1
|
Weiss D, Yeung N, Ramachandra AB, Humphrey JD. Transcriptional regulation of postnatal aortic development. Cells Dev 2024; 180:203971. [PMID: 39426523 PMCID: PMC11634634 DOI: 10.1016/j.cdev.2024.203971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The aorta exhibits tremendous changes in geometry, composition, and mechanical properties during postnatal development. These changes are necessarily driven by transcriptional changes, both genetically programmed and mechano-responsive, but there has not been a careful comparison of time-course changes in the transcriptional profile and biomechanical phenotype. Here, we show that the greatest period of differential gene expression in the normal postnatal mouse aorta occurs prior to weaning at three weeks of age though with important evolution of many transcripts thereafter. We identify six general temporal patterns, including transcripts that monotonically decrease to lower or increase to higher steady state values as well as those that either peak or dip prior to or near weaning. We show that diverse transcripts within individual groupings correlate well over time, and that sub-sets of these groups correlate well with the developmental progression of different biomechanical metrics that are expected to be involved in mechano-sensing. In particular, expression of genes for elastin and elastin-associated glycoproteins tend to correlate well with the ratio of systolic-to-diastolic stress whereas genes for collagen fibers correlate well with the daily rate of change of systolic stress and genes for mechano-sensing proteins tend to correlate well with the systolic stress itself. We conclude that different groupings of genes having different temporal expression patterns correlate well with different measures of the wall mechanics, hence emphasizing a need for age-dependent, gene-specific computational modeling of postnatal development.
Collapse
Affiliation(s)
- D Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Mechanical & Materials Engineering, University of Denver, Denver, CO, USA
| | - N Yeung
- School of the Biological Sciences, University of Cambridge, Cambridge, UK
| | - A B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Kailash KA, Akanda SR, Davis AL, Crandall CL, Castro LA, Setton LA, Wagenseil JE. A multiphasic model for determination of mouse ascending thoracic aorta mass transport properties with and without aneurysm. Biomech Model Mechanobiol 2024:10.1007/s10237-024-01897-5. [PMID: 39470949 DOI: 10.1007/s10237-024-01897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
Thoracic aortic aneurysms (TAAs) are associated with aortic wall remodeling that affects transmural transport or the movement of fluid and solute across the wall. In previous work, we used a Fbln4E57K/E57K (MU) mouse model to investigate transmural transport changes as a function of aneurysm severity. We compared wild-type (WT), MU with no aneurysm (MU-NA), MU with aneurysm (MU-A), and MU with an additional genetic mutation that led to increased aneurysm penetrance (MU-XA). We found that all aneurysmal aortas (MU-A and MU-XA) had lower fluid flux compared to WT. Non-aneurysmal aortas (MU-NA) had higher 4 kDa FITC-dextran solute flux than WT, but aneurysmal MU-A and MU-XA aortas had solute fluxes similar to WT. Our experimental results could not isolate competing factors, such as changes in aortic geometry and solid material properties among these mouse models, to determine how intrinsic transport properties change with aneurysm severity. The objective of this study is to use biphasic and multiphasic models to identify changes in transport material properties. Our biphasic model indicates that hydraulic permeability is significantly decreased in the severe aneurysm model (MU-XA) compared to non-aneurysmal aortas (MU-NA). Our multiphasic model shows that effective solute diffusivity is increased in MU-NA aortas compared to all others. Our findings reveal changes in intrinsic transport properties that depend on aneurysm severity and are important for understanding the movement of fluids and solutes that may play a role in the diagnosis, progression, or treatment of TAA.
Collapse
Affiliation(s)
- Keshav A Kailash
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Shamimur R Akanda
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Alexandra L Davis
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Christie L Crandall
- Department of Mechanical Engineering and Materials Science, Washington University, One Brookings Dr., CB 1185, St. Louis, MO, 63130, USA
| | - Luis A Castro
- Department of Mechanical Engineering and Materials Science, Washington University, One Brookings Dr., CB 1185, St. Louis, MO, 63130, USA
| | - Lori A Setton
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Department of Orthopedic Surgery, Washington University, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University, One Brookings Dr., CB 1185, St. Louis, MO, 63130, USA
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, One Brookings Dr., CB 1185, St. Louis, MO, 63130, USA.
| |
Collapse
|
3
|
Dwivedi KK, Rother J, Wagenseil JE. Age- and sex-specific biomechanics and extracellular matrix remodeling of the ascending aorta in a mouse model of severe Marfan syndrome. Am J Physiol Heart Circ Physiol 2024; 327:H1037-H1051. [PMID: 39212766 PMCID: PMC11482245 DOI: 10.1152/ajpheart.00391.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Thoracic aortic aneurysm (TAA) is associated with Marfan syndrome (MFS), a connective tissue disorder caused by mutations in fibrillin-1. Sexual dimorphism has been recorded for TAA outcomes in MFS, but detailed studies on the differences in TAA progression in males and females and their relationships to outcomes have not been performed. The aims of this study were to determine sex differences in the diameter dilatation, mechanical properties, and extracellular matrix (ECM) remodeling over time in a severe mouse model (Fbn1mgR/mgR = MU) of MFS-associated TAA that has a shortened life span. Male and female MU and wildtype (WT) mice were used at 1-4 mo of age. Blood pressure and in vivo diameters of the ascending thoracic aorta were recorded using a tail-cuff system and ultrasound imaging, respectively. Ex vivo mechanics and ECM remodeling of the aorta were characterized using a biaxial test system and multiphoton imaging, respectively. We showed that mechanical properties, such as structural and material stiffness, and ECM remodeling, such as elastic and collagen fiber content, correlated with diameter dilatation during TAA progression. Male MU mice had accelerated rates of diameter dilatation, stiffening, and ECM remodeling compared with female MU mice which may have contributed to their decreased life span. The correlation of mechanical properties and ECM remodeling with diameter dilatation suggests that they may be useful biomarkers for TAA progression. The differences in diameter dilatation and life spans in male and female MU mice indicate that sex is an important consideration for managing thoracic aortic aneurysm in MFS. NEW & NOTEWORTHY Using a mouse model (Fbn1mgR/mgR = MU) of severe thoracic aortic aneurysm in Marfan syndrome (MFS), we found that male MU aorta had an accelerated time line and increased amounts of dilatation, stiffening, and extracellular matrix (ECM) remodeling compared with female MU aorta that may have contributed to an increased risk of fatigue failure with cyclic loading over time and a reduced life span. We suggest that aortic stiffness may provide useful information for clinical management of aneurysms in MFS.
Collapse
MESH Headings
- Animals
- Marfan Syndrome/complications
- Marfan Syndrome/metabolism
- Marfan Syndrome/physiopathology
- Marfan Syndrome/genetics
- Marfan Syndrome/pathology
- Female
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Male
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/etiology
- Disease Models, Animal
- Aorta, Thoracic/physiopathology
- Aorta, Thoracic/pathology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/diagnostic imaging
- Biomechanical Phenomena
- Sex Factors
- Mice
- Fibrillin-1/genetics
- Fibrillin-1/metabolism
- Vascular Remodeling
- Age Factors
- Dilatation, Pathologic
- Mice, Inbred C57BL
- Vascular Stiffness
- Adipokines
Collapse
Affiliation(s)
- Krashn Kumar Dwivedi
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Jacob Rother
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
4
|
Tarraf SA, de Souza RB, Herrick A, Pereira LV, Bellini C. The Fbn1 gene variant governs passive ascending aortic mechanics in the mgΔ lpn mouse model of Marfan syndrome when superimposed to perlecan haploinsufficiency. Front Cardiovasc Med 2024; 11:1319164. [PMID: 38545339 PMCID: PMC10965555 DOI: 10.3389/fcvm.2024.1319164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/12/2024] [Indexed: 11/11/2024] Open
Abstract
Introduction Ascending thoracic aortic aneurysms arise from pathological tissue remodeling that leads to abnormal wall dilation and increases the risk of fatal dissection/rupture. Large variability in disease manifestations across family members who carry a causative genetic variant for thoracic aortic aneurysms suggests that genetic modifiers may exacerbate clinical outcomes. Decreased perlecan expression in the aorta of mgΔlpn mice with severe Marfan syndrome phenotype advocates for exploring perlecan-encoding Hspg2 as a candidate modifier gene. Methods To determine the effect of concurrent Hspg2 and Fbn1 mutations on the progression of thoracic aortopathy, we characterized the microstructure and passive mechanical response of the ascending thoracic aorta in female mice of four genetic backgrounds: wild-type, heterozygous with a mutation in the Fbn1 gene (mgΔlpn), heterozygous with a mutation in the Hspg2 gene (Hspg2+/-), and double mutants carrying both the Fbn1 and Hspg2 variants (dMut). Results Elastic fiber fragmentation and medial disarray progress from the internal elastic lamina outward as the ascending thoracic aorta dilates in mgΔlpn and dMut mice. Concurrent increase in total collagen content relative to elastin reduces energy storage capacity and cyclic distensibility of aortic tissues from mice that carry the Fbn1 variant. Inherent circumferential tissue stiffening strongly correlates with the severity of aortic dilatation in mgΔlpn and dMut mice. Perlecan haploinsufficiency superimposed to the mgΔlpn mutation curbs the viability of dMut mice, increases the occurrence of aortic enlargement, and reduces the axial stretch in aortic tissues. Discussion Overall, our findings show that dMut mice are more vulnerable than mgΔlpn mice without an Hspg2 mutation, yet later endpoints and additional structural and functional readouts are needed to identify causative mechanisms.
