1
|
Enomoto S, Furuuchi S, Ishibashi T, Yamada S, Oda T. Degree of twist in the Achilles tendon interacts with its length and thickness in affecting local strain magnitude: a finite element analysis. Front Bioeng Biotechnol 2024; 12:1445364. [PMID: 39545020 PMCID: PMC11561387 DOI: 10.3389/fbioe.2024.1445364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction The relationship between the twisting of the three subtendons of the Achilles tendon (AT) and local strain has received attention in recent years. The present study aimed to elucidate how the degree of twist in the AT affects strain using finite element (FE) analysis, while also considering other geometries (e.g., length, thickness, and width) and their combinations. Methods A total of 59 FE models with different degrees of twist and geometries were created. A lengthening force (z-axis) of 1,000 N was applied to each subtendon (total: 3,000 N). The average value of the first principal Lagrange strain was calculated for the middle third of the total length of the model. Results Statistical (stepwise) analysis revealed the effects of the degree of twist, other geometries, and their combinations on AT strain. The main findings were as follows: (1) a greater degree of twist resulted in higher average strains (t = 9.28, p < 0.0001) and (2) the effect of the degree of twist on the strain depended on dimensions of thickness of the most distal part of the AT (t = -4.49, p < 0.0001) and the length of the AT (t = -3.82, p = 0.0005). Specifically, when the thickness of the most distal part and length were large, the degree of twist had a small effect on the first principal Lagrange strain; however, when the thickness of the most distal part and length were small, a greater degree of twist results in higher first principal Lagrange strain. Conclusion These results indicate that the relationship between the degree of twist and local strain is complex and may not be accurately assessed by FE simulation using a single geometry.
Collapse
Affiliation(s)
- Shota Enomoto
- Institute for Promotion of Education and Campus Life, Okayama University, Okayama, Japan
| | - Shunya Furuuchi
- Graduate School of Science and Technology, Keio University, Yokohama, Japan
| | - Tatsuki Ishibashi
- Graduate School of Science and Technology, Keio University, Yokohama, Japan
| | - Shu Yamada
- Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Toshiaki Oda
- Graduate School of Education, Hyogo University of Teacher Education, Kato, Japan
| |
Collapse
|
2
|
Lloyd D. The future of in-field sports biomechanics: wearables plus modelling compute real-time in vivo tissue loading to prevent and repair musculoskeletal injuries. Sports Biomech 2024; 23:1284-1312. [PMID: 34496728 DOI: 10.1080/14763141.2021.1959947] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/20/2021] [Indexed: 01/13/2023]
Abstract
This paper explores the use of biomechanics in identifying the mechanistic causes of musculoskeletal tissue injury and degeneration. It appraises how biomechanics has been used to develop training programmes aiming to maintain or recover tissue health. Tissue health depends on the functional mechanical environment experienced by tissues during daily and rehabilitation activities. These environments are the result of the interactions between tissue motion, loading, biology, and morphology. Maintaining health of and/or repairing musculoskeletal tissues requires targeting the "ideal" in vivo tissue mechanics (i.e., loading and deformation), which may be enabled by appropriate real-time biofeedback. Recent research shows that biofeedback technologies may increase their quality and effectiveness by integrating a personalised neuromusculoskeletal modelling driven by real-time motion capture and medical imaging. Model personalisation is crucial in obtaining physically and physiologically valid predictions of tissue biomechanics. Model real-time execution is crucial and achieved by code optimisation and artificial intelligence methods. Furthermore, recent work has also shown that laboratory-based motion capture biomechanical measurements and modelling can be performed outside the laboratory with wearable sensors and artificial intelligence. The next stage is to combine these technologies into well-designed easy to use products to guide training to maintain or recover tissue health in the real-world.
Collapse
Affiliation(s)
- David Lloyd
- School of Health Sciences and Social Work, Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), in the Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Griffith University, Australia
| |
Collapse
|
3
|
Diniz P, Quental C, Pereira H, Ferreira AS, Kerkhoffs GMMJ, Ferreira FC, Folgado J. Does free tendon length influence the injury risk of the Achilles tendon? A finite element study. J Exp Orthop 2024; 11:e70036. [PMID: 39545025 PMCID: PMC11561656 DOI: 10.1002/jeo2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 11/17/2024] Open
Abstract
Purpose The Achilles tendon is a common injury site, but anatomical risk factors for injury are relatively unexplored in the literature. This study aimed to evaluate whether changes in free tendon length would influence the results of a simulated rupture of the Achilles tendon. Methods Using a previously validated 3D finite element model of the free and aponeurotic Achilles tendon as a basis, two additional finite element models with 25% decreased and increased free tendon lengths were created. The finite element models were sequentially loaded from 2500 to 3500N in 100N increments, and the total volume of elements exhibiting a maximal principal strain above 10% was recorded. An Achilles tendon rupture was considered to have occurred when a continuous group of elements with a volume of at least 3 mm3 exhibited a maximum principal strain above 10%. Models were compared regarding the smallest load that met the rupture criterion and plots of the percentage of elements exhibiting maximum principal strains above 10% across the loading range. Sensitivity analyses assessed the influence of subtendon division variations and subtendon sliding restriction on the results. Results Rupture loads and plots of the percentage of elements with maximum principal strains above 10% were similar between models, regardless of the free tendon length. No models met the rupture criterion when simulations were run without subtendon sliding. Rupture loads in the subtendon division variation models were correlated with the subtendon cross-sectional areas. Conclusions The simulated rupture results of the Achilles tendon were sensitive to variations in subtendon cross-sectional areas but not in free tendon length. Level of Evidence Level V.
Collapse
Affiliation(s)
- Pedro Diniz
- Department of Orthopaedic SurgeryCentre Hospitalier de Luxembourg – Clinique d'EichLuxembourgLuxembourg
- Department of Bioengineering and iBBInstitute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
- Luxembourg Institute of Research in Orthopedics, Sports Medicine and Science (LIROMS)LuxembourgLuxembourg
- Luxembourg Institute of Health (LIH)LuxembourgLuxembourg
| | - Carlos Quental
- IDMEC, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
| | - Hélder Pereira
- Department of OrthopaedicCentro Hospitalar Póvoa de VarzimVila do CondePortugal
- Ripoll y De Prado Sports Clinic: FIFA Medical Centre of Excellence, Murcia‐MadridMurciaSpain
- University of Minho ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | | | - Gino M. M. J. Kerkhoffs
- Department of Orthopaedic Surgery, Amsterdam Movement SciencesAmsterdam University Medical Centers; Academic Center for Evidence Based Sports Medicine (ACES); Amsterdam Collaboration for Health and Safety in Sports (ACHSS)AmsterdamThe Netherlands
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBBInstitute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
| | - João Folgado
- IDMEC, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
| |
Collapse
|
4
|
Lazarczuk SL, Collings TJ, Hams AH, Timmins RG, Shield AJ, Barrett RS, Bourne MN. Hamstring Muscle-Tendon Geometric Adaptations to Resistance Training Using the Hip Extension and Nordic Hamstring Exercises. Scand J Med Sci Sports 2024; 34:e14728. [PMID: 39297348 DOI: 10.1111/sms.14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/27/2024]
Abstract
Targeted resistance training stimulates hamstring muscle hypertrophy, but its effect on tendon-aponeurosis geometry is unknown. This study examined changes in hamstring muscle, free tendon, and aponeurosis geometry following a 10 week Nordic or hip extension exercise intervention. Thirty recreationally active males were randomly allocated (n = 10 per group) to a Nordic, hip extension, or control group. Magnetic resonance imaging of both thighs was acquired pre- and post-intervention. Changes in free tendon and aponeurosis volume for each hamstring muscle, biceps femoris long head (BFlh) aponeurosis interface area and muscle volume-to-interface area ratio were compared between groups. Regional changes in muscle CSA were examined via statistical parametric mapping. The change in semimembranosus free tendon volume was greater for the Nordic than control group (mean difference = 0.06 cm3, 95% CI = 0.02-0.11 cm3). No significant between-group differences existed for other hamstring free tendons or aponeuroses. There were no between-group differences in change in BFlh interface area. Change in BFlh muscle volume-to-interface area ratio was greater in the hip extension than Nordic (mean difference = 0.10, 95% CI = 0.007-0.19, p = 0.03) and control (mean difference = 0.12, 95% CI = 0.03-0.22, p = 0.009) groups. Change in muscle CSA following training was greatest in the mid-portion of semitendinosus for both intervention groups, and the mid-portion of BFlh for the hip extension group. There was limited evidence for tendon-aponeurosis hypertrophy after 10 weeks of training with the Nordic or hip extension exercises. For the BFlh, neither intervention altered the interface area although hip extension training stimulated an increase in the muscle volume-to-interface area ratio, which may have implications for localized tissue strains. Alternative muscle-tendon loading strategies appear necessary to stimulate hamstring tendon adaptations.
