secured to a tensile test machine and underwent cyclic preconditioning, a ramp-and-hold stress-relaxation test, and a quasi-static ramp to failure. A division-of-focal-plane polarization camera captured real-time pixelwise microstructural data of each sample during stress-relaxation and at the zero, transition, and linear points of the stress-strain curve. The SD of the angle of polarization determined the deviation of the average direction of collagen fibers in the tissue, while the average degree of linear polarization evaluated the strength of collagen alignment in those directions. Since the data were nonnormally distributed, the median ± interquartile range are presented. RESULTS The AB has larger elastic moduli than the PB ( P < .0001) in the toe region (median, 2.73 MPa [interquartile range, 1.1-5.6 MPa] vs 0.65 MPa [0.44-1.5 MPa]) and the linear region (13.77 MPa [4.8-40.7 MPa] vs 1.96 MPa [0.58-9.3 MPa]). The AB demonstrated larger stress values, stronger collagen alignment, and more uniform collagen organization during stress-relaxation. PB collagen fibers were more disorganized than the AB during the zero ( P = .046), transitional ( P = .011), and linear ( P = .007) regions of the stress-strain curve. Both UCL bundles exhibited very small changes in collagen alignment (SD of the angle of polarization) with load. CONCLUSION The AB of the UCL is stiffer and stronger, with more strongly aligned and more uniformly oriented collagen fibers, than the PB. The small changes in collagen alignment indicate that the UCL response to load is due more to its static collagen organization than to dynamic changes in collagen alignment. CLINICAL RELEVANCE The UCL collagen organization may explain its susceptibility to injury with repetitive valgus loads.
Collapse
Affiliation(s)
- Matthew V Smith
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, USA
| | - Ryan M Castile
- Department of Mechanical Engineering and Materials Science, Washington University, St Louis, Missouri, USA
| | - Robert H Brophy
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, USA
| | - Ashvin Dewan
- Methodist Orthopedic Specialists of Texas, Sugar Land, Texas, USA
| | - David Bernholt
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, USA
| | - Spencer P Lake
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, USA.,Department of Mechanical Engineering and Materials Science, Washington University, St Louis, Missouri, USA
| |
Collapse
|
21
|
Babaei B, Velasquez-Mao AJ, Pryse KM, McConnaughey WB, Elson EL, Genin GM. Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix. J Mech Behav Biomed Mater 2018; 84:198-207. [PMID: 29793157 PMCID: PMC5995675 DOI: 10.1016/j.jmbbm.2018.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022]
Abstract
Characterizing how a tissue's constituents give rise to its viscoelasticity is important for uncovering how hidden timescales underlie multiscale biomechanics. These constituents are viscoelastic in nature, and their mechanics must typically be assessed from the uniaxial behavior of a tissue. Confounding the challenge is that tissue viscoelasticity is typically associated with nonlinear elastic responses. Here, we experimentally assessed how fibroblasts and extracellular matrix (ECM) within engineered tissue constructs give rise to the nonlinear viscoelastic responses of a tissue. We applied a constant strain rate, "triangular-wave" loading and interpreted responses using the Fung quasi-linear viscoelastic (QLV) material model. Although the Fung QLV model has several well-known weaknesses, it was well suited to the behaviors of the tissue constructs, cells, and ECM tested. Cells showed relatively high damping over certain loading frequency ranges. Analysis revealed that, even in cases where the Fung QLV model provided an excellent fit to data, the the time constant derived from the model was not in general a material parameter. Results have implications for design of protocols for the mechanical characterization of biological materials, and for the mechanobiology of cells within viscoelastic tissues.