Collapse
Affiliation(s)
- Samar A. Tarraf
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | | | - Ashley Herrick
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Lygia V. Pereira
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
5
|
Chen M, Cavinato C, Hansen J, Tanaka K, Ren P, Hassab A, Li DS, Youshao E, Tellides G, Iyengar R, Humphrey JD, Schwartz MA. FN (Fibronectin)-Integrin α5 Signaling Promotes Thoracic Aortic Aneurysm in a Mouse Model of Marfan Syndrome. Arterioscler Thromb Vasc Biol 2023; 43:e132-e150. [PMID: 36994727 PMCID: PMC10133209 DOI: 10.1161/atvbaha.123.319120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Marfan syndrome, caused by mutations in the gene for fibrillin-1, leads to thoracic aortic aneurysms (TAAs). Phenotypic modulation of vascular smooth muscle cells (SMCs) and ECM (extracellular matrix) remodeling are characteristic of both nonsyndromic and Marfan aneurysms. The ECM protein FN (fibronectin) is elevated in the tunica media of TAAs and amplifies inflammatory signaling in endothelial and SMCs through its main receptor, integrin α5β1. We investigated the role of integrin α5-specific signals in Marfan mice in which the cytoplasmic domain of integrin α5 was replaced with that of integrin α2 (denoted α5/2 chimera). METHODS We crossed α5/2 chimeric mice with Fbn1mgR/mgR mice (mgR model of Marfan syndrome) to evaluate the survival rate and pathogenesis of TAAs among wild-type, α5/2, mgR, and α5/2 mgR mice. Further biochemical and microscopic analysis of porcine and mouse aortic SMCs investigated molecular mechanisms by which FN affects SMCs and subsequent development of TAAs. RESULTS FN was elevated in the thoracic aortas from Marfan patients, in nonsyndromic aneurysms, and in mgR mice. The α5/2 mutation greatly prolonged survival of Marfan mice, with improved elastic fiber integrity, mechanical properties, SMC density, and SMC contractile gene expression. Furthermore, plating of wild-type SMCs on FN decreased contractile gene expression and activated inflammatory pathways whereas α5/2 SMCs were resistant. These effects correlated with increased NF-kB activation in cultured SMCs and mgR aortas, which was alleviated by the α5/2 mutation or NF-kB inhibition. CONCLUSIONS FN-integrin α5 signaling is a significant driver of TAA in the mgR mouse model. This pathway thus warrants further investigation as a therapeutic target.
Collapse
Affiliation(s)
- Minghao Chen
- Cardiovascular Research Center (M.C., K.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - Jens Hansen
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York (J.H., R.I.)
| | - Keiichiro Tanaka
- Cardiovascular Research Center (M.C., K.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - Pengwei Ren
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - Abdulrahman Hassab
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - David S Li
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - Eric Youshao
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - George Tellides
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
- Vascular Biology and Therapeutics Program (G.T., J.D.H.), Yale School of Medicine, New Haven, CT
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York (J.H., R.I.)
| | - Jay D Humphrey
- Vascular Biology and Therapeutics Program (G.T., J.D.H.), Yale School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - Martin A Schwartz
- Cardiovascular Research Center (M.C., K.T., M.A.S.), Yale School of Medicine, New Haven, CT
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
- Departments of Medicine (Cardiology) and Cell Biology (M.A.S.), Yale School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| |
Collapse
|
6
|
Zhang E, Spronck B, Humphrey JD, Karniadakis GE. G2Φnet: Relating genotype and biomechanical phenotype of tissues with deep learning. PLoS Comput Biol 2022; 18:e1010660. [PMID: 36315608 PMCID: PMC9668200 DOI: 10.1371/journal.pcbi.1010660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/16/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Many genetic mutations adversely affect the structure and function of load-bearing soft tissues, with clinical sequelae often responsible for disability or death. Parallel advances in genetics and histomechanical characterization provide significant insight into these conditions, but there remains a pressing need to integrate such information. We present a novel genotype-to-biomechanical phenotype neural network (G2Φnet) for characterizing and classifying biomechanical properties of soft tissues, which serve as important functional readouts of tissue health or disease. We illustrate the utility of our approach by inferring the nonlinear, genotype-dependent constitutive behavior of the aorta for four mouse models involving defects or deficiencies in extracellular constituents. We show that G2Φnet can infer the biomechanical response while simultaneously ascribing the associated genotype by utilizing limited, noisy, and unstructured experimental data. More broadly, G2Φnet provides a powerful method and a paradigm shift for correlating genotype and biomechanical phenotype quantitatively, promising a better understanding of their interplay in biological tissues.
Collapse
Affiliation(s)
- Enrui Zhang
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Bart Spronck
- Department of Biomedical Engineering, Maastricht University, Maastricht, the Netherlands
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
7
|
Goswami S, Li DS, Rego BV, Latorre M, Humphrey JD, Karniadakis GE. Neural operator learning of heterogeneous mechanobiological insults contributing to aortic aneurysms. J R Soc Interface 2022; 19:20220410. [PMID: 36043289 PMCID: PMC9428523 DOI: 10.1098/rsif.2022.0410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is a localized dilatation of the aorta that can lead to life-threatening dissection or rupture. In vivo assessments of TAA progression are largely limited to measurements of aneurysm size and growth rate. There is promise, however, that computational modelling of the evolving biomechanics of the aorta could predict future geometry and properties from initiating mechanobiological insults. We present an integrated framework to train a deep operator network (DeepONet)-based surrogate model to identify TAA contributing factors using synthetic finite-element-based datasets. For training, we employ a constrained mixture model of aortic growth and remodelling to generate maps of local aortic dilatation and distensibility for multiple TAA risk factors. We evaluate the performance of the surrogate model for insult distributions varying from fusiform (analytically defined) to complex (randomly generated). We propose two frameworks, one trained on sparse information and one on full-field greyscale images, to gain insight into a preferred neural operator-based approach. We show that this continuous learning approach can predict the patient-specific insult profile associated with any given dilatation and distensibility map with high accuracy, particularly when based on full-field images. Our findings demonstrate the feasibility of applying DeepONet to support transfer learning of patient-specific inputs to predict TAA progression.