Collapse
Affiliation(s)
- Stephanie L Lazarczuk
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Department of Sport and Health, Solent University, Southampton, UK
| | - Tyler J Collings
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Andrea H Hams
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Ryan G Timmins
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Queensland, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, Victoria, Australia
| | - Anthony J Shield
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Rod S Barrett
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Matthew N Bourne
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
5
|
Ren T, Inglis B, Darwiche S, Dailey HL. Torsion constants and virtual mechanical tests are valid image-based surrogate measures of ovine fracture healing. J Orthop Res 2024; 42:1810-1819. [PMID: 38491964 DOI: 10.1002/jor.25836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/30/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
In large animal studies, the mechanical reintegration of the bone fragments is measured using postmortem physical testing, but these assessments can only be performed once, after sacrifice. Image-based virtual mechanical testing is an attractive alternative because it could be used to monitor healing longitudinally. However, the procedures and software required to perform finite element analysis (FEA) on subject-specific models for virtual mechanical testing can be time consuming and costly. Accordingly, the goal of this study was to determine whether a simpler image-based geometric measure-the torsion constant, sometimes known as polar moment of inertia-can be reliably used as a surrogate measure of bone healing in large animals. To achieve this, postmortem biomechanical testing and microCT scans were analyzed for a total of 33 operated and 20 intact ovine tibiae. An image-processing procedure to compute the attenuation-weighted torsion constant from the microCT scans was developed in MATLAB and this code has been made freely available. Linear regression analysis was performed between the postmortem biomechanical data, the results of virtual mechanical testing using FEA, and the torsion constants measured from the scans. The results showed that virtual mechanical testing is the most reliable surrogate measure of postmortem torsional rigidity, having strong correlations and high absolute agreement. However, when FEA is not practical, the torsion constant is a viable alternative surrogate measure that is moderately correlated with postmortem torsional rigidity and can be readily calculated.
Collapse
Affiliation(s)
- Tianyi Ren
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Brendan Inglis
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Salim Darwiche
- Musculoskeltal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Hannah L Dailey
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
6
|
Łazarz DP, Yika ADC, Pękala JR, Walocha JA, Pękala PA. Clinical anatomy of the human Achilles subtendons twist - meta-analysis. Ann Anat 2024; 254:152271. [PMID: 38677622 DOI: 10.1016/j.aanat.2024.152271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE This study aimed to provide a comprehensive and current overview of the anatomy of the Achilles tendon (AT) twisted structure, as there is a discrepancy in the literature regarding its rotating morphology. METHODS An extensive literature search was conducted across multiple databases to identify all studies that reported relevant data on the AT torsion, with no date or language restrictions applied. Data was extracted and assessed for this meta-analysis following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The quality of the included articles was examined using the anatomical quality assessment (AQUA) tool. RESULTS Seven articles (n=690 limbs) were pooled into this meta-analysis. The prevalence of Achilles tendon torsion types was as follows: type II was the most common (46.7%, 95% CI: 31.6-60.9%), followed by type I (44.7%, 95% CI: 29.8-59.0%), and least commonly, type III (8.6%, 95% CI: 1.8-18.8%). Additionally, morphometric analysis, utilizing the method described by van Gils et al., revealed a mean Achilles tendon torsion of 46.5° (95% CI: 25.1-67.9°). CONCLUSIONS This meta-analysis underscores the prominent and variable twist within the Achilles tendon among individuals, emphasizing the inherent diversity in AT morphology. Furthermore, the study highlights the importance of considering torsion angle as a potential factor influencing AT pathologies and biomechanical function.
Collapse
Affiliation(s)
- Dominik P Łazarz
- International Evidence-Based Anatomy Working Group, Cracow, Poland; Department of Anatomy, Jagiellonian University Medical College, Cracow, Poland
| | - Alicia Del Carmen Yika
- International Evidence-Based Anatomy Working Group, Cracow, Poland; Department of Anatomy, Jagiellonian University Medical College, Cracow, Poland
| | - Jakub R Pękala
- International Evidence-Based Anatomy Working Group, Cracow, Poland; Department of Anatomy, Jagiellonian University Medical College, Cracow, Poland
| | - Jerzy A Walocha
- International Evidence-Based Anatomy Working Group, Cracow, Poland; Department of Anatomy, Jagiellonian University Medical College, Cracow, Poland
| | - Przemysław A Pękala
- International Evidence-Based Anatomy Working Group, Cracow, Poland; Department of Anatomy, Jagiellonian University Medical College, Cracow, Poland.
| |
Collapse
|
7
|
Lloyd DG, Jonkers I, Delp SL, Modenese L. The History and Future of Neuromusculoskeletal Biomechanics. J Appl Biomech 2023; 39:273-283. [PMID: 37751904 DOI: 10.1123/jab.2023-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 09/28/2023]
Abstract
The Executive Council of the International Society of Biomechanics has initiated and overseen the commemorations of the Society's 50th Anniversary in 2023. This included multiple series of lectures at the ninth World Congress of Biomechanics in 2022 and XXIXth Congress of the International Society of Biomechanics in 2023, all linked to special issues of International Society of Biomechanics' affiliated journals. This special issue of the Journal of Applied Biomechanics is dedicated to the biomechanics of the neuromusculoskeletal system. The reader is encouraged to explore this special issue which comprises 6 papers exploring the current state-of the-art, and future directions and roles for neuromusculoskeletal biomechanics. This editorial presents a very brief history of the science of the neuromusculoskeletal system's 4 main components: the central nervous system, musculotendon units, the musculoskeletal system, and joints, and how they biomechanically integrate to enable an understanding of the generation and control of human movement. This also entails a quick exploration of contemporary neuromusculoskeletal biomechanics and its future with new fields of application.
Collapse
Affiliation(s)
- David G Lloyd
- Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, School of Health Science and Social Work, Griffith University, Gold Coast, QLD, Australia
| | - Ilse Jonkers
- Institute of Physics-Based Modeling for in Silico Health, Human Movement Science Department, KU Leuven, Leuven, Belgium
| | - Scott L Delp
- Bioengineering, Mechanical Engineering and Orthopedic Surgery, and Wu Tsai Human Performance Alliance at Stanford, Stanford University, Stanford, CA, USA
| | - Luca Modenese
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
8
|
Lloyd DG, Saxby DJ, Pizzolato C, Worsey M, Diamond LE, Palipana D, Bourne M, de Sousa AC, Mannan MMN, Nasseri A, Perevoshchikova N, Maharaj J, Crossley C, Quinn A, Mulholland K, Collings T, Xia Z, Cornish B, Devaprakash D, Lenton G, Barrett RS. Maintaining soldier musculoskeletal health using personalised digital humans, wearables and/or computer vision. J Sci Med Sport 2023:S1440-2440(23)00070-1. [PMID: 37149408 DOI: 10.1016/j.jsams.2023.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVES The physical demands of military service place soldiers at risk of musculoskeletal injuries and are major concerns for military capability. This paper outlines the development new training technologies to prevent and manage these injuries. DESIGN Narrative review. METHODS Technologies suitable for integration into next-generation training devices were examined. We considered the capability of technologies to target tissue level mechanics, provide appropriate real-time feedback, and their useability in-the-field. RESULTS Musculoskeletal tissues' health depends on their functional mechanical environment experienced in military activities, training and rehabilitation. These environments result from the interactions between tissue motion, loading, biology, and morphology. Maintaining health of and/or repairing joint tissues requires targeting the "ideal" in vivo tissue mechanics (i.e., loading and strain), which may be enabled by real-time biofeedback. Recent research has shown that these biofeedback technologies are possible by integrating a patient's personalised digital twin and wireless wearable devices. Personalised digital twins are personalised neuromusculoskeletal rigid body and finite element models that work in real-time by code optimisation and artificial intelligence. Model personalisation is crucial in obtaining physically and physiologically valid predictions. CONCLUSIONS Recent work has shown that laboratory-quality biomechanical measurements and modelling can be performed outside the laboratory with a small number of wearable sensors or computer vision methods. The next stage is to combine these technologies into well-designed easy to use products.