Collapse
Affiliation(s)
- Behzad Babaei
- Neuroscience Research Australia, Randwick, Australia
| | - A J Velasquez-Mao
- UC Berkeley and UC San Francisco Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Kenneth M Pryse
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - William B McConnaughey
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Elliot L Elson
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
22
|
Amabili M, Balasubramanian P, Breslavsky I, Ferrari G, Tubaldi E. Viscoelastic characterization of woven Dacron for aortic grafts by using direction-dependent quasi-linear viscoelasticity. J Mech Behav Biomed Mater 2018; 82:282-290. [DOI: 10.1016/j.jmbbm.2018.03.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/09/2018] [Accepted: 03/29/2018] [Indexed: 10/17/2022]
|
23
|
Eekhoff JD, Fang F, Kahan LG, Espinosa G, Cocciolone AJ, Wagenseil JE, Mecham RP, Lake SP. Functionally Distinct Tendons From Elastin Haploinsufficient Mice Exhibit Mild Stiffening and Tendon-Specific Structural Alteration. J Biomech Eng 2018; 139:2654667. [PMID: 28916838 DOI: 10.1115/1.4037932] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 12/23/2022]
Abstract
Elastic fibers are present in low quantities in tendon, where they are located both within fascicles near tenocytes and more broadly in the interfascicular matrix (IFM). While elastic fibers have long been known to be significant in the mechanics of elastin-rich tissue (i.e., vasculature, skin, lungs), recent studies have suggested a mechanical role for elastic fibers in tendons that is dependent on specific tendon function. However, the exact contribution of elastin to properties of different types of tendons (e.g., positional, energy-storing) remains unknown. Therefore, this study purposed to evaluate the role of elastin in the mechanical properties and collagen alignment of functionally distinct supraspinatus tendons (SSTs) and Achilles tendons (ATs) from elastin haploinsufficient (HET) and wild type (WT) mice. Despite the significant decrease in elastin in HET tendons, a slight increase in linear stiffness of both tendons was the only significant mechanical effect of elastin haploinsufficiency. Additionally, there were significant changes in collagen nanostructure and subtle alteration to collagen alignment in the AT but not the SST. Hence, elastin may play only a minor role in tendon mechanical properties. Alternatively, larger changes to tendon mechanics may have been mitigated by developmental compensation of HET tendons and/or the role of elastic fibers may be less prominent in smaller mouse tendons compared to the larger bovine and human tendons evaluated in previous studies. Further research will be necessary to fully elucidate the influence of various elastic fiber components on structure-function relationships in functionally distinct tendons.
Collapse
Affiliation(s)
- Jeremy D Eekhoff
- Department of Biomedical Engineering, Washington University in St. Louis One Brookings Drive, St. Louis, MO 63130
| | - Fei Fang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Lindsey G Kahan
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Gabriela Espinosa
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Austin J Cocciolone
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130.,Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130.,Department of Orthopaedic Surgery, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 e-mail:
| |
Collapse
|
24
|
Rassoli A, Fatouraee N, Guidoin R. Structural Model for Viscoelastic Properties of Pericardial Bioprosthetic Valves. Artif Organs 2018; 42:630-639. [DOI: 10.1111/aor.13095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/12/2017] [Accepted: 11/16/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Aisa Rassoli
- Biological Fluid Mechanics Research Laboratory, Biomedical Engineering Faculty; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | - Nasser Fatouraee
- Biological Fluid Mechanics Research Laboratory, Biomedical Engineering Faculty; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | | |
Collapse
|
25
|
Vaquette C, Sudheesh Kumar PT, Petcu EB, Ivanovski S. Combining electrospinning and cell sheet technology for the development of a multiscale tissue engineered ligament construct (TELC). J Biomed Mater Res B Appl Biomater 2017; 106:399-409. [PMID: 28170157 DOI: 10.1002/jbm.b.33828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/17/2016] [Accepted: 11/26/2016] [Indexed: 12/20/2022]
Abstract
Ligament tissue rupture is a common sport injury. Although current treatment modalities can achieve appropriate reconstruction of the damaged ligament, they present significant drawbacks, mostly related to reduced tissue availability and pain associated with tissue harvesting. Stem cell based tissue regeneration combined with electrospun scaffolds represents a novel treatment method for torn ligaments. In this study, a low fiber density polycaprolactone (PCL) electrospun mesh and sheep mesenchymal stem cells (sMSCs) were used to develop tissue engineered ligament construct (TELC) in vitro. The assembly of the TELC was based on the spontaneous capacity of the cells to organize themselves into a cell sheet once seeded onto the electrospun mesh. The cell sheet matured over 4 weeks and strongly integrated with the low fiber density electrospun mesh which was subsequently processed into a ligament-like bundle and braided with two other bundles to develop the final construct. Live/dead assay revealed that the handling of the construct through the various phases of assembly did not cause significant difference in viability compared to the control. Mechanical evaluation demonstrated that the incorporation of the cell sheet into the braided construct resulted in significantly modifying the mechanical behavior. A stress/displacement J-curve was observed for the TELC that was similar to native ligament, whereas this particular feature was not observed in the non-cellularized specimens. The regenerative potential of the TELC was evaluated ectopically in immunocompromized rats, compared to non cellularized electrospun fiber mesh and this demonstrated that the TELC was well colonized by host cells and that a significant remodelling of the implanted construct was observed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 399-409, 2018.
