1
|
Yan B, Tao Y, Huang C, Lai C, Yong Q. Using One-pot Fermentation Technology to Prepare Enzyme Cocktail to Sustainably Produce Low Molecular Weight Galactomannans from Sesbania cannabina Seeds. Appl Biochem Biotechnol 2022; 194:3016-3030. [PMID: 35334068 DOI: 10.1007/s12010-022-03891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Enzymatic hydrolysis using β-mannanase and α-galactosidase is necessary to produce low molecular weight galactomannan (LMW-GM) from galactomannans (GM) in the leguminous seeds. In this study, different ratios of avicel and melibiose were used as the inductors (carbon sources) for Trichoderma reesei to metabolize the enzyme cocktail containing β-mannanase and α-galactosidase using one-pot fermentation technology. The obtained enzyme cocktail was used to efficiently produce LMW-GM from GM in Sesbania cannabina seeds. Results showed that 15 g/L avicel and 10 g/L melibiose were the best carbon sources to prepare enzyme cocktail containing β-mannanase and α-galactosidase with activities of 3.69 ± 0.27 U/mL and 0.51 ± 0.02 U/mL, respectively. Specifically, melibiose could effectively induce the metabolite product of α-galactosidase by T. reesei, which showed good performance in degrading the galactose substituent from GM backbone. The degradation of galactose alleviated the spatial site-blocking effect for enzymatic hydrolysis by β-mannanase and improved the yield of LMW-GM. This research can lay the foundation for the industrial technology amplification of LMW-GM production for further application.
Collapse
Affiliation(s)
- Bowen Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuheng Tao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Yang H, Zhao Y, Ma J, Rong Z, Chen J, Wang Y, Zheng X, Ye W. Wheat Straw Return Influences Soybean Root-Associated Bacterial and Fungal Microbiota in a Wheat-Soybean Rotation System. Microorganisms 2022; 10:microorganisms10030667. [PMID: 35336243 PMCID: PMC8951542 DOI: 10.3390/microorganisms10030667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/16/2023] Open
Abstract
Roots hold complex microbial communities at the soil–root interface, which can affect plant nutrition, growth, and health. Although the composition of plant microbiomes has been extensively described for various plant species and environments, little is known about the effect of wheat straw return (WSR) on the soybean root microbiota. We used Illumina-based 16S rRNA and ITS amplicon sequencing to track changes in bacterial and fungal microbiota in bulk soil and soybean rhizosphere, rhizoplane, s1and endosphere during the third and fourth years after implementing WSR in a wheat–soybean rotation system. The results revealed that WSR had a greater impact on fungal communities than bacterial communities, particularly in bulk soil, rhizosphere, and rhizoplane. WSR enriched the relative abundance of cellulose-degrading fungi (e.g., Acremonium, Trichoderma, and Myrmecridium, among which Trichoderma also had antimicrobial activity), saprotroph (e.g., Exophiala), and nitrogen cycling bacteria (e.g., Chryseolinea). Furthermore, WSR depleted the relative abundance of pathogenic fungi (e.g., Fusarium and Alternaria). These data revealed for the first time that WSR had diverse effects on soybean root-associated microbial community composition, not only in soil but also in the rhizosphere, rhizoplane, and endosphere.
Collapse
Affiliation(s)
- Hongjun Yang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China
| | - Yao Zhao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaxin Ma
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenyang Rong
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajia Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China
| | - Yuanchao Wang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaobo Zheng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (Y.Z.); (J.M.); (Z.R.); (J.C.); (Y.W.); (X.Z.)
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
3
|
Identification of the Talaromyces cellulolyticus Gene Encoding an Extracellular Enzyme with β-galactosidase Activity and Testing it as a Reporter for Gene Expression Assays. Mol Biotechnol 2022; 64:637-649. [PMID: 35059977 DOI: 10.1007/s12033-022-00453-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
The filamentous fungus Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) is currently being intensively studied as a promising industrial producer of a number of secreted cellulolytic enzymes. In this study, the T. cellulolyticus gene lacA, which encodes a protein orthologous to the fungal extracellular β-galactosidases of family 35, was identified. The substitution of the lacA upstream region with a constitutive promoter demonstrated that the product of this gene is effectively secreted and possesses β-galactosidase activity. The optimal pH and temperature values for the hydrolysis of o-nitrophenyl-β-D-galactopyranoside by this enzyme were determined to be pH 4.5-5.5 and 50 °C, respectively. The negligible production of β-galactosidase activity by strains expressing lacA under native regulation raises the possibility of using lacA as a reporter gene. To test this hypothesis, the native promoter of lacA was replaced with the strong inducible promoter of the T. cellulolyticus cellobiohydrolase I gene. The cultivation of the resulting strain in various media showed that the β-galactosidase activity depends on cultivation conditions similar to the cellobiohydrolase activity. Thus, the suitability of lacA as a reporter for evaluating promoters with a wide range of expression profiles was demonstrated.
Collapse
|
4
|
|
5
|
Ptitsyn LR, Yampolskaya TA, Kutukova EA, Altman IB. Identification of Core Cellulolytic Enzymes from the Talaromyces cellulolyticus Strains Y-94 and S6-25. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Fujii T, Inoue H, Matsushika A. The Transcription Factor Gene tclB2 Regulates Mannanolytic Enzyme Production in the Fungus Talaromyces cellulolyticus. Appl Biochem Biotechnol 2021; 193:3163-3172. [PMID: 34086255 DOI: 10.1007/s12010-021-03588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022]
Abstract
The filamentous fungus Talaromyces cellulolyticus is a well-characterized cellulolytic and hemicellulolytic enzyme producer. In this study, the function of the tclB2 gene, which is a homolog of the manR/clrB/clr-2 gene in other filamentous fungi, in mannanolytic enzyme production by T. cellulolyticus was investigated. When a tclB2-disrupted strain (YDTclB) was grown in the presence of glucomannan, the production of β-mannanase, β-mannosidase, and α-galactosidase was decreased at the protein and transcriptional levels when compared to the control strain. In addition, a tclB2-overexpressing strain (YHTclB) showed higher β-mannanase and β-mannosidase production. When cellulose was used as a carbon source, the expression of genes encoding mannanolytic enzymes also decreased in YDTclB. These results suggested that TclB2 contributes to mannanolytic enzyme production in T. cellulolyticus. This work is the first study to identify a transcriptional regulator of mannanolytic enzyme genes in T. cellulolyticus.
Collapse
Affiliation(s)
- Tatsuya Fujii
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| | - Hiroyuki Inoue
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Akinori Matsushika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| |
Collapse
|
7
|
Characterization of Endophytic Fungi, Acremonium sp., from Lilium davidii and Analysis of Its Antifungal and Plant Growth-Promoting Effects. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9930210. [PMID: 34395628 PMCID: PMC8358427 DOI: 10.1155/2021/9930210] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
The present study was aimed at isolating endophytic fungi from the Asian culinary and medicinal plant Lilium davidii and analyzing its antifungal and plant growth-promoting effects. In this study, the fungal endophyte Acremonium sp. Ld-03 was isolated from the bulbs of L. davidii and identified through morphological and molecular analysis. The molecular and morphological analysis confirmed the endophytic fungal strain as Acremonium sp. Ld-03. Antifungal effects of Ld-03 were observed against Fusarium oxysporum, Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi. The highest growth inhibition, i.e., 78.39 ± 4.21%, was observed for B. dothidea followed by 56.68 ± 4.38%, 43.62 ± 3.81%, and 20.12 ± 2.45% for B. cinerea, F. fujikuroi, and F. oxysporum, respectively. Analysis of the ethyl acetate fraction through UHPLC-LTQ-IT-MS/MS revealed putative secondary metabolites which included xanthurenic acid, valyl aspartic acid, gancidin W, peptides, and cyclic dipeptides such as valylarginine, cyclo-[L-(4-hydroxy-Pro)-L-leu], cyclo(Pro-Phe), and (3S,6S)-3-benzyl-6-(4-hydroxybenzyl)piperazine-2,5-dione. Other metabolites included (S)-3-(4-hydroxyphenyl)-2-((S)-pyrrolidine-2-carboxamido)propanoic acid, dibutyl phthalate (DBP), 9-octadecenamide, D-erythro-C18-Sphingosine, N-palmitoyl sphinganine, and hydroxypalmitoyl sphinganine. The strain Ld-03 showed indole acetic acid (IAA) production with or without the application of exogenous tryptophan. The IAA ranged from 53.12 ± 3.20 μg ml−1 to 167.71 ± 7.12 μg ml−1 under different tryptophan concentrations. The strain was able to produce siderophore, and its production was significantly decreased with increasing Fe(III) citrate concentrations in the medium. The endophytic fungal strain also showed production of organic acids and phosphate solubilization activity. Plant growth-promoting effects of the strain were evaluated on in vitro seedling growth of Allium tuberosum. Application of 40% culture dilution resulted in a significant increase in root and shoot length, i.e., 24.03 ± 2.71 mm and 37.27 ± 1.86 mm, respectively, compared to nontreated control plants. The fungal endophyte Ld-03 demonstrated the potential of conferring disease resistance and plant growth promotion. Therefore, we conclude that the isolated Acremonium sp. Ld-03 should be further investigated before utilization as a biocontrol agent and plant growth stimulator.
Collapse
|
8
|
A novel strategy for producing cellulase from Trichoderma reesei with ultrasound‐assisted fermentation using spent mushroom substrate. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Shen L, Su Y, Sun Y, Wang G, Chen H, Yu X, Zhang S, Chen G. Establishment of a highly efficient and low cost mixed cellulase system for bioconversion of corn stover by Trichoderma reesei and Aspergillus niger. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Biodegradation of recalcitrant compounds and phthalates by culturable bacteria isolated from Liometopum apiculatum microbiota. World J Microbiol Biotechnol 2020; 36:73. [PMID: 32385754 DOI: 10.1007/s11274-020-02850-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Liometopum apiculatum is a species of ants widely distributed in arid and semi-arid ecosystems where there is a relative food shortage compared with tropical ecosystems. L. apiculatum has established an ecological balance involving symbiotic interactions, which have allowed them to survive through mechanisms that are still unknown. Therefore, the aim of this study was to explore the metabolic potential of isolated bacteria from L. apiculatum using enzymatic activity assay and substrate assimilation. Results revealed a complex bacteria consortium belonging to Proteobacteria, Firmicutes, and Actinobacteria phylum. Most of the isolated bacteria showed activities associated with biopolymers degradation, from them Exiguobacterium and B. simplex showed the highest amylolytic activity (27 U/mg protein), while A. johnsonii and B. pumulis showed the highest cellulolytic and xylanolytic activities (1 and 2.9 U/mg protein, respectively). By other hand, some microorganisms such as S. ficaria, E. asburiae, P. agglomerans, A. johnsonii, S. rubidaea, S. marcescens, S. warneri, and M. hydrocarbonoxydans were able to grow up to 1000 mg/L of phthalates esters. These results not only revealed the important contribution of the symbionts in L apiculatum ants feeding habits, but also have shown a promising source of enzymes with potential biotechnological applications such as lignocellulosic biomass hydrolysis and bioremediation processes.
Collapse
|
11
|
Liu F, Wang Z, Manglekar RR, Geng A. Enhanced cellulase production through random mutagenesis of Talaromyces pinophilus OPC4-1 and fermentation optimization. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
The Putative Transcription Factor Gene thaB Regulates Cellulase and Xylanase Production at the Enzymatic and Transcriptional Level in the Fungus Talaromyces cellulolyticus. Appl Biochem Biotechnol 2019; 190:1360-1370. [PMID: 31773396 DOI: 10.1007/s12010-019-03190-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
Abstract
Talaromyces cellulolyticus is a promising strain for industrial cellulase production. In this study, the thaB gene, which is a homologue of the hap2/B gene in other filamentous fungi, was isolated and characterized. When grown in the presence of cellulose, culture supernatants of a thaB-disrupted strain (YDTha) exhibited decreased cellulase and xylanase enzymatic activities compared to the control strain. Furthermore, YDTha exhibited lower expression of the genes encoding cellulases and xylanases compared to the control strain. When cellobiose and lactose (soluble carbon sources) were used as carbon sources, the expression of the genes encoding cellulases and xylanases was decreased in both the YDTha and the control strains, though the expression levels in YDTha remained lower than those in the control strain. These results suggested that thaB has a positive role in cellulase and xylanase production in T. cellulolyticus.
Collapse
|
13
|
Wang F, Zhang R, Han L, Guo W, Du Z, Niu K, Liu Y, Jia C, Fang X. Use of fusion transcription factors to reprogram cellulase transcription and enable efficient cellulase production in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:244. [PMID: 31636703 PMCID: PMC6792246 DOI: 10.1186/s13068-019-1589-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/09/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Trichoderma reesei is widely used for cellulase production and accepted as an example for cellulase research. Cre1-mediated carbon catabolite repression (CCR) can significantly inhibit the transcription of cellulase genes during cellulase fermentation in T. reesei. Early efforts have been undertaken to modify Cre1 for the release of CCR; however, this approach leads to arrested hyphal growth and decreased biomass accumulation, which negatively affects cellulase production. RESULTS In this study, novel fusion transcription factors (fTFs) were designed to release or attenuate CCR inhibition in cellulase transcription, while Cre1 was left intact to maintain normal hyphal growth. Four designed fTFs were introduced into the T. reesei genome, which generated several transformants, named Kuace3, Kuclr2, Kuace2, and Kuxyr1. No obvious differences in growth were observed between the parent and transformant strains. However, the transcription levels of cel7a, a major cellulase gene, were significantly elevated in all the transformants, particularly in Kuace2 and Kuxyr1, when grown on lactose as a carbon source. This suggested that CCR inhibition was released or attenuated in the transformant strains. The growth of Kuace2 and Kuxyr1 was approximately equivalent to that of the parent strain in fed-batch fermentation process. However, we observed a 3.2- and 2.1-fold increase in the pNPCase titers of the Kuace2 and Kuxyr1 strains, respectively, compared with that of the parent strain. Moreover, we observed a 6.1- and 3.9-fold increase in the pNPCase titers of the Kuace2 and Kuxyr1 strains, respectively, compared with that of Δcre1 strain. CONCLUSIONS A new strategy based on fTFs was successfully established in T. reesei to improve cellulase titers without impairing fungal growth. This study will be valuable for lignocellulosic biorefining and for guiding the development of engineering strategies for producing other important biochemical compounds in fungal species.
Collapse
Affiliation(s)
- Fangzhong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong China
| | - Ruiqin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Lijuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Wei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Zhiqiang Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Yucui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Chunjiang Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| |
Collapse
|
14
|
Adsul M, Sandhu SK, Singhania RR, Gupta R, Puri SK, Mathur A. Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels. Enzyme Microb Technol 2019; 133:109442. [PMID: 31874688 DOI: 10.1016/j.enzmictec.2019.109442] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022]
Abstract
Concerns about dwindling fossil fuels and their unfavorable environmental impacts shifted the global focus towards the development of biofuels from lignocellulosic feedstocks. The structure of this biomass is very complex due to which variety of enzymes (cellulolytic, hemicellulolytic, auxiliary/AA9) and proteins (e.g. swollenin) required for efficient deconstruction. Major impediments in large-scale commercial production of cellulosic ethanol are the cost of cellulases and inability of any single microorganism to produce all cellulolytic components in sufficient titers. In the recent past, various methods for reducing the enzyme cost during cellulosic ethanol production have been attempted. These include designing optimal synergistic enzyme blends/cocktail, having certain ratios of enzymes from different microbial sources, for efficient hydrolysis of pretreated biomass. However, the mechanisms underlying the development, strategies for production and evaluation of optimal cellulolytic cocktails still remain unclear. This article aims to explore the technical and economic benefits of using cellulolytic enzyme cocktail, basic enzymatic and non-enzymatic components required for its development and various strategies employed for efficient cellulolytic cocktail preparation. Consideration was also given to the ways of evaluation of commercially available and in-house developed cocktails. Discussion about commercially available cellulolytic cocktails, current challenges and possible avenues in the development of cellulolytic cocktails included.
Collapse
Affiliation(s)
- Mukund Adsul
- DBT-IOC Centre for Advanced Bioenergy Research, R & D Centre, Indian Oil Corporation Ltd, Sector-13, Faridabad 121007, India.
| | - Simranjeet Kaur Sandhu
- DBT-IOC Centre for Advanced Bioenergy Research, R & D Centre, Indian Oil Corporation Ltd, Sector-13, Faridabad 121007, India
| | - Reeta Rani Singhania
- DBT-IOC Centre for Advanced Bioenergy Research, R & D Centre, Indian Oil Corporation Ltd, Sector-13, Faridabad 121007, India
| | - Ravi Gupta
- DBT-IOC Centre for Advanced Bioenergy Research, R & D Centre, Indian Oil Corporation Ltd, Sector-13, Faridabad 121007, India
| | - Suresh K Puri
- DBT-IOC Centre for Advanced Bioenergy Research, R & D Centre, Indian Oil Corporation Ltd, Sector-13, Faridabad 121007, India
| | - Anshu Mathur
- DBT-IOC Centre for Advanced Bioenergy Research, R & D Centre, Indian Oil Corporation Ltd, Sector-13, Faridabad 121007, India
| |
Collapse
|
15
|
Wang H, Zhai L, Geng A. Enhanced cellulase and reducing sugar production by a new mutant strain Trichoderma harzianum EUA20. J Biosci Bioeng 2019; 129:242-249. [PMID: 31561850 DOI: 10.1016/j.jbiosc.2019.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022]
Abstract
Trichoderma harzianum EU2-77 was a mutant strain of the wild-type strain T. harzianum NP13a isolated in Singapore. A multi-mutagenesis one-screening (MMOS) method was developed to further improve strain EU2-77 and a new mutant EUA20 was obtained. It exhibited filter paper cellulase (FPase) activity up to 14.79 IU/mL within 6 days shake flask cultivation. Activities of FPase, endoglucanase, β-glucosidase, and xylanase, and protein content by EUA20 were respectively increased to 5.73, 4.35, 7.34, 1.80 and 2.70 folds. Using pretreated oil palm empty fruit bunch (OPEFB) and corncob powder as the substrates, strain EUA20 presented approximate 6.52 and 8.80 IU/ml FPase activity. Reducing sugar yield of 615.8 and 636.8 mg/g biomass were respectively obtained for OPEFB and corncob powder using cellulolytic enzymes of strain EUA20. Our results demonstrated that mutant strain EUA20 had great potential in on-site cellulase production for effective biomass bioconversion.
Collapse
Affiliation(s)
- Hengwei Wang
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, 535 Clementi Road, 599489, Singapore.
| | - Lili Zhai
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, 535 Clementi Road, 599489, Singapore.
| | - Anli Geng
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, 535 Clementi Road, 599489, Singapore.
| |
Collapse
|
16
|
|
17
|
A New Meroterpene, A New Benzofuran Derivative and Other Constituents from Cultures of the Marine Sponge-Associated Fungus Acremonium persicinum KUFA 1007 and Their Anticholinesterase Activities. Mar Drugs 2019; 17:md17060379. [PMID: 31242631 PMCID: PMC6628235 DOI: 10.3390/md17060379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 12/04/2022] Open
Abstract
Previously unreported meroterpene, acremine S (1), and benzopyran derivative, acremine T (2), were isolated, together with lumichrome (3), ergosterol (4) and ergosterol 5,8-endoperoxide, from cultures of the marine sponge-associated fungus Acremonium persicinum KUF1007. The structure of the previously unreported compounds was established based on an extensive analysis of 1D and 2D NMR spectra as well as HRMS data. The absolute configurations of the stereogenic centers of 1 were established, unambiguously, based on NOESY correlations and comparison of calculated and experimental electronic circular dichroism (ECD) spectra. Compounds 1–3 were tested for their in vitro acetylcholinesterase and butyrylcholinesterase inhibitory activities.
Collapse
|
18
|
Mode of Action of GH30-7 Reducing-End Xylose-Releasing Exoxylanase A (Xyn30A) from the Filamentous Fungus Talaromyces cellulolyticus. Appl Environ Microbiol 2019; 85:AEM.00552-19. [PMID: 31003983 DOI: 10.1128/aem.00552-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/14/2019] [Indexed: 11/20/2022] Open
Abstract
In this study, we characterized the mode of action of reducing-end xylose-releasing exoxylanase (Rex), which belongs to the glycoside hydrolase family 30-7 (GH30-7). GH30-7 Rex, isolated from the cellulolytic fungus Talaromyces cellulolyticus (Xyn30A), exists as a dimer. The purified Xyn30A released xylose from linear xylooligosaccharides (XOSs) 3 to 6 xylose units in length with similar kinetic constants. Hydrolysis of branched, borohydride-reduced, and p-nitrophenyl XOSs clarified that Xyn30A possesses a Rex activity. 1H nuclear magnetic resonance (1H NMR) analysis of xylotriose hydrolysate indicated that Xyn30A degraded XOSs via a retaining mechanism and without recognizing an anomeric structure at the reducing end. Hydrolysis of xylan by Xyn30A revealed that the enzyme continuously liberated both xylose and two types of acidic XOSs: 22-(4-O-methyl-α-d-glucuronyl)-xylotriose (MeGlcA2Xyl3) and 22-(MeGlcA)-xylobiose (MeGlcA2Xyl2). These acidic products were also detected during hydrolysis using a mixture of MeGlcA2Xyl n (n = 2 to 14) as the substrate. This indicates that Xyn30A can release MeGlcA2Xyl n (n = 2 and 3) in an exo manner. Comparison of subsites in Xyn30A and GH30-7 glucuronoxylanase using homology modeling suggested that the binding of the reducing-end residue at subsite +2 was partially prevented by a Gln residue conserved in GH30-7 Rex; additionally, the Arg residue at subsite -2b, which is conserved in glucuronoxylanase, was not found in Xyn30A. Our results lead us to propose that GH30-7 Rex plays a complementary role in hydrolysis of xylan by fungal cellulolytic systems.IMPORTANCE Endo- and exo-type xylanases depolymerize xylan and play crucial roles in the assimilation of xylan in bacteria and fungi. Exoxylanases release xylose from the reducing or nonreducing ends of xylooligosaccharides; this is generated by the activity of endoxylanases. β-Xylosidase, which hydrolyzes xylose residues on the nonreducing end of a substrate, is well studied. However, the function of reducing-end xylose-releasing exoxylanases (Rex), especially in fungal cellulolytic systems, remains unclear. This study revealed the mode of xylan hydrolysis by Rex from the cellulolytic fungus Talaromyces cellulolyticus (Xyn30A), which belongs to the glycoside hydrolase family 30-7 (GH30-7). A conserved residue related to Rex activity is found in the substrate-binding site of Xyn30A. These findings will enhance our understanding of the function of GH30-7 Rex in the cooperative hydrolysis of xylan by fungal enzymes.
Collapse
|
19
|
Champreda V, Mhuantong W, Lekakarn H, Bunterngsook B, Kanokratana P, Zhao XQ, Zhang F, Inoue H, Fujii T, Eurwilaichitr L. Designing cellulolytic enzyme systems for biorefinery: From nature to application. J Biosci Bioeng 2019; 128:637-654. [PMID: 31204199 DOI: 10.1016/j.jbiosc.2019.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
Abstract
Cellulolytic enzymes play a key role on conversion of lignocellulosic plant biomass to biofuels and biochemicals in sugar platform biorefineries. In this review, we survey composite carbohydrate-active enzymes (CAZymes) among groups of cellulolytic fungi and bacteria that exist under aerobic and anaerobic conditions. Recent advances in designing effective cellulase mixtures are described, starting from the most complex microbial consortium-based enzyme preparations, to single-origin enzymes derived from intensively studied cellulase producers such as Trichoderma reesei, Talaromyces cellulolyticus, and Penicellium funiculosum, and the simplest minimal enzyme systems comprising selected sets of mono-component enzymes tailor-made for specific lignocellulosic substrates. We provide a comprehensive update on studies in developing high-performance cellulases for biorefineries.
Collapse
Affiliation(s)
- Verawat Champreda
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand.
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Hataikarn Lekakarn
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Benjarat Bunterngsook
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Pattanop Kanokratana
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hiroyuki Inoue
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Hiroshima 739-0046, Japan
| | - Tatsuya Fujii
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Hiroshima 739-0046, Japan
| | - Lily Eurwilaichitr
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
20
|
Liuzzi F, Mastrolitti S, De Bari I. Hydrolysis of Corn Stover by Talaromyces cellulolyticus Enzymes: Evaluation of the Residual Enzymes Activities Through the Process. Appl Biochem Biotechnol 2019; 188:690-705. [DOI: 10.1007/s12010-018-02946-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/26/2018] [Indexed: 01/03/2023]
|
21
|
Nakamichi Y, Fouquet T, Ito S, Watanabe M, Matsushika A, Inoue H. Structural and functional characterization of a bifunctional GH30-7 xylanase B from the filamentous fungus Talaromyces cellulolyticus. J Biol Chem 2019; 294:4065-4078. [PMID: 30655295 DOI: 10.1074/jbc.ra118.007207] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/15/2019] [Indexed: 01/11/2023] Open
Abstract
Glucuronoxylanases are endo-xylanases and members of the glycoside hydrolase family 30 subfamilies 7 (GH30-7) and 8 (GH30-8). Unlike for the well-studied GH30-8 enzymes, the structural and functional characteristics of GH30-7 enzymes remain poorly understood. Here, we report the catalytic properties and three-dimensional structure of GH30-7 xylanase B (Xyn30B) identified from the cellulolytic fungus Talaromyces cellulolyticus Xyn30B efficiently degraded glucuronoxylan to acidic xylooligosaccharides (XOSs), including an α-1,2-linked 4-O-methyl-d-glucuronosyl substituent (MeGlcA). Rapid analysis with negative-mode electrospray-ionization multistage MS (ESI(-)-MS n ) revealed that the structures of the acidic XOS products are the same as those of the hydrolysates (MeGlcA2Xyl n , n > 2) obtained with typical glucuronoxylanases. Acidic XOS products were further degraded by Xyn30B, releasing first xylobiose and then xylotetraose and xylohexaose as transglycosylation products. This hydrolase reaction was unique to Xyn30B, and the substrate was cleaved at the xylobiose unit from its nonreducing end, indicating that Xyn30B is a bifunctional enzyme possessing both endo-glucuronoxylanase and exo-xylobiohydrolase activities. The crystal structure of Xyn30B was determined as the first structure of a GH30-7 xylanase at 2.25 Å resolution, revealing that Xyn30B is composed of a pseudo-(α/β)8-catalytic domain, lacking an α6 helix, and a small β-rich domain. This structure and site-directed mutagenesis clarified that Arg46, conserved in GH30-7 glucuronoxylanases, is a critical residue for MeGlcA appendage-dependent xylan degradation. The structural comparison between Xyn30B and the GH30-8 enzymes suggests that Asn93 in the β2-α2 loop is involved in xylobiohydrolase activity. In summary, our findings indicate that Xyn30B is a bifunctional endo- and exo-xylanase.
Collapse
Affiliation(s)
| | - Thierry Fouquet
- the Polymer Chemistry Group, Research Institute for Sustainable Chemistry, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan, and
| | - Shotaro Ito
- the Bio-based Materials Chemistry Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | | | - Akinori Matsushika
- From the Bioconversion Group and.,the Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | | |
Collapse
|
22
|
Woon JSK, Mackeen MM, Illias RM, Mahadi NM, Broughton WJ, Murad AMA, Abu Bakar FD. Cellobiohydrolase B of Aspergillus niger over-expressed in Pichia pastoris stimulates hydrolysis of oil palm empty fruit bunches. PeerJ 2017; 5:e3909. [PMID: 29038760 PMCID: PMC5641429 DOI: 10.7717/peerj.3909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/19/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Aspergillus niger, along with many other lignocellulolytic fungi, has been widely used as a commercial workhorse for cellulase production. A fungal cellulase system generally includes three major classes of enzymes i.e., β-glucosidases, endoglucanases and cellobiohydrolases. Cellobiohydrolases (CBH) are vital to the degradation of crystalline cellulose present in lignocellulosic biomass. However, A. niger naturally secretes low levels of CBH. Hence, recombinant production of A. niger CBH is desirable to increase CBH production yield and also to allow biochemical characterisation of the recombinant CBH from A. niger. METHODS In this study, the gene encoding a cellobiohydrolase B (cbhB) from A. niger ATCC 10574 was cloned and expressed in the methylotrophic yeast Pichia pastoris X-33. The recombinant CBHB was purified and characterised to study its biochemical and kinetic characteristics. To evaluate the potential of CBHB in assisting biomass conversion, CBHB was supplemented into a commercial cellulase preparation (Cellic® CTec2) and was used to hydrolyse oil palm empty fruit bunch (OPEFB), one of the most abundant lignocellulosic waste from the palm oil industry. To attain maximum saccharification, enzyme loadings were optimised by response surface methodology and the optimum point was validated experimentally. Hydrolysed OPEFB samples were analysed using attenuated total reflectance FTIR spectroscopy (ATR-FTIR) to screen for any compositional changes upon enzymatic treatment. RESULTS Recombinant CBHB was over-expressed as a hyperglycosylated protein attached to N-glycans. CBHB was enzymatically active towards soluble substrates such as 4-methylumbelliferyl-β-D-cellobioside (MUC), p-nitrophenyl-cellobioside (pNPC) and p-nitrophenyl-cellobiotrioside (pNPG3) but was not active towards crystalline substrates like Avicel® and Sigmacell cellulose. Characterisation of purified CBHB using MUC as the model substrate revealed that optimum catalysis occurred at 50 °C and pH 4 but the enzyme was stable between pH 3 to 10 and 30 to 80 °C. Although CBHB on its own was unable to digest crystalline substrates, supplementation of CBHB (0.37%) with Cellic® CTec2 (30%) increased saccharification of OPEFB by 27%. Compositional analyses of the treated OPEFB samples revealed that CBHB supplementation reduced peak intensities of both crystalline cellulose Iα and Iβ in the treated OPEFB samples. DISCUSSION Since CBHB alone was inactive against crystalline cellulose, these data suggested that it might work synergistically with other components of Cellic® CTec2. CBHB supplements were desirable as they further increased hydrolysis of OPEFB when the performance of Cellic® CTec2 was theoretically capped at an enzyme loading of 34% in this study. Hence, A. niger CBHB was identified as a potential supplementary enzyme for the enzymatic hydrolysis of OPEFB.
Collapse
Affiliation(s)
- James Sy-Keen Woon
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.,Present address: Newcastle University Medicine Malaysia, Iskandar Puteri, Johor, Malaysia
| | - Mukram M Mackeen
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.,Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Rosli M Illias
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nor M Mahadi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.,Malaysia Genome Institute, Kajang, Selangor, Malaysia
| | - William J Broughton
- Department 4 (Materials & Environment), Federal Institute of Materials Research and Testing, Berlin, Germany
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
23
|
Fujii T, Inoue H, Ishikawa K, Hoshino T. Deletion Analysis of GH7 Endoglucanase Gene (cel7B) Promoter Region in a Talaromyces cellulolyticus ligD-Disrupted Strain. Appl Biochem Biotechnol 2017; 183:1516-1525. [PMID: 28577191 DOI: 10.1007/s12010-017-2519-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/19/2017] [Indexed: 11/29/2022]
Abstract
Talaromyces cellulolyticus is expected to become an industrial cellulase producer. In this study, we performed deletion analysis of the promoter region of the GH7 endoglucanase gene (cel7B), which encodes one of the major cellulases, using a β-glucuronidase reporter system. To obtain strains that harbor each gene cassette at the same locus, we had to improve the homologous recombination frequency. Hence, the ligD gene, encoding DNA ligase IV, was disrupted by homologous recombination. After that, the introduced pyrF marker gene, encoding orotate phosphoribosyl transferase, was deleted by a marker recycling system. The resultant strain, YDLP, exhibits high homologous recombination frequency. These data suggest that this approach will drastically improve the genetic modification tools of T. cellulolyticus. We obtained 7 strains for reporter analysis using YDLP as the host strain. Reporter analysis revealed that the promoter region between -812 and -612 is important for expression of cel7B. These results imply a relationship between this region and novel transcriptional factors.
Collapse
Affiliation(s)
- Tatsuya Fujii
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| | - Hiroyuki Inoue
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Kazuhiko Ishikawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Tamotsu Hoshino
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| |
Collapse
|
24
|
Zheng W, Zheng Q, Xue Y, Hu J, Gao MT. Influence of rice straw polyphenols on cellulase production by Trichoderma reesei. J Biosci Bioeng 2017; 123:731-738. [DOI: 10.1016/j.jbiosc.2017.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 11/15/2022]
|
25
|
Han X, Song W, Liu G, Li Z, Yang P, Qu Y. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy. BIORESOURCE TECHNOLOGY 2017; 227:155-163. [PMID: 28013132 DOI: 10.1016/j.biortech.2016.11.079] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Medium optimization and repeated fed-batch fermentation were performed to improve the cellulase productivity by P. oxalicum RE-10 in submerged fermentation. First, Plackett-Burman design (PBD) and central composite design (CCD) were used to optimize the medium for cellulase production. PBD demonstrated wheat bran and NaNO3 had significant influences on cellulase production. The CCD results showed the maximum filter paper activity (FPA) production of 8.61U/mL could be achieved in Erlenmeyer flasks. The maximal FPA reached 12.69U/mL by submerged batch fermentation in a 7.5-L stirred tank, 1.76-fold higher than that on the original medium. Then, the repeated fed-batch fermentation strategy was performed successfully for increasing the cellulase productivity from 105.75U/L/h in batch fermentation to 158.38U/L/h. The cellulase activity and the glucan conversion of delignined corn cob residue hydrolysis had no significant difference between the enzymes sampled from different cycles of the repeated fed-batch fermentation and that from batch culture.
Collapse
Affiliation(s)
- Xiaolong Han
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Wenxia Song
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Zhonghai Li
- Department of Bioengineering, Qilu University of Technology, Jinan 250353, China
| | - Piao Yang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China.
| |
Collapse
|
26
|
Okuda N, Fujii T, Inoue H, Ishikawa K, Hoshino T. Enhancing cellulase production by overexpression of xylanase regulator protein gene, xlnR, in Talaromyces cellulolyticus cellulase hyperproducing mutant strain. Biosci Biotechnol Biochem 2016; 80:2065-8. [DOI: 10.1080/09168451.2016.1189315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
We obtained strains with the xylanase regulator gene, xlnR, overexpressed (HXlnR) and disrupted (DXlnR) derived from Talaromyces cellulolyticus strain C-1, which is a cellulase hyperproducing mutant. Filter paper degrading enzyme activity and cellobiohydrolase I gene expression was the highest in HXlnR, followed by C-1 and DXlnR. These results indicate that the enhancement of cellulase productivity was succeeded by xlnR overexpression.
Collapse
Affiliation(s)
- Naoyuki Okuda
- Sugar & Bio Technology Department, Tsukishima Kikai Co Ltd, Chuo-ku, Tokyo, Japan
| | - Tatsuya Fujii
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Hiroshima, Japan
| | - Hiroyuki Inoue
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Hiroshima, Japan
| | - Kazuhiko Ishikawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan
| | - Tamotsu Hoshino
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
27
|
Inoue H, Kitao C, Yano S, Sawayama S. Production of β-xylosidase from Trichoderma asperellum KIF125 and its application in efficient hydrolysis of pretreated rice straw with fungal cellulase. World J Microbiol Biotechnol 2016; 32:186. [DOI: 10.1007/s11274-016-2145-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/16/2016] [Indexed: 01/11/2023]
|
28
|
Imran M, Anwar Z, Irshad M, Asad MJ, Ashfaq H. Cellulase Production from Species of Fungi and Bacteria from Agricultural Wastes and Its Utilization in Industry: A Review. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aer.2016.42005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Liu K, Dong Y, Wang F, Jiang B, Wang M, Fang X. Regulation of cellulase expression, sporulation, and morphogenesis by velvet family proteins in Trichoderma reesei. Appl Microbiol Biotechnol 2015; 100:769-79. [PMID: 26481618 DOI: 10.1007/s00253-015-7059-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 11/24/2022]
Abstract
Homologs of the velvet protein family are encoded by the ve1, vel2, and vel3 genes in Trichoderma reesei. To test their regulatory functions, the velvet protein-coding genes were disrupted, generating Δve1, Δvel2, and Δvel3 strains. The phenotypic features of these strains were examined to identify their functions in morphogenesis, sporulation, and cellulase expression. The three velvet-deficient strains produced more hyphal branches, indicating that velvet family proteins participate in the morphogenesis in T. reesei. Deletion of ve1 and vel3 did not affect biomass accumulation, while deletion of vel2 led to a significantly hampered growth when cellulose was used as the sole carbon source in the medium. The deletion of either ve1 or vel2 led to the sharp decrease of sporulation as well as a global downregulation of cellulase-coding genes. In contrast, although the expression of cellulase-coding genes of the ∆vel3 strain was downregulated in the dark, their expression in light condition was unaffected. Sporulation was hampered in the ∆vel3 strain. These results suggest that Ve1 and Vel2 play major roles, whereas Vel3 plays a minor role in sporulation, morphogenesis, and cellulase expression.
Collapse
Affiliation(s)
- Kuimei Liu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Yanmei Dong
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Fangzhong Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Baojie Jiang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China.
| |
Collapse
|
30
|
Hansen GH, Lübeck M, Frisvad JC, Lübeck PS, Andersen B. Production of cellulolytic enzymes from ascomycetes: Comparison of solid state and submerged fermentation. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.05.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Wang F, Liu K, Han L, Jiang B, Wang M, Fang X. Function of a p24 Heterodimer in Morphogenesis and Protein Transport in Penicillium oxalicum. Sci Rep 2015; 5:11875. [PMID: 26149342 PMCID: PMC4493713 DOI: 10.1038/srep11875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/05/2015] [Indexed: 12/11/2022] Open
Abstract
The lignocellulose degradation capacity of filamentous fungi has been widely studied because of their cellulase hypersecretion. The p24 proteins in eukaryotes serve important functions in this secretory pathway. However, little is known about the functions of the p24 proteins in filamentous fungi. In this study, four p24 proteins were identified in Penicillium oxalicum. Six p24 double-deletion strains were constructed, and further studies were carried out with the ΔerpΔpδ strain. The experimental results suggested that Erp and Pδ form a p24 heterodimer in vivo. This p24 heterodimer participates in important morphogenetic events, including sporulation, hyphal growth, and lateral branching. The results suggested that the p24 heterodimer mediates protein transport, particularly that of cellobiohydrolase. Analysis of the intracellular proteome revealed that the ΔerpΔpδ double mutant is under secretion stress due to attempts to remove proteins that are jammed in the endomembrane system. These results suggest that the p24 heterodimer participates in morphogenesis and protein transport. Compared with P. oxalicum Δerp, a greater number of cellular physiological pathways were impaired in ΔerpΔpδ. This finding may provide new insights into the secretory pathways of filamentous fungi.
Collapse
Affiliation(s)
- Fangzhong Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Kuimei Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Lijuan Han
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Baojie Jiang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
32
|
Inoue H, Yano S, Sawayama S. Effect of β-Mannanase and β-Mannosidase Supplementation on the Total Hydrolysis of Softwood Polysaccharides by the Talaromyces cellulolyticus Cellulase System. Appl Biochem Biotechnol 2015; 176:1673-86. [DOI: 10.1007/s12010-015-1669-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
|
33
|
Avellaneda-Torres LM, Pulido CPG, Rojas ET. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia. Braz J Microbiol 2015; 45:1211-20. [PMID: 25763024 PMCID: PMC4323293 DOI: 10.1590/s1517-83822014000400011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/17/2014] [Indexed: 11/22/2022] Open
Abstract
A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP), Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS) of ribosomal DNA for fungi. Multivariate statistical analysis (MVA) was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment.
Collapse
MESH Headings
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacteria/metabolism
- Cellulase/analysis
- Cellulose/metabolism
- Colombia
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Helminth/chemistry
- DNA, Helminth/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Fungi/classification
- Fungi/genetics
- Fungi/isolation & purification
- Fungi/metabolism
- Hydrolysis
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Soil Microbiology
Collapse
Affiliation(s)
- Lizeth Manuela Avellaneda-Torres
- Laboratorio de AgrobiotecnologíaFacultad de AgronomíaUniversidad Nacional de ColombiaBogotáColombiaLaboratorio de Agrobiotecnología, Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá, Colombia.
- Centro Colombiano en Genómica y Bioinformática en Ambientes ExtremosBogotáColombiaCentro Colombiano en Genómica y Bioinformática en Ambientes Extremos, Bogotá, Colombia.
| | - Claudia Patricia Guevara Pulido
- Centro Colombiano en Genómica y Bioinformática en Ambientes ExtremosBogotáColombiaCentro Colombiano en Genómica y Bioinformática en Ambientes Extremos, Bogotá, Colombia.
| | - Esperanza Torres Rojas
- Laboratorio de AgrobiotecnologíaFacultad de AgronomíaUniversidad Nacional de ColombiaBogotáColombiaLaboratorio de Agrobiotecnología, Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá, Colombia.
- Centro Colombiano en Genómica y Bioinformática en Ambientes ExtremosBogotáColombiaCentro Colombiano en Genómica y Bioinformática en Ambientes Extremos, Bogotá, Colombia.
| |
Collapse
|
34
|
El-Sayed AS, Khalaf SA, Abdel-Hamid G, El-Batrik MI. Screening, morphological and molecular characterization of fungi producing cystathionine γ-lyase. ACTA BIOLOGICA HUNGARICA 2015; 66:119-32. [PMID: 25740443 DOI: 10.1556/abiol.66.2015.1.10] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The potency for production of cystathionine γ-lyase (CGL) by the fungal isolates was screened. Among the tested twenty-two isolates, Aspergillus carneus was the potent CGL producer (6.29 U/mg), followed by A. ochraceous (6.03 U/mg), A. versicolor (2.51 U/mg), A. candidus (2.12 U/mg), A. niveus and Penicillium notatum (2.0 U/mg). The potent six isolates producing CGL was characterized morphologically, A. carneus KF723837 was further molecularly characterized based on the sequence of 18S-28S rDNA. Upon sulfur starvation, the yield of A. carneus extracellular CGL was increased by about 1.7- and 4.1-fold comparing to non-sulfur starved and L-methionine free medium, respectively. Also, the uptake of L-methionine was duplicated upon sulfur starvation, assuming the activation of specific transporters for L-methionine and efflux of CGL. Also, the intracellular thiols and GDH activity of A. carneus was strongly increased by S starvation, revealing the activation of in vivo metabolic antioxidant systems. Upon irradiation of A. carneus by 2.0 kGy of γ-rays, the activity of CGL was increased by two-fold, regarding to control, with an obvious decreases on its yield upon further doses. Practically, CGL activity from the solid A. carneus cultures, using rice bran as substrate, was increased by 1.2-fold, comparing to submerged cultures, under optimum conditions.
Collapse
Affiliation(s)
- Ashraf S El-Sayed
- Zagazig University Microbiology Department, Faculty of Science Zagazig Egypt
| | - Salwa A Khalaf
- Zagazig University Microbiology Department, Faculty of Science Zagazig Egypt
| | | | - Mohamed I El-Batrik
- Zagazig University Microbiology Department, Faculty of Science Zagazig Egypt
| |
Collapse
|
35
|
Draft Genome Sequence of Talaromyces cellulolyticus Strain Y-94, a Source of Lignocellulosic Biomass-Degrading Enzymes. GENOME ANNOUNCEMENTS 2015; 3:3/1/e00014-15. [PMID: 25720677 PMCID: PMC4342418 DOI: 10.1128/genomea.00014-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) is a promising fungus for cellulase production. Here, we present the draft genome sequence of T. cellulolyticus strain Y-94. The genome is 36.4 Mbp long and contains genes for several enzymes involved in the degradation of lignocellulosic biomass, including cellulases, hemicellulases, pectinases, and amylases.
Collapse
|
36
|
Hayata K, Asada S, Fujii T, Inoue H, Ishikawa K, Sawayama S. Gene targeting by RNAi-mediated knockdown of potent DNA ligase IV homologue in the cellulase-producing fungus Talaromyces cellulolyticus. Appl Biochem Biotechnol 2014; 174:1697-704. [PMID: 25161035 DOI: 10.1007/s12010-014-1142-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/04/2014] [Indexed: 01/12/2023]
Abstract
The genome of the cellulase-producing fungus Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) was screened for a potent DNA ligase IV gene (ligD homologue). Homologous recombination efficiency in T. cellulolyticus is very low. Therefore, suppression of a non-homologous end-joining system was attempted to enable specific gene knockouts for molecular breeding. The transcript levels of ligD homologue were 0.037 of those of the parental YP-4 strain in the Li20 transformant carrying the RNAi construct targeting the ligD homologue. Transformation of the hairpin-type RNAi vector into T. cellulolyticus could be useful in fungal gene knockdown experiments. Cellulase production and protein secretion were similar in the parental YP-4 strain and the Li20 transformant. Knockout transformation of ligD homologue using the Li20 transformant led to 23.1 % double crossover gene targeting. Our results suggest that the potent DNA ligase IV gene of T. cellulolyticus is related to non-homologous end joining and that the knockdown of the ligD homologue is useful in gene targeting.
Collapse
Affiliation(s)
- Koutarou Hayata
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Kataoka M, Akita F, Maeno Y, Inoue B, Inoue H, Ishikawa K. Crystal structure of Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus) GH family 11 xylanase. Appl Biochem Biotechnol 2014; 174:1599-1612. [PMID: 25138599 PMCID: PMC4177571 DOI: 10.1007/s12010-014-1130-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/29/2014] [Indexed: 11/29/2022]
Abstract
Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus) is one of the mesophilic fungi that can produce high levels of cellulose-related enzymes and are expected to be used for the degradation of polysaccharide biomass. In silico analysis of the genome sequence of T. cellulolyticus detected seven open reading frames (ORFs) showing homology to xylanases from glycoside hydrolase (GH) family 11. The gene encoding the GH11 xylanase C (TcXylC) with the highest activity was used for overproduction and purification of the recombinant enzyme, permitting solving of the crystal structure to a resolution of 1.98 Å. In the asymmetric unit, two kinds of the crystal structures of the xylanase were identified. The main structure of the protein showed a β-jelly roll structure. We hypothesize that one of the two structures represents the open form and the other shows the close form. The changing of the flexible region between the two structures is presumed to induce and accelerate the enzyme reaction. The specificity of xylanase toward the branched xylan is discussed in the context of this structural data and by comparison with the other published structures of xylanases.
Collapse
Affiliation(s)
- Misumi Kataoka
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Fusamichi Akita
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Yuka Maeno
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Benchaporn Inoue
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Hiroyuki Inoue
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Kazuhiko Ishikawa
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan.
| |
Collapse
|
38
|
Xylanase (GH11) from Acremonium cellulolyticus: homologous expression and characterization. AMB Express 2014; 4:27. [PMID: 24949262 PMCID: PMC4052667 DOI: 10.1186/s13568-014-0027-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/07/2014] [Indexed: 11/10/2022] Open
Abstract
Cellulosic materials constitute most of the biomass on earth, and can be converted into biofuel or bio-based materials if fermentable sugars can be released using cellulose-related enzymes. Acremonium cellulolyticus is a mesophilic fungus which produces a high amount of cellulose-related enzymes. In the genome sequence data of A. cellulolyticus, ORFs showing homology to GH10 and GH11 xylanases were found. The xylanases of A. cellulolyticus play an important role in cellulolytic biomass degradation. Search of a draft genome sequence of A. cellulolyticus for xylanase coding regions identified seven ORFs showing homology to GH 11 xylanase genes (xylA, xylB, xylC, xylD, xylE, xylF and xylG). These genes were cloned and their enzymes were prepared with a homologous expression system under the control of a glucoamylase promoter. Six of the seven recombinant enzymes were successfully expressed, prepared, and characterized. These enzymes exhibited optimal xylanase activity at pH 4.0 – 4.5. But this time, we found that only XylC had enormously higher relative activity (2947 U•mg −1) than the other xylanases at optimum pH. This result is surprising because XylC does not retain a carbohydrate-binding module 1 (CBM-1) that is necessary to bind tightly own substrate such as xylan. In this study, we discuss the relationship between activity, pH and sequence of seven xylanases in A. cellulolyticus.
Collapse
|
39
|
Wang Z, Bay H, Chew K, Geng A. High-loading oil palm empty fruit bunch saccharification using cellulases from Trichoderma koningii MF6. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Nakabayashi M, Kataoka M, Mishima Y, Maeno Y, Ishikawa K. Structural analysis of β-glucosidase mutants derived from a hyperthermophilic tetrameric structure. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:877-88. [PMID: 24598756 PMCID: PMC3949513 DOI: 10.1107/s1399004713032276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/26/2013] [Indexed: 11/11/2022]
Abstract
Substitutive mutations that convert a tetrameric β-glucosidase into a dimeric state lead to improvement of its crystal quality. β-Glucosidase from Pyrococcus furiosus (BGLPf) is a hyperthermophilic tetrameric enzyme which can degrade cellooligosaccharides to glucose under hyperthermophilic conditions and thus holds promise for the saccharification of lignocellulosic biomass at high temperature. Prior to the production of large amounts of this enzyme, detailed information regarding the oligomeric structure of the enzyme is required. Several crystals of BGLPf have been prepared over the past ten years, but its crystal structure had not been solved until recently. In 2011, the first crystal structure of BGLPf was solved and a model was constructed at somewhat low resolution (2.35 Å). In order to obtain more detailed structural data on BGLPf, the relationship between its tetrameric structure and the quality of the crystal was re-examined. A dimeric form of BGLPf was constructed and its crystal structure was solved at a resolution of 1.70 Å using protein-engineering methods. Furthermore, using the high-resolution crystal structural data for the dimeric form, a monomeric form of BGLPf was constructed which retained the intrinsic activity of the tetrameric form. The thermostability of BGLPf is affected by its oligomeric structure. Here, the biophysical and biochemical properties of engineered dimeric and monomeric BGLPfs are reported, which are promising prototype models to apply to the saccharification reaction. Furthermore, details regarding the oligomeric structures of BGLPf and the reasons why the mutations yielded improved crystal structures are discussed.
Collapse
Affiliation(s)
- Makoto Nakabayashi
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science, 3-11-32, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Misumi Kataoka
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science, 3-11-32, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Yumiko Mishima
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science, 3-11-32, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Yuka Maeno
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science, 3-11-32, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Kazuhiko Ishikawa
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science, 3-11-32, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| |
Collapse
|
41
|
Kaur B, Oberoi HS, Chadha BS. Enhanced cellulase producing mutants developed from heterokaryotic Aspergillus strain. BIORESOURCE TECHNOLOGY 2014; 156:100-107. [PMID: 24491293 DOI: 10.1016/j.biortech.2014.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/05/2014] [Accepted: 01/07/2014] [Indexed: 06/03/2023]
Abstract
A heterokaryon 28, derived through protoplast fusion between Aspergillus nidulans and Aspergillus tubingensis (Dal8), was subjected cyclic mutagenesis followed by selection on increasing levels of 2-deoxy glucose (2-DG) as selection marker. The derived deregulated cellulase hyper producing mutant '64', when compared to fusant 28, produced 9.83, 7.8, 3.2, 4.2 and 19.74 folds higher endoglucanase, β-glucosidase, cellobiohydrolase, FPase and xylanase, respectively, under shake cultures. The sequence analysis of PCR amplified β-glucosidase gene from wild and mutant showed nucleotide deletion/substitution. The mutants showed highly catalytic efficient β-glucosidase as evident from low Km and high Vmax values. The expression profiling through zymogram analysis also indicated towards over-expression of cellulases. The up/down regulated expressed proteins observed through SDS-PAGE were identified by Peptide mass fingerprinting The cellulase produced by mutants in conjunction with cellulase free xylanase derived from Thermomyces lanuginosus was used for efficient utilization of alkali treated rice straw for obtaining xylo-oligosaccharides and ethanol.
Collapse
Affiliation(s)
- Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India.
| | - H S Oberoi
- Central Institute of Post Harvest Engineering Technology (CIPHET), Ludhiana 141 004, India.
| | - B S Chadha
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India.
| |
Collapse
|
42
|
Kishishita S, Yoshimi M, Fujii T, Taylor LE, Decker SR, Ishikawa K, Inoue H. Cellulose-inducible xylanase Xyl10A from Acremonium cellulolyticus: Purification, cloning and homologous expression. Protein Expr Purif 2014; 94:40-5. [DOI: 10.1016/j.pep.2013.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/26/2013] [Accepted: 10/30/2013] [Indexed: 11/25/2022]
|
43
|
Gao MT, Yano S, Minowa T. Characteristics of enzymes from Acremonium cellulolyticus strains and their utilization in the saccharification of potato pulp. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
RNAi Knockdown of Potent Sugar Sensor in Cellulase-Producing Fungus Acremonium cellulolyticus. Appl Biochem Biotechnol 2014; 172:3009-15. [DOI: 10.1007/s12010-014-0728-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
|
45
|
Inoue H, Decker SR, Taylor LE, Yano S, Sawayama S. Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:151. [PMID: 25342974 PMCID: PMC4196096 DOI: 10.1186/s13068-014-0151-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/25/2014] [Indexed: 05/10/2023]
Abstract
BACKGROUND Enzymatic hydrolysis of pretreated lignocellulosic biomass is an essential process for the production of fermentable sugars for industrial use. A better understanding of fungal cellulase systems will provide clues for maximizing the hydrolysis of target biomass. Talaromyces cellulolyticus is a promising fungus for cellulase production and efficient biomass hydrolysis. Several cellulolytic enzymes purified from T. cellulolyticus were characterized in earlier studies, but the core enzymes critical for hydrolysis of lignocellulosic biomass remain unknown. RESULTS Six cellulolytic enzymes critical for the hydrolysis of crystalline cellulose were purified from T. cellulolyticus culture supernatant using an enzyme assay based on synergistic hydrolysis of Avicel. The purified enzymes were identified by their substrate specificities and analyses of trypsin-digested peptide fragments and were classified into the following glycosyl hydrolase (GH) families: GH3 (β-glucosidase, Bgl3A), GH5 (endoglucanase, Cel5A), GH6 (cellobiohydrolase II, Cel6A), GH7 (cellobiohydrolase I and endoglucanase, Cel7A and Cel7B, respectively), and GH10 (xylanase, Xyl10A). Hydrolysis of dilute acid-pretreated corn stover (PCS) with mixtures of the purified enzymes showed that Cel5A, Cel7B, and Xyl10A each had synergistic effects with a mixture of Cel6A and Cel7A. Cel5A seemed to be more effective in the synergistic hydrolysis of the PCS than Cel7B. The ratio of Cel5A, Cel6A, Cel7A, and Xyl10A was statistically optimized for the hydrolysis of PCS glucan in the presence of Bgl3A. The resultant mixture achieved higher PCS glucan hydrolysis at lower enzyme loading than a culture filtrate from T. cellulolyticus or a commercial enzyme preparation, demonstrating that the five enzymes play a role as core enzymes in the hydrolysis of PCS glucan. CONCLUSIONS Core cellulolytic enzymes in the T. cellulolyticus cellulase system were identified to Cel5A, Cel6A, Cel7A, Xyl10A, and Bgl3A and characterized. The optimized mixture of these five enzymes was highly effective for the hydrolysis of PCS glucan, providing a foundation for future improvement of the T. cellulolyticus cellulase system.
Collapse
Affiliation(s)
- Hiroyuki Inoue
- />Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046 Japan
| | - Stephen R Decker
- />Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 USA
| | - Larry E Taylor
- />Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 USA
| | - Shinichi Yano
- />Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046 Japan
| | - Shigeki Sawayama
- />Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
46
|
Fujii T, Inoue H, Ishikawa K. Enhancing cellulase and hemicellulase production by genetic modification of the carbon catabolite repressor gene, creA, in Acremonium cellulolyticus. AMB Express 2013; 3:73. [PMID: 24360128 PMCID: PMC3917621 DOI: 10.1186/2191-0855-3-73] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/12/2013] [Indexed: 11/10/2022] Open
Abstract
Acremonium cellulolyticus is one of several fungi that offer promise as an alternative to Trichoderma reesei for use in industrial cellulase production. However, the mechanism of cellulase production has not been studied at the molecular level because adequate genetic engineering tools for use in A. cellulolyticus are lacking. In the present study, we developed a gene disruption method for A. cellulolyticus, which needs a longer homologous region length. We cloned a putative A. cellulolyticus creA gene that is highly similar to the creA genes derived from other filamentous fungi, and isolated a creA disruptant strain by using the disruption method. Growth of the creA disruptant on agar plates was slower than that of the control strain. In the wild-type strain, the CreA protein was localized in the nucleus, suggesting that the cloned gene encodes the CreA transcription factor. Cellulase and xylanase production by the creA disruptant were higher than that of the control strain at the enzyme and transcription levels. Furthermore, the creA disruptant produced cellulase and xylanase in the presence of glucose. These data suggest both that the CreA protein functions as a catabolite repressor protein, and that disruption of creA is effective for enhancing enzyme production by A. cellulolyticus.
Collapse
|
47
|
Fujii T, Hoshino T, Inoue H, Yano S. Taxonomic revision of the cellulose-degrading fungus Acremonium cellulolyticus nomen nudum to Talaromyces based on phylogenetic analysis. FEMS Microbiol Lett 2013; 351:32-41. [PMID: 24313660 DOI: 10.1111/1574-6968.12352] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 12/25/2022] Open
Abstract
The cellulase-producing fungal strain Y-94, isolated in Japan and invalidly described as Acremonium cellulolyticus nom. nud. strain Y-94, seldom forms enteroarthric conidia under nutrient starvation conditions. Phylogenetic analysis using ITS1-5.8S-ITS2 and RNA polymerase II large subunit gene sequences revealed that strain Y-94 is closely related to Talaromyces, given that these Y-94 sequences showed 100% identity with those of Talaromyces pinophilus NBRC 100533T . By contrast, the identity between β-tubulin-encoding genes from strain Y-94 and T. pinophilus NBRC 100533T was 98.1%. Morphological and phenotypic differences between these strains in colony color, conidiophore formation, and cellulase productivity were observed. Together, these data indicated that strain Y-94 belonged to the genus Talaromyces. We propose that strain Y-94 is a new species, Talaromyces cellulolyticus, on the basis of morphology and molecular evidence. The ex-holotype is Y-94 (= FERM BP-5826, CBS 136886 [holotype] TNS-F-48752).
Collapse
Affiliation(s)
- Tatsuya Fujii
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Hiroshima, Japan
| | | | | | | |
Collapse
|
48
|
Qin Y, Bao L, Gao M, Chen M, Lei Y, Liu G, Qu Y. Penicillium decumbens BrlA extensively regulates secondary metabolism and functionally associates with the expression of cellulase genes. Appl Microbiol Biotechnol 2013; 97:10453-67. [PMID: 24113825 DOI: 10.1007/s00253-013-5273-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/15/2022]
Abstract
Penicillium decumbens has been used in the industrial production of lignocellulolytic enzymes in China for more than 15 years. Conidiation is essential for most industrial fungi because conidia are used as starters in the first step of fermentation. To investigate the mechanism of conidiation in P. decumbens, we generated mutants defective in two central regulators of conidiation, FluG and BrlA. Deletion of fluG resulted in neither "fluffy" phenotype nor alteration in conidiation, indicating possible different upstream mechanisms activating brlA between P. decumbens and Aspergillus nidulans. Deletion of brlA completely blocked conidiation. Further investigation of brlA expression in different media (nutrient-rich or nutrient-poor) and different culture states (liquid or solid) showed that brlA expression is required but not sufficient for conidiation. The brlA deletion strain exhibited altered hyphal morphology with more branches. Genome-wide expression profiling identified BrlA-dependent genes in P. decumbens, including genes previously reported to be involved in conidiation as well as previously reported chitin synthase genes and acid protease gene (pepB). The expression levels of seven secondary metabolism gene clusters (from a total of 28 clusters) were drastically regulated in the brlA deletion strain, including a downregulated cluster putatively involved in the biosynthesis of the mycotoxins roquefortine C and meleagrin. In addition, the expression levels of most cellulase genes were upregulated in the brlA deletion strain detected by real-time quantitative PCR. The brlA deletion strain also exhibited an 89.1 % increase in cellulase activity compared with the wild-type strain. The results showed that BrlA in P. decumbens not only has a key role in regulating conidiation, but it also regulates secondary metabolism extensively as well as the expression of cellulase genes.
Collapse
Affiliation(s)
- Yuqi Qin
- National Glycoengineering Research Center, Shandong University, 27, Shanda South Road, Jinan, Shandong, 250100, China,
| | | | | | | | | | | | | |
Collapse
|
49
|
Dos Reis L, Fontana RC, da Silva Delabona P, da Silva Lima DJ, Camassola M, da Cruz Pradella JG, Dillon AJP. Increased production of cellulases and xylanases by Penicillium echinulatum S1M29 in batch and fed-batch culture. BIORESOURCE TECHNOLOGY 2013; 146:597-603. [PMID: 23973981 DOI: 10.1016/j.biortech.2013.07.124] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
The development of more productive strains of microorganisms and processes that increase enzyme levels can contribute to the economically efficient production of second generation ethanol. To this end, cellulases and xylanases were produced with the S1M29 mutant strain of Penicillium echinulatum, using different concentrations of cellulose (20, 40, and 60 g L(-1)) in batch and fed-batch processes. The highest activities of FPase (8.3 U mL(-1)), endoglucanases (37.3 U mL(-1)), and xylanases (177 U mL(-1)) were obtained in fed-batch cultivation with 40 g L(-1) of cellulose. The P. echinulatum enzymatic broth and the commercial enzyme Cellic CTec2 were tested for hydrolysis of pretreated sugar cane bagasse. Maximum concentrations of glucose and xylose were achieved after 72 h of hydrolysis. Glucose yields of 28.0% and 27.0% were obtained using the P. echinulatum enzymatic extract and Cellic CTec2, respectively.
Collapse
Affiliation(s)
- Laísa Dos Reis
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS, Brazil
| | - Roselei Claudete Fontana
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS, Brazil
| | - Priscila da Silva Delabona
- Brazilian Bioethanol Science and Technology Laboratory - CTBE, Rua Giuseppe Maximo Scolfaro 10000, Pólo II de Alta Tecnologia, Caxia Postal 6192, 13083-970 Campinas, São Paulo, Brazil
| | - Deise Juliana da Silva Lima
- Brazilian Bioethanol Science and Technology Laboratory - CTBE, Rua Giuseppe Maximo Scolfaro 10000, Pólo II de Alta Tecnologia, Caxia Postal 6192, 13083-970 Campinas, São Paulo, Brazil
| | - Marli Camassola
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS, Brazil
| | - José Geraldo da Cruz Pradella
- Brazilian Bioethanol Science and Technology Laboratory - CTBE, Rua Giuseppe Maximo Scolfaro 10000, Pólo II de Alta Tecnologia, Caxia Postal 6192, 13083-970 Campinas, São Paulo, Brazil
| | - Aldo José Pinheiro Dillon
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS, Brazil.
| |
Collapse
|
50
|
Wang F, Liang Y, Wang M, Yang H, Liu K, Zhao Q, Fang X. Functional diversity of the p24γ homologue Erp reveals physiological differences between two filamentous fungi. Fungal Genet Biol 2013; 61:15-22. [PMID: 24035805 DOI: 10.1016/j.fgb.2013.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 11/27/2022]
Abstract
The protein hyper-secreting filamentous fungi impact their surrounding environments by secreting cellulases and digesting plant cell wall via microbe-plant interspecies interaction. This process is of paramount importance in biofuel production from the renewable lignocellulosic biomass, because cellulase production is the key factor in cost determination. Despite the importance of protein secretion, p24 protein, a key factor in eukaryotic protein maturation and secretion, was never investigated in filamentous fungi. The erp genes encoding p24γ homologues were identified in Trichoderma reesei and Penicillium decumbens. The roles of Erp and their participated cellular pathways were investigated via disruption of erp, revealing significant differences: sporulation was hampered in T. reesei Δerp but not in P. decumbens Δerp; in both species Erp maintains membrane integrity; Erp is likely involved in hyphae polarity maintenance in T. reesei. Protein- and transcription-level investigations of Erp participation in cellulase production revealed distinct regulatory mechanisms. In T. reesei, cellulase encoding genes were repressed under secretion stress. In contrast, activation of the same genes under the same stress was identified in P. decumbens. These observations revealed a novel cellulase gene regulation mechanism, clearly suggested the different physiological roles of Erp, and further demonstrated the different physiology of T. reesei and P. decumbens, despite above 75% sequence identity between the proteins and the close evolutionary relationship between the two species.
Collapse
Affiliation(s)
- Fangzhong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | |
Collapse
|