Collapse
Affiliation(s)
- David G Lloyd
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia.
| | - David J Saxby
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Claudio Pizzolato
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Matthew Worsey
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia
| | - Laura E Diamond
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Dinesh Palipana
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Medicine, Dentistry and Health, Griffith University, Australia
| | - Matthew Bourne
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Ana Cardoso de Sousa
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia
| | - Malik Muhammad Naeem Mannan
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia
| | - Azadeh Nasseri
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia
| | - Nataliya Perevoshchikova
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia
| | - Jayishni Maharaj
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Claire Crossley
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Alastair Quinn
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Kyle Mulholland
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia
| | - Tyler Collings
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Zhengliang Xia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia
| | - Bradley Cornish
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| | - Daniel Devaprakash
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; VALD Performance, Australia
| | | | - Rodney S Barrett
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and Advanced Design and Prototyping Technologies Institute, Australia; School of Health Sciences and Social Work, Griffith University, Australia
| |
Collapse
|
9
|
Finni T, Vanwanseele B. Towards modern understanding of the Achilles tendon properties in human movement research. J Biomech 2023; 152:111583. [PMID: 37086579 DOI: 10.1016/j.jbiomech.2023.111583] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/24/2023]
Abstract
The Achilles tendon (AT) is the strongest tendon in humans, yet it often suffers from injury. The mechanical properties of the AT afford efficient movement, power amplification and power attenuation during locomotor tasks. The properties and the unique structure of the AT as a common tendon for three muscles have been studied frequently in humans using in vivo methods since 1990's. As a part of the celebration of 50 years history of the International Society of Biomechanics, this paper reviews the history of the AT research focusing on its mechanical properties in humans. The questions addressed are: What are the most important mechanical properties of the Achilles tendon, how are they studied, what is their significance to human movement, and how do they adapt? We foresee that the ongoing developments in experimental methods and modeling can provide ways to advance knowledge of the complex three-dimensional structure and properties of the Achilles tendon in vivo, and to enable monitoring of the loading and recovery for optimizing individual adaptations.
Collapse
Affiliation(s)
- Taija Finni
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Finland.
| | - Benedicte Vanwanseele
- Faculty of Movement and Rehabilitation Science, Human Movement Biomechanics Research Group, KU Leuven, Belgium
| |
Collapse
|
10
|
Diniz P, Quental C, Violindo P, Veiga Gomes J, Pereira H, Kerkhoffs GMMJ, Ferreira FC, Folgado J. Design and validation of a finite element model of the aponeurotic and free Achilles tendon. J Orthop Res 2023; 41:534-545. [PMID: 35780388 DOI: 10.1002/jor.25408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/02/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023]
Abstract
The Achilles tendon (AT) is a common injury site. Ruptures are usually located in the free tendon but may cross the myotendinous junction into the aponeurotic region. Considering the possibility of aponeurotic region involvement in AT ruptures, a novel three dimensional (3D) finite element (FE) model that includes both the aponeurotic and free AT regions and features subtendon twisting and sliding was developed. It was hypothesized that the model would be able to predict in vivo data collected from the literature, thus being considered valid, and that model outputs would be most sensitive to subtendon twist configurations. The 3D model was constructed using magnetic resonance images. The model was divided into soleus and gastrocnemius subtendons. In addition to a frictionless contact condition, the interaction between subtendons was modeled using two contact formulations: sliding with anisotropic friction and no sliding. Loads were applied on the tendon's most proximal cross-section and anterior surface, with magnitudes estimated from in vivo studies. Model outputs were compared with experimental data regarding 3D deformation, transverse plane rotation, and nodal displacements in the free tendon. The FE model adequately simulated the free tendon behavior regarding longitudinal strain, cross-section area variation, transverse plane rotation, and sagittal nodal displacements, provided that subtendon sliding was allowed. The frictionless model exhibited noticeable medial transverse sliding of the soleus subtendon, which was present to a much lesser degree in the anisotropic friction model. Model outputs were most sensitive to variations in subtendon twist and dispersion of the collagen fiber orientations. Clinical Significance: This Achilles tendon finite element model, validated using in vivo experimental data, may be used to study its mechanical behavior, injury mechanisms, and rupture risk factors.
Collapse
Affiliation(s)
- Pedro Diniz
- Department of Orthopaedic Surgery, Hospital de Sant'Ana, Parede, Portugal.,Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Fisiogaspar, Lisboa, Lisboa, Portugal
| | - Carlos Quental
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Violindo
- Department of Radiology, Hospital de Sant'Ana, Parede, Portugal
| | | | - Hélder Pereira
- Orthopaedic Department, Centro Hospitalar Póvoa de Varzim, Vila do Conde, Portugal.,Ripoll y De Prado Sports Clinic: FIFA Medical Centre of Excellence, Murcia, Spain.,University of Minho ICVS/3 B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Gino M M J Kerkhoffs
- Department of Orthopaedic Surgery, Amsterdam Movement Sciences, Amsterdam University Medical Centers, Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam Collaboration for Health and Safety in Sports (ACHSS), Amsterdam, The Netherlands
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - João Folgado
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Obrezkov LP, Finni T, Matikainen MK. Modeling of the Achilles Subtendons and Their Interactions in a Framework of the Absolute Nodal Coordinate Formulation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248906. [PMID: 36556712 PMCID: PMC9781184 DOI: 10.3390/ma15248906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/01/2023]
Abstract
Experimental results have revealed the sophisticated Achilles tendon (AT) structure, including its material properties and complex geometry. The latter incorporates a twisted design and composite construction consisting of three subtendons. Each of them has a nonstandard cross-section. All these factors make the AT deformation analysis computationally demanding. Generally, 3D finite solid elements are used to develop models for AT because they can discretize almost any shape, providing reliable results. However, they also require dense discretization in all three dimensions, leading to a high computational cost. One way to reduce degrees of freedom is the utilization of finite beam elements, requiring only line discretization over the length of subtendons. However, using the material models known from continuum mechanics is challenging because these elements do not usually have 3D elasticity in their descriptions. Furthermore, the contact is defined at the beam axis instead of using a more general surface-to-surface formulation. This work studies the continuum beam elements based on the absolute nodal coordinate formulation (ANCF) for AT modeling. ANCF beam elements require discretization only in one direction, making the model less computationally expensive. Recent work demonstrates that these elements can describe various cross-sections and materials models, thus allowing the approximation of AT complexity. In this study, the tendon model is reproduced by the ANCF continuum beam elements using the isotropic incompressible model to present material features.
Collapse
Affiliation(s)
- Leonid P. Obrezkov
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
- Mechanical Engineering, LUT University, 53850 Lappeenranta, Finland
| | - Taija Finni
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
| | | |
Collapse
|
12
|
Funaro A, Shim V, Crouzier M, Mylle I, Vanwanseele B. Subject-Specific 3D Models to Investigate the Influence of Rehabilitation Exercises and the Twisted Structure on Achilles Tendon Strains. Front Bioeng Biotechnol 2022; 10:914137. [PMID: 35875495 PMCID: PMC9299361 DOI: 10.3389/fbioe.2022.914137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
The Achilles tendon (AT) is the largest tendon of the human body and has a primary role in locomotor activities. The complex structure of the AT includes twisting of three sub-tendons, non-uniform tissue deformations and differential triceps surae muscle forces. The main aim of this study was to investigate the impact of commonly used rehabilitation exercises (walking on heels, walking on toes, unilateral heel rise, heel drop with extended knee and heel drop with the knee bent) and different twists on AT strains. 3D freehand ultrasound based subject-specific geometry and subject-specific muscle forces during different types of rehabilitation exercises were used to determine tendon strains magnitudes and differences in strains between the sub-tendons. In addition, three Finite Element models were developed to investigate the impact of AT twist. While walking on heels developed the lowest average strain, heel drop with knee bent exhibited the highest average strain. The eccentric heel drop resulted in higher peak and average strain, compared to concentric heel rise for all the three models. The isolated exercises (heel rise and heel drop) presented higher average strains compared to the functional exercises (walking tasks). The amount of twist influences the peak strains but not the average. Type I consistently showed highest peak strains among the five rehabilitation exercises. The ranking of the exercises based on the AT strains was independent of AT twist. These findings might help clinicians to prescribe rehabilitation exercises for Achilles tendinopathy based on their impact on the AT strains.
Collapse
Affiliation(s)
- Alessia Funaro
- Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium
| | - Vickie Shim
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Marion Crouzier
- Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium
| | - Ine Mylle
- Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
13
|
Sun D, Song Y, Cen X, Wang M, Baker JS, Gu Y. Workflow assessing the effect of Achilles tendon rupture on gait function and metatarsal stress: Combined musculoskeletal modeling and finite element analysis. Proc Inst Mech Eng H 2022; 236:676-685. [PMID: 35311405 DOI: 10.1177/09544119221085795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Achilles tendon rupture (ATR) incidence has increased among badminton players in recent years. The foot internal stress was hard to obtain through experimental testing. The purpose of the current research is to develop a methodology that could improve the finite element model derived foot internal stress prediction for ATR clinical and rehabilitation applications. A subject-specific musculoskeletal model was combined with a 3D finite element model to predict the metatarsal stress. The 80% point during the push-off phase of walking was selected for the comparing between injured and uninjured sides. The surgical repaired Achilles tendon (AT) after 12 months was elongated by 5.5% than the uninjured tendon. At 80% point of stance phase, the ankle plantarflexion angle and AT force decreased by 39.6% and 21.9% on the injured side, respectively. The foot inversion degree increased by 22.9% and was accompanied by the redistribution of metatarsals von Mises stress. The stresses on the fourth and fifth metatarsals were increased by 59.5% and 85.9% on the injured side. The workflow is available to assess musculoskeletal disorders and obtain foot internal stress after ATR. The decreased ankle plantar flexor force may be affected by triceps surae muscle atrophy and weakened force transmission ability of elongated AT. The increased von Mises stress on fourth and fifth metatarsals accompanied by higher foot inversion may increase the ankle lateral sprain injury risk.