Collapse
Affiliation(s)
| | - P T Sudheesh Kumar
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Eugen Bogdan Petcu
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4222, Australia.,School of Medicine, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Saso Ivanovski
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4222, Australia
| |
Collapse
|
26
|
Skelley NW, Castile RM, Cannon PC, Weber CI, Brophy RH, Lake SP. Regional Variation in the Mechanical and Microstructural Properties of the Human Anterior Cruciate Ligament. Am J Sports Med 2016; 44:2892-2899. [PMID: 27456027 DOI: 10.1177/0363546516654480] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The anteromedial (AM) bundle of the anterior cruciate ligament (ACL) has a higher modulus and failure stress than does the posterolateral (PL) bundle. However, it is unknown how these properties vary within each bundle. PURPOSE To quantify mechanical and microstructural properties of samples within ACL bundles to elucidate any regional variation across the ligament. We hypothesized that there are no differences within each bundle in contrast to cross-bundle variation. STUDY DESIGN Descriptive laboratory study. METHODS Sixteen human ACLs were dissected into AM and PL bundles. Three samples were taken from each bundle in an ordered sequence from AM (region 1 AM bundle) to PL (region 6 PL bundle). Each sample was tested in uniaxial tension, using quantitative polarized light imaging (QPLI) to quantify collagen fiber alignment. After preconditioning, samples were subjected to a stress-relaxation (SR) test followed by quasistatic ramp-to-failure (RF). Peak and equilibrium stress values were computed from the SR test and modulus quantified in the toe- and linear-regions of the RF. QPLI values describing collagen orientation (angle of polarization [AoP]) and strength of alignment (degree of linear polarization [DoLP]) were computed for the SR test and at points corresponding to the zero, transition point, and linear region of the RF. RESULTS Toe- and linear-region modulus values decreased from region 1 to 6. Slopes of regression lines increased for the average DoLP during RF, with significance at higher strains. The standard deviation of AoP values decreased during RF, indicating tighter distribution of orientation angles, with significant correlations at all points of the RF. During SR, stress values uniformly decreased but did not show significant linear regression by region. DoLP and AoP values changed slightly during SR and demonstrated significant linear variation by region at both peak and equilibrium points. CONCLUSION Most microstructural and material properties evaluated in this study appear to follow a linear gradient across the ACL, rather than varying by bundle. CLINICAL RELEVANCE This AM-to-PL variation provides a more accurate description of functional tissue anatomy and can be used to assess and guide techniques of ACL reconstruction.
Collapse
Affiliation(s)
- Nathan W Skelley
- Department of Orthopaedic Surgery, Barnes-Jewish Hospital/Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Ryan M Castile
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, St Louis, Missouri, USA
| | - Paul C Cannon
- Monsanto Global Production Technology Analytics, St Louis, Missouri, USA
| | - Christian I Weber
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, Missouri, USA
| | - Robert H Brophy
- Department of Orthopaedic Surgery, Barnes-Jewish Hospital/Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Spencer P Lake
- Department of Orthopaedic Surgery, Barnes-Jewish Hospital/Washington University in St Louis School of Medicine, St Louis, Missouri, USA .,Department of Mechanical Engineering and Materials Science, Washington University in St Louis, St Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St Louis, St Louis, Missouri, USA
| |
Collapse
|
27
|
Wright JO, Skelley NW, Schur RP, Castile RM, Lake SP, Brophy RH. Microstructural and Mechanical Properties of the Posterior Cruciate Ligament: A Comparison of the Anterolateral and Posteromedial Bundles. J Bone Joint Surg Am 2016; 98:1656-1664. [PMID: 27707852 DOI: 10.2106/jbjs.16.00032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The microstructural organization (collagen fiber alignment) of the posterior cruciate ligament (PCL), which likely corresponds with its functional properties, has only been described qualitatively in the literature, to our knowledge. The goal of this study was to quantify the tensile mechanical and microstructural properties of the PCL and compare these qualities between the anterolateral and posteromedial bundles. METHODS Twenty-two knee specimens from 13 donors (8 male and 5 female; mean age [and standard deviation] at the time of death, 43.0 ± 4.1 years; mean body mass index, 30.0 ± 6.7 kg/m2) were dissected to isolate the PCL, and each bundle was split into 3 regions. Mechanical testing of each regional sample consisted of preconditioning followed by a ramp-and-hold stress-relaxation test and a quasi-static ramp-to-failure test. Microstructural analysis was performed with use of a high-resolution, division-of-focal-plane polarization camera to evaluate the average direction of collagen orientation and the degree to which the collagen fibers were aligned in that direction. Results were compared between the anterolateral and posteromedial bundles and across the regions of each bundle. RESULTS The anterolateral and posteromedial bundles demonstrated largely equivalent mechanical and microstructural properties. Elastic moduli in the toe and linear regions were not different; however, the posteromedial bundle did show significantly more stress relaxation (p = 0.004). There were also few differences in microstructural properties between bundles, which again were seen only in stress relaxation. Comparing regions within each bundle, several mechanical and microstructural parameters showed significant relationships across the posteromedial bundle, following a gradient of decreasing strength and alignment from anterior to posterior. CONCLUSIONS The PCL has relatively homogenous microstructural and mechanical properties, with few differences between the anterolateral and posteromedial bundles. This finding suggests that distinct functions of the PCL bundles result primarily from size and anatomical location rather than from differences in these properties. CLINICAL RELEVANCE These properties of the PCL can be used to assess the utility of graft choices and operative techniques for PCL reconstruction and may partly explain limited differences in the outcomes of single-bundle compared with double-bundle reconstruction techniques for the PCL.