Collapse
Affiliation(s)
- Somdatta Goswami
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - David S. Li
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Bruno V. Rego
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Marcos Latorre
- Centre for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI, USA
- School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
8
|
Guido MC, Lopes NDM, Albuquerque CI, Tavares ER, Jensen L, Carvalho PDO, Tavoni TM, Dias RR, Pereira LDV, Laurindo FRM, Maranhão RC. Treatment With Methotrexate Associated With Lipid Core Nanoparticles Prevents Aortic Dilation in a Murine Model of Marfan Syndrome. Front Cardiovasc Med 2022; 9:893774. [PMID: 35757348 PMCID: PMC9226570 DOI: 10.3389/fcvm.2022.893774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
In Marfan syndrome (MFS), dilation, dissection, and rupture of the aorta occur. Inflammation can be involved in the pathogenicity of aortic defects and can thus be a therapeutic target for MFS. Previously, we showed that the formulation of methotrexate (MTX) associated with lipid nanoparticles (LDE) has potent anti-inflammatory effects without toxicity. To investigate whether LDEMTX treatment can prevent the development of aortic lesions in the MFS murine model. MgΔloxPneo MFS (n = 40) and wild-type (WT, n = 60) mice were allocated to 6 groups weekly injected with IP solutions of: (1) only LDE; (2) commercial MTX; (3) LDEMTX (dose = 1mg/kg) between 3rd and 6th months of life. After 12 weeks of treatments, animals were examined by echocardiography and euthanatized for morphometric and molecular studies. MFS mice treated with LDEMTX showed narrower lumens in the aortic arch, as well as in the ascending and descending aorta. LDEMTX reduced fibrosis and the number of dissections in MFS but not the number of elastic fiber disruptions. In MFS mice, LDEMTX treatment lowered protein expression of pro-inflammatory factors macrophages (CD68), T-lymphocytes (CD3), tumor necrosis factor-α (TNF-α), apoptotic factor cleaved-caspase 3, and type 1 collagen and lowered the protein expression of the transforming growth factor-β (TGF-β), extracellular signal-regulated kinases ½ (ERK1/2), and SMAD3. Protein expression of CD68 and CD3 had a positive correlation with an area of aortic lumen (r2 = 0.36; p < 0.001), suggesting the importance of inflammation in the causative mechanisms of aortic dilation. Enhanced adenosine availability by LDEMTX was suggested by higher aortic expression of an anti-adenosine A2a receptor (A2a) and lower adenosine deaminase expression. Commercial MTX had negligible effects. LDEMTX prevented the development of MFS-associated aortic defects and can thus be a candidate for testing in clinical studies.
Collapse
Affiliation(s)
- Maria Carolina Guido
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Natalia de Menezes Lopes
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Camila Inagaki Albuquerque
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Elaine Rufo Tavares
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Leonardo Jensen
- Laboratory of Hypertension, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Priscila de Oliveira Carvalho
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Thauany Martins Tavoni
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ribeiro Dias
- Department of Cardiovascular Surgery, Heart Institute (InCor), Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Lygia da Veiga Pereira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Raul Cavalcante Maranhão
- Laboratory of Metabolism and Lipids, Heart Institute (InCor) of the Medical School Hospital, University of São Paulo, São Paulo, Brazil
- *Correspondence: Raul Cavalcante Maranhão
| |
Collapse
|
9
|
Fernandez-Turizo MJ, Benavidez-Zora D, Anaya-Hoyos AE, Portillo-Gómez S, Castro-Arias HD. The addition of Tirofiban infusion to heparin for intraoperative heparin resistance associated with Marfan Syndrome. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2022. [DOI: 10.5554/22562087.e1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Marfan syndrome classically presents with aortic root aneurysms. Aortic ectasia causes diverse blood flow alterations, influencing the behavior of coagulation factors and platelet activity. Heparin resistance has also been reported associated with Marfan Syndrome in a small number of patients, probably due to antithrombin III (ATIII) deficiency or various mutations. The ascending aorta and the aortic valve are replaced with prosthetic material during Bentall- de Bonno procedures. Resistance to anticoagulation during extracorporeal circulation, represents a significant challenge for both anesthesiologists and the surgical team. Resistance to heparin was observed in a patient with Marfan syndrome undergoing a Bentall procedure. ATIII concentrate was not available, and ACT did not increase despite high doses of heparin. An alternate anticoagulation approach was used successfully.
Collapse
|
10
|
Gharraee N, Sun Y, Swisher JA, Lessner SM. Age and sex dependency of thoracic aortopathy in a mouse model of Marfan syndrome. Am J Physiol Heart Circ Physiol 2022; 322:H44-H56. [PMID: 34714692 PMCID: PMC8698500 DOI: 10.1152/ajpheart.00255.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Thoracic aortic aneurysm is one of the manifestations of Marfan syndrome (MFS) that is known to affect men more severely than women. However, the incidence of MFS is similar between men and women. The aim of this study is to show that during pathological aortic dilation, sex-dependent severity of thoracic aortopathy in a mouse model of MFS translates into sex-dependent alterations in cells and matrix of the ascending aorta, consequently affecting aortic biomechanics. Fibrillin-1 C1041G/+ (Het) mice were used as a mouse model of MFS. Ultrasound measurements from 3 to 12 mo showed increased aortic diameter in Het aorta, with larger percentage increase in diameter for males compared with females. Immunohistochemistry showed decreased contractile smooth muscle cells in Het aortic wall compared with healthy aorta, which was accompanied by decreased contractility measured by wire myography. Elastin autofluorescence, second-harmonic generation microscopy of collagen fibers, and passive biomechanical assessments using myography showed more severe damage to elastin fibers, increased medial fibrosis, and increased stiffness of the aortic wall in MFS males but not females. Male and female Het mice showed increased expression of Sca-1-positive adventitial progenitor cells versus controls at young ages. In agreement with clinical data, Het mice demonstrate sex-dependent severity of thoracic aortopathy. It was also shown that aging exacerbates the disease state especially for males. Our findings suggest that female mice are protected from progression of aortic dilation at early ages, leading to a lag in aneurysm growth.NEW & NOTEWORTHY Male Fbn1C1041G/+ mice show more severe thoracic aortic changes compared with females, especially at 12 mo of age. Up to 6 mo of age, Sca-1+ smooth muscle progenitor cells are more abundant in the adventitia of both male and female Fbn1 Het mice compared with wild types (WTs). Male and female Het mice show similar patterns of expression of Sca-1+ cells at early ages.
Collapse
Affiliation(s)
- Nazli Gharraee
- 1Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina
| | - Yujian Sun
- 2Physical Therapy Program, Brenau University, Gainesville, Georgia
| | - Joseph A. Swisher
- 3Internal Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Susan M. Lessner
- 1Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina,4Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
11
|
Cavinato C, Chen M, Weiss D, Ruiz-Rodríguez MJ, Schwartz MA, Humphrey JD. Progressive Microstructural Deterioration Dictates Evolving Biomechanical Dysfunction in the Marfan Aorta. Front Cardiovasc Med 2021; 8:800730. [PMID: 34977201 PMCID: PMC8716484 DOI: 10.3389/fcvm.2021.800730] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Medial deterioration leading to thoracic aortic aneurysms arises from multiple causes, chief among them mutations to the gene that encodes fibrillin-1 and leads to Marfan syndrome. Fibrillin-1 microfibrils associate with elastin to form elastic fibers, which are essential structural, functional, and instructional components of the normal aortic wall. Compromised elastic fibers adversely impact overall structural integrity and alter smooth muscle cell phenotype. Despite significant progress in characterizing clinical, histopathological, and mechanical aspects of fibrillin-1 related aortopathies, a direct correlation between the progression of microstructural defects and the associated mechanical properties that dictate aortic functionality remains wanting. In this paper, age-matched wild-type, Fbn1 C1041G/+, and Fbn1 mgR/mgR mouse models were selected to represent three stages of increasing severity of the Marfan aortic phenotype. Ex vivo multiphoton imaging and biaxial mechanical testing of the ascending and descending thoracic aorta under physiological loading conditions demonstrated that elastic fiber defects, collagen fiber remodeling, and cell reorganization increase with increasing dilatation. Three-dimensional microstructural characterization further revealed radial patterns of medial degeneration that become more uniform with increasing dilatation while correlating strongly with increased circumferential material stiffness and decreased elastic energy storage, both of which comprise aortic functionality.
Collapse
Affiliation(s)
- Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Minghao Chen
- Cardiovascular Research Center and Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT, United States
| | - Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Maria Jesús Ruiz-Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Martin A. Schwartz
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Cardiovascular Research Center and Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT, United States
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
12
|
Ogola BO, Clark GL, Abshire CM, Harris NR, Gentry KL, Gunda SS, Kilanowski-Doroh I, Wong TJ, Visniauskas B, Lawrence DJ, Zimmerman MA, Bayer CL, Groban L, Miller KS, Lindsey SH. Sex and the G Protein-Coupled Estrogen Receptor Impact Vascular Stiffness. Hypertension 2021; 78:e1-e14. [PMID: 34024124 PMCID: PMC8192475 DOI: 10.1161/hypertensionaha.120.16915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Benard O. Ogola
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| | - Gabrielle L. Clark
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, USA
| | - Caleb M. Abshire
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| | | | - Kaylee L. Gentry
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| | - Shreya S. Gunda
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| | | | - Tristen J. Wong
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| | | | - Dylan J. Lawrence
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, USA
| | | | - Carolyn L. Bayer
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, USA
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kristin S. Miller
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, USA
| | - Sarah H. Lindsey
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| |
Collapse
|
13
|
Van Gucht I, Meester JA, Bento JR, Bastiaansen M, Bastianen J, Luyckx I, Van Den Heuvel L, Neutel CH, Guns PJ, Vermont M, Fransen E, Perik MH, Velchev JD, Alaerts M, Schepers D, Peeters S, Pintelon I, Almesned A, Ferla MP, Taylor JC, Dallosso AR, Williams M, Evans J, Rosenfeld JA, Sluysmans T, Rodrigues D, Chikermane A, Bharmappanavara G, Vijayakumar K, Mottaghi Moghaddam Shahri H, Hashemi N, Torbati PN, Toosi MB, Al-Hassnan ZN, Vogt J, Revencu N, Maystadt I, Miller EM, Weaver KN, Begtrup A, Houlden H, Murphy D, Maroofian R, Pagnamenta AT, Van Laer L, Loeys BL, Verstraeten A, Verstraeten A. A human importin-β-related disorder: Syndromic thoracic aortic aneurysm caused by bi-allelic loss-of-function variants in IPO8. Am J Hum Genet 2021; 108:1115-1125. [PMID: 34010605 DOI: 10.1016/j.ajhg.2021.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Importin 8, encoded by IPO8, is a ubiquitously expressed member of the importin-β protein family that translocates cargo molecules such as proteins, RNAs, and ribonucleoprotein complexes into the nucleus in a RanGTP-dependent manner. Current knowledge of the cargoes of importin 8 is limited, but TGF-β signaling components such as SMAD1-4 have been suggested to be among them. Here, we report that bi-allelic loss-of-function variants in IPO8 cause a syndromic form of thoracic aortic aneurysm (TAA) with clinical overlap with Loeys-Dietz and Shprintzen-Goldberg syndromes. Seven individuals from six unrelated families showed a consistent phenotype with early-onset TAA, motor developmental delay, connective tissue findings, and craniofacial dysmorphic features. A C57BL/6N Ipo8 knockout mouse model recapitulates TAA development from 8-12 weeks onward in both sexes but most prominently shows ascending aorta dilatation with a propensity for dissection in males. Compliance assays suggest augmented passive stiffness of the ascending aorta in male Ipo8-/- mice throughout life. Immunohistological investigation of mutant aortic walls reveals elastic fiber disorganization and fragmentation along with a signature of increased TGF-β signaling, as evidenced by nuclear pSmad2 accumulation. RT-qPCR assays of the aortic wall in male Ipo8-/- mice demonstrate decreased Smad6/7 and increased Mmp2 and Ccn2 (Ctgf) expression, reinforcing a role for dysregulation of the TGF-β signaling pathway in TAA development. Because importin 8 is the most downstream TGF-β-related effector implicated in TAA pathogenesis so far, it offers opportunities for future mechanistic studies and represents a candidate drug target for TAA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem 2650, Belgium.
| |
Collapse
|
14
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Latorre M, Humphrey JD. Numerical knockouts-In silico assessment of factors predisposing to thoracic aortic aneurysms. PLoS Comput Biol 2020; 16:e1008273. [PMID: 33079926 PMCID: PMC7598929 DOI: 10.1371/journal.pcbi.1008273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/30/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Myriad risk factors–including uncontrolled hypertension, aging, and diverse genetic mutations–contribute to the development and enlargement of thoracic aortic aneurysms. Detailed analyses of clinical data and longitudinal studies of murine models continue to provide insight into the natural history of these potentially lethal conditions. Yet, because of the co-existence of multiple risk factors in most cases, it has been difficult to isolate individual effects of the many different factors or to understand how they act in combination. In this paper, we use a data-informed computational model of the initiation and progression of thoracic aortic aneurysms to contrast key predisposing risk factors both in isolation and in combination; these factors include localized losses of elastic fiber integrity, aberrant collagen remodeling, reduced smooth muscle contractility, and dysfunctional mechanosensing or mechanoregulation of extracellular matrix along with superimposed hypertension and aortic aging. In most cases, mild-to-severe localized losses in cellular function or matrix integrity give rise to varying degrees of local dilatations of the thoracic aorta, with enlargement typically exacerbated in cases wherein predisposing risk factors co-exist. The simulations suggest, for the first time, that effects of compromised smooth muscle contractility are more important in terms of dysfunctional mechanosensing and mechanoregulation of matrix than in vessel-level control of diameter and, furthermore, that dysfunctional mechanobiological control can yield lesions comparable to those in cases of compromised elastic fiber integrity. Particularly concerning, therefore, is that loss of constituents such as fibrillin-1, as in Marfan syndrome, can compromise both elastic fiber integrity and mechanosensing. Aneurysms are local dilatations of the arterial wall that are responsible for significant disability and death. Detailed analyses of clinical data continue to provide insight into the natural history of these potentially lethal conditions, with myriad risk factors–including uncontrolled hypertension, aging, and diverse genetic mutations–contributing to their development and enlargement. Yet, because of the co-existence of these risk factors in most cases, it has been difficult to isolate individual effects or to understand how they act in combination. In this paper, we use a computational model of the initiation and progression of thoracic aortic aneurysms to contrast key predisposing factors both in isolation and in combination as well as with superimposed hypertension and aging. The present study recovers many findings from mouse models but with new and important observations that promise to guide in vivo and ex vivo studies as we seek to understand and eventually better treat these complex, multi-factorial lesions, with data-informed patient-specific computations eventually the way forward.
Collapse
Affiliation(s)
- M. Latorre
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - J. D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ramachandra AB, Latorre M, Szafron JM, Marsden AL, Humphrey JD. Vascular adaptation in the presence of external support - A modeling study. J Mech Behav Biomed Mater 2020; 110:103943. [PMID: 32957235 DOI: 10.1016/j.jmbbm.2020.103943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/24/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
Vascular grafts have long been used to replace damaged or diseased vessels with considerable success, but a new approach is emerging where native vessels are merely supported, not replaced. Although external supports have been evaluated in diverse situations - ranging from aneurysmal disease to vein grafts or the Ross operation - optimal supports and procedures remain wanting. In this paper, we present a novel application of a growth and remodeling model well suited for parametrically exploring multiple designs of external supports while accounting for mechanobiological and immunobiological responses of the supported native vessel. These results suggest that a load bearing external support can reduce vessel thickening in response to pressure elevation. Results also suggest that the final adaptive state of the vessel depends on the structural stiffness of the support via a mechano-driven adaptation, although luminal encroachment may be a complication in the presence of chronic inflammation. Finally, the supported vessel can stiffen (structurally and materially) along circumferential and axial directions, which could have implications on overall hemodynamics and thus subsequent vascular remodeling. The proposed framework can provide valuable insights into vascular adaptation in the presence of external support, accelerate rational design, and aid translation of this emerging approach.
