1
|
Shingarova LN, Petrovskaya LE, Kryukova EA, Gapizov SS, Dolgikh DA, Kirpichnikov MP. Display of Oligo-α-1,6-Glycosidase from Exiguobacterium sibiricum on the Surface of Escherichia coli Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:716-722. [PMID: 37331717 DOI: 10.1134/s0006297923050140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/20/2023]
Abstract
Cell-surface display using anchor motifs of outer membrane proteins allows exposure of target peptides and proteins on the surface of microbial cells. Previously, we obtained and characterized highly catalytically active recombinant oligo-α-1,6-glycosidase from the psychrotrophic bacterium Exiguobacterium sibiricum (EsOgl). It was also shown that the autotransporter AT877 from Psychrobacter cryohalolentis and its deletion variants efficiently displayed type III fibronectin (10Fn3) domain 10 on the surface of Escherichia coli cells. The aim of the work was to obtain an AT877-based system for displaying EsOgl on the surface of bacterial cells. The genes for the hybrid autotransporter EsOgl877 and its deletion mutants EsOgl877Δ239 and EsOgl877Δ310 were constructed, and the enzymatic activity of EsOgl877 was investigated. Cells expressing this protein retained ~90% of the enzyme maximum activity within a temperature range of 15-35°C. The activity of cells expressing EsOgl877Δ239 and EsOgl877Δ310 was 2.7 and 2.4 times higher, respectively, than of the cells expressing the full-size AT. Treatment of cells expressing EsOgl877 deletion variants with proteinase K showed that the passenger domain localized to the cell surface. These results can be used for further optimization of display systems expressing oligo-α-1,6-glycosidase and other heterologous proteins on the surface of E. coli cells.
Collapse
Affiliation(s)
- Lyudmila N Shingarova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Elena A Kryukova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sultan S Gapizov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitry A Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
2
|
Joshi A, Verma KK, D Rajput V, Minkina T, Arora J. Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels. Bioengineered 2022; 13:8135-8163. [PMID: 35297313 PMCID: PMC9161965 DOI: 10.1080/21655979.2022.2051856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 01/09/2023] Open
Abstract
Combating climate change and ensuring energy supply to a rapidly growing global population has highlighted the need to replace petroleum fuels with clean, and sustainable renewable fuels. Biofuels offer a solution to safeguard energy security with reduced ecological footprint and process economics. Over the past years, lignocellulosic biomass has become the most preferred raw material for the production of biofuels, such as fuel, alcohol, biodiesel, and biohydrogen. However, the cost-effective conversion of lignocellulose into biofuels remains an unsolved challenge at the industrial scale. Recently, intensive efforts have been made in lignocellulose feedstock and microbial engineering to address this problem. By improving the biological pathways leading to the polysaccharide, lignin, and lipid biosynthesis, limited success has been achieved, and still needs to improve sustainable biofuel production. Impressive success is being achieved by the retouring metabolic pathways of different microbial hosts. Several robust phenotypes, mostly from bacteria and yeast domains, have been successfully constructed with improved substrate spectrum, product yield and sturdiness against hydrolysate toxins. Cyanobacteria is also being explored for metabolic advancement in recent years, however, it also remained underdeveloped to generate commercialized biofuels. The bacterium Escherichia coli and yeast Saccharomyces cerevisiae strains are also being engineered to have cell surfaces displaying hydrolytic enzymes, which holds much promise for near-term scale-up and biorefinery use. Looking forward, future advances to achieve economically feasible production of lignocellulosic-based biofuels with special focus on designing more efficient metabolic pathways coupled with screening, and engineering of novel enzymes.
Collapse
Affiliation(s)
- Abhishek Joshi
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning - 530007, China
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Russia
| | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur313001, India
| |
Collapse
|
3
|
G6P-capturing molecules in the periplasm of Escherichia coli accelerate the shikimate pathway. Metab Eng 2022; 72:68-81. [DOI: 10.1016/j.ymben.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022]
|
4
|
Somasundaram S, Jeong J, Hong SH. Cell surface display of Neurospora crassa glutamate decarboxylase on Escherichia coli for extracellular Gamma-aminobutyric acid production from high cell density culture. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Borne R, Vita N, Franche N, Tardif C, Perret S, Fierobe HP. Engineering of a new Escherichia coli strain efficiently metabolizing cellobiose with promising perspectives for plant biomass-based application design. Metab Eng Commun 2021; 12:e00157. [PMID: 33457204 PMCID: PMC7797564 DOI: 10.1016/j.mec.2020.e00157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022] Open
Abstract
The necessity to decrease our fossil energy dependence requests bioprocesses based on biomass degradation. Cellobiose is the main product released by cellulases when acting on the major plant cell wall polysaccharide constituent, the cellulose. Escherichia coli, one of the most common model organisms for the academy and the industry, is unable to metabolize this disaccharide. In this context, the remodeling of E. coli to catabolize cellobiose should thus constitute an important progress for the design of such applications. Here, we developed a robust E. coli strain able to metabolize cellobiose by integration of a small set of modifications in its genome. Contrary to previous studies that use adaptative evolution to achieve some growth on this sugar by reactivating E. coli cryptic operons coding for cellobiose metabolism, we identified easily insertable modifications impacting the cellobiose import (expression of a gene coding a truncated variant of the maltoporin LamB, modification of the expression of lacY encoding the lactose permease) and its intracellular degradation (genomic insertion of a gene encoding either a cytosolic β-glucosidase or a cellobiose phosphorylase). Taken together, our results provide an easily transferable set of mutations that confers to E. coli an efficient growth phenotype on cellobiose (doubling time of 2.2 h in aerobiosis) without any prior adaptation.
Collapse
Affiliation(s)
| | | | | | - Chantal Tardif
- Aix-Marseille Université, CNRS, UMR7283, 31 ch. Joseph Aiguier, F-13402, Marseille, France
| | - Stéphanie Perret
- Aix-Marseille Université, CNRS, UMR7283, 31 ch. Joseph Aiguier, F-13402, Marseille, France
| | - Henri-Pierre Fierobe
- Aix-Marseille Université, CNRS, UMR7283, 31 ch. Joseph Aiguier, F-13402, Marseille, France
| |
Collapse
|
6
|
Lopes AMM, Martins M, Goldbeck R. Heterologous Expression of Lignocellulose-Modifying Enzymes in Microorganisms: Current Status. Mol Biotechnol 2021; 63:184-199. [PMID: 33484441 DOI: 10.1007/s12033-020-00288-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Heterologous expression of the carbohydrate-active enzymes in microorganisms is a promising approach to produce bio-based compounds, such as fuels, nutraceuticals and other value-added products from sustainable lignocellulosic sources. Several microorganisms, including Saccharomyces cerevisiae, Escherichia coli, and the filamentous fungi Aspergillus nidulans, have unique characteristics desirable for a biorefinery production approach like well-known genetic tools, thermotolerance, high fermentative capacity and product tolerance, and high amount of recombinant enzyme secretion. These microbial factories are already stablished in the heterologous production of the carbohydrate-active enzymes to produce, among others, ethanol, xylooligosaccharides and the valuable coniferol. A complete biocatalyst able to heterologous express the CAZymes of glycoside hydrolases, carbohydrate esterases and auxiliary activities families could release these compounds faster, with higher yield and specificity. Recent advances in the synthetic biology tools could expand the number and diversity of enzymes integrated in these microorganisms, and also modify those already integrated. This review outlines the heterologous expression of carbohydrate-active enzymes in microorganisms, as well as recent updates in synthetic biology.
Collapse
Affiliation(s)
- Alberto Moura Mendes Lopes
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato no 80, Cidade Universitária, Campinas, São Paulo, 13083-862, Brazil
| | - Manoela Martins
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato no 80, Cidade Universitária, Campinas, São Paulo, 13083-862, Brazil
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato no 80, Cidade Universitária, Campinas, São Paulo, 13083-862, Brazil.
| |
Collapse
|
7
|
Satowa D, Fujiwara R, Uchio S, Nakano M, Otomo C, Hirata Y, Matsumoto T, Noda S, Tanaka T, Kondo A. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply. Biotechnol Bioeng 2020; 117:2153-2164. [PMID: 32255505 DOI: 10.1002/bit.27350] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
Abstract
Microbial production of mevalonate from renewable feedstock is a promising and sustainable approach for the production of value-added chemicals. We describe the metabolic engineering of Escherichia coli to enhance mevalonate production from glucose and cellobiose. First, the mevalonate-producing pathway was introduced into E. coli and the expression of the gene atoB, which encodes the gene for acetoacetyl-CoA synthetase, was increased. Then, the deletion of the pgi gene, which encodes phosphoglucose isomerase, increased the NADPH/NADP+ ratio in the cells but did not improve mevalonate production. Alternatively, to reduce flux toward the tricarboxylic acid cycle, gltA, which encodes citrate synthetase, was disrupted. The resultant strain, MGΔgltA-MV, increased levels of intracellular acetyl-CoA up to sevenfold higher than the wild-type strain. This strain produced 8.0 g/L of mevalonate from 20 g/L of glucose. We also engineered the sugar supply by displaying β-glucosidase (BGL) on the cell surface. When cellobiose was used as carbon source, the strain lacking gnd displaying BGL efficiently consumed cellobiose and produced mevalonate at 5.7 g/L. The yield of mevalonate was 0.25 g/g glucose (1 g of cellobiose corresponds to 1.1 g of glucose). These results demonstrate the feasibility of producing mevalonate from cellobiose or cellooligosaccharides using an engineered E. coli strain.
Collapse
Affiliation(s)
- Daichi Satowa
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Ryosuke Fujiwara
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Shogo Uchio
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Mariko Nakano
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Chisako Otomo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Prefecture University, Osaka, Japan
| | - Shuhei Noda
- Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, Kanagawa, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| |
Collapse
|
8
|
Yang H, Zhang C, Lai N, Huang B, Fei P, Ding D, Hu P, Gu Y, Wu H. Efficient isopropanol biosynthesis by engineered Escherichia coli using biologically produced acetate from syngas fermentation. BIORESOURCE TECHNOLOGY 2020; 296:122337. [PMID: 31727559 DOI: 10.1016/j.biortech.2019.122337] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 05/23/2023]
Abstract
The shortage of food based feedstocks is a challenge in industrial biomanufacturing. In this study, genetically modified Escherichia coli strains were used to produce isopropanol as the mainly product from acetate, a cost-effective nonfood-based substrate. The isopropanol biosynthesis pathway was constructed by combining genes from Clostridium acetobutylicum (thlA, adc), E. coli (atoDA) and Clostridium beijerinckii (adh). E. coli MG1655 harboring the isopropanol biosynthesis pathway successfully produced isopropanol and low amounts of acetone from pure acetate. The enhancement of the acetate assimilation pathway coupled with cofactor engineering strategy further improved the production of isopropanol to 18.5 mM with a yield of 0.26 mol/mol. With simple treatment, two kinds of biologically produced acetate were utilized to generate 16.7 and 24.5 mM isopropanol with yields of 0.25 and 0.56 mol/mol, respectively. Engineered E. coli with an optimized isopropanol biosynthesis pathway can efficiently utilize biologically produced acetate to synthesize isopropanol.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Can Zhang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ningyu Lai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bing Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Peng Fei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Dawei Ding
- Shanghai GTL Biotech Co., Ltd. 1688 North Guoquan Road, Shanghai 200438, China
| | - Peng Hu
- Shanghai GTL Biotech Co., Ltd. 1688 North Guoquan Road, Shanghai 200438, China
| | - Yang Gu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
9
|
Liu L, Yang J, Yang Y, Luo L, Wang R, Zhang Y, Yuan H. Consolidated bioprocessing performance of bacterial consortium EMSD5 on hemicellulose for isopropanol production. BIORESOURCE TECHNOLOGY 2019; 292:121965. [PMID: 31415990 DOI: 10.1016/j.biortech.2019.121965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Consolidated bioprocessing (CBP) of lignocellulose by bacterial consortium for isopropanol production is considered as the most promising strategy. However, low utilization of xylan caused by the complex sidechain structure remains inhibit the conversion of full-biomass. In this study, isopropanol production from different lignocelluloses by the consortium EMSD5 through CBP was performed. A total of 7.00 g/L of isopropanol was obtained from corncob by optimizing fermentation conditions. Isopropanol production by EMSD5 was mainly based on utilizing xylan in corncob and isopropanol titer was increased by 47.71% and reached up to 8.39 g/L using arabinoxylan compared with linear xylan. The analysis of community structures and the isolation of key strain confirmed the enrichment of the isopropanol producer, Clostridium beijierinckii, in the bacterial community when it was incubated with corn glucuronoarabinoxylan and the cooperation between C. beijerinckii and lignocellulose degraders. The unique features of EMSD5 could lead to large-scale isopropanol production using lignocellulose.
Collapse
Affiliation(s)
- Liang Liu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lijin Luo
- Fujian Institute of Microbiology, Fuzhou 350007, China
| | - Ruonan Wang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Honjo H, Iwasaki K, Soma Y, Tsuruno K, Hamada H, Hanai T. Synthetic microbial consortium with specific roles designated by genetic circuits for cooperative chemical production. Metab Eng 2019; 55:268-275. [DOI: 10.1016/j.ymben.2019.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
|
11
|
Qiu XY, Xie SS, Min L, Wu XM, Zhu LY, Zhu L. Spatial organization of enzymes to enhance synthetic pathways in microbial chassis: a systematic review. Microb Cell Fact 2018; 17:120. [PMID: 30064437 PMCID: PMC6066912 DOI: 10.1186/s12934-018-0965-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/19/2018] [Indexed: 01/29/2023] Open
Abstract
For years, microbes have been widely applied as chassis in the construction of synthetic metabolic pathways. However, the lack of in vivo enzyme clustering of heterologous metabolic pathways in these organisms often results in low local concentrations of enzymes and substrates, leading to a low productive efficacy. In recent years, multiple methods have been applied to the construction of small metabolic clusters by spatial organization of heterologous metabolic enzymes. These methods mainly focused on using engineered molecules to bring the enzymes into close proximity via different interaction mechanisms among proteins and nucleotides and have been applied in various heterologous pathways with different degrees of success while facing numerous challenges. In this paper, we mainly reviewed some of those notable advances in designing and creating approaches to achieve spatial organization using different intermolecular interactions. Current challenges and future aspects in the further application of such approaches are also discussed in this paper.
Collapse
Affiliation(s)
- Xin-Yuan Qiu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Si-Si Xie
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Lu Min
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Xiao-Min Wu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China
| | - Lv-Yun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China.
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, Hunan, China.
| |
Collapse
|
12
|
Synthetic metabolic bypass for a metabolic toggle switch enhances acetyl-CoA supply for isopropanol production by Escherichia coli. J Biosci Bioeng 2017; 123:625-633. [PMID: 28214243 DOI: 10.1016/j.jbiosc.2016.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/15/2016] [Indexed: 01/04/2023]
Abstract
Almost all synthetic pathways for biofuel production are designed to require endogenous metabolites in glycolysis, such as phosphoenolpyruvate, pyruvate, and acetyl-CoA. However, such metabolites are also required for bacterial cell growth. To reduce the metabolic imbalance between cell growth and target chemical production, we previously constructed a metabolic toggle switch (MTS) as a conditional flux redirection tool controlling metabolic flux of TCA cycle toward isopropanol production. This approach succeeded to improve the isopropanol production titer and yield while ensuring sufficient cell growth. However, excess accumulation of pyruvate, the precursor for acetyl-CoA synthesis, was also observed. In this study, for efficient conversation of pyruvate to acetyl-CoA (pyruvate oxidation), we designed a synthetic metabolic bypass composed of poxB and acs with the MTS for acetyl-CoA supply from the excess pyruvate. When this designed bypass was expressed at the appropriate expression level associated with the conditional metabolic flux redirection, pyruvate accumulation was prevented, and the isopropanol production titer and yield were improved. Final isopropanol production titer of strain harboring MTS with the synthetic metabolic bypass improved 4.4-fold compared with strain without metabolic flux regulation, and it was 1.3-fold higher than that of strain harboring the conventional MTS alone. Additionally, glucose consumption was also improved 1.7-fold compared with strain without metabolic flux regulation. On the other hand, introduction of the synthetic metabolic bypass alone showed no improvement in isopropanol production and glucose consumption. These results showed that the improvement in bio-production process caused by synergy between the MTS and the synthetic metabolic bypass.
Collapse
|
13
|
Chistyakov A, Zharova P, Nikolaev S, Tsodikov M. Direct Au-Ni/Al 2 O 3 catalysed cross-condensation of ethanol with isopropanol into pentanol-2. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Zhang S, Qu C, Huang X, Suo Y, Liao Z, Wang J. Enhanced isopropanol and n-butanol production by supplying exogenous acetic acid via co-culturing two clostridium strains from cassava bagasse hydrolysate. ACTA ACUST UNITED AC 2016; 43:915-25. [DOI: 10.1007/s10295-016-1775-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/11/2016] [Indexed: 02/04/2023]
Abstract
Abstract
The focus of this study was to produce isopropanol and butanol (IB) from dilute sulfuric acid treated cassava bagasse hydrolysate (SACBH), and improve IB production by co-culturing Clostridium beijerinckii (C. beijerinckii) with Clostridium tyrobutyricum (C. tyrobutyricum) in an immobilized-cell fermentation system. Concentrated SACBH could be converted to solvents efficiently by immobilized pure culture of C. beijerinckii. Considerable solvent concentrations of 6.19 g/L isopropanol and 12.32 g/L butanol were obtained from batch fermentation, and the total solvent yield and volumetric productivity were 0.42 g/g and 0.30 g/L/h, respectively. Furthermore, the concentrations of isopropanol and butanol increased to 7.63 and 13.26 g/L, respectively, under the immobilized co-culture conditions when concentrated SACBH was used as the carbon source. The concentrations of isopropanol and butanol from the immobilized co-culture fermentation were, respectively, 42.62 and 25.45 % higher than the production resulting from pure culture fermentation. The total solvent yield and volumetric productivity increased to 0.51 g/g and 0.44 g/L/h when co-culture conditions were utilized. Our results indicated that SACBH could be used as an economically favorable carbon source or substrate for IB production using immobilized fermentation. Additionally, IB production could be significantly improved by co-culture immobilization, which provides extracellular acetic acid to C. beijerinckii from C. tyrobutyricum. This study provided a technically feasible and cost-efficient way for IB production using cassava bagasse, which may be suitable for industrial solvent production.
Collapse
Affiliation(s)
- Shaozhi Zhang
- grid.79703.3a 0000000417643838 School of Bioscience and Bioengineering South China University of Technology 510006 Guangzhou China
| | - Chunyun Qu
- grid.79703.3a 0000000417643838 School of Bioscience and Bioengineering South China University of Technology 510006 Guangzhou China
| | - Xiaoyan Huang
- grid.79703.3a 0000000417643838 School of Bioscience and Bioengineering South China University of Technology 510006 Guangzhou China
| | - Yukai Suo
- grid.79703.3a 0000000417643838 School of Bioscience and Bioengineering South China University of Technology 510006 Guangzhou China
| | - Zhengping Liao
- grid.79703.3a 0000000417643838 School of Bioscience and Bioengineering South China University of Technology 510006 Guangzhou China
| | - Jufang Wang
- grid.79703.3a 0000000417643838 School of Bioscience and Bioengineering South China University of Technology 510006 Guangzhou China
| |
Collapse
|
15
|
Walther T, François JM. Microbial production of propanol. Biotechnol Adv 2016; 34:984-996. [PMID: 27262999 DOI: 10.1016/j.biotechadv.2016.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/08/2016] [Accepted: 05/31/2016] [Indexed: 11/19/2022]
Abstract
Both, n-propanol and isopropanol are industrially attractive value-added molecules that can be produced by microbes from renewable resources. The development of cost-effective fermentation processes may allow using these alcohols as a biofuel component, or as a precursor for the chemical synthesis of propylene. This review reports and discusses the recent progress which has been made in the biochemical production of propanol. Several synthetic propanol-producing pathways were developed that vary with respect to stoichiometry and metabolic entry point. These pathways were expressed in different host organisms and enabled propanol production from various renewable feedstocks. Furthermore, it was shown that the optimization of fermentation conditions greatly improved process performance, in particular, when continuous product removal prevented accumulation of toxic propanol levels. Although these advanced metabolic engineering and fermentation strategies have facilitated significant progress in the biochemical production of propanol, the currently achieved propanol yields and productivities appear to be insufficient to compete with chemical propanol synthesis. The development of biosynthetic pathways with improved propanol yields, the breeding or identification of microorganisms with higher propanol tolerance, and the engineering of propanol producer strains that efficiently utilize low-cost feedstocks are the major challenges on the way to industrially relevant microbial propanol production processes.
Collapse
Affiliation(s)
- Thomas Walther
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, 31077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France; CNRS, UMR5504, 31400 Toulouse, France; Toulouse White Biotechnology (TWB) Center, 3 rue Ariane, Canal Biotech Building 2, 31520 Ramonville - St. Agne, France.
| | - Jean Marie François
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, 31077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France; CNRS, UMR5504, 31400 Toulouse, France
| |
Collapse
|
16
|
Yang X, Yuan Q, Zheng Y, Ma H, Chen T, Zhao X. An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli. Biotechnol Lett 2016; 38:1359-65. [PMID: 27146080 DOI: 10.1007/s10529-016-2115-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To find new metabolic engineering strategies to improve the yield of acetone in Escherichia coli. RESULTS Results of flux balance analysis from a modified Escherichia coli genome-scale metabolic network suggested that the introduction of a non-oxidative glycolysis (NOG) pathway would improve the theoretical acetone yield from 1 to 1.5 mol acetone/mol glucose. By inserting the fxpk gene encoding phosphoketolase from Bifidobacterium adolescentis into the genome, we constructed a NOG pathway in E.coli. The resulting strain produced 47 mM acetone from glucose under aerobic conditions in shake-flasks. The yield of acetone was improved from 0.38 to 0.47 mol acetone/mol glucose which is a significant over the parent strain. CONCLUSIONS Guided by computational analysis of metabolic networks, we introduced a NOG pathway into E. coli and increased the yield of acetone, which demonstrates the importance of modeling analysis for the novel metabolic engineering strategies.
Collapse
Affiliation(s)
- Xiaoyan Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Qianqian Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Yangyang Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xueming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| |
Collapse
|
17
|
Sun X, Shen X, Jain R, Lin Y, Wang J, Sun J, Wang J, Yan Y, Yuan Q. Synthesis of chemicals by metabolic engineering of microbes. Chem Soc Rev 2016; 44:3760-85. [PMID: 25940754 DOI: 10.1039/c5cs00159e] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolic engineering is a powerful tool for the sustainable production of chemicals. Over the years, the exploration of microbial, animal and plant metabolism has generated a wealth of valuable genetic information. The prudent application of this knowledge on cellular metabolism and biochemistry has enabled the construction of novel metabolic pathways that do not exist in nature or enhance existing ones. The hand in hand development of computational technology, protein science and genetic manipulation tools has formed the basis of powerful emerging technologies that make the production of green chemicals and fuels a reality. Microbial production of chemicals is more feasible compared to plant and animal systems, due to simpler genetic make-up and amenable growth rates. Here, we summarize the recent progress in the synthesis of biofuels, value added chemicals, pharmaceuticals and nutraceuticals via metabolic engineering of microbes.
Collapse
Affiliation(s)
- Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15#, Beisanhuan East Road, Chaoyang District, Beijing 100029, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hengne AM, Kadu BS, Biradar NS, Chikate RC, Rode CV. Transfer hydrogenation of biomass-derived levulinic acid to γ-valerolactone over supported Ni catalysts. RSC Adv 2016. [DOI: 10.1039/c6ra08637c] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A bifunctional Ni/MMT catalyst for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone with complete conversion and selectivity.
Collapse
Affiliation(s)
- A. M. Hengne
- Chemical Engineering and Process Development Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - B. S. Kadu
- Department of Chemistry
- MES Abasaheb Garware College
- Pune 411004
- India
| | - N. S. Biradar
- Chemical Engineering and Process Development Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - R. C. Chikate
- Department of Chemistry
- MES Abasaheb Garware College
- Pune 411004
- India
| | - C. V. Rode
- Chemical Engineering and Process Development Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
19
|
Soma Y, Hanai T. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metab Eng 2015; 30:7-15. [DOI: 10.1016/j.ymben.2015.04.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 11/30/2022]
|
20
|
Tanaka T, Kondo A. Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnol Adv 2015; 33:1403-11. [PMID: 26070720 DOI: 10.1016/j.biotechadv.2015.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 11/19/2022]
Abstract
In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed.
Collapse
Affiliation(s)
- Tsutomu Tanaka
- Department of Chemical Science and Technology, Graduate School of Engineering, Kobe University, 1-1, Rokkodaicho, Nada, Kobe 657-8501 Japan
| | - Akihiko Kondo
- Department of Chemical Science and Technology, Graduate School of Engineering, Kobe University, 1-1, Rokkodaicho, Nada, Kobe 657-8501 Japan.
| |
Collapse
|
21
|
Munjal N, Jawed K, Wajid S, Yazdani SS. A constitutive expression system for cellulase secretion in Escherichia coli and its use in bioethanol production. PLoS One 2015; 10:e0119917. [PMID: 25768292 PMCID: PMC4358894 DOI: 10.1371/journal.pone.0119917] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/18/2015] [Indexed: 02/05/2023] Open
Abstract
The production of biofuels from lignocellulosic biomass appears to be attractive and viable due to the abundance and availability of this biomass. The hydrolysis of this biomass, however, is challenging because of the complex lignocellulosic structure. The ability to produce hydrolytic cellulase enzymes in a cost-effective manner will certainly accelerate the process of making lignocellulosic ethanol production a commercial reality. These cellulases may need to be produced aerobically to generate large amounts of protein in a short time or anaerobically to produce biofuels from cellulose via consolidated bioprocessing. Therefore, it is important to identify a promoter that can constitutively drive the expression of cellulases under both aerobic and anaerobic conditions without the need for an inducer. Using lacZ as reporter gene, we analyzed the strength of the promoters of four genes, namely lacZ, gapA, ldhA and pflB, and found that the gapA promoter yielded the maximum expression of the β-galactosidase enzyme under both aerobic and anaerobic conditions. We further cloned the genes for two cellulolytic enzymes, β-1,4-endoglucanase and β-1,4-glucosidase, under the control of the gapA promoter, and we expressed these genes in Escherichia coli, which secreted the products into the extracellular medium. An ethanologenic E. colistrain transformed with the secretory β-glucosidase gene construct fermented cellobiose in both defined and complex medium. This recombinant strain also fermented wheat straw hydrolysate containing glucose, xylose and cellobiose into ethanol with an 85% efficiency of biotransformation. An ethanologenic strain that constitutively secretes a cellulolytic enzyme is a promising platform for producing lignocellulosic ethanol.
Collapse
Affiliation(s)
- Neha Munjal
- Synthetic Biology and Biofuels Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Kamran Jawed
- Synthetic Biology and Biofuels Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Saima Wajid
- Centre for Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Syed Shams Yazdani
- Synthetic Biology and Biofuels Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
22
|
Liu P, Zhu X, Tan Z, Zhang X, Ma Y. Construction of Escherichia Coli Cell Factories for Production of Organic Acids and Alcohols. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:107-40. [PMID: 25577396 DOI: 10.1007/10_2014_294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Production of bulk chemicals from renewable biomass has been proved to be sustainable and environmentally friendly. Escherichia coli is the most commonly used host strain for constructing cell factories for production of bulk chemicals since it has clear physiological and genetic characteristics, grows fast in minimal salts medium, uses a wide range of substrates, and can be genetically modified easily. With the development of metabolic engineering, systems biology, and synthetic biology, a technology platform has been established to construct E. coli cell factories for bulk chemicals production. In this chapter, we will introduce this technology platform, as well as E. coli cell factories successfully constructed for production of organic acids and alcohols.
Collapse
Affiliation(s)
- Pingping Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Zaigao Tan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
23
|
Guan Y, Hu S, Wang Y, Qin P, Karim MN, Tan T. Separating isopropanol from its diluted solutions via a process of integrating gas stripping and vapor permeation. RSC Adv 2015. [DOI: 10.1039/c5ra00879d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The novel process, integrated gas stripping and vapor permeation, is environmental, energy-efficient and highly selective for isopropanol recovery.
Collapse
Affiliation(s)
- Yu Guan
- National energy R&D center for biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Song Hu
- National energy R&D center for biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Ying Wang
- National energy R&D center for biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Peiyong Qin
- National energy R&D center for biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - M. Nazmul Karim
- Artie McFerrin Department of Chemical Engineering
- Texas A&M University
- College Station
- USA
| | - Tianwei Tan
- National energy R&D center for biorefinery
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
24
|
Ma J, Li F, Liu R, Liang L, Ji Y, Wei C, Jiang M, Jia H, Ouyang P. Succinic acid production from sucrose and molasses by metabolically engineered E. coli using a cell surface display system. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Abstract
Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols.
Collapse
|
26
|
Schüürmann J, Quehl P, Festel G, Jose J. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application. Appl Microbiol Biotechnol 2014; 98:8031-46. [DOI: 10.1007/s00253-014-5897-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/24/2022]
|
27
|
Muñoz-Gutiérrez I, Moss-Acosta C, Trujillo-Martinez B, Gosset G, Martinez A. Ag43-mediated display of a thermostable β-glucosidase in Escherichia coli and its use for simultaneous saccharification and fermentation at high temperatures. Microb Cell Fact 2014; 13:106. [PMID: 25078445 PMCID: PMC4347601 DOI: 10.1186/s12934-014-0106-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/14/2014] [Indexed: 11/26/2022] Open
Abstract
Background The autotransporter (AT) system can potentially be used in the secretion of saccharolytic enzymes for the production of lignocellulosic biofuels and chemicals using Escherichia coli. Although ATs share similar structural characteristics, their capacity for secreting heterologous proteins widely varies. Additionally, the saccharolytic enzyme selected to be secreted should match the cell growth or cell fermentation conditions of E. coli. Results In the search for an AT that suits the physiological performance of the homo-ethanologenic E. coli strain MS04, an expression plasmid based on the AT antigen 43 (Ag43) from E. coli was developed. The β-glucosidase BglC from the thermophile bacterium Thermobifida fusca was displayed on the outer membrane of the E. coli strain MS04 using the Ag43 system (MS04/pAg43BglC). This strain was used to hydrolyze and ferment 40 g/L of cellobiose in mineral media to produce 16.65 g/L of ethanol in 48 h at a yield of 81% of the theoretical maximum. Knowing that BglC shows its highest activity at 50°C and retains more than 70% of its activity at pH 6, therefore E. coli MS04/pAg43BglC was used to ferment crystalline cellulose (Avicel) in a simultaneous saccharification and fermentation (SSF) process using a commercial cocktail of cellulases (endo and exo) at pH 6 and at a relatively high temperature for E. coli (45°C). As much as 22 g/L of ethanol was produced in 48 h. Conclusions The Ag43-BglC system can be used in E. coli strains without commercial β-glucosidases, reducing the quantities of commercial enzymes needed for the SSF process. Furthermore, the present work shows that E. coli cells are able to ferment sugars at 45°C during the SSF process using 40 g/L of Avicel, reducing the gap between the working conditions of the commercial saccharolytic enzymes and ethanologenic E. coli.
Collapse
Affiliation(s)
- Iván Muñoz-Gutiérrez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A. P. 510-3, 62250, Cuernavaca, Mor, México. .,Present address: Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Cessna Moss-Acosta
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A. P. 510-3, 62250, Cuernavaca, Mor, México.
| | - Berenice Trujillo-Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A. P. 510-3, 62250, Cuernavaca, Mor, México.
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A. P. 510-3, 62250, Cuernavaca, Mor, México.
| | - Alfredo Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A. P. 510-3, 62250, Cuernavaca, Mor, México.
| |
Collapse
|
28
|
Comparative engineering of Escherichia coli for cellobiose utilization: Hydrolysis versus phosphorolysis. Metab Eng 2014; 24:9-17. [DOI: 10.1016/j.ymben.2014.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/01/2014] [Accepted: 04/14/2014] [Indexed: 11/20/2022]
|
29
|
Soma Y, Tsuruno K, Wada M, Yokota A, Hanai T. Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch. Metab Eng 2014; 23:175-84. [DOI: 10.1016/j.ymben.2014.02.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/15/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
30
|
Desai SH, Rabinovitch-Deere CA, Tashiro Y, Atsumi S. Isobutanol production from cellobiose in Escherichia coli. Appl Microbiol Biotechnol 2014; 98:3727-36. [PMID: 24430208 DOI: 10.1007/s00253-013-5504-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/12/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
Abstract
Converting lignocellulosics into biofuels remains a promising route for biofuel production. To facilitate strain development for specificity and productivity of cellulosic biofuel production, a user friendly Escherichia coli host was engineered to produce isobutanol, a drop-in biofuel candidate, from cellobiose. A beta-glucosidase was expressed extracellularly by either excretion into the media, or anchoring to the cell membrane. The excretion system allowed for E. coli to grow with cellobiose as a sole carbon source at rates comparable to those with glucose. The system was then combined with isobutanol production genes in three different configurations to determine whether gene arrangement affected isobutanol production. The most productive strain converted cellobiose to isobutanol in titers of 7.64 ± 0.19 g/L with a productivity of 0.16 g/L/h. These results demonstrate that efficient cellobiose degradation and isobutanol production can be achieved by a single organism, and provide insight for optimization of strains for future use in a consolidated bioprocessing system for renewable production of isobutanol.
Collapse
Affiliation(s)
- Shuchi H Desai
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | | | | | | |
Collapse
|
31
|
Huang GL, Anderson TD, Clubb RT. Engineering microbial surfaces to degrade lignocellulosic biomass. Bioengineered 2013; 5:96-106. [PMID: 24430239 PMCID: PMC4049913 DOI: 10.4161/bioe.27461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Renewable lignocellulosic plant biomass is a promising feedstock from which to produce biofuels, chemicals, and materials. One approach to cost-effectively exploit this resource is to use consolidating bioprocessing (CBP) microbes that directly convert lignocellulose into valuable end products. Because many promising CBP-enabling microbes are non-cellulolytic, recent work has sought to engineer them to display multi-cellulase containing minicellulosomes that hydrolyze biomass more efficiently than isolated enzymes. In this review, we discuss progress in engineering the surfaces of the model microorganisms: Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. We compare the distinct approaches used to display cellulases and minicellulosomes, as well as their surface enzyme densities and cellulolytic activities. Thus far, minicellulosomes have only been grafted onto the surfaces of B. subtilis and S. cerevisiae, suggesting that the absence of an outer membrane in fungi and Gram-positive bacteria may make their surfaces better suited for displaying the elaborate multi-enzyme complexes needed to efficiently degrade lignocellulose.
Collapse
Affiliation(s)
- Grace L Huang
- Department of Chemistry and Biochemistry; University of California-Los Angeles; Los Angeles, CA USA; UCLA-DOE Institute of Genomics and Proteomics; University of California-Los Angeles; Los Angeles, CA USA
| | - Timothy D Anderson
- Department of Chemistry and Biochemistry; University of California-Los Angeles; Los Angeles, CA USA; UCLA-DOE Institute of Genomics and Proteomics; University of California-Los Angeles; Los Angeles, CA USA
| | - Robert T Clubb
- Department of Chemistry and Biochemistry; University of California-Los Angeles; Los Angeles, CA USA; UCLA-DOE Institute of Genomics and Proteomics; University of California-Los Angeles; Los Angeles, CA USA; Molecular Biology Institute; University of California-Los Angeles; Los Angeles, CA USA
| |
Collapse
|
32
|
Ikeda N, Miyamoto M, Adachi N, Nakano M, Tanaka T, Kondo A. Direct cadaverine production from cellobiose using β-glucosidase displaying Escherichia coli. AMB Express 2013; 3:67. [PMID: 24206923 PMCID: PMC3827850 DOI: 10.1186/2191-0855-3-67] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/31/2013] [Indexed: 11/30/2022] Open
Abstract
In this study, we demonstrate the one-step production of cadaverine (1,5-diaminopentane) from cellobiose using an Escherichia coli strain displaying β-glucosidase (BGL) on its cell surface. L-lysine decarboxylase (CadA) derived from E. coli and BGL from Thermobifida fusca YX (Tfu0937) fused to the anchor protein Blc from E. coli were co-expressed using E. coli as a host. The expression of CadA was confirmed by Western blotting and BGL activity on the cell surface was evaluated using pNPG as a substrate. Growth on cellobiose as the sole carbon source was also achieved. The OD600 value of the BGL and CadA co-expressing strain was 8.0 after 48 h cultivation, which is higher than that obtained by growth on glucose (5.4 after 48 h cultivation). The engineered strain produced cadaverine from cellobiose more effectively than from glucose: 6.1 mM after 48 h from 28 g/L of consumed cellobiose, vs. 3.3 mM from 20 g/L of consumed glucose.
Collapse
|
33
|
Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao JC, Hanai T. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab Eng 2013; 20:101-8. [DOI: 10.1016/j.ymben.2013.09.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 09/12/2013] [Accepted: 09/18/2013] [Indexed: 11/28/2022]
|
34
|
Landrain T, Meyer M, Perez AM, Sussan R. Do-it-yourself biology: challenges and promises for an open science and technology movement. SYSTEMS AND SYNTHETIC BIOLOGY 2013; 7:115-26. [PMID: 24432149 DOI: 10.1007/s11693-013-9116-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 06/12/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
The do-it-yourself biology (DIYbio) community is emerging as a movement that fosters open access to resources permitting modern molecular biology, and synthetic biology among others. It promises in particular to be a source of cheaper and simpler solutions for environmental monitoring, personal diagnostic and the use of biomaterials. The successful growth of a global community of DIYbio practitioners will depend largely on enabling safe access to state-of-the-art molecular biology tools and resources. In this paper we analyze the rise of DIYbio, its community, its material resources and its applications. We look at the current projects developed for the international genetically engineered machine competition in order to get a sense of what amateur biologists can potentially create in their community laboratories over the coming years. We also show why and how the DIYbio community, in the context of a global governance development, is putting in place a safety/ethical framework for guarantying the pursuit of its activity. And finally we argue that the global spread of DIY biology potentially reconfigures and opens up access to biological information and laboratory equipment and that, therefore, it can foster new practices and transversal collaborations between professional scientists and amateurs.
Collapse
Affiliation(s)
- Thomas Landrain
- Institute for Systems and Synthetic Biology, Genopole, Université d'Évry Val d'Essonne, CNRS, 91034 Évry, France ; Association La Paillasse, Paris Community Lab for Biotech, 75015 Paris, France
| | - Morgan Meyer
- Centre de Sociologie de l'Innovation, Ecole des Mines de Paris, Mines ParisTech, 75006 Paris, France
| | - Ariel Martin Perez
- Association La Paillasse, Paris Community Lab for Biotech, 75015 Paris, France
| | - Remi Sussan
- Association La Paillasse, Paris Community Lab for Biotech, 75015 Paris, France
| |
Collapse
|
35
|
Lan EI, Liao JC. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. BIORESOURCE TECHNOLOGY 2013. [PMID: 23186690 DOI: 10.1016/j.biortech.2012.09.104] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Microbial production of fuel and chemical feedstock is a promising approach to solving energy and environmental problems. n-Butanol, isobutanol and other higher alcohols are of particular interest because they can serve as both fuel and chemical feedstock. Alternative resources such as CO2, syngas, waste protein, and lignocellulose are currently being investigated for their potential to produce these compounds. Except for lignocellulose, utilization of such alternative resource has not been examined extensively. This review aims to summarize the development of metabolic pathways for efficient synthesis of these higher alcohols and the current status of microbial strain development for the conversion of diverse resources into higher alcohols.
Collapse
Affiliation(s)
- Ethan I Lan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
36
|
Polysaccharide hydrolysis with engineered Escherichia coli for the production of biocommodities. ACTA ACUST UNITED AC 2013; 40:401-10. [DOI: 10.1007/s10295-013-1245-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 02/13/2013] [Indexed: 02/06/2023]
Abstract
Abstract
Escherichia coli can ferment a broad range of sugars, including pentoses, hexoses, uronic acids, and polyols. These features make E. coli a suitable microorganism for the development of biocatalysts to be used in the production of biocommodities and biofuels by metabolic engineering. E. coli cannot directly ferment polysaccharides because it does not produce and secrete the necessary saccharolytic enzymes; however, there are many genetic tools that can be used to confer this ability on this prokaryote. The construction of saccharolytic E. coli strains will reduce costs and simplify the production process because the saccharification and fermentation can be conducted in a single reactor with a reduced concentration or absence of additional external saccharolytic enzymes. Recent advances in metabolic engineering, surface display, and excretion of hydrolytic enzymes provide a framework for developing E. coli strains for the so-called consolidated bioprocessing. This review presents the different strategies toward the development of E. coli strains that have the ability to display and secrete saccharolytic enzymes to hydrolyze different sugar-polymeric substrates and reduce the loading of saccharolytic enzymes.
Collapse
|
37
|
Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 2013; 17:462-71. [PMID: 23623045 DOI: 10.1016/j.cbpa.2013.03.037] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/23/2013] [Accepted: 03/28/2013] [Indexed: 12/15/2022]
Abstract
Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids, and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production.
Collapse
|
38
|
Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM, Atsumi S. Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev 2013; 113:4611-32. [PMID: 23488968 DOI: 10.1021/cr300361t] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|