Collapse
Affiliation(s)
- Jon O Wright
- Departments of Orthopaedic Surgery (J.O.W., N.W.S., S.P.L, and R.H.B.), Mechanical Engineering and Materials Science (R.P.S., R.M.C., and S.P.L.), and Biomedical Engineering (S.P.L.), Washington University in St. Louis, St. Louis, Missouri Department of Orthopaedic Surgery, Beaumont Health, Royal Oak, Michigan
| | - Nathan W Skelley
- Departments of Orthopaedic Surgery (J.O.W., N.W.S., S.P.L, and R.H.B.), Mechanical Engineering and Materials Science (R.P.S., R.M.C., and S.P.L.), and Biomedical Engineering (S.P.L.), Washington University in St. Louis, St. Louis, Missouri
| | - Reid P Schur
- Departments of Orthopaedic Surgery (J.O.W., N.W.S., S.P.L, and R.H.B.), Mechanical Engineering and Materials Science (R.P.S., R.M.C., and S.P.L.), and Biomedical Engineering (S.P.L.), Washington University in St. Louis, St. Louis, Missouri
| | - Ryan M Castile
- Departments of Orthopaedic Surgery (J.O.W., N.W.S., S.P.L, and R.H.B.), Mechanical Engineering and Materials Science (R.P.S., R.M.C., and S.P.L.), and Biomedical Engineering (S.P.L.), Washington University in St. Louis, St. Louis, Missouri
| | - Spencer P Lake
- Departments of Orthopaedic Surgery (J.O.W., N.W.S., S.P.L, and R.H.B.), Mechanical Engineering and Materials Science (R.P.S., R.M.C., and S.P.L.), and Biomedical Engineering (S.P.L.), Washington University in St. Louis, St. Louis, Missouri
| | - Robert H Brophy
- Departments of Orthopaedic Surgery (J.O.W., N.W.S., S.P.L, and R.H.B.), Mechanical Engineering and Materials Science (R.P.S., R.M.C., and S.P.L.), and Biomedical Engineering (S.P.L.), Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
28
|
Remodeling by fibroblasts alters the rate-dependent mechanical properties of collagen. Acta Biomater 2016; 37:28-37. [PMID: 27015891 DOI: 10.1016/j.actbio.2016.03.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED The ways that fibroblasts remodel their environment are central to wound healing, development of musculoskeletal tissues, and progression of pathologies such as fibrosis. However, the changes that fibroblasts make to the material around them and the mechanical consequences of these changes have proven difficult to quantify, especially in realistic, viscoelastic three-dimensional culture environments, leaving a critical need for quantitative data. Here, we observed the mechanisms and quantified the mechanical effects of fibroblast remodeling in engineered tissue constructs (ETCs) comprised of reconstituted rat tail (type I) collagen and human fibroblast cells. To study the effects of remodeling on tissue mechanics, stress-relaxation tests were performed on ETCs cultured for 24, 48, and 72h. ETCs were treated with deoxycholate and tested again to assess the ECM response. Viscoelastic relaxation spectra were obtained using the generalized Maxwell model. Cells exhibited viscoelastic damping at two finite time constants over which the ECM showed little damping, approximately 0.2s and 10-30s. Different finite time constants in the range of 1-7000s were attributed to ECM relaxation. Cells remodeled the ECM to produce a relaxation time constant on the order of 7000s, and to merge relaxation finite time constants in the 0.5-2s range into a single time content in the 1s range. Results shed light on hierarchical deformation mechanisms in tissues, and on pathologies related to collagen relaxation such as diastolic dysfunction. STATEMENT OF SIGNIFICANCE As fibroblasts proliferate within and remodel a tissue, they change the tissue mechanically. Quantifying these changes is critical for understanding wound healing and the development of pathologies such as cardiac fibrosis. Here, we characterize for the first time the spectrum of viscoelastic (rate-dependent) changes arising from the remodeling of reconstituted collagen by fibroblasts. The method also provides estimates of the viscoelastic spectra of fibroblasts within a three-dimensional culture environment. Results are of particular interest because of the ways that fibroblasts alter the mechanical response of collagen at loading frequencies associated with cardiac contraction in humans.
Collapse
|