Collapse
Affiliation(s)
| | - Marcos Latorre
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Alison L Marsden
- Departments of Bioengineering and Pediatrics, Institute of Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
Abstract
Mutations in extracellular matrix and smooth muscle cell contractile proteins predispose to thoracic aortic aneurysms in Marfan syndrome (MFS) and related disorders. These genetic alterations lead to a compromised extracellular matrix-smooth muscle cell contractile unit. The abnormal aortic tissue responds with defective mechanosensing under hemodynamic stress. Aberrant mechanosensing is associated with transforming growth factor-beta (TGF-β) hyperactivity, enhanced angiotensin-II (Ang-II) signaling, and perturbation of other cellular signaling pathways. The downstream consequences include enhanced proteolytic activity, expression of inflammatory cytokines and chemokines, infiltration of inflammatory cells in the aortic wall, vascular smooth muscle cell apoptosis, and medial degeneration. Mouse models highlight aortic inflammation as a contributing factor in the development of aortic aneurysms. Anti-inflammatory drugs and antioxidants can reduce aortic oxidative stress that prevents aggravation of aortic disease in MFS mice. Targeting TGF-β and Ang-II downstream signaling pathways such as ERK1/2, mTOR, PI3/Akt, P38/MAPK, and Rho kinase signaling attenuates disease pathogenesis. Aortic extracellular matrix degradation and medial degeneration were reduced upon inhibition of inflammatory cytokines and matrix metalloproteinases, but the latter lack specificity. Treating inflammation associated with aortic aneurysms in MFS and related disorders could prove to be beneficial in limiting disease pathogenesis.
Collapse
|
18
|
Kornhuber KTI, Seidel H, Pujol C, Meierhofer C, Röschenthaler F, Pressler A, Stöckl A, Nagdyman N, Neidenbach RC, von Hundelshausen P, Halle M, Holdenrieder S, Ewert P, Kaemmerer H, Hauser M. Hemostatic abnormalities in adult patients with Marfan syndrome. Cardiovasc Diagn Ther 2019; 9:S209-S220. [PMID: 31737529 DOI: 10.21037/cdt.2019.08.09] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Aortic root ectasia might induce hemostatic disorders in patients with Marfan syndrome (MFS) via altered blood flow and rheology. The aim of this study was to explore the hemostasis in patients with MFS compared with healthy controls. Methods In this cross-sectional case-control study we included patients with verified MFS (n=51) and sex- and age-matched healthy controls (n=50). Main criteria were the aortic root in echocardiography and cardiac magnetic resonance imaging (MRI), and the coagulation status. Results When compared with healthy controls, patients with MFS showed significantly increased diameters of the aortic roots (43.0±7.72 vs. 28.8±3.74 mm, P<0.001) and aortic Z-scores (4.36±2.77 vs. 0.948±1.09, P<0.001), considerably higher values of Multiplate® tests (e.g., MP-ADP: 878.4±201.7 vs. 660.4±243.6 AU*min, P<0.001) and PFA-100® tests (PFA Col/ADP: 102.5±45.5 vs. 91.1±46.2 s, P<0.05), PTT (30.0±3.91 vs. 28.7±2.50 s, P<0.05) and D-dimers (0.488±0.665 vs. 0.254±0.099 mg/L, P<0.001). In MFS von Willebrand factor (VWF) activity (81.9%±41.8% vs. 106.3%±41.5%, P<0.05) and antigen (93.8%±43.9% vs. 118.8%±47.8%, P<0.05) and factor VIII activity (108.9%±29.6% vs. 126.7%±28.4%, P<0.05) were reduced. Significant positive correlations were found between aortic diameters and D-dimers (all P<0.05), as well as PFA Col/ADP (all P<0.01) in MFS patients. Factor VIII activity correlated significantly negatively with the diameter of the aortic root in MFS (r=-0.55, P<0.05). Conclusions In conclusion, our study reveals hemostatic deviations in patients with MFS. Further studies are necessary to understand the causal relationship and the exact pathomechanism.
Collapse
Affiliation(s)
- Katharina T I Kornhuber
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
| | - Heide Seidel
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany.,Institute of Human Genetics, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Claudia Pujol
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
| | - Christian Meierhofer
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
| | - Franz Röschenthaler
- Institute of Laboratory Medicine, German Heart Center Munich, Technical University Munich, Munich, Germany
| | - Axel Pressler
- Outpatients' Clinic for Prevention, Rehabilitation and Sports Medicine, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Alexander Stöckl
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
| | - Nicole Nagdyman
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
| | - Rhoia C Neidenbach
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention, Faculty of Medicine, Ludwig Maximilian University, Munich, Germany
| | - Martin Halle
- Outpatients' Clinic for Prevention, Rehabilitation and Sports Medicine, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute of Laboratory Medicine, German Heart Center Munich, Technical University Munich, Munich, Germany
| | - Peter Ewert
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
| | - Harald Kaemmerer
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
| | - Michael Hauser
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
| |
Collapse
|
19
|
Recent updates on the molecular network of elastic fiber formation. Essays Biochem 2019; 63:365-376. [PMID: 31395654 DOI: 10.1042/ebc20180052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022]
Abstract
Elastic fibers confer elasticity and recoiling to tissues and organs and play an essential role in induction of biochemical responses in a cell against mechanical forces derived from the microenvironment. The core component of elastic fibers is elastin (ELN), which is secreted as the monomer tropoelastin from elastogenic cells, and undergoes self-aggregation, cross-linking and deposition on to microfibrils, and assemble into insoluble ELN polymers. For elastic fibers to form, a microfibril scaffold (primarily formed by fibrillin-1 (FBN1)) is required. Numerous elastic fiber-associated proteins are involved in each step of elastogenesis and they instruct and/or facilitate the elastogenesis processes. In this review, we designated five proteins as key molecules in elastic fiber formation, including ELN, FBN1, fibulin-4 (FBLN4), fibulin-5 (FBLN5), and latent TGFβ-binding protein-4 (LTBP4). ELN and FBN1 serve as building blocks for elastic fibers. FBLN5, FBLN4 and LTBP4 have been demonstrated to play crucial roles in elastogenesis through knockout studies in mice. Using these molecules as a platform and expanding the elastic fiber network through the generation of an interactome map, we provide a concise review of elastogenesis with a recent update as well as discuss various biological functions of elastic fiber-associated proteins beyond elastogenesis in vivo.
Collapse
|
20
|
Okuyama M, Uchida HA, Hada Y, Kakio Y, Otaka N, Umebayashi R, Tanabe K, Fujii Y, Kasahara S, Subramanian V, Daugherty A, Sato Y, Wada J. Exogenous Vasohibin-2 Exacerbates Angiotensin II-Induced Ascending Aortic Dilation in Mice. Circ Rep 2019; 1:155-161. [PMID: 33693132 PMCID: PMC7890291 DOI: 10.1253/circrep.cr-19-0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background:
Chronic angiotensin II (AngII) infusion promotes ascending aortic dilation in C57BL/6J mice. Meanwhile, vasohibin-2 (VASH2) is an angiogenesis promoter in neovascularization under various pathologic conditions. The aim of this study was to investigate whether exogenous VASH2 influences chronic AngII-induced ascending aortic dilation. Methods and Results:
Eight–ten-week-old male C57BL/6J mice were injected with adenovirus (Ad) expressing either VASH2 or LacZ. One week after the injection, mice were infused with either AngII or saline s.c. for 3 weeks. Mice were divided into 4 groups: AngII+VASH2, AngII+LacZ, saline+VASH2, and saline+LacZ. Overexpression of VASH2 significantly increased AngII-induced intimal areas as well as the external diameter of the ascending aorta. In addition, VASH2 overexpression promoted ascending aortic medial elastin fragmentation in AngII-infused mice, which was associated with increased matrix metalloproteinase activity and medial smooth muscle cell (SMC) apoptosis. On western blot analysis, accumulation of apoptotic signaling proteins, p21 and p53 was increased in the AngII+VASH2 group. Furthermore, transfection of human aortic SMC with Ad VASH2 increased p21 and p53 protein abundance upon AngII stimulation. Positive TUNEL staining was also detected in the same group of the human aortic SMC. Conclusions:
Exogenous VASH2 exacerbates AngII-induced ascending aortic dilation in vivo, which is associated with increased medial apoptosis and elastin fragmentation.
Collapse
Affiliation(s)
- Michihiro Okuyama
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan.,Saha Cardiovascular Research Center, College of Medicine, University of Kentucky Lexington, KY USA
| | - Haruhito A Uchida
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan.,Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Yoshiko Hada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Yuki Kakio
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Nozomu Otaka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Ryoko Umebayashi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Katsuyuki Tanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Yasuhiro Fujii
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky Lexington, KY USA.,Department of Physiology, College of Medicine, University of Kentucky Lexington, KY USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky Lexington, KY USA.,Department of Physiology, College of Medicine, University of Kentucky Lexington, KY USA
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University Sendai Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama Japan
| |
Collapse
|
21
|
Elastic fibers and biomechanics of the aorta: Insights from mouse studies. Matrix Biol 2019; 85-86:160-172. [PMID: 30880160 DOI: 10.1016/j.matbio.2019.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022]
Abstract
Elastic fibers are major components of the extracellular matrix (ECM) in the aorta and support a life-long cycling of stretch and recoil. Elastic fibers are formed from mid-gestation throughout early postnatal development and the synthesis is regulated at multiple steps, including coacervation, deposition, cross-linking, and assembly of insoluble elastin onto microfibril scaffolds. To date, more than 30 molecules have been shown to associate with elastic fibers and some of them play a critical role in the formation and maintenance of elastic fibers in vivo. Because the aorta is subjected to high pressure from the left ventricle, elasticity of the aorta provides the Windkessel effect and maintains stable blood flow to distal organs throughout the cardiac cycle. Disruption of elastic fibers due to congenital defects, inflammation, or aging dramatically reduces aortic elasticity and affects overall vessel mechanics. Another important component in the aorta is the vascular smooth muscle cells (SMCs). Elastic fibers and SMCs alternate to create a highly organized medial layer within the aortic wall. The physical connections between elastic fibers and SMCs form the elastin-contractile units and maintain cytoskeletal organization and proper responses of SMCs to mechanical strain. In this review, we revisit the components of elastic fibers and their roles in elastogenesis and how a loss of each component affects biomechanics of the aorta. Finally, we discuss the significance of elastin-contractile units in the maintenance of SMC function based on knowledge obtained from mouse models of human disease.
Collapse
|
22
|
MacFarlane EG, Parker SJ, Shin JY, Kang BE, Ziegler SG, Creamer TJ, Bagirzadeh R, Bedja D, Chen Y, Calderon JF, Weissler K, Frischmeyer-Guerrerio PA, Lindsay ME, Habashi JP, Dietz HC. Lineage-specific events underlie aortic root aneurysm pathogenesis in Loeys-Dietz syndrome. J Clin Invest 2019; 129:659-675. [PMID: 30614814 PMCID: PMC6355234 DOI: 10.1172/jci123547] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022] Open
Abstract
The aortic root is the predominant site for development of aneurysm caused by heterozygous loss-of-function mutations in positive effectors of the transforming growth factor-β (TGF-β) pathway. Using a mouse model of Loeys-Dietz syndrome (LDS) that carries a heterozygous kinase-inactivating mutation in TGF-β receptor I, we found that the effects of this mutation depend on the lineage of origin of vascular smooth muscle cells (VSMCs). Secondary heart field-derived (SHF-derived), but not neighboring cardiac neural crest-derived (CNC-derived), VSMCs showed impaired Smad2/3 activation in response to TGF-β, increased expression of angiotensin II (AngII) type 1 receptor (Agtr1a), enhanced responsiveness to AngII, and higher expression of TGF-β ligands. The preserved TGF-β signaling potential in CNC-derived VSMCs associated, in vivo, with increased Smad2/3 phosphorylation. CNC-, but not SHF-specific, deletion of Smad2 preserved aortic wall architecture and reduced aortic dilation in this mouse model of LDS. Taken together, these data suggest that aortic root aneurysm predisposition in this LDS mouse model depends both on defective Smad signaling in SHF-derived VSMCs and excessive Smad signaling in CNC-derived VSMCs. This work highlights the importance of considering the regional microenvironment and specifically lineage-dependent variation in the vulnerability to mutations in the development and testing of pathogenic models for aortic aneurysm.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Humans
- Loeys-Dietz Syndrome/embryology
- Loeys-Dietz Syndrome/genetics
- Loeys-Dietz Syndrome/pathology
- Mice
- Mice, Mutant Strains
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Signal Transduction
- Smad2 Protein/genetics
- Smad2 Protein/metabolism
- Smad3 Protein/genetics
Collapse
Affiliation(s)
| | - Sarah J. Parker
- McKusick-Nathans Institute of Genetic Medicine
- Division of Cardiology, and
| | - Joseph Y. Shin
- McKusick-Nathans Institute of Genetic Medicine, Human Genetics Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Shira G. Ziegler
- McKusick-Nathans Institute of Genetic Medicine, Human Genetics Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tyler J. Creamer
- Department of Surgery
- McKusick-Nathans Institute of Genetic Medicine, Human Genetics Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Yichun Chen
- McKusick-Nathans Institute of Genetic Medicine
| | - Juan F. Calderon
- McKusick-Nathans Institute of Genetic Medicine, Human Genetics Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine Weissler
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | - Mark E. Lindsay
- McKusick-Nathans Institute of Genetic Medicine
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer P. Habashi
- McKusick-Nathans Institute of Genetic Medicine
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harry C. Dietz
- McKusick-Nathans Institute of Genetic Medicine
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Humphrey JD, Tellides G. Central artery stiffness and thoracic aortopathy. Am J Physiol Heart Circ Physiol 2019; 316:H169-H182. [PMID: 30412443 PMCID: PMC6880196 DOI: 10.1152/ajpheart.00205.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Abstract
Thoracic aortopathy, especially aneurysm, dissection, and rupture, is responsible for significant morbidity and mortality. Uncontrolled hypertension and aging are primary risk factors for such conditions, and they contribute to an increase in the mechanical stress on the wall and an increase in its structural vulnerability, respectively. Select genetic mutations also predispose to these lethal conditions, and the collection of known mutations suggests that dysfunctional mechanosensing and mechanoregulation of the extracellular matrix may contribute to pathogenesis and disease progression. In the absence of a well-accepted pharmacotherapy, nonsurgical treatments tend to focus on reducing the mechanical loading on the aorta, particularly via the use of antihypertensive medications and recommendations to avoid strenuous exercises such as weight lifting. In this brief review, we discuss the important effects of central artery stiffening on global hemodynamics and, in particular, on the increase in pulse pressure that acts on the proximal thoracic aorta. We consider Marfan syndrome as an illustrative aortopathy but discuss other conditions leading to thoracic aortic aneurysm and dissection. We highlight the importance of phenotyping the aorta biomechanically, not just clinically, and emphasize the utility of mouse models in elucidating molecular and mechanical mechanisms of disease. Notwithstanding the widely recognized role of central artery stiffening in driving end-organ disease, we suggest that there is similarly a need to consider its key role in thoracic aortopathy.
Collapse
Affiliation(s)
- J. D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - G. Tellides
- Department of Surgery, Yale University, New Haven, Connecticut
- Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| |
Collapse
|
24
|
López-Guimet J, Peña-Pérez L, Bradley RS, García-Canadilla P, Disney C, Geng H, Bodey AJ, Withers PJ, Bijnens B, Sherratt MJ, Egea G. MicroCT imaging reveals differential 3D micro-scale remodelling of the murine aorta in ageing and Marfan syndrome. Am J Cancer Res 2018; 8:6038-6052. [PMID: 30613281 PMCID: PMC6299435 DOI: 10.7150/thno.26598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
Aortic wall remodelling is a key feature of both ageing and genetic connective tissue diseases, which are associated with vasculopathies such as Marfan syndrome (MFS). Although the aorta is a 3D structure, little attention has been paid to volumetric assessment, primarily due to the limitations of conventional imaging techniques. Phase-contrast microCT is an emerging imaging technique, which is able to resolve the 3D micro-scale structure of large samples without the need for staining or sectioning. Methods: Here, we have used synchrotron-based phase-contrast microCT to image aortae of wild type (WT) and MFS Fbn1C1039G/+ mice aged 3, 6 and 9 months old (n=5). We have also developed a new computational approach to automatically measure key histological parameters. Results: This analysis revealed that WT mice undergo age-dependent aortic remodelling characterised by increases in ascending aorta diameter, tunica media thickness and cross-sectional area. The MFS aortic wall was subject to comparable remodelling, but the magnitudes of the changes were significantly exacerbated, particularly in 9 month-old MFS mice with ascending aorta wall dilations. Moreover, this morphological remodelling in MFS aorta included internal elastic lamina surface breaks that extended throughout the MFS ascending aorta and were already evident in animals who had not yet developed aneurysms. Conclusions: Our 3D microCT study of the sub-micron wall structure of whole, intact aorta reveals that histological remodelling of the tunica media in MFS could be viewed as an accelerated ageing process, and that phase-contrast microCT combined with computational image analysis allows the visualisation and quantification of 3D morphological remodelling in large volumes of unstained vascular tissues.
Collapse
|
25
|
Korneva A, Zilberberg L, Rifkin DB, Humphrey JD, Bellini C. Absence of LTBP-3 attenuates the aneurysmal phenotype but not spinal effects on the aorta in Marfan syndrome. Biomech Model Mechanobiol 2018; 18:261-273. [PMID: 30306291 DOI: 10.1007/s10237-018-1080-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
Fibrillin-1 is an elastin-associated glycoprotein that contributes to the long-term fatigue resistance of elastic fibers as well as to the bioavailability of transforming growth factor-beta (TGFβ) in arteries. Altered TGFβ bioavailability and/or signaling have been implicated in aneurysm development in Marfan syndrome (MFS), a multi-system condition resulting from mutations to the gene that encodes fibrillin-1. We recently showed that the absence of the latent transforming growth factor-beta binding protein-3 (LTBP-3) in fibrillin-1-deficient mice attenuates the fragmentation of elastic fibers and focal dilatations that are characteristic of aortic root aneurysms in MFS mice, at least to 12 weeks of age. Here, we show further that the absence of LTBP-3 in this MFS mouse model improves the circumferential mechanical properties of the thoracic aorta, which appears to be fundamental in preventing or significantly delaying aneurysm development. Yet, a spinal deformity either remains or is exacerbated in the absence of LTBP-3 and seems to adversely affect the axial mechanical properties of the thoracic aorta, thus decreasing overall vascular function despite the absence of aneurysmal dilatation. Importantly, because of the smaller size of mice lacking LTBP-3, allometric scaling facilitates proper interpretation of aortic dimensions and thus the clinical phenotype. While this study demonstrates that LTBP-3/TGFβ directly affects the biomechanical function of the thoracic aorta, it highlights that spinal deformities in MFS might indirectly and adversely affect the overall aortic phenotype. There is a need, therefore, to consider together the vascular and skeletal effects in this syndromic disease.
Collapse
Affiliation(s)
- A Korneva
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - L Zilberberg
- Departments of Cell Biology and Medicine, New York University, New York, NY, USA
| | - D B Rifkin
- Departments of Cell Biology and Medicine, New York University, New York, NY, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - C Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
26
|
Bersi MR, Khosravi R, Wujciak AJ, Harrison DG, Humphrey JD. Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension. J R Soc Interface 2018; 14:rsif.2017.0327. [PMID: 29118111 DOI: 10.1098/rsif.2017.0327] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/17/2017] [Indexed: 01/01/2023] Open
Abstract
The embryonic lineage of intramural cells, microstructural organization of the extracellular matrix, local luminal and wall geometry, and haemodynamic loads vary along the length of the aorta. Yet, it remains unclear why certain diseases manifest differentially along the aorta. Toward this end, myriad animal models provide insight into diverse disease conditions-including fibrosis, aneurysm and dissection-but inherent differences across models impede general interpretations. We examined region-specific cellular, matrix, and biomechanical changes in a single experimental model of hypertension and atherosclerosis, which commonly coexist. Our findings suggest that (i) intramural cells within the ascending aorta are unable to maintain the intrinsic material stiffness of the wall, which ultimately drives aneurysmal dilatation, (ii) a mechanical stress-initiated, inflammation-driven remodelling within the descending aorta results in excessive fibrosis, and (iii) a transient loss of adventitial collagen within the suprarenal aorta contributes to dissection propensity. Smooth muscle contractility helps to control wall stress in the infrarenal aorta, which maintains mechanical properties near homeostatic levels despite elevated blood pressure. This early mechanoadaptation of the infrarenal aorta does not preclude subsequent acceleration of neointimal formation, however. Because region-specific conditions may be interdependent, as, for example, diffuse central arterial stiffening can increase cyclic haemodynamic loads on an aneurysm that is developing proximally, there is a clear need for more systematic assessments of aortic disease progression, not simply a singular focus on a particular region or condition.
Collapse
Affiliation(s)
- M R Bersi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - R Khosravi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - A J Wujciak
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - D G Harrison
- Department of Medicine, Vanderbilt University, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA .,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
27
|
Bellini C, Bersi MR, Caulk AW, Ferruzzi J, Milewicz DM, Ramirez F, Rifkin DB, Tellides G, Yanagisawa H, Humphrey JD. Comparison of 10 murine models reveals a distinct biomechanical phenotype in thoracic aortic aneurysms. J R Soc Interface 2018; 14:rsif.2016.1036. [PMID: 28490606 DOI: 10.1098/rsif.2016.1036] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/18/2017] [Indexed: 12/31/2022] Open
Abstract
Thoracic aortic aneurysms are life-threatening lesions that afflict young and old individuals alike. They frequently associate with genetic mutations and are characterized by reduced elastic fibre integrity, dysfunctional smooth muscle cells, improperly remodelled collagen and pooled mucoid material. There is a pressing need to understand better the compromised structural integrity of the aorta that results from these genetic mutations and renders the wall vulnerable to dilatation, dissection or rupture. In this paper, we compare the biaxial mechanical properties of the ascending aorta from 10 murine models: wild-type controls, acute elastase-treated, and eight models with genetic mutations affecting extracellular matrix proteins, transmembrane receptors, cytoskeletal proteins, or intracellular signalling molecules. Collectively, our data for these diverse mouse models suggest that reduced mechanical functionality, as indicated by a decreased elastic energy storage capability or reduced distensibility, does not predispose to aneurysms. Rather, despite normal or lower than normal circumferential and axial wall stresses, it appears that intramural cells in the ascending aorta of mice prone to aneurysms are unable to maintain or restore the intrinsic circumferential material stiffness, which may render the wall biomechanically vulnerable to continued dilatation and possible rupture. This finding is consistent with an underlying dysfunctional mechanosensing or mechanoregulation of the extracellular matrix, which normally endows the wall with both appropriate compliance and sufficient strength.
Collapse
Affiliation(s)
- C Bellini
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - M R Bersi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - A W Caulk
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - J Ferruzzi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - D M Milewicz
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - F Ramirez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mt Sinai, New York, NY, USA
| | - D B Rifkin
- Department of Cell Biology, New York, NY, USA.,Department of Medicine, New York University, New York, NY, USA
| | - G Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - H Yanagisawa
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA .,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
28
|
Bellini C, Caulk AW, Li G, Tellides G, Humphrey JD. Biomechanical Phenotyping of the Murine Aorta: What Is the Best Control? J Biomech Eng 2017; 139:2595197. [PMID: 28005132 DOI: 10.1115/1.4035551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 12/26/2022]
Abstract
The availability of diverse mouse models is revealing increasingly greater information on arterial mechanics, including homeostatic adaptations and pathologic maladaptations to genetic, pharmacological, and surgical manipulations. Fundamental to understanding such biomechanical changes, however, is reliable information on appropriate control vessels. In this paper, we contrast 15 different geometrical and mechanical metrics of biaxial wall mechanics for the ascending aorta across seven different types of possible control mice. We show that there is a comforting similarity across these multiple controls for most, though not all, metrics. In particular, three potential controls, namely, noninduced conditional mice, exhibit higher values of distensibility, an important clinical metric of structural stiffness, and two of these potential controls also have higher values of intrinsic circumferential material stiffness. There is motivation, therefore, to understand better the biomechanical changes that can arise with noninduced Cre-lox or similar approaches for generating mutations conditionally. In cases of germline mutations generated by breeding heterozygous +/- mice, however, the resulting homozygous +/+ mice tend to exhibit properties similar to traditional (C57BL/6) controls.
Collapse
Affiliation(s)
- C Bellini
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
| | - A W Caulk
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520
| | - G Li
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520
| | - G Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06520
| | - J D Humphrey
- Fellow ASME Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06520; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06520 e-mail:
| |
Collapse
|
29
|
Jiménez-Altayó F, Siegert AM, Bonorino F, Meirelles T, Barberà L, Dantas AP, Vila E, Egea G. Differences in the Thoracic Aorta by Region and Sex in a Murine Model of Marfan Syndrome. Front Physiol 2017; 8:933. [PMID: 29187826 PMCID: PMC5694786 DOI: 10.3389/fphys.2017.00933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022] Open
Abstract
Marfan syndrome (MFS) is a hereditary disorder of the connective tissue that causes life-threatening aortic aneurysm, which initiates at the aortic root and can progress into the ascending portion. However, analysis of ascending aorta reactivity in animal models of MFS has remained elusive. Epidemiologic evidence suggests that although MFS is equally prevalent in men and women, men are at a higher risk of aortic complications than non-pregnant women. Nevertheless, there is no experimental evidence to support this hypothesis. The aim of this study was to explore whether there are regional and sex differences in the thoracic aorta function of mice heterozygous for the fibrillin 1 (Fbn1) allele encoding a missense mutation (Fbn1C1039G/+), the most common class of mutation in MFS. Ascending and descending thoracic aorta reactivity was evaluated by wire myography. Ascending aorta mRNA and protein levels, and elastic fiber integrity were assessed by qRT-PCR, Western blotting, and Verhoeff-Van Gieson histological staining, respectively. MFS differently altered reactivity in the ascending and descending thoracic aorta by either increasing or decreasing phenylephrine contractions, respectively. When mice were separated by sex, contractions to phenylephrine increased progressively from 3 to 6 months of age in MFS ascending aortas of males, whereas contractions in females were unchanged. Endothelium-dependent relaxation was unaltered in the MFS ascending aorta of either sex; an effect related to augmented endothelium-dependent hyperpolarization-type dilations. In MFS males, the non-selective cyclooxygenase (COX) inhibitor indomethacin prevented the MFS-induced enhancement of phenylephrine contractions linked to increased COX-2 expression. In MFS mice of both sexes, the non-selective nitric oxide synthase inhibitor L-NAME revealed negative feedback of nitric oxide on phenylephrine contractions, which was associated with upregulation of eNOS in females. Finally, MFS ascending aortas showed a greater number of elastic fiber breaks than the wild-types, and males exhibited more breaks than females. These results show regional and sex differences in Fbn1C1039G/+ mice thoracic aorta contractility and aortic media injuries. The presence of more pronounced aortic alterations in male mice provides experimental evidence to support that male MFS patients are at increased risk of suffering aortic complications.
Collapse
Affiliation(s)
- Francesc Jiménez-Altayó
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna-Maria Siegert
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Fabio Bonorino
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thayna Meirelles
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Laura Barberà
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Ana P Dantas
- Institut Clínic del Tòrax, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Elisabet Vila
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Gustavo Egea
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Biomechanics of human parietal pleura in uniaxial extension. J Mech Behav Biomed Mater 2017; 75:330-335. [DOI: 10.1016/j.jmbbm.2017.07.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/17/2022]
|
31
|
Condemi F, Campisi S, Viallon M, Troalen T, Xuexin G, Barker AJ, Markl M, Croisille P, Trabelsi O, Cavinato C, Duprey A, Avril S. Fluid- and Biomechanical Analysis of Ascending Thoracic Aorta Aneurysm with Concomitant Aortic Insufficiency. Ann Biomed Eng 2017; 45:2921-2932. [DOI: 10.1007/s10439-017-1913-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/31/2017] [Indexed: 01/18/2023]
|
32
|
Ramirez F, Caescu C, Wondimu E, Galatioto J. Marfan syndrome; A connective tissue disease at the crossroads of mechanotransduction, TGFβ signaling and cell stemness. Matrix Biol 2017; 71-72:82-89. [PMID: 28782645 DOI: 10.1016/j.matbio.2017.07.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 12/16/2022]
Abstract
Mutations in fibrillin-1 cause Marfan syndrome (MFS), the most common heritable disorder of connective tissue. Fibrillin-1 assemblies (microfibrils and elastic fibers) represent a unique dual-function component of the architectural matrix. The first role is structural for they endow tissues with tensile strength and elasticity, transmit forces across them and demarcate functionally discrete areas within them. The second role is instructive in that these macroaggregates modulate a large variety of sub-cellular processes by interacting with mechanosensors, and integrin and syndecan receptors, and by modulating the bioavailability of local TGFβ signals. The multifunctional, tissue-specific nature of fibrillin-1 assemblies is reflected in the variety of clinical manifestations and disease mechanisms associated with the MFS phenotype. Characterization of mice with ubiquitous or cell type-restricted fibrillin-1 deficiency has unraveled some pathophysiological mechanisms associated with the MFS phenotype, such as altered mechanotransduction in the heart, dysregulated TGFβ signaling in the ascending aorta and perturbed stem cell fate in the bone marrow. In each case, potential druggable targets have also been identified. However, the finding that distinct disease mechanisms underlie different organ abnormalities strongly argues for developing multi-drug strategies to mitigate or even prevent both life-threatening and morbid manifestations in pediatric and adult MFS patients.
Collapse
Affiliation(s)
- Francesco Ramirez
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Cristina Caescu
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Elisabeth Wondimu
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Josephine Galatioto
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
33
|
Milewicz DM, Prakash SK, Ramirez F. Therapeutics Targeting Drivers of Thoracic Aortic Aneurysms and Acute Aortic Dissections: Insights from Predisposing Genes and Mouse Models. Annu Rev Med 2017; 68:51-67. [PMID: 28099082 PMCID: PMC5499376 DOI: 10.1146/annurev-med-100415-022956] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thoracic aortic diseases, including aneurysms and dissections of the thoracic aorta, are a major cause of morbidity and mortality. Risk factors for thoracic aortic disease include increased hemodynamic forces on the ascending aorta, typically due to poorly controlled hypertension, and heritable genetic variants. The altered genes predisposing to thoracic aortic disease either disrupt smooth muscle cell (SMC) contraction or adherence to an impaired extracellular matrix, or decrease canonical transforming growth factor beta (TGF-β) signaling. Paradoxically, TGF-β hyperactivity has been postulated to be the primary driver for the disease. More recently, it has been proposed that the response of aortic SMCs to the hemodynamic load on a structurally defective aorta is the primary driver of thoracic aortic disease, and that TGF-β overactivity in diseased aortas is a secondary, unproductive response to restore tissue function. The engineering of mouse models of inherited aortopathies has identified potential therapeutic agents to prevent thoracic aortic disease.
Collapse
Affiliation(s)
- Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030;
| | - Siddharth K Prakash
- Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030;
| | - Francesco Ramirez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
34
|
Lee JJ, Galatioto J, Rao S, Ramirez F, Costa KD. Losartan Attenuates Degradation of Aorta and Lung Tissue Micromechanics in a Mouse Model of Severe Marfan Syndrome. Ann Biomed Eng 2016; 44:2994-3006. [PMID: 27090893 PMCID: PMC5880286 DOI: 10.1007/s10439-016-1616-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/07/2016] [Indexed: 01/24/2023]
Abstract
Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aortic wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1(mgR/mgR) mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1(mgR/mgR) tissues, whereas the media layer of MFS aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, MFS mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS.
Collapse
Affiliation(s)
- Jia-Jye Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Josephine Galatioto
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Satish Rao
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Francesco Ramirez
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
35
|
Marino M, Korossis S. Cardiovascular biomechanics in health and disease. J Biomech 2016; 49:2319-20. [PMID: 27240751 DOI: 10.1016/j.jbiomech.2016.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michele Marino
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Appelstraße 11, 30167 Hannover, Germany.
| | - Sotirios Korossis
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany.
| |
Collapse
|