Collapse
Affiliation(s)
- Dong Sun
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yang Song
- Faculty of Sports Science, Ningbo University, Ningbo, China.,Doctoral School on Safety and Security Sciences, Obuda University, Budapest, Hungary.,Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Xuanzhen Cen
- Faculty of Sports Science, Ningbo University, Ningbo, China.,Doctoral School on Safety and Security Sciences, Obuda University, Budapest, Hungary.,Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Meizi Wang
- Faculty of Sports Science, Ningbo University, Ningbo, China.,Doctoral School on Safety and Security Sciences, Obuda University, Budapest, Hungary
| | - Julien Steven Baker
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Firminger CR, Haider IT, Bruce OL, Wannop JW, Stefanyshyn DJ, Edwards WB. Are subject-specific models necessary to predict patellar tendon fatigue life? A finite element modelling study. Comput Methods Biomech Biomed Engin 2021; 25:729-739. [PMID: 34514910 DOI: 10.1080/10255842.2021.1975683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Patellar tendinopathy is an overuse injury that occurs from repetitive loading of the patellar tendon in a scenario resembling that of mechanical fatigue. As such, fatigue-life estimates provide a quantifiable approach to assess tendinopathy risk and may be tabulated using nominal strain (NS) or finite element (FE) models with varied subject-specificity. We compared patellar tendon fatigue-life estimates from NS and FE models of twenty-nine athletes performing countermovement jumps with subject-specific versus generic geometry and material properties. Subject-specific patellar tendon material properties and geometry were obtained using a data collection protocol of dynamometry, ultrasound, and magnetic resonance imaging. Three FE models were created for each subject, with: subject-specific (hyperelastic) material properties and geometry, subject-specific material properties and generic geometry, and generic material properties and subject-specific geometry. Four NS models were created for each subject, with: subject-specific (linear elastic) material properties and moment arm, generic material properties and subject-specific moment arm, subject-specific material properties and generic moment arm, and generic material properties and moment arm. NS- and FE-modelled fatigue-life estimates with generic material properties were poorly correlated with their subject-specific counterparts (r2≤0.073), while all NS models overestimated fatigue life compared to the subject-specific FE model (r2≤0.223). Furthermore, FE models with generic tendon geometry were unable to accurately represent the heterogeneous strain distributions found in the subject-specific FE models or those with generic material properties. These findings illustrate the importance of incorporating subject-specific material properties and FE-modelled strain distributions into fatigue-life estimations.
Collapse
Affiliation(s)
- Colin R Firminger
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Ifaz T Haider
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Olivia L Bruce
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - John W Wannop
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Darren J Stefanyshyn
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Schaarup SO, Wetke E, Konradsen LAG, Calder JDF. Loss of the knee-ankle coupling and unrecognized elongation in Achilles tendon rupture: effects of differential elongation of the gastrocnemius tendon. Knee Surg Sports Traumatol Arthrosc 2021; 29:2535-2544. [PMID: 33938970 DOI: 10.1007/s00167-021-06580-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE The biarticular anatomy of the gastrocnemii is an important mechanism of knee-ankle coupling and differential elongation may affect this function leading to weakness of the push-off phase during the gait. Achilles tendon ruptures may cause detachment of the gastrocnemius tendon from the soleus aponeurosis with subsequent differential elongation of the individual subtendons. This study investigated the effects of such detachment by investigating tendon fusion levels of the two muscle groups, and the effect of sequential differential elongation of the gastrocnemius on the Achilles tendon resting angle (ATRA) and to the knee-ankle coupling. METHODS Conjoined tendon length (CTL) was measured in 23 cadavers. ATRA in knee extension (ATRA 0) and 90-degree knee flexion (ATRA 90) was measured with the gastrocnemius tendons (GT) intact, transected and with the gap reduced in 5-mm increments. In 15 specimens, knee-ankle coupling was examined. RESULTS Considerable anatomical variation was present with CTL ranging from 2 to 40% of fibular length. In the intact triceps, surae ATRA 0 differed from ATRA 90 by 6 degrees (p < 0.001). Cutting the gastrocnemius caused an immediate separation of the tendon ends by 19 mm. ATRA 0 and ATRA 90 increased 8 and 4 degrees (p < 0.001), significantly larger increase for ATRA 0 (p < 0.001). Lengthening the gastrocnemius 10 mm altered the coupling point 10 degrees towards dorsiflexion. Transfixing the gastrocnemius at the level of the gap where the Achilles was sectioned, decoupled the knee-ankle coupling in all but two specimens. A moderate correlation between CTL and length of the medial gastrocnemius tendon was found. CONCLUSIONS A greater relative ATRA 0 than relative ATRA 90 indicates differential elongation of the gastrocnemius. By elongating the gastrocnemius the knee-ankle coupling point shifts dorsally, and 20 mm elongation completely decouples the knee-ankle coupling. Independent lengthening of the gastrocnemius may explain the loss of power experienced by some patients following acute Achilles tendon rupture despite what would appear to be appropriate approximation of the ruptured tendon ends. Recognizing this occurrence is crucial when treating Achilles tendon ruptures and such patients require surgical correction in order to avoid long-term weakness of push-off strength.
Collapse
Affiliation(s)
| | - Eva Wetke
- Department of Orthopaedics, Zealand University Hospital Koege, Lykkebaekvej 1, 4600, Koege, Denmark
| | - Lars Aage Glud Konradsen
- Department of Orthopaedics, IOC Centre of Bispebjerg Hospital, Bispebjerg Bakke 23, 2400, Copenhagen, NV, Denmark
| | - James David Forbes Calder
- Fortius Clinic, 17 Fitzhardinge Street, London, W1H 6EQ, UK
- Department of Bioengineering, Imperial College London, Exhibition Rd, South Kensington, London, SW7 2BU, UK
| |
Collapse
|
16
|
Yin NH, McCarthy I, Birch HL. An equine tendon model for studying intra-tendinous shear in tendons that have more than one muscle contribution. Acta Biomater 2021; 127:205-212. [PMID: 33836223 DOI: 10.1016/j.actbio.2021.03.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
Human Achilles tendon is composed of three smaller sub-tendons and exhibits non-uniform internal displacements, which decline with age and after injury, suggesting a potential role in the development of tendinopathies. Studying internal sliding behaviour is therefore important but difficult in human Achilles tendon. Here we propose the equine deep digital flexor tendon (DDFT) and its accessory ligament (AL) as a model to understand the sliding mechanism. The AL-DDFT has a comparable sub-bundle structure, is subjected to high and frequent asymmetric loads and is a natural site of injury similar to human Achilles tendons. Equine AL-DDFT were collected and underwent whole tendon level (n=7) and fascicle level (n=7) quasi-static mechanical testing. Whole tendon level testing was performed by sequentially loading through the proximal AL and subsequently through the proximal DDFT and recording regional strain in the free structures and joined DDFT and AL. Fascicle level testing was performed with focus on the inter-sub-bundle matrix between the two structures at the junction. Our results demonstrate a significant difference in the regional strain between the joined DDFT and AL and a greater transmission of force from the AL to the DDFT than vice versa. These results can be partially explained by the mechanical properties and geometry of the two structures and by differences in the properties of the interfascicular matrices. In conclusion, this tendon model successfully demonstrates that high displacement discrepancy occurs between the two structures and can be used as an easy-access model for studying intra-tendinous shear mechanics at the sub-tendon level. STATEMENT OF SIGNIFICANCE: Our study provides a naturally occurring and easily accessible equine model to study the complex behaviour of sub-tendons within the human Achilles tendon, which is likely to play a critical role in the pathogenesis of tendon disease. Our results demonstrate that the difference in material stiffness between the equine AL and DDFT stems largely from differences in the inter-fascicular matrix and furthermore that differences in strain are maintained in distal parts of the tightly joined structure. Furthermore, our results suggest that distribution of load between sub-structures is highly dependent on the morphological relationship between them; a finding that has important implications for understanding Achilles tendon mechanical behaviour, injury mechanisms and rehabilitation.
Collapse
Affiliation(s)
- Nai-Hao Yin
- Research Department of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore/London HA7 4LP/N19 5UN, United Kingdom.
| | - Ian McCarthy
- Pedestrian Accessibility and Movement Environment Laboratory, Department of Civil, Environmental and Geomatic Engineering, University College London, London N19 5UN, United Kingdom.
| | - Helen L Birch
- Research Department of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore/London HA7 4LP/N19 5UN, United Kingdom.
| |
Collapse
|
17
|
Ekiert M, Tomaszewski KA, Mlyniec A. The differences in viscoelastic properties of subtendons result from the anatomical tripartite structure of human Achilles tendon - ex vivo experimental study and modeling. Acta Biomater 2021; 125:138-153. [PMID: 33677161 DOI: 10.1016/j.actbio.2021.02.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 01/29/2023]
Abstract
The human Achilles tendon (AT) is a hierarchical structure macroscopically composed of three subtendons originating from the soleus (SOL) and gastrocnemius (GL, GM) muscles. According to recent reports, the divisible structure of the AT together with diverse material properties of its subtendons are suspected as a probable cause of non-homogeneous stress and strain distribution occurring in loaded AT. Despite numerous investigations on human AT, there is still relatively little knowledge regarding mechanical properties of subtendon-level hierarchy, which is crucial in fully understanding the multiscale relationship which governs tendon mechanics. In this paper we present the first ex vivo study conducted on SOL, GL, and GM subtendons of human AT. We investigate differences in viscoelastic properties of SOL, GM, and GL subtendons in terms of tensile modulus, mechanical hysteresis as well as stress relaxation observed at two different values of strain. Our results show that the most significant differences in mechanical properties exist between subtendon attached to the soleus muscle (SOL) and subtendons originating from the two heads of the gastrocnemius muscle (GM and GL). We used our experimental results to calibrate three different constitutive models: the hyperelastic Yeoh model with power-law flow, the microstructurally motivated Holzapfel-Gasser-Ogden model enhanced with strain-dependent Berström-Boyce flow and the phenomenological elasto-viscoplastic Arruda-Boyce-based model with strain-dependent Berström-Boyce flow supplemented with component representing matrix response. All calibrated models may be applied to commercial FEA software as a sufficient solution for rapid mechanical response modeling of human AT subtendons or for the purpose of future development of comprehensive patient-specific models of human lower limbs. STATEMENT OF SIGNIFICANCE: The divisible structure of the Achilles tendon together with diverse material properties of its subtendons are suspected as a probable cause of non-homogeneous stress and strain distribution occurring in loaded Achilles tendon. Despite numerous investigations on mechanical properties of Achilles tendon, there is still relatively little knowledge regarding mechanical properties of subtendon-level hierarchy, which is crucial in fully understanding the multiscale relationship which governs tendon mechanics. This study is the first reported ex vivo investigation conducted on SOL, GL, and GM human Achilles subtendons. We investigate differences in the viscoelastic properties of individual subtendons and demonstrate that the observed differences should be considered as muscle-dependent. Our experimental research is supported with a modeling study in which we calibrate three different constitutive models.
Collapse
Affiliation(s)
- Martyna Ekiert
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Mickiewicza 30 Av., Krakow 30-059, Poland.
| | - Krzysztof A Tomaszewski
- Andrzej Frycz Modrzewski Krakow University, Faculty of Medicine and Health Sciences, Gustawa Herlinga-Grudzinskiego 1, Krakow 30-705, Poland
| | - Andrzej Mlyniec
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Mickiewicza 30 Av., Krakow 30-059, Poland
| |
Collapse
|
18
|
Yin NH, Fromme P, McCarthy I, Birch HL. Individual variation in Achilles tendon morphology and geometry changes susceptibility to injury. eLife 2021; 10:63204. [PMID: 33588992 PMCID: PMC7886322 DOI: 10.7554/elife.63204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/02/2021] [Indexed: 01/07/2023] Open
Abstract
The unique structure of the Achilles tendon, combining three smaller sub-tendons, enhances movement efficiency by allowing individual control from connected muscles. This requires compliant interfaces between sub-tendons, but compliance decreases with age and may account for increased injury frequency. Current understanding of sub-tendon sliding and its role in the whole Achilles tendon function is limited. Here we show changing the degree of sliding greatly affects the tendon mechanical behaviour. Our in vitro testing discovered distinct sub-tendon mechanical properties in keeping with their mechanical demands. In silico study based on measured properties, subject-specific tendon geometry, and modified sliding capacity demonstrated age-related displacement reduction similar to our in vivo ultrasonography measurements. Peak stress magnitude and distribution within the whole Achilles tendon are affected by individual tendon geometries, the sliding capacity between sub-tendons, and different muscle loading conditions. These results suggest clinical possibilities to identify patients at risk and design personalised rehabilitation protocols.
Collapse
Affiliation(s)
- Nai-Hao Yin
- Research Department of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Paul Fromme
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Ian McCarthy
- Pedestrian Accessibility and Movement Environment Laboratory, Department of Civil, Environmental and Geomatic Engineering, University College London, London, United Kingdom
| | - Helen L Birch
- Research Department of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| |
Collapse
|
19
|
M Khair R, Stenroth L, Péter A, Cronin NJ, Reito A, Paloneva J, Finni T. Non-uniform displacement within ruptured Achilles tendon during isometric contraction. Scand J Med Sci Sports 2021; 31:1069-1077. [PMID: 33464638 DOI: 10.1111/sms.13925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 01/21/2023]
Abstract
The purpose of this study was investigate tendon displacement patterns in non-surgically treated patients 14 months after acute Achilles tendon rupture (ATR) and to classify patients into groups based on their Achilles tendon (AT) displacement patterns. Twenty patients were tested. Sagittal images of AT were acquired using B-mode ultrasonography during ramp contractions at a torque level corresponding to 30% of the maximal isometric plantarflexion torque of the uninjured limb. A speckle tracking algorithm was used to track proximal-distal movement of the tendon tissue at 6 antero-posterior locations. Two-way repeated measures ANOVA for peak tendon displacement was performed. K-means clustering was used to classify patients according to AT displacement patterns. The difference in peak relative displacement across locations was larger in the uninjured (1.29 ± 0.87 mm) than the injured limb (0.69 ± 0.68 mm), with a mean difference (95% CI) of 0.60 mm (0.14-1.05 mm, P < .001) between limbs. For the uninjured limb, cluster analysis formed 3 groups, while 2 groups were formed for the injured limb. The three distinct patterns of AT displacement during isometric plantarflexion in the uninjured limb may arise from subject-specific anatomical variations of AT sub-tendons, while the two patterns in the injured limb may reflect differential recovery after ATR with non-surgical treatment. Subject-specific tendon characteristics are a vital determinant of stress distribution across the tendon. Changes in stress distribution may lead to variation in the location and magnitude of peak displacement within the free AT. Quantifying internal tendon displacement patterns after ATR provides new insights into AT recovery.
Collapse
Affiliation(s)
- Ra'ad M Khair
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Lauri Stenroth
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Annamária Péter
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Neil J Cronin
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.,Department for Health, University of Bath, Bath, UK
| | - Aleksi Reito
- Central Finland Health Care District, Jyväskylä, Finland
| | - Juha Paloneva
- Central Finland Health Care District, Jyväskylä, Finland
| | - Taija Finni
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
20
|
Handsfield GG, Greiner J, Madl J, Rog-Zielinska EA, Hollville E, Vanwanseele B, Shim V. Achilles Subtendon Structure and Behavior as Evidenced From Tendon Imaging and Computational Modeling. Front Sports Act Living 2020; 2:70. [PMID: 33345061 PMCID: PMC7739789 DOI: 10.3389/fspor.2020.00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022] Open
Abstract
The Achilles tendon is the largest and strongest tendon in the human body and is essential for storing elastic energy and positioning the foot for walking and running. Recent research into Achilles tendon anatomy and mechanics has revealed the importance of the Achilles subtendons, which are unique and semi-independent structures arising from each of the three muscular heads of the triceps surae. Of particular importance is the ability for the subtendons to slide, the role that this has in healthy tendons, and the alteration of this property in aging and disease. In this work, we discuss technical approaches that have led to the current understanding of Achilles subtendons, particularly imaging and computational modeling. We introduce a 3D geometrical model of the Achilles subtendons, built from dual-echo UTE MRI. We revisit and discuss computational models of Achilles subtendon twisting suggesting that optimal twist reduces both rupture loads and stress concentrations by distributing stresses. Second harmonic generation imaging shows collagenous subtendons within a rabbit Achilles tendon; a clear absence of signal between the subtendons indicates an inter-subtendon region on the order of 30 μm in our rabbit animal model. Entry of wheat germ agglutinin in both the inter-fascicular and the inter-subtendon regions suggests a glycoprotein-containing inter-subtendon matrix which may facilitate low friction sliding of the subtendons in healthy mammals. Lastly, we present a new computational model coupled with human exercise trials to demonstrate the magnitude of Achilles subtendon sliding which occurs during rehabilitation exercises for Achilles tendinopathy, and shows that specific exercise can maximize subtendon sliding and interface strains, without maximizing subtendon strains. This work demonstrates the value of imaging and computational modeling for probing tendon structure-function relationships and may serve to inform and develop treatments for Achilles tendinopathy.
Collapse
Affiliation(s)
| | - Joachim Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, Bad Krozingen, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, Bad Krozingen, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, Bad Krozingen, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Enzo Hollville
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Benedicte Vanwanseele
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Vickie Shim
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Pizzolato C, Shim VB, Lloyd DG, Devaprakash D, Obst SJ, Newsham-West R, Graham DF, Besier TF, Zheng MH, Barrett RS. Targeted Achilles Tendon Training and Rehabilitation Using Personalized and Real-Time Multiscale Models of the Neuromusculoskeletal System. Front Bioeng Biotechnol 2020; 8:878. [PMID: 32903393 PMCID: PMC7434842 DOI: 10.3389/fbioe.2020.00878] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
Musculoskeletal tissues, including tendons, are sensitive to their mechanical environment, with both excessive and insufficient loading resulting in reduced tissue strength. Tendons appear to be particularly sensitive to mechanical strain magnitude, and there appears to be an optimal range of tendon strain that results in the greatest positive tendon adaptation. At present, there are no tools that allow localized tendon strain to be measured or estimated in training or a clinical environment. In this paper, we first review the current literature regarding Achilles tendon adaptation, providing an overview of the individual technologies that so far have been used in isolation to understand in vivo Achilles tendon mechanics, including 3D tendon imaging, motion capture, personalized neuromusculoskeletal rigid body models, and finite element models. We then describe how these technologies can be integrated in a novel framework to provide real-time feedback of localized Achilles tendon strain during dynamic motor tasks. In a proof of concept application, Achilles tendon localized strains were calculated in real-time for a single subject during walking, single leg hopping, and eccentric heel drop. Data was processed at 250 Hz and streamed on a smartphone for visualization. Achilles tendon peak localized strains ranged from ∼3 to ∼11% for walking, ∼5 to ∼15% during single leg hop, and ∼2 to ∼9% during single eccentric leg heel drop, overall showing large strain variation within the tendon. Our integrated framework connects, across size scales, knowledge from isolated tendons and whole-body biomechanics, and offers a new approach to Achilles tendon rehabilitation and training. A key feature is personalization of model components, such as tendon geometry, material properties, muscle geometry, muscle-tendon paths, moment arms, muscle activation, and movement patterns, all of which have the potential to affect tendon strain estimates. Model personalization is important because tendon strain can differ substantially between individuals performing the same exercise due to inter-individual differences in these model components.
Collapse
Affiliation(s)
- Claudio Pizzolato
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Vickie B Shim
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - David G Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Daniel Devaprakash
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Steven J Obst
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg, QLD, Australia
| | - Richard Newsham-West
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
| | - David F Graham
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Department of Health and Human Development, Montana State University, Bozeman, MT, United States
| | - Thor F Besier
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Ming Hao Zheng
- Centre for Orthopaedic Translational Research, School of Surgery, The University of Western Australia, Nedlands, WA, Australia
| | - Rod S Barrett
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre of Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
22
|
Mogi Y. The effects of growth on structural properties of the Achilles and Patellar tendons: A cross-sectional study. Physiol Rep 2020; 8:e14544. [PMID: 32812369 PMCID: PMC7435028 DOI: 10.14814/phy2.14544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/04/2023] Open
Abstract
The purpose of this study was to investigate the structural properties (length and cross-sectional area) of both the Patellar and Achilles tendons at around adolescent growth spurt. One hundred-twenty children and adolescents participated in this study. Based on estimated age at peak height velocity, the participants were separated into three groups (before takeoff of adolescent growth spurt group, from takeoff of adolescent growth spurt until peak height velocity group and after peak height velocity group). An ultrasonography technique was used to determine structural properties of the Patellar and Achilles tendons. Significant group difference was observed in tendon length for the Patellar and Achilles tendons among groups. However, there were no significant differences in the ratio of the Patellar tendon to upper leg length and the ratio of the Achilles tendon to lower leg length among groups. The cross-sectional area of all regions for the Patellar and Achilles tendons in adolescents with after takeoff adolescent growth spurt group was greater than those of before takeoff adolescent growth spurt group. These results indicate that the cross-sectional area of both the Patellar and Achilles tendons increase with takeoff of adolescent growth spurt and tendons lengthen without the changes in the ratio of tendon length to bone length. In addition, the increases in the cross-sectional area of both the Patellar and Achilles tendons occur in whole regions but not specific regions.
Collapse
Affiliation(s)
- Yasuyoshi Mogi
- Faculty of Policy ManagementDepartment of Human Life ManagementShobi UniversityKawagoeJapan
| |
Collapse
|
23
|
Machine learning methods to support personalized neuromusculoskeletal modelling. Biomech Model Mechanobiol 2020; 19:1169-1185. [DOI: 10.1007/s10237-020-01367-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022]
|
24
|
Dabrowska S, Ekiert M, Wojcik K, Kalemba M, Mlyniec A. A 3D Scanning System for Inverse Analysis of Moist Biological Samples: Design and Validation Using Tendon Fascicle Bundles. SENSORS 2020; 20:s20143847. [PMID: 32664202 PMCID: PMC7412083 DOI: 10.3390/s20143847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022]
Abstract
In this article, we present the design and validation of a non-contact scanning system for the development of a three-dimensional (3D) model of moist biological samples. Due to the irregular shapes and low stiffness of soft tissue samples, the use of a non-contact, reliable geometry scanning system with good accuracy and repeatability is required. We propose a reliable 3D scanning system consisting of a blue light profile sensor, stationary and rotating frames with stepper motors, gears and a five-phase stepping motor unit, single-axis robot, control system, and replaceable sample grips, which once mounted onto the sample, are used for both scanning and mechanical tests. The proposed system was validated by comparison of the cross-sectional areas calculated based on 3D models, digital caliper, and vision-based methods. Validation was done on regularly-shaped samples, a wooden twig, as well as tendon fascicle bundles. The 3D profiles were used for the development of the 3D computational model of the sample, including surface concavities. Our system allowed for 3D model development of samples with a relative error of less than 1.2% and high repeatability in approximately three minutes. This was crucial for the extraction of the mechanical properties and subsequent inverse analysis, enabling the calibration of complex material models.
Collapse
|
25
|
Microstructural modeling of Achilles Tendon biomechanics focusing on bone insertion site. Med Eng Phys 2020; 78:48-54. [PMID: 32033875 DOI: 10.1016/j.medengphy.2020.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 11/21/2022]
Abstract
The interface between the Achilles Tendon (AT) and calcaneus comprises soft and hard connective tissues. Such interfaces are vulnerable to mechanical damage. Tendon to Bone Insertion Region (TBIR) has unique microstructural characteristics for reinforcement. This region constitutes almost 10% of the AT's distal end. The rest of the tendon (tendon proper) has longitudinal fiber orientation with no mineral content. Although, the TBIR lacks longitudinally organized fibers and at the same time, incorporates mineral molecules. In this study, a 3D computational model of the TBIR proposed to underline several reinforcement mechanisms. The obtained results showed that off-axis alignment of fibers, when coupled with the mineral deposition, shifts the stress concentration region to the tendon proper. In the case of altering each parameter individually, probable failure observed in the bone interface, which causes complications in surgical procedure or during healing. A gradual increase of mineral compensates for the stiffness mismatch between the AT and calcaneus. The proposed computational framework illustrated the complementary roles of fiber orientation and mineral molecules: nearly transverse orientation of fibers alleviated the stress concentration locally, while mineral deposition directly enhanced the TBIR stiffness.
Collapse
|
26
|
Zellers JA, Pohlig RT, Cortes DH, Grävare Silbernagel K. Achilles tendon cross-sectional area at 12 weeks post-rupture relates to 1-year heel-rise height. Knee Surg Sports Traumatol Arthrosc 2020; 28:245-252. [PMID: 31267192 PMCID: PMC6939153 DOI: 10.1007/s00167-019-05608-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/26/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE Achilles tendon rupture leads to long-term plantar flexor deficits, but some patients recover functional performance better than others. Early indicators of tendon healing could be helpful in establishing patient prognosis and making individualized decisions regarding rehabilitation progression. The purpose of this study was to investigate relationships between early tendon morphology and mechanical properties to long-term heel-rise and jumping function in individuals after Achilles tendon rupture. METHODS Individuals after Achilles tendon rupture were assessed at 4, 8, 12, 24, and 52 weeks post-injury. Tendon cross-sectional area, length, and mechanical properties were measured using ultrasound. Heel-rise and jump tests were performed at 24 and 52 weeks. Correlation and regression analysis were used to identify relationships between tendon structural variables in the first 12 weeks to functional outcomes at 52 weeks, and determine whether the addition of tendon structural characteristics at 24 weeks strengthened relationships between functional performance at 24 and 52 weeks. Functional outcomes of individuals with < 3 cm of elongation were compared to those with > 3 cm of elongation using a Mann-Whitney U test. RESULTS Twenty-two participants [mean (SD) age = 40 (11) years, 17 male] were included. Tendon cross-sectional area at 12 weeks was the strongest predictor of heel-rise height (R2 = 0.280, p = 0.014) and work symmetry (R2 = 0.316, p = 0.008) at 52 weeks. Jumping performance at 52 weeks was not significantly related to any of the tendon structural measures in the first 12 weeks. Performance of all functional tasks at 24 weeks was positively related to performance on the same task at 52 weeks (r = 0.456-0.708, p < 0.05). The addition of tendon cross-sectional area improved the model for height LSI (R2 = 0.519, p = 0.001). Tendon elongation > 3 cm significantly reduced jumping symmetry (p < 0.05). CONCLUSION Tendon cross-sectional area and excessive elongation related to plantar flexor performance on functional testing after Achilles tendon rupture. Once an individual is able to perform function-based testing, tendon structural measures may inform long-term prognosis. Ultrasound-based measures of tendon structure early in recovery seem to relate to later performance on functional testing. Clinically, assessing tendon structure has the potential to be used as a biomarker of tendon healing early in recovery and better predict patients at risk of negative functional outcome. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Jennifer A Zellers
- Program in Physical Therapy, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ryan T Pohlig
- College of Health Sciences biostatistics Core Facility, University of Delaware, Newark, DE, USA
| | - Daniel H Cortes
- Department of Mechanical and Nuclear Engineering, Penn State University, State College, PA, USA
| | - Karin Grävare Silbernagel
- Department of Physical Therapy, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA.
| |
Collapse
|
27
|
Pizzolato C, Saxby DJ, Palipana D, Diamond LE, Barrett RS, Teng YD, Lloyd DG. Neuromusculoskeletal Modeling-Based Prostheses for Recovery After Spinal Cord Injury. Front Neurorobot 2019; 13:97. [PMID: 31849634 PMCID: PMC6900959 DOI: 10.3389/fnbot.2019.00097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/05/2019] [Indexed: 01/12/2023] Open
Abstract
Concurrent stimulation and reinforcement of motor and sensory pathways has been proposed as an effective approach to restoring function after developmental or acquired neurotrauma. This can be achieved by applying multimodal rehabilitation regimens, such as thought-controlled exoskeletons or epidural electrical stimulation to recover motor pattern generation in individuals with spinal cord injury (SCI). However, the human neuromusculoskeletal (NMS) system has often been oversimplified in designing rehabilitative and assistive devices. As a result, the neuromechanics of the muscles is seldom considered when modeling the relationship between electrical stimulation, mechanical assistance from exoskeletons, and final joint movement. A powerful way to enhance current neurorehabilitation is to develop the next generation prostheses incorporating personalized NMS models of patients. This strategy will enable an individual voluntary interfacing with multiple electromechanical rehabilitation devices targeting key afferent and efferent systems for functional improvement. This narrative review discusses how real-time NMS models can be integrated with finite element (FE) of musculoskeletal tissues and interface multiple assistive and robotic devices with individuals with SCI to promote neural restoration. In particular, the utility of NMS models for optimizing muscle stimulation patterns, tracking functional improvement, monitoring safety, and providing augmented feedback during exercise-based rehabilitation are discussed.
Collapse
Affiliation(s)
- Claudio Pizzolato
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre for Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - David J Saxby
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre for Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Dinesh Palipana
- Griffith Centre for Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,The Hopkins Centre, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Gold Coast Hospital and Health Service, Gold Coast, QLD, Australia.,School of Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Laura E Diamond
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre for Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Rod S Barrett
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre for Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Yang D Teng
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, United States.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - David G Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Griffith Centre for Biomedical and Rehabilitation Engineering, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
28
|
Devaprakash D, Lloyd DG, Barrett RS, Obst SJ, Kennedy B, Adams KL, Hunter A, Vlahovich N, Pease DL, Pizzolato C. Magnetic Resonance Imaging and Freehand 3-D Ultrasound Provide Similar Estimates of Free Achilles Tendon Shape and 3-D Geometry. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2898-2905. [PMID: 31471069 DOI: 10.1016/j.ultrasmedbio.2019.07.679] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to assess the similarity of free Achilles tendon shape and 3-D geometry between magnetic resonance imaging (MRI) and freehand 3-D ultrasound (3-DUS) imaging methods. Fourteen elite/sub-elite middle-distance runners participated in the study. MRI and 3-DUS scans of the Achilles tendon were acquired on two separate imaging sessions, and all 3-D reconstructions were performed using identical methods. Shape similarity of free Achilles tendon reconstructed from MRI and 3-DUS data was assessed using Jaccard index, Hausdorff distance and root mean square error (RMSE). The Jaccard index, Hausdorff distance and RMSE values were 0.76 ± 0.05, 2.70 ± 0.70 and 0.61 ± 0.10 mm, respectively. The level of agreement between MRI and 3-DUS for free Achilles tendon volume, length and average cross-sectional area (CSA) was assessed using Bland-Altman analysis. Compared to MRI, freehand 3-DUS overestimated volume, length and average CSA by 30.6 ± 15.8 mm3 (1.1% ± 0.6%), 0.3 ± 0.7 mm (0.6% ± 1.9%) and 0.3 ± 1.42 mm2 (0.4% ± 2.0%), respectively. The upper and lower limits of agreement between MRI and 3-DUS for volume, length and average CSA were -0.4 to 61.7 mm3 (-0.2% to 2.3%), -1.0 to 1.5 mm (-3.2% to 4.5%) and -2.5 to 3.1 mm2 (-3.5% to 4.3%), respectively. There were no significant differences between imaging methods in CSA along the length of the tendon. In conclusion, MRI and freehand 3-DUS may be considered equivalent methods for estimating shape and 3-D geometry of the free Achilles tendon. These findings, together with the practical benefits of being able to assess 3-D Achilles tendon shape and geometry in a laboratory environment and under isometric loading, make 3-DUS an attractive alternative to MRI for assessing 3-D free Achilles tendon macro-structure in future studies.
Collapse
Affiliation(s)
- Daniel Devaprakash
- School of Allied Health Sciences, Griffith University, Queensland, Australia; Gold Coast Orthopaedic Research Engineering and Education Alliance (GCORE), Menzies Health Institute Queensland, Griffith University, Queensland, Australia.
| | - David G Lloyd
- School of Allied Health Sciences, Griffith University, Queensland, Australia; Gold Coast Orthopaedic Research Engineering and Education Alliance (GCORE), Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Rod S Barrett
- School of Allied Health Sciences, Griffith University, Queensland, Australia; Gold Coast Orthopaedic Research Engineering and Education Alliance (GCORE), Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Steven J Obst
- School of Allied Health Sciences, Griffith University, Queensland, Australia; School of Health, Medical, and Applied Sciences, Central Queensland University, Bundaberg, Queensland, Australia
| | - Ben Kennedy
- School of Allied Health Sciences, Griffith University, Queensland, Australia; QSCAN Radiology Clinics, Queensland, Australia
| | - Kahlee L Adams
- Australian Institute of Sport, Canberra, Australian Capital Territory, Australia
| | - Adam Hunter
- Australian Institute of Sport, Canberra, Australian Capital Territory, Australia
| | - Nicole Vlahovich
- Australian Institute of Sport, Canberra, Australian Capital Territory, Australia
| | - David L Pease
- Australian Institute of Sport, Canberra, Australian Capital Territory, Australia
| | - Claudio Pizzolato
- School of Allied Health Sciences, Griffith University, Queensland, Australia; Gold Coast Orthopaedic Research Engineering and Education Alliance (GCORE), Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| |
Collapse
|
29
|
Shim VB, Hansen W, Newsham-West R, Nuri L, Obst S, Pizzolato C, Lloyd DG, Barrett RS. Influence of altered geometry and material properties on tissue stress distribution under load in tendinopathic Achilles tendons – A subject-specific finite element analysis. J Biomech 2019; 82:142-148. [DOI: 10.1016/j.jbiomech.2018.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/17/2018] [Accepted: 10/20/2018] [Indexed: 12/19/2022]
|
30
|
Combining in silico and in vitro experiments to characterize the role of fascicle twist in the Achilles tendon. Sci Rep 2018; 8:13856. [PMID: 30218024 PMCID: PMC6138712 DOI: 10.1038/s41598-018-31587-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
The Achilles tendon (AT), the largest tendon in the human body has a unique structural feature, that is the fascicles in the AT display spiral twist. However, their functional and structural roles are still unclear. We used subject-specific computational models and tissue mechanical experiment to quantitatively characterize the role of fascicle twist in the Achilles tendon. Ten subject-specific finite element (FE) models of the Achilles tendon were developed from ultrasound images. Fascicle twist was implemented in these models using the material coordinate system available in our FE framework. Five different angles (0~60°) were implemented and material property optimization was performed for each of them (total 50 sets) using results from uniaxial stretch experiment. We showed that fascicle twist allows for even distribution of stress across the whole tendon, thus improving tissue strength. The predicted rupture load increased up to 40%. A number of connective tissues display similar fascicle twists in their structure. The resulting non-uniform strain distribution has been hypothesized as a primary factor in tissue degeneration and injuries. Therefore, our technique will be used to design biomechanically informed training and rehabilitation protocols for management of connective tissue injuries and degeneration.
