1
|
Hu T, Yamaura M, Pham DM, Kasai T, Katayama A. Wