1
|
Kubo S, Yaeshima K, Suzuki T, Daigo E, Kitaoka Y, Kinugasa R. Influence of foot strike pattern on co-contraction around the ankle and oxygen uptake during running at 19 km/h. Physiol Rep 2024; 12:e70023. [PMID: 39245807 PMCID: PMC11381186 DOI: 10.14814/phy2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
This study investigated the coactivation of plantar flexor and dorsiflexor muscles and oxygen uptake during running with forefoot and rearfoot strikes at 15 and 19 km/h. We included 16 male runners in this study. The participants ran each foot strike pattern for 5 min at 15 and 19 km/h on a treadmill. During the running, respiratory gas exchange data and surface electromyographic (EMG) activity of the medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus, and tibialis anterior muscles of the right lower limb were continuously recorded. The indices of oxygen uptake, energy expenditure (EE), and muscle activation were calculated during the last 2 min in each condition. During the stance phase of running at 15 and 19 km/h, activation of the tibialis anterior and MG muscles was lower and higher, respectively, with forefoot strike than with rearfoot strike. The foot strike pattern did not influence the oxygen uptake. These results suggest that the foot strike pattern has no clear effect on the oxygen uptake when running at 15 and 19 km/h. However, forefoot strike leads to plantar flexion dominance during co-contraction of the tibialis anterior and MG muscles, which are an antagonist and agonist for plantar flexion, respectively, during the stance phase.
Collapse
Affiliation(s)
- Shimpei Kubo
- Department of Human Science, Kanagawa University, Yokohama, Japan
| | | | - Takahito Suzuki
- Department of Welfare and Culture, Okinawa University, Okinawa, Japan
| | - Eiji Daigo
- Department of Human Science, Kanagawa University, Yokohama, Japan
| | - Yu Kitaoka
- Department of Human Science, Kanagawa University, Yokohama, Japan
| | - Ryuta Kinugasa
- Department of Human Science, Kanagawa University, Yokohama, Japan
| |
Collapse
|
2
|
Tanji F, Ohnuma H, Ando R, Yamanaka R, Ikeda T, Suzuki Y. Longer Ground Contact Time Is Related to a Superior Running Economy in Highly Trained Distance Runners. J Strength Cond Res 2024; 38:985-990. [PMID: 38349337 DOI: 10.1519/jsc.0000000000004737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
ABSTRACT Tanji, F, Ohnuma, H, Ando, R, Yamanaka, R, Ikeda, T, and Suzuki, Y. Longer ground contact time is related to a superior running economy in highly trained distance runners. J Strength Cond Res 38(5): 985-990, 2024-Running economy is a key component of distance running performance and is associated with gait parameters. However, there is no consensus of the link between the running economy (RE), ground contact time, and footstrike patterns. Thus, this study aimed to clarify the relationship between RE, ground contact time, and thigh muscle cross-sectional area (CSA) in highly trained distance runners and to compare these parameters between 2 habitual footstrike patterns (midfoot vs. rearfoot). Seventeen male distance runners ran on a treadmill to measure RE and gait parameters. We collected the CSAs of the right thigh muscle using a magnetic resonance imaging scanner. The RE had a significant negative relationship with distance running performance ( r = -0.50) and ground contact time ( r = -0.51). The ground contact time had a significant negative relationship with the normalized CSAs of the vastus lateralis muscle ( r = -0.60) and hamstrings ( r = -0.54). No significant differences were found in RE, ground contact time, or normalized CSAs of muscles between midfoot ( n = 10) and rearfoot ( n = 7) strikers. These results suggest that large CSAs of knee extensor muscles results in short ground contact time and worse RE. The effects of the footstrike pattern on the RE appear insignificant, and the preferred footstrike pattern can be recommended for running in highly trained runners.
Collapse
Affiliation(s)
- Fumiya Tanji
- Department of Competitive Sports, Tokai University, Kanagawa, Japan
| | - Hayato Ohnuma
- Faculty of Education, Kansai University of Social Welfare, Hyogo, Japan
| | - Ryosuke Ando
- Center for General Education, Tokyo Keizai University, Tokyo, Japan
- Department of Sport Science and Research, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Ryo Yamanaka
- Faculty of Agro-Food Science, Niigata Agro-Food University, Niigata, Japan; and
| | - Tatsuaki Ikeda
- Tochigi Institute of Sports Medicine and Science, Tochigi, Japan
| | - Yasuhiro Suzuki
- Center for General Education, Tokyo Keizai University, Tokyo, Japan
| |
Collapse
|
3
|
Hanley B, Tucker CB, Bissas A, Merlino S, Gruber AH. Footstrike patterns and race performance in the 2017 IAAF World Championship men's 10,000 m final. Sports Biomech 2024; 23:314-323. [PMID: 33563101 DOI: 10.1080/14763141.2020.1856916] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022]
Abstract
Midfoot- (MFS) and forefoot-striking (FFS) runners usually switch to rearfoot-striking (RFS) during marathons. However, world-class runners might resist modifications during shorter races. The purpose of this study was to analyse footstrike patterns, ground contact times and running speeds in a World Championship men's 10,000 m final. Footstrike patterns and contact times of the top 12 finishing men (24 ± 5 years) were recorded (150 Hz) during laps 1, 5, 11, 15, 20 and 25. Split times for each 100-m segment were obtained. No RFS patterns were observed; there was no difference between the number of FFS and MFS athletes at any distance (p ≥ 0.581) and no change in the proportions of FFS and MFS occurred (p = 0.383). No link between race performance and footstrike pattern appeared given the similar number who used FFS or MFS and their similar finishing times. Despite slower running speeds and longer contact times in the middle of the race (p ≤ 0.024), no effect on footstrike patterns occurred. The prevalence of anterior footstrike patterns in this world-class race reflects the capability of maintaining fast paces (>22 km/h). Changes in footstrike pattern might accompany the physiological and neuromuscular effects of fatigue over longer distances.
Collapse
Affiliation(s)
- Brian Hanley
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | | | - Athanassios Bissas
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Applied Sport and Exercise Sciences, University of Gloucestershire, Gloucester, UK
| | | | - Allison H Gruber
- Department of Kinesiology, Indiana University Bloomington, Bloomington, IN, USA
| |
Collapse
|
4
|
Hanley B, Thomas AL, Tucker CB. Kinematic and spatiotemporal differences between footstrike patterns in elite male and female 10,000 m runners in competition. Sports Biomech 2024:1-16. [PMID: 38193478 DOI: 10.1080/14763141.2024.2301995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
The aim of this study was to examine spatiotemporal and joint kinematic differences between footstrike patterns in 10,000 m running. Seventy-two men's and 42 women's footstrike patterns were analysed during laps 5, 10, 15, 20 and 25 (of 25) using 2D video recordings. Approximately 47% of men were FFS throughout the race, 30% were MFS and 24% RFS; the respective frequencies in women were approximately 30%, 38% and 32%. Overall, 83% of men and 88% of women retained their footstrike pattern throughout the race. Amongst the 53 men and 33 women with symmetrical footstrike patterns, there were no differences in speed, step length or cadence between footstrike groups in either sex. Most lower limb joint angles did not change in these athletes during the event, with few differences between footstrike patterns apart from ankle and foot angles. A greater hip-ankle distance was found in RFS than in FFS (both sexes) and in RFS than in MFS (men only), although these differences were never more than 0.03 m. Coaches should note that habitual footstrike patterns were maintained during this long-distance track race despite changes in running speed and possible fatigue, and there were few performance differences between footstrike patterns.
Collapse
Affiliation(s)
| | - Aaron L Thomas
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | | |
Collapse
|
5
|
Deng L, Zhang X, Dai B, Xiao S, Zhang F, Fu W. Mechanics of The Medial Gastrocnemius-Tendon Unit in Behaving more Efficiently in Habitual Non-Rearfoot Strikers than in Rearfoot Strikers during Running. J Sports Sci Med 2023; 22:582-590. [PMID: 37711715 PMCID: PMC10499162 DOI: 10.52082/jssm.2023.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
This study aims to quantify how habitual foot strike patterns would affect ankle kinetics and the behavior and mechanics of the medial gastrocnemius-tendon unit (MTU) during running. A total of 14 runners with non-rearfoot strike patterns (NRFS) and 15 runners with rearfoot strike patterns (RFS) ran on an instrumented treadmill at a speed of 9 km/h. An ultrasound system and a motion capture system were synchronously triggered to collect the ultrasound images of the medial gastrocnemius (MG) and marker positions along with ground reaction forces (GRF) during running. Ankle kinetics (moment and power) and MG/MTU behavior and mechanical properties (MG shortening length, velocity, force, power, MTU shortening/lengthening length, velocity, and power) were calculated. Independent t-tests were performed to compare the two groups of runners. Pearson correlation was conducted to detect the relationship between foot strike angle and the MTU behavior and mechanics. Compared with RFS runners, NRFS runners had 1) lower foot strike angles and greater peak ankle moments; 2) lower shortening/change length and contraction velocity and greater MG peak force; 3) greater MTU lengthening, MTU shortening length and MTU lengthening velocity and power; 4) the foot strike angle was positively related to the change of fascicle length, fascicle contraction length, and MTU shortening length during the stance phase. The foot strike angle was negatively related to the MG force and MTU lengthening power. The MG in NRFS runners appears to contract with greater force in relatively isometric behavior and at a slower shortening velocity. Moreover, the lengthening length, the lengthening velocity of MTU, and the MG force were greater in habitual NRFS runners, leading to a stronger stretch reflex response potentially.
Collapse
Affiliation(s)
- Liqin Deng
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China
| | - Xini Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China
- Faculty of Sports Science, Ningbo University, China
| | - Boyi Dai
- Division of Kinesiology and Health, University of Wyoming, USA
| | - Songlin Xiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China
| | - Faning Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China
| |
Collapse
|
6
|
Kovács B, Petridis L, Négyesi J, Sebestyén Ö, Jingyi Y, Zhang J, Gu Y, Tihanyi J. An Acute Transition from Rearfoot to Forefoot Strike does not Induce Major Changes in Plantarflexor Muscles Activation for Habitual Rearfoot Strike Runners. J Sports Sci Med 2023; 22:512-525. [PMID: 37711699 PMCID: PMC10499148 DOI: 10.52082/jssm.2023.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Footstrike pattern has received increased attention within the running community because there is a common belief that forefoot strike running (FFS) is more advantageous (i.e., improve performance and reduce running injuries) than rearfoot strike running (RFS) in distance running. Literature reports suggest greater knee joint flexion magnitude and initial knee angle during stance in FFS compared with RFS running We examined the EMG activation of the triceps surae muscles during an acute transition from RFS to FFS strike. We tested the hypothesis that due to larger knee flexion in FFS the gastrocnemius muscles possibly decrease their EMG activity because muscle fascicles operate under unfavorable conditions. Fourteen competitive healthy middle- and long-distance runners who were habitual RFS runners ran on a treadmill at three speeds: 12, 14, and 16 km·h-1. Each running speed was performed with both FFS and RFS patterns. Lower limb kinematics in the sagittal plane and normalized electromyography (EMG) activity of medial gastrocnemius proximal, middle and distal regions, lateral gastrocnemius and soleus muscles were compared between footstrike patterns and running speeds across the stride cycle. Contrary to our expectations, the knee joint range of motion was similar in FFS and RFS running. However, the sagittal plane ankle joint motion was greater (p < 0.01) while running with FFS, resulting in a significantly greater muscle-tendon unit lengthening (p < 0.01) in FFS compared with RFS running. In addition, medial and lateral gastrocnemius showed higher EMG activity in FFS compared with RFS running in the late swing and early stance but only for a small percentage of the stride cycle. However, strike patterns and running speed failed to induce region-specific activation differences within the medial gastrocnemius muscle. Overall, well-trained RFS runners are able to change to FFS running by altering only the ankle joint kinematics without remarkably changing the EMG activity pattern.
Collapse
Affiliation(s)
- Bálint Kovács
- Ningbo University, Faculty of Sport Science, Ningbo, China
- Department of Kinesiology, Hungarian University of Sport Sciences, Budapest, Hungary
| | - Leonidas Petridis
- Research Centre for Sport Physiology, Hungarian University of Sport Sciences, Hungary
| | - János Négyesi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Örs Sebestyén
- Department of Kinesiology, Hungarian University of Sport Sciences, Budapest, Hungary
| | - Ye Jingyi
- Ningbo University, Faculty of Sport Science, Ningbo, China
| | - Jingfeng Zhang
- University of Chinese Academy of Sciences, Department of Radiology, HwaMei Hospital, Ningbo, China
| | - Yaodong Gu
- Ningbo University, Faculty of Sport Science, Ningbo, China
| | - József Tihanyi
- Department of Kinesiology, Hungarian University of Sport Sciences, Budapest, Hungary
| |
Collapse
|
7
|
Siegel SD, Mason J, Hamacher D, Rahlf AL, Zech A. Asymmetries of foot strike patterns during running in high-level female and male soccer players. BMC Sports Sci Med Rehabil 2023; 15:86. [PMID: 37452424 PMCID: PMC10349471 DOI: 10.1186/s13102-023-00696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
BACKROUND Foot strike pattern (FSP) is defined by the way the foot makes initial ground contact and is influenced by intrinsic and extrinsic factors. This study investigated the effect of running speed on asymmetries of FSP. METHODS Seventeen female and nineteen male soccer players performed an incremental running test on an instrumented treadmill starting at 2.0 m/s until complete exhaustion. Force plate data were used to categorize foot strikes into rearfoot (RFS) and non-rearfoot strikes. Additionally, peak vertical ground reaction force (peakGRF) and stride time were calculated. The symmetry index (SI) was used to quantify lateral asymmetries between legs. RESULTS The SI indicated asymmetries of the rate of RFS (%RFS) of approximately 30% at slow running speed which decreased to 4.4% during faster running speed (p = 0.001). There were minor asymmetries in peakGRF and stride time at each running stage. Running speed influenced %RFS (p < 0.001), peakGRF (p < 0.001) and stride time (p < 0.001). Significant interaction effects between running speed and sex were shown for %RFS (p = 0.033), peakGRF (p < 0.001) and stride time (p = 0.041). CONCLUSION FSP of soccer players are asymmetric at slower running speed, but symmetry increases with increasing speed. Future studies should consider that FSP are non-stationary and influenced by running speed but also differ between legs.
Collapse
Affiliation(s)
- Stanislav Dimitri Siegel
- Department of Human Movement Science and Exercise Physiology, Institute of Sport Science, Friedrich Schiller University Jena, Seidelstraße 20, Jena, 07749, Germany.
| | - Joel Mason
- Department of Human Movement Science and Exercise Physiology, Institute of Sport Science, Friedrich Schiller University Jena, Seidelstraße 20, Jena, 07749, Germany
| | - Daniel Hamacher
- Methods and Statistics in Sports, Institute of Sport Science, Friedrich Schiller University Jena, Seidelstraße 20, Jena, 07749, Germany
| | - Anna Lina Rahlf
- Department of Sports Science, Institute of Health, Nutrition and Sport Science, Europa-Universität Flensburg, Campusallee 2, Flensburg, 24943, Germany
| | - Astrid Zech
- Department of Human Movement Science and Exercise Physiology, Institute of Sport Science, Friedrich Schiller University Jena, Seidelstraße 20, Jena, 07749, Germany
| |
Collapse
|
8
|
Zeng Z, Liu Y, Wang L. Validity of IMU measurements on running kinematics in non-rearfoot strike runners across different speeds. J Sports Sci 2023; 41:1083-1092. [PMID: 37733423 DOI: 10.1080/02640414.2023.2259211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023]
Abstract
This study aims to determine the validity of the lower extremity joint kinematics measured by inertial measurement units (IMUs) in non-rearfoot strike pattern (NRFS) runners across different speeds. Fifteen NRFS runners completed three 2-min running tests on a treadmill in random order at 8, 10 and 12 km/h, whilst data were synchronously collected using the IMU system and an optical motion capture system. Before the offset was corrected, the validity of the knee angle waveform was higher than that of the hip and ankle; after the offset was corrected, the validity increased in all three joints. The correlation between the touchdown angles in the sagittal plane measured by the two systems was relatively high after the offset was corrected. The running speed influenced the offset-corrected measurements, with higher error values at higher speeds. The IMU system was able to provide measurements of running kinematics in the sagittal plane of NRFS runners at different running speeds but was unable to reliably measure motion in the frontal and horizontal planes. Future research should analyse the 3D gait of NRFS runners under a larger range of speed conditions to provide evidentiary support for the use of IMUs in running analysis outside the laboratory.
Collapse
Affiliation(s)
- Ziwei Zeng
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| | - Yue Liu
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| | - Lin Wang
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| |
Collapse
|
9
|
Gruber AH, Warne JP, Hamill J. Isolated effects of footwear structure and cushioning on running mechanics in habitual mid/forefoot runners. Sports Biomech 2023; 22:422-441. [PMID: 36200613 DOI: 10.1080/14763141.2022.2129088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
The true differences between barefoot and shod running are difficult to directly compare because of the concomitant change to a mid/forefoot footfall pattern that typically occurs during barefoot running. The purpose of this study was to compare isolated effects of footwear structure and cushioning on running mechanics in habitual mid/forefoot runners running shod (SHOD), barefoot (BF), and barefoot on a foam surface (BF+FOAM). Ten habitually shod mid/forefoot runners were recruited (male = 8, female = 2). Repeated measures ANOVA (α = 0.05) revealed differences between conditions for only vertical peak active force, contact time, negative and total ankle joint work, and peak dorsiflexion angle. Post hoc tests revealed that BF+FOAM resulted in smaller vertical active peak magnitude and instantaneous vertical loading rate than SHOD. SHOD resulted in lower total ankle joint work than BF and BF+FOAM. BF+FOAM resulted in lower negative ankle joint work than either BF or SHOD. Contact time was shorter with BF than BF+FOAM or SHOD. Peak dorsiflexion angle was smaller in SHOD than BF. No other differences in sagittal joint kinematics, kinetics, or ground reaction forces were observed. These overall similarities in running mechanics between SHOD and BF+FOAM question the effects of footwear structure on habituated mid/forefoot running described previously.
Collapse
Affiliation(s)
- A H Gruber
- The H.H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - J P Warne
- Department of Applied Science, Technological University Dublin- Tallaght Campus, Dublin, Ireland.,Setanta College, Thurles Chamber of Commerce, Tipperary, Ireland
| | - J Hamill
- Biomechanics Laboratory, Department of Kinesiology, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
10
|
Mackala K, Mroczek D, Chmura P, Konefał M, Pawlik D, Ochman B, Chmura J, Paleczny B, Seredyński R, Wyciszkiewicz M, Nowicka-Czudak A, Łopusiewicz W, Adamiec D, Wiecha S, Ponikowski P, Ponikowska B. Impact of marathon performance on muscles stiffness in runners over 50 years old. Front Psychol 2023; 14:1069774. [PMID: 36910804 PMCID: PMC9998500 DOI: 10.3389/fpsyg.2023.1069774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction The research examines the relationship between marathon performance and muscle stiffness changes from pre to marathon in recreational runners aged 50+ years. Methods Thirty-one male long-distance runners aged 50-73 years participated in the experiment. The muscle stiffness of quadriceps and calves was measured in two independent sessions: the day before the marathon and 30 min after the completed marathon run using a Myoton device. Results and Discussion The 42.195-km run was completed in 4.30,05 h ± 35.12 min, which indicates an intensity of 79.3% ± 7.1% of HRmax. The long-term, low-intensity running exercise (marathon) in older recreational runners and the low level of HRmax and VO2max showed no statistically significant changes in muscle stiffness (quadriceps and calves). There was reduced muscle stiffness (p = 0.016), but only in the triceps of the calf in the dominant (left) leg. Moreover, to optimally evaluate the marathon and adequately prepare for the performance training program, we need to consider the direct and indirect analyses of the running economy, running technique, and HRmax and VO2max variables. These variables significantly affect marathon exercise.
Collapse
Affiliation(s)
- Krzysztof Mackala
- Department of Track and Field, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Dariusz Mroczek
- Department of Human Motor Skills, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Paweł Chmura
- Department of Sport Team Games, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Marek Konefał
- Department of Human Motor Skills, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Damian Pawlik
- Department of Human Motor Skills, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Bartosz Ochman
- Department of Physiology, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Jan Chmura
- Department of Human Motor Skills, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Bartłomiej Paleczny
- Department of Physiology and Pathophysiology, Wroclaw Medical University, Wroclaw, Poland
| | - Rafał Seredyński
- Department of Physiology and Pathophysiology, Wroclaw Medical University, Wroclaw, Poland
| | | | | | - Wojciech Łopusiewicz
- Department of Physiology and Pathophysiology, Wroclaw Medical University, Wroclaw, Poland
| | - Dorota Adamiec
- Department of Physiology and Pathophysiology, Wroclaw Medical University, Wroclaw, Poland
| | - Szczepan Wiecha
- Department of Physical Education and Health in Biala Podlaska, Faculty in Biala Podlaska, The Jozef Pilsudski University of Physical Education in Warsaw, Biala Podlaska, Poland
| | - Piotr Ponikowski
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Beata Ponikowska
- Center for Heart Diseases, University Hospital in Wroclaw, Wroclaw, Poland
| |
Collapse
|
11
|
Larsen RJ, Queen RM, Schmitt D. Adaptive locomotion: Foot strike pattern and limb mechanical stiffness while running over an obstacle. J Biomech 2022; 143:111283. [PMID: 36113387 DOI: 10.1016/j.jbiomech.2022.111283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Previous studies of level running suggest runners adjust foot strike to control leg stiffness. This study aimed to determine how runners adjusted mechanical stiffness and foot strike prior to, during, and after a drop in surface height. Ten healthy subjects (5 male, 5 female; 24.32 ± 5.0 years) were video recorded as they ran on an outdoor path with a single drop in surface height (12.5 cm). Foot strike was recorded, while subject velocity, duty factor (DF), normalized maximum ground reaction force (GRFbw), vertical hip displacement (Δy), leg compression (ΔL), vertical (Kvert) and leg stiffness (Kleg), touchdown (TD) and takeoff angle (TO), and flight (Tf) and contact time (Tc) were calculated. Compared to the step before the drop, Tf, GRFbw, Kvert, Kleg, and TO increased, while Tc, DF, Δy, ΔL, and TD decreased in the step after the drop. Across trials, runners had either consistent or variable foot strike patterns. Runners using a consistent pattern most often shifted from rear to fore-foot strike in the steps before and after the drop, while those with a variable pattern showed less dramatic shifts. All parameters, except TD, were significantly different (p < 0.04) based on foot strike pattern, and comparisons between steps before and after the drop (except TD) were significantly different (p < 0.004). Runners with a variable foot strike pattern experienced smaller shifts within mechanical parameters when traveling over the drop, suggesting these runners may be able to stabilize limb mechanics on interrupted surfaces.
Collapse
Affiliation(s)
- Roxanne J Larsen
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
| | - Robin M Queen
- Kevin P. Granata Biomechanics Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Daniel Schmitt
- Animal Locomotion Lab, Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| |
Collapse
|
12
|
Influence of the Shod Condition on Running Power Output: An Analysis in Recreationally Active Endurance Runners. SENSORS 2022; 22:s22134828. [PMID: 35808324 PMCID: PMC9268959 DOI: 10.3390/s22134828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/01/2022]
Abstract
Several studies have already analysed power output in running or the relation between VO2max and power production as factors related to running economy; however, there are no studies assessing the difference in power output between shod and barefoot running. This study aims to identify the effect of footwear on the power output endurance runner. Forty-one endurance runners (16 female) were evaluated at shod and barefoot running over a one-session running protocol at their preferred comfortable velocity (11.71 ± 1.07 km·h−1). The mean power output (MPO) and normalized MPO (MPOnorm), form power, vertical oscillation, leg stiffness, running effectiveness and spatiotemporal parameters were obtained using the Stryd™ foot pod system. Additionally, footstrike patterns were measured using high-speed video at 240 Hz. No differences were noted in MPO (p = 0.582) and MPOnorm (p = 0.568), whereas significant differences were found in form power, in both absolute (p = 0.001) and relative values (p < 0.001), running effectiveness (p = 0.006), stiffness (p = 0.002) and vertical oscillation (p < 0.001). By running barefoot, lower values for contact time (p < 0.001) and step length (p = 0.003) were obtained with greater step frequency (p < 0.001), compared to shod running. The prevalence of footstrike pattern significantly differs between conditions, with 19.5% of runners showing a rearfoot strike, whereas no runners showed a rearfoot strike during barefoot running. Running barefoot showed greater running effectiveness in comparison with shod running, and was consistent with lower values in form power and lower vertical oscillation. From a practical perspective, the long-term effect of barefoot running drills might lead to increased running efficiency and leg stiffness in endurance runners, affecting running economy.
Collapse
|
13
|
Gindre C, Breine B, Patoz A, Hébert-Losier K, Thouvenot A, Mourot L, Lussiana T. PIMP Your Stride: Preferred Running Form to Guide Individualized Injury Rehabilitation. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:880483. [PMID: 36188949 PMCID: PMC9397892 DOI: 10.3389/fresc.2022.880483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022]
Abstract
Despite the wealth of research on injury prevention and biomechanical risk factors for running related injuries, their incidence remains high. It was suggested that injury prevention and reconditioning strategies should consider spontaneous running forms in a more holistic view and not only the injury location or specific biomechanical patterns. Therefore, we propose an approach using the preferred running form assessed through the Volodalen® method to guide injury prevention, rehabilitation, and retraining exercise prescription. This approach follows three steps encapsulated by the PIMP acronym. The first step (P) refers to the preferred running form assessment. The second step (I) is the identification of inefficiency in the vertical load management. The third step (MP) refers to the movement plan individualization. The answers to these three questions are guidelines to create individualized exercise pathways based on our clinical experience, biomechanical data, strength conditioning knowledge, and empirical findings in uninjured and injured runners. Nevertheless, we acknowledge that further scientific justifications with appropriate clinical trials and mechanistic research are required to substantiate the approach.
Collapse
Affiliation(s)
- Cyrille Gindre
- Research and Development Department, Volodalen Swiss Sportlab, Aigle, Switzerland
| | - Bastiaan Breine
- Research and Development Department, Volodalen Swiss Sportlab, Aigle, Switzerland
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Aurélien Patoz
- Research and Development Department, Volodalen Swiss Sportlab, Aigle, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Kim Hébert-Losier
- Department of Sports Science, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
- Faculty of Health, Sport and Human Performance, University of Waikato, Adams Centre for High Performance, Tauranga, New Zealand
| | - Adrien Thouvenot
- Research and Development Department, Volodalen Swiss Sportlab, Aigle, Switzerland
- Research Unit EA3920 Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance, Health, Innovation Platform, University of Bourgogne Franche-Comté, Besançon, France
| | - Laurent Mourot
- Research Unit EA3920 Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance, Health, Innovation Platform, University of Bourgogne Franche-Comté, Besançon, France
- Division for Physical Education, Tomsk Polytechnic University, Tomsk, Russia
| | - Thibault Lussiana
- Research and Development Department, Volodalen Swiss Sportlab, Aigle, Switzerland
- Research Unit EA3920 Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance, Health, Innovation Platform, University of Bourgogne Franche-Comté, Besançon, France
- *Correspondence: Thibault Lussiana
| |
Collapse
|
14
|
Wallace IJ, Kraft TS, Venkataraman VV, Davis HE, Holowka NB, Harris AR, Lieberman DE, Gurven M. Cultural variation in running techniques among non-industrial societies. EVOLUTIONARY HUMAN SCIENCES 2022; 4:e14. [PMID: 36325185 PMCID: PMC9624512 DOI: 10.1017/ehs.2022.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Research among non-industrial societies suggests that body kinematics adopted during running vary between groups according to the cultural importance of running. Among groups in which running is common and an important part of cultural identity, runners tend to adopt what exercise scientists and coaches consider to be good technique for avoiding injury and maximising performance. In contrast, among groups in which running is not particularly culturally important, people tend to adopt suboptimal technique. This paper begins by describing key elements of good running technique, including landing with a forefoot or midfoot strike pattern and leg oriented roughly vertically. Next, we review evidence from non-industrial societies that cultural attitudes about running associate with variation in running techniques. Then, we present new data from Tsimane forager-horticulturalists in Bolivia. Our findings suggest that running is neither a common activity among the Tsimane nor is it considered an important part of cultural identity. We also demonstrate that when Tsimane do run, they tend to use suboptimal technique, specifically landing with a rearfoot strike pattern and leg protracted ahead of the knee (called overstriding). Finally, we discuss processes by which culture might influence variation in running techniques among non-industrial societies, including self-optimisation and social learning.
Collapse
Affiliation(s)
- Ian J. Wallace
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - Thomas S. Kraft
- Department of Anthropology, University of Utah, Salt Lake City, UT, USA
| | - Vivek V. Venkataraman
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | - Helen E. Davis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Alexandra R. Harris
- Department of Archaeology and Anthropology, University of Cambridge, Cambridge, UK
| | - Daniel E. Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
15
|
Urbaczka J, Silvernail JF, Jandacka D. Effect of training volume on footstrike patterns over an exhaustive run. Gait Posture 2022; 91:240-246. [PMID: 34753001 DOI: 10.1016/j.gaitpost.2021.10.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Although footstrike pattern (FP) may not be a factor influencing running performance, 11-75% of world-class distance runners use a non-rearfoot FP. However, little attention has been paid to describe the effect of running volume on FP changes when a runner is fatigued. RESEARCH QUESTION Does the training volume provide an adequate stimulus to mitigate FP changes during an exhaustive run in non-rearfoot, habitual minimalist footwear runners? METHODS The objective of this study was to compare FP between non-rearfoot, habitual minimalist footwear runners with a moderate training volume (MT) and a high training volume (HT) during an exhaustive run on a motorized treadmill. Based on their weekly training volume (distance), twenty-eight runners were arranged into two groups paired by height and age. At the first visit, runners underwent a VO2max test to acquire their velocity for the exhaustive run. During the second visit, biomechanical and physiological analysis of the beginning and the end phase of the exhaustive run was done. RESULTS The frontal plane foot angle, the sagittal plane ankle angle at the initial contact (IC), and the foot eversion ROM showed a significant interaction effect (P < 0.05). Additionally, the sagittal plane footstrike angle, the frontal plane foot angle, the sagittal plane ankle angle, knee flexion angle at IC and foot eversion ROM showed a significant effect of fatigue (P < 0.05). Finally, the frontal plane foot angle, the sagittal plane footstrike angle, the sagittal plane ankle angle, and the knee flexion angle showed significant group effects (P < 0.05). SIGNIFICANCE The training volume affects the footstrike pattern of non-rearfoot, habitual minimalist footwear runners when they are fatigued. The highly trained runners maintained their ankle angle throughout the exhaustive running protocol, whereas the moderately trained group changed the frontal and sagittal plane characteristics of their footstrike pattern.
Collapse
Affiliation(s)
- Jan Urbaczka
- Department of Human Movement Studies, University of Ostrava, Czech Republic.
| | | | - Daniel Jandacka
- Department of Human Movement Studies, University of Ostrava, Czech Republic
| |
Collapse
|
16
|
Bovalino SP, Kingsley MIC. Foot Strike Patterns During Overground Distance Running: A Systematic Review and Meta-Analysis. SPORTS MEDICINE-OPEN 2021; 7:82. [PMID: 34757569 PMCID: PMC8581084 DOI: 10.1186/s40798-021-00369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/05/2021] [Indexed: 12/03/2022]
Abstract
Background Investigations of foot strike patterns during overground distance running have foci on prevalence, performance and change in foot strike pattern with increased distance. To date, synthesised analyses of these findings are scarce.
Objective The key objectives of this review were to quantify the prevalence of foot strike patterns, assess the impact of increased running distance on foot strike pattern change and investigate the potential impact of foot strike pattern on performance.
Methods Relevant peer-reviewed literature was obtained by searching EBSCOhost CINAHL, Ovid Medline, EMBASE and SPORTDiscus (inception-2021) for studies investigating foot strike patterns in overground distance running settings (> 10 km). Random effects meta-analyses of prevalence data were performed where possible. Results The initial search identified 2210 unique articles. After removal of duplicates and excluded articles, 12 articles were included in the review. Meta-analysis of prevalence data revealed that 79% of long-distance overground runners rearfoot strike early, with prevalence rising to 86% with increased distance. In total, 11% of runners changed foot strike pattern with increased distance and of those, the vast majority (84%) do so in one direction, being non-rearfoot strike to rearfoot strike. Analysis of the relationship between foot strike pattern and performance revealed that 5 studies reported a performance benefit to non-rearfoot strike, 1 study reported a performance benefit to non-rearfoot strike in women but not men, 4 studies reported no benefit to non-rearfoot strike or rearfoot strike, and no studies reported a performance benefit of rearfoot strike over non-rearfoot strike. Conclusion Most overground distance runners rearfoot strike early, and the prevalence of this pattern increases with distance. Of those that do change foot strike pattern, the majority transition from non-rearfoot to rearfoot. The current literature provides inconclusive evidence of a competitive advantage being associated with long-distance runners who use a non-rearfoot strike pattern in favour of a rearfoot strike pattern. Supplementary Information The online version contains supplementary material available at 10.1186/s40798-021-00369-9.
Collapse
Affiliation(s)
- Stephen P Bovalino
- Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Melbourne, VIC, Australia
| | - Michael I C Kingsley
- Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Melbourne, VIC, Australia. .,Exercise Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
17
|
Continuous Tracking of Foot Strike Pattern during a Maximal 800-Meter Run. SENSORS 2021; 21:s21175782. [PMID: 34502672 PMCID: PMC8434103 DOI: 10.3390/s21175782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/31/2023]
Abstract
(1) Background: Research into foot strike patterns (FSP) has increased due to its potential influence on performance and injury reduction. The purpose of this study was to evaluate changes in FSP throughout a maximal 800-m run using a conformable inertial measurement unit attached to the foot; (2) Methods: Twenty-one subjects (14 female, 7 male; 23.86 ± 4.25 y) completed a maximal 800-m run while foot strike characteristics were continually assessed. Two measures were assessed across 100-m intervals: the percentage of rearfoot strikes (FSP%RF), and foot strike angle (FSA). The level of significance was set to p ≤ 0.05; (3) Results: There were no differences in FSP%RF throughout the run. Significant differences were seen between curve and straight intervals for FSAAVE (F [1, 20] = 18.663, p < 0.001, ηp2 = 0.483); (4) Conclusions: Participants displayed decreased FSA, likely indicating increased plantarflexion, on the curve compared to straight intervals. The analyses of continuous variables, such as FSA, allow for the detection of subtle changes in foot strike characteristics, which is not possible with discrete classifiers, such as FSP%RF.
Collapse
|
18
|
Muniz-Pardos B, Angeloudis K, Guppy FM, Keramitsoglou I, Sutehall S, Bosch A, Tanisawa K, Hosokawa Y, Ash GI, Schobersberger W, Grundstein AJ, Casa DJ, Morrissey MC, Yamasawa F, Zelenkova I, Racinais S, Pitsiladis Y. Wearable and telemedicine innovations for Olympic events and elite sport. J Sports Med Phys Fitness 2021; 61:1061-1072. [PMID: 34256539 DOI: 10.23736/s0022-4707.21.12752-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rapid advances in wearable technologies and real-time monitoring have resulted in major inroads in the world of recreational and elite sport. One such innovation is the application of real-time monitoring, which comprises a smartwatch application and ecosystem, designed to collect, process and transmit a wide range of physiological, biomechanical, bioenergetic and environmental data using cloud-based services. We plan to assess the impact of this wireless technology during Tokyo 2020, where this technology could help characterize the physiological and thermal strain experienced by an athlete, as well as determine future management of athletes during a medical emergency as a result of a more timely and accurate diagnosis. Here we describe some of the innovative technologies developed for numerous sports at Tokyo 2020 ranging from race walking (20 km and 50 km events), marathon, triathlon, road cycling (including the time trial event), mountain biking, to potentially team sports played outdoors. A more symbiotic relationship between sport, health and technology needs to be encouraged that harnesses the unique demands of elite sport (e.g., the need for unobtrusive devices that provide real-time feedback) and serves as medical and preventive support for the athlete's care. The implementation of such applications would be particularly welcome in the field of medicine (i.e., telemedicine applications) and the workplace (with particular relevance to emergency services, the military and generally workers under extreme environmental conditions). Laboratory and field-based studies are required in simulated scenarios to validate such emerging technologies, with the field of sport serving as an excellent model to understand and impact disease.
Collapse
Affiliation(s)
- Borja Muniz-Pardos
- GENUD Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Zaragoza, Spain
| | | | - Fergus M Guppy
- Center for Stress and Age-Related Disease, University of Brighton, Brighton, UK.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | | | - Shaun Sutehall
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Andrew Bosch
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Yuri Hosokawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Garrett I Ash
- Center for Medical Informatics, Yale School of Medicine, New Haven, CT, USA.,Pain Research, Informatics, Multi-morbidities, and Education (PRIME) Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Wolfgang Schobersberger
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), Tirol Kliniken Innsbruck and Private University UMIT TIROL, Hall, Austria
| | | | - Douglas J Casa
- Korey Stringer Institute, University of Connecticut, Storrs, CT, USA
| | | | | | - Irina Zelenkova
- GENUD Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Zaragoza, Spain
| | - Sébastien Racinais
- Department and Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
| | - Yannis Pitsiladis
- Center for Stress and Age-Related Disease, University of Brighton, Brighton, UK - .,International Federation of Sports Medicine (FIMS), Lausanne, Switzerland.,Center for Exercise Sciences and Sports Medicine, FIMS Collaborating Center of Sports Medicine, Rome, Italy.,European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
| |
Collapse
|
19
|
Meyer F, Falbriard M, Mariani B, Aminian K, Millet GP. Continuous Analysis of Marathon Running Using Inertial Sensors: Hitting Two Walls? Int J Sports Med 2021; 42:1182-1190. [PMID: 33975367 DOI: 10.1055/a-1432-2336] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Marathon running involves complex mechanisms that cannot be measured with objective metrics or laboratory equipment. The emergence of wearable sensors introduced new opportunities, allowing the continuous recording of relevant parameters. The present study aimed to assess the evolution of stride-by-stride spatio-temporal parameters, stiffness, and foot strike angle during a marathon and determine possible abrupt changes in running patterns. Twelve recreational runners were equipped with a Global Navigation Satellite System watch, and two inertial measurement units clamped on each foot during a marathon race. Data were split into eight 5-km sections and only level parts were analyzed. We observed gradual increases in contact time and duty factor as well as decreases in flight time, swing time, stride length, speed, maximal vertical force and stiffness during the race. Surprisingly, the average foot strike angle decreased during the race, but each participant maintained a rearfoot strike until the end. Two abrupt changes were also detected around km 25 and km 35. These two breaks are possibly due to the alteration of the stretch-shortening cycle combined with physiological limits. This study highlights new measurable phenomena that can only be analyzed through continuous monitoring of runners over a long period of time.
Collapse
Affiliation(s)
- Frédéric Meyer
- Institute of Sport Sciences, University of Lausanne Lausanne, Switzerland.,Department of informatikk, University of Oslo, Faculty of Mathematics and Natural Sciences, Oslo, Norway
| | - Mathieu Falbriard
- Laboratory of Movement Analysis and Measurement (LMAM), EPFL, Lausanne, Switzerland
| | | | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement (LMAM), EPFL, Lausanne, Switzerland
| | - Gregoire P Millet
- Institute of Sport Sciences, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
20
|
Muscle-Tendon Behavior and Kinetics in Gastrocnemius Medialis During Forefoot and Rearfoot Strike Running. J Appl Biomech 2021; 37:240-247. [PMID: 33771942 DOI: 10.1123/jab.2020-0229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022]
Abstract
The present study aimed to clarify the effect of the foot strike pattern on muscle-tendon behavior and kinetics of the gastrocnemius medialis during treadmill running. Seven male participants ran with 2 different foot strike patterns (forefoot strike [FFS] and rearfoot strike [RFS]), with a step frequency of 2.50 Hz and at a speed of 2.38 m/s for 45 seconds on a treadmill with an instrumented force platform. The fascicle behavior of gastrocnemius medialis was captured using a B-mode ultrasound system with a sampling rate of 75 Hz, and the mechanical work done and power exerted by the fascicle and tendon were calculated. At the initial contact, the fascicle length was significantly shorter in the FFS than in the RFS (P = .001). However, the fascicular velocity did not differ between strike patterns. Higher tendon stretch and recoil were observed in the FFS (P < .001 and P = .017, respectively) compared with the RFS. The fascicle in the positive phase performed the same mechanical work in both the FFS and RFS; however, the fascicle in the negative phase performed significantly greater work in the FFS than in the RFS (P = .001). RFS may be advantageous for requiring less muscular work and elastic energy in the series elastic element compared with the FFS.
Collapse
|
21
|
Development of Machine Learning Algorithms for the Determination of the Centre of Mass. Symmetry (Basel) 2021. [DOI: 10.3390/sym13030401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The study of the human body and its movements is still a matter of great interest today. Most of these issues have as their fulcrum the study of the balance characteristics of the human body and the determination of its Centre of Mass. In sports, a lot of attention is paid to improving and analysing the athlete’s performance. Almost all the techniques for determining the Centre of Mass make use of special sensors, which allow determining the physical magnitudes related to the different movements made by athletes. In this paper, a markerless method for determining the Centre of Mass of a subject has been studied, comparing it with a direct widely validated equipment such as the Wii Balance Board, which allows determining the coordinates of the Centre of Pressure. The Motion Capture technique was applied with the OpenPose software, a Computer Vision method boosted with the use of Convolution Neural Networks. Ten quasi-static analyses have been carried out. The results have shown an error of the Centre of Mass position, compared to that obtained from the Wii Balance Board, which has been considered acceptable given the complexity of the analysis. Furthermore, this method, despite the traditional methods based on the use of balances, can be used also for prediction of the vertical position of the Centre of Mass.
Collapse
|
22
|
Kovács B, Kóbor I, Sebestyén Ö, Tihanyi J. Longer Achilles tendon moment arm results in better running economy. Physiol Int 2021; 107:527-541. [PMID: 33410770 DOI: 10.1556/2060.2020.10000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/29/2020] [Indexed: 11/19/2022]
Abstract
Based on the current literature, the link between Achilles tendon moment arm length and running economy is not well understood. Therefore, the aim of this study was to further investigate the connection between Achilles tendon moment arm and running economy and the influence of Achilles tendon moment arm on the function of the plantarflexor muscle-tendon unit during running.Ten male competitive marathon runners volunteered for this study. The participants ran on a treadmill at two running speeds: 3 and 3.5 m s-1. During running the oxygen consumption, lower leg kinematics, electrical activity of plantar flexor muscles, and fascicle behavior of the lateral gastrocnemius were measured simultaneously. On the second occasion, an MRI scan of the right leg was taken and used to estimate the Achilles tendon moment arm length.There was a negative correlation between running economy and the body height normalized moment arm length at both selected speeds (r = -0.68, P = 0.014 and r = -0.70, P = 0.01). In addition, Achilles tendon moment arm length correlated with the amplitude of the ankle flexion at both speeds (r = -0.59, P = 0.03 and r = -0.60, P = 0.03) and with the electrical activity of the medial gastrocnemius muscle at 3 m s-1 speed (r = -0.62, P = 0.02). Our finding supports the concept that a longer moment arm could be beneficial for distance runners.
Collapse
Affiliation(s)
- B Kovács
- 1Department of Kinesiology, University of Physical Education, Budapest, Hungary
| | - I Kóbor
- 2Semmelweis University, MR Research Centre, Budapest, Hungary
| | - Ö Sebestyén
- 1Department of Kinesiology, University of Physical Education, Budapest, Hungary
| | - J Tihanyi
- 1Department of Kinesiology, University of Physical Education, Budapest, Hungary
| |
Collapse
|
23
|
Jones AM, Kirby BS, Clark IE, Rice HM, Fulkerson E, Wylie LJ, Wilkerson DP, Vanhatalo A, Wilkins BW. Physiological demands of running at 2-hour marathon race pace. J Appl Physiol (1985) 2020; 130:369-379. [PMID: 33151776 DOI: 10.1152/japplphysiol.00647.2020] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The requirements of running a 2-h marathon have been extensively debated but the actual physiological demands of running at ∼21.1 km/h have never been reported. We therefore conducted laboratory-based physiological evaluations and measured running economy (O2 cost) while running outdoors at ∼21.1 km/h, in world-class distance runners as part of Nike's "Breaking 2" marathon project. On separate days, 16 world-class male distance runners (age, 29 ± 4 yr; height, 1.72 ± 0.04 m; mass, 58.9 ± 3.3 kg) completed an incremental treadmill test for the assessment of V̇O2peak, O2 cost of submaximal running, lactate threshold and lactate turn-point, and a track test during which they ran continuously at 21.1 km/h. The laboratory-determined V̇O2peak was 71.0 ± 5.7 mL/kg/min with lactate threshold and lactate turn-point occurring at 18.9 ± 0.4 and 20.2 ± 0.6 km/h, corresponding to 83 ± 5% and 92 ± 3% V̇O2peak, respectively. Seven athletes were able to attain a steady-state V̇O2 when running outdoors at 21.1 km/h. The mean O2 cost for these athletes was 191 ± 19 mL/kg/km such that running at 21.1 km/h required an absolute V̇O2 of ∼4.0 L/min and represented 94 ± 3% V̇O2peak. We report novel data on the O2 cost of running outdoors at 21.1 km/h, which enables better modeling of possible marathon performances by elite athletes. Using the value for O2 cost measured in this study, a sub 2-h marathon would require a 59 kg runner to sustain a V̇O2 of approximately 4.0 L/min or 67 mL/kg/min.NEW & NOTEWORTHY We report the physiological characteristics and O2 cost of running overground at ∼21.1 km/h in a cohort of the world's best male distance runners. We provide new information on the absolute and relative O2 uptake required to run at 2-h marathon pace.
Collapse
Affiliation(s)
- Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | | | - Ida E Clark
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Hannah M Rice
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | | | - Lee J Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Daryl P Wilkerson
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Brad W Wilkins
- Nike Sport Research Lab, Beaverton, Oregon.,Department of Human Physiology, Gonzaga University, Spokane, Washington
| |
Collapse
|
24
|
Lower leg muscle-tendon unit characteristics are related to marathon running performance. Sci Rep 2020; 10:17870. [PMID: 33087749 PMCID: PMC7578824 DOI: 10.1038/s41598-020-73742-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/15/2020] [Indexed: 01/10/2023] Open
Abstract
The human ankle joint and plantar flexor muscle–tendon unit play an important role in endurance running. It has been assumed that muscle and tendon interactions and their biomechanical behaviours depend on their morphological and architectural characteristics. We aimed to study how plantar flexor muscle characteristics influence marathon running performance and to determine whether there is any difference in the role of the soleus and gastrocnemii. The right lower leg of ten male distance runners was scanned with magnetic resonance imagining. The cross-sectional areas of the Achilles tendon, soleus, and lateral and medial gastrocnemius were measured, and the muscle volumes were calculated. Additional ultrasound scanning was used to estimate the fascicle length of each muscle to calculate the physiological cross-sectional area. Correlations were found between marathon running performance and soleus volume (r = 0.55, p = 0.048), soleus cross-sectional area (r = 0.57, p = 0.04), soleus physiological cross-sectional area (PCSA-IAAF r = 0.77, p < 0.01, CI± 0.28 to 0.94), Achilles tendon thickness (r = 0.65, p < 0.01), and soleus muscle-to-tendon ratio (r = 0.68, p = 0.03). None of the gastrocnemius characteristics were associated with marathon performance. We concluded that a larger soleus muscle with a thicker Achilles tendon is associated with better marathon performance. Based on these results, it can be concluded the morphological characteristics of the lower leg muscle–tendon unit correlate with running performance.
Collapse
|
25
|
Melaro JA, Gruber AH, Paquette MR. Joint work is not shifted proximally after a long run in rearfoot strike runners. J Sports Sci 2020; 39:78-83. [PMID: 32787647 DOI: 10.1080/02640414.2020.1804807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Distal-to-proximal redistribution of joint work occurs following exhaustive running in recreational but not competitive runners but the influence of a submaximal run on joint work is unknown. The purpose of this study was to assess if a long submaximal run produces a distal-to-proximal redistribution of positive joint work in well-trained runners. Thirteen rearfoot striking male runners (weekly distance: 72.6 ± 21.2 km) completed five running trials while three-dimensional kinematic and ground reaction force data were collected before and after a long submaximal treadmill run (19 ± 6 km). Joint kinetics were calculated from these data and percent contributions of joint work relative to total lower limb joint work were computed. Moderate reductions in absolute negative ankle work (p = 0.045, Cohen's d = 0.31), peak plantarflexor torque (p = 0.004, d = 0.34) and, peak negative ankle power (p = 0.005, d = 0.32) were observed following the long run. Positive ankle, knee and hip joint work were unchanged (p < 0.05) following the long run. These findings suggest no proximal shift in positive joint work in well-trained runners after a prolonged run. Runner population, running pace, distance, and relative intensity should be considered when examining changes in joint work following prolonged running.
Collapse
Affiliation(s)
- Jake A Melaro
- School of Health Studies, University of Memphis , Memphis, Tennessee, USA
| | - Allison H Gruber
- Department of Kinesiology, School of Public Health, Indiana University , Bloomington, Indiana, USA
| | - Max R Paquette
- School of Health Studies, University of Memphis , Memphis, Tennessee, USA
| |
Collapse
|
26
|
Hébert-Losier K, Patoz A, Gindre C, Lussiana T. Footstrike pattern at the 10 km and 39 km points of the Singapore marathon in recreational runners. FOOTWEAR SCIENCE 2020. [DOI: 10.1080/19424280.2020.1803993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Kim Hébert-Losier
- Division of Health, Engineering, Computing and Science, Te Huataki Waiora School of Health, Adams Centre for High Performance, University of Waikato, Tauranga, New Zealand
- Department of Sports Science, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
| | - Aurélien Patoz
- Research and Development Department, Volodalen Swiss SportLab, Aigle, Switzerland
| | - Cyrille Gindre
- Research and Development Department, Volodalen Swiss SportLab, Aigle, Switzerland
| | - Thibault Lussiana
- Research and Development Department, Volodalen Swiss SportLab, Chavéria, France
| |
Collapse
|
27
|
Hanley B, Bissas A, Merlino S. Men's and Women's World Championship Marathon Performances and Changes With Fatigue Are Not Explained by Kinematic Differences Between Footstrike Patterns. Front Sports Act Living 2020; 2:102. [PMID: 33345091 PMCID: PMC7739599 DOI: 10.3389/fspor.2020.00102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 11/21/2022] Open
Abstract
World-class marathon runners make initial contact with the rearfoot, midfoot or forefoot. This novel study analyzed kinematic similarities and differences between rearfoot and non-rearfoot strikers within the men's and women's 2017 IAAF World Championship marathons across the last two laps. Twenty-eight men and 28 women, equally divided by footstrike pattern, were recorded at 29.5 and 40 km (laps 3 and 4, respectively) using two high-definition cameras (50 Hz). The videos were digitized to derive spatiotemporal and joint kinematic data, with additional footage (120 Hz) used to identify footstrike patterns. There was no difference in running speed, step length or cadence between rearfoot and non-rearfoot strikers during either lap in both races, and these three key variables decreased in athletes of either footstrike pattern to a similar extent between laps. Men slowed more than women between laps, and overall had greater reductions in step length and cadence. Rearfoot strikers landed with their foot farther in front of the center of mass (by 0.02-0.04 m), with non-rearfoot strikers relying more on flight distance for overall step length. Male rearfoot strikers had more extended knees, dorsiflexed ankles and hyperextended shoulders at initial contact than non-rearfoot strikers, whereas female rearfoot strikers had more flexed hips and extended knees at initial contact. Very few differences were found at midstance and toe-off. Rearfoot and non-rearfoot striking techniques were therefore mostly indistinguishable except at initial contact, and any differences that did occur were very small. The spatiotemporal variables that differed between footstrike patterns were not associated with faster running speeds and, ultimately, neither footstrike pattern prevented reductions in running speeds. The only joint angle measured at a specific gait event to change with fatigue was midswing knee flexion angle in men. Coaches should thus note that encouraging marathon runners to convert from rearfoot to non-rearfoot striking is unlikely to provide any performance benefits, and that training the fatigue resistance of key lower limb muscle-tendon units to avoid decreases in step length and cadence are more useful in preventing reductions in speed during the later stages of the race.
Collapse
Affiliation(s)
- Brian Hanley
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
| | - Athanassios Bissas
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- School of Sport and Exercise, University of Gloucestershire, Gloucester, United Kingdom
| | | |
Collapse
|
28
|
Francis P, Schofield G. From barefoot hunter gathering to shod pavement pounding. Where to from here? A narrative review. BMJ Open Sport Exerc Med 2020; 6:e000577. [PMID: 32405429 PMCID: PMC7202747 DOI: 10.1136/bmjsem-2019-000577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
Understanding the current prevalence and incidence of running injury from an evolutionary perspective has sparked great debate. Proponents of the evolutionary approach to understanding running injury suggest that humans ran using less injurious biomechanics prior to the invention of cushioned running shoes. Those who disagree with this view, point to the many runners, wearing cushioned running shoes, who do not get injured and suggest that the evolutionary approach is indulging in a 'natural fallacy'. This polarises the scientific debate into discrete categories such as 'shod' vs 'barefoot'. This review aims, first, to describe humans' innate impact moderating mechanisms which arise from our evolutionary legacy. Second, we discuss the impact of footwear on these mechanisms and the potential link to injury in some runners. Finally, we discuss the role of barefoot training in sports medicine and attempt to make some practical suggestions as to how it might be integrated in our modern urban environments.
Collapse
Affiliation(s)
- Peter Francis
- Department of Science and Health, Institute of Technology Carlow, Carlow, Ireland
| | - Grant Schofield
- Human Potential Centre, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
29
|
Bovalino SP, Cunningham NJ, Zordan RD, Harkin SM, Thies HHG, Graham CJ, Kingsley MIC. Change in foot strike patterns and performance in recreational runners during a road race: A cross-sectional study. J Sci Med Sport 2020; 23:621-624. [PMID: 32008910 DOI: 10.1016/j.jsams.2019.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To characterise foot strike and observe change in foot strike patterns with increasing distance during a 15km recreational running road race. To assess the impact of foot strike on running performance. DESIGN Observational cross-sectional study. METHODS Foot strike patterns were determined at the 3km and 13km checkpoints for 459 participants during the 2017 Melbourne City to Sea recreational running event. Foot strike patterns were categorised as either rearfoot strike (RFS) or non-rearfoot strike (NRFS) at both checkpoints and analyses were conducted on intra-individual change in foot strike as well as relationship to finishing time. RESULTS The most prevalent foot strike pattern at 3km and 13km was RFS with 76.9% (95% CI: 73.2%-80.5%) and 91.0% (95% CI: 88.7%-93.1%) using this pattern, respectively. Of the 105 participants who ran with a NRFS at 3km, 61% changed to RFS at 13km. Race completion time differed by foot strike pattern, where mean time for consistent NRFS (62.64±11.20min) was significantly faster than consistent RFS (72.58±10.84min; p<0.001) and those who changed from NRFS to RFS between checkpoints (67.93±10.60min; p=0.040). CONCLUSIONS While the majority of recreational distance runners RFS within race settings, the fastest runners were those who consistently ran with a NRFS. In runners that use a NRFS early, a large proportion change to RFS as distance increases. Further research is warranted to determine whether interventions aimed at reducing muscular fatigue can attenuate this change and enhance running performance.
Collapse
Affiliation(s)
- Stephen P Bovalino
- Exercise Physiology, La Trobe Rural Health School, La Trobe University, Australia
| | | | - Rachel D Zordan
- Education and Learning, St Vincent's Hospital, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Australia
| | | | | | | | - Michael I C Kingsley
- Exercise Physiology, La Trobe Rural Health School, La Trobe University, Australia.
| |
Collapse
|
30
|
Moran MF, Wager JC. Influence of Gait Retraining on Running Economy: A Review and Potential Applications. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Girard O, Morin JB, Ryu J, Read P, Townsend N. Running Velocity Does Not Influence Lower Limb Mechanical Asymmetry. Front Sports Act Living 2019; 1:36. [PMID: 33344959 PMCID: PMC7739712 DOI: 10.3389/fspor.2019.00036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/10/2019] [Indexed: 11/29/2022] Open
Abstract
We examined the effect of running velocity upon magnitude and range of asymmetry in the main kinetics and kinematics of treadmill running at constant, submaximal velocities. Nine well-trained, un-injured distance runners ran, in a random order, at seven running velocities (10, 12.5, 15, 17.5, 20, 22.5, and 25 km.h-1) for 60 s (separated by > 90 s of rest) on an instrumented treadmill (ADAL3D-WR, Medical Development, France). Continuous measurement (1,000 Hz) of spatio-temporal, horizontal force production, and spring-mass characteristics was performed and data over 10 consecutive steps (5 right and 5 leg foot contacts after ~50 s of running) were used for subsequent comparisons. Group mean and the range of asymmetry scores were assessed from the "symmetry angle" (SA) formulae where a score of 0%/100% indicates perfect symmetry/asymmetry. Mean SA scores for spatio-temporal variables were lower than 2%: contact time (0.6 ± 0.1%; range: 0.4-0.7%), aerial time (1.7 ± 0.2%; range: 1.3-2.1%) as well as step length and step frequency (0.7 ± 0.2%; range: 0.5-0.9%). Mean loading rate (5.3 ± 1.1%; range: 4.1-6.9%) and spring mass model [peak vertical force: 3.2 ± 1.6% (range: 2.9-3.4%); maximal downward vertical displacement: 11.2 ± 6.0% (range: 9.2-14.0%); leg compression: 3.6 ± 1.9% (range: 2.9-5.6%); vertical stiffness: 8.8 ± 1.9% (range: 7.1-11.6%); leg stiffness: 1.6 ± 0.6% (range: 1.2-2.9%)] presented larger mean SA values. Mean SA scores ranged 1-4% for duration of braking (1.3 ± 0.3%; range: 0.9-2.0%) and push-off (1.6 ± 0.9%; range: 1.2-2.4%) phases, peak braking (2.4 ± 1.1%; range: 1.6-3.6%), and push-off (1.7 ± 0.9%; range: 1.2-2.2%) forces as well as braking (3.7 ± 2.0%; range: 2.8-5.8%) and push-off (2.1 ± 0.8%; range: 1.3-2.6%) impulses. However, with the exception of braking impulse (P = 0.005), there was no influence of running velocity on asymmetry scores for any of the mechanical variables studied (0.118
Collapse
Affiliation(s)
- Olivier Girard
- Murdoch Applied Sports Science Laboratory, Murdoch University, Perth, WA, Australia
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | | | | | - Paul Read
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Nathan Townsend
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
32
|
Patoz A, Lussiana T, Gindre C, Hébert-Losier K. Recognition of Foot Strike Pattern in Asian Recreational Runners. Sports (Basel) 2019; 7:E147. [PMID: 31212983 PMCID: PMC6628358 DOI: 10.3390/sports7060147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 11/17/2022] Open
Abstract
Close to 90% of recreational runners rearfoot strike in a long-distance road race. This prevalence has been obtained from North American cohorts of runners. The prevalence of rearfoot strikers has not been extensively examined in an Asian population of recreational runners. Therefore, the aim of this study was to determine the prevalence of rearfoot, midfoot, and forefoot strikers during a long-distance road race in Asian recreational runners and compare this prevalence to reported values in the scientific literature. To do so, we classified the foot strike pattern of 950 recreational runners at the 10 km mark of the Singapore marathon (77% Asian field). We observed 71.1%, 16.6%, 1.7%, and 10.6% of rearfoot, midfoot, forefoot, and asymmetric strikers, respectively. Chi-squared tests revealed significant differences between our foot strike pattern distribution and those reported from North American cohorts (P < 0.001). Our foot strike pattern distribution was similar to one reported from elite half-marathon runners racing in Japan (Fisher exact test, P = 0.168). We conclude that the prevalence of rearfoot strikers is lower in Asian than North American recreational runners. Running research should consider and report ethnicity of participants given that ethnicity can potentially explain biomechanical differences in running patterns.
Collapse
Affiliation(s)
- Aurélien Patoz
- Research and Development Department, Volodalen Swiss SportLab, 1860 Aigle, Switzerland.
| | - Thibault Lussiana
- Research and Development Department, Volodalen, 39134 Chavéria, France.
| | - Cyrille Gindre
- Research and Development Department, Volodalen Swiss SportLab, 1860 Aigle, Switzerland.
| | - Kim Hébert-Losier
- Adams Centre for High Performance, Faculty of Health, Engineering, Computing and Science, School of Health, Sport and Human Performance, University of Waikato, Tauranga 3116, New Zealand.
- Department of Sports Science, National Sports Institute of Malaysia, Kuala Lumpur 7102, Malaysia.
| |
Collapse
|