Collapse
|
31
|
Pizzolato C, Lloyd DG, Zheng MH, Besier TF, Shim VB, Obst SJ, Newsham-West R, Saxby DJ, Barrett RS. Finding the sweet spot via personalised Achilles tendon training: the future is within reach. Br J Sports Med 2018; 53:11-12. [DOI: 10.1136/bjsports-2018-099020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2018] [Indexed: 11/04/2022]
|
32
|
Zellers JA, Carmont MR, Silbernagel KG. Achilles Tendon Resting Angle Relates to Tendon Length and Function. Foot Ankle Int 2018; 39:343-348. [PMID: 29272160 PMCID: PMC6047896 DOI: 10.1177/1071100717742372] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Following Achilles tendon rupture, tendon elongation leads to long term deficits in calf function. A surrogate measure of Achilles tendon length, Achilles tendon resting angle (ATRA), has been described but has not been validated against length measured using ultrasound. Therefore, the purpose of this study was to validate the ATRA against ultrasound. Secondarily, this study aimed to identify the relationship of other factors (tendon mechanical properties, heel-rise test performance) to the ATRA. METHODS Individuals following unilateral Achilles tendon rupture were included. ATRA was measured in knee flexed and extended positions. Tendon elongation was measured using extended field of view ultrasound imaging. Continuous shear wave elastography quantified tendon mechanical properties. The relationship between variables was tested using Spearman's ρ. Subgroup analysis was used to compare subjects with less then or greater than 1 year following rupture. A total of 42 participants (with a mean of 18.2 months following rupture [SD = 35.9]) were included. RESULTS Tendon elongation related with relative ATRA with knee flexed (ρ = .491, P = .001) and knee extended (ρ = 0.501, P = .001) positions. In individuals greater than 1 year following rupture, relative ATRA with the knee flexed related to shear modulus (ρ = .800, P = .01) and total work on the heel-rise test (ρ = -.782, P = .008) relative to the uninjured side. CONCLUSION Relative ATRA in both knee flexed and knee extended positions has a moderate relationship to tendon elongation within the first year following rupture. After 1 year, the relative ATRA with knee flexed may be a better indicator of tendon elongation and also related to tendon mechanical properties and heel-rise test performance. LEVEL OF EVIDENCE Level III, case-control study.
Collapse
Affiliation(s)
| | - Michael R. Carmont
- University of Gothenburg, Gothenburg, Sweden,Princess Royal Hospital, Shropshire, United Kingdom
| | | |
Collapse
|
33
|
Discrete element analysis is a valid method for computing joint contact stress in the hip before and after acetabular fracture. J Biomech 2017; 67:9-17. [PMID: 29221903 DOI: 10.1016/j.jbiomech.2017.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 11/20/2022]
Abstract
Evaluation of abnormalities in joint contact stress that develop after inaccurate reduction of an acetabular fracture may provide a potential means for predicting the risk of developing post-traumatic osteoarthritis. Discrete element analysis (DEA) is a computational technique for calculating intra-articular contact stress distributions in a fraction of the time required to obtain the same information using the more commonly employed finite element analysis technique. The goal of this work was to validate the accuracy of DEA-computed contact stress against physical measurements of contact stress made in cadaveric hips using Tekscan sensors. Four static loading tests in a variety of poses from heel-strike to toe-off were performed in two different cadaveric hip specimens with the acetabulum intact and again with an intentionally malreduced posterior wall acetabular fracture. DEA-computed contact stress was compared on a point-by-point basis to stress measured from the physical experiments. There was good agreement between computed and measured contact stress over the entire contact area (correlation coefficients ranged from 0.88 to 0.99). DEA-computed peak contact stress was within an average of 0.5 MPa (range 0.2-0.8 MPa) of the Tekscan peak stress for intact hips, and within an average of 0.6 MPa (range 0-1.6 MPa) for fractured cases. DEA-computed contact areas were within an average of 33% of the Tekscan-measured areas (range: 1.4-60%). These results indicate that the DEA methodology is a valid method for accurately estimating contact stress in both intact and fractured hips.
Collapse
|
34
|
Pizzolato C, Lloyd DG, Barrett RS, Cook JL, Zheng MH, Besier TF, Saxby DJ. Bioinspired Technologies to Connect Musculoskeletal Mechanobiology to the Person for Training and Rehabilitation. Front Comput Neurosci 2017; 11:96. [PMID: 29093676 PMCID: PMC5651250 DOI: 10.3389/fncom.2017.00096] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/04/2017] [Indexed: 12/20/2022] Open
Abstract
Musculoskeletal tissues respond to optimal mechanical signals (e.g., strains) through anabolic adaptations, while mechanical signals above and below optimal levels cause tissue catabolism. If an individual's physical behavior could be altered to generate optimal mechanical signaling to musculoskeletal tissues, then targeted strengthening and/or repair would be possible. We propose new bioinspired technologies to provide real-time biofeedback of relevant mechanical signals to guide training and rehabilitation. In this review we provide a description of how wearable devices may be used in conjunction with computational rigid-body and continuum models of musculoskeletal tissues to produce real-time estimates of localized tissue stresses and strains. It is proposed that these bioinspired technologies will facilitate a new approach to physical training that promotes tissue strengthening and/or repair through optimal tissue loading.
Collapse
Affiliation(s)
- Claudio Pizzolato
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research and Education Alliance, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - David G. Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research and Education Alliance, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Rod S. Barrett
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research and Education Alliance, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Jill L. Cook
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, VIC, Australia
| | - Ming H. Zheng
- Centre for Orthopaedic Translational Research, School of Surgery, University of Western Australia, Nedlands, WA, Australia
| | - Thor F. Besier
- Auckland Bioengineering Institute and Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - David J. Saxby
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research and Education Alliance, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
35
|
Nuri L, Obst SJ, Newsham-West R, Barrett RS. The tendinopathic Achilles tendon does not remain iso-volumetric upon repeated loading: insights from 3D ultrasound. J Exp Biol 2017; 220:3053-3061. [DOI: 10.1242/jeb.159764] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022]
Abstract
Mid-portion Achilles tendinopathy (MAT) alters the normal three-dimensional (3D) morphology of the Achilles tendon (AT) at rest and under a single tensile load. However, how MAT changes the 3D morphology of AT during repeated loading remains unclear. This study compared the AT longitudinal, transverse and volume strains during repeated loading in MAT with those of the contralateral tendon in people with unilateral MAT. Ten adults with unilateral MAT performed 10 successive 25 second submaximal (50%) voluntary isometric plantarflexion contractions with both legs. Freehand 3D ultrasound scans were recorded and used to measure whole AT, free AT, and proximal AT longitudinal strains and free AT cross-sectional area (CSA) and volume strains. The free AT experienced higher longitudinal and CSA strain and reached steady state following a greater number of contractions (5 contractions) in MAT compared to the contralateral tendon (3 contractions). Further, free tendon CSA and volume strained more in MAT than contralateral tendon from the first contraction, whereas free AT longitudinal strain was not greater than the contralateral tendon until the fourth contraction. Volume loss from the tendon core therefore preceded the greater longitudinal strain in MAT. Overall, these findings suggest that the tendinopathic free AT experiences an exaggerated longitudinal and transverse strain response under repeated loading that is underpinned by an altered interaction between solid and fluid tendon matrix components. These alterations are indicative of accentuated poroelasticity and an altered local stress-strain environment within the tendinopathic free tendon matrix, which could affect tendon remodelling via mechanobiological pathways.
Collapse
Affiliation(s)
- Leila Nuri
- School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Steven J. Obst
- School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg, Queensland, Australia
| | - Richard Newsham-West
- School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Rod S. Barrett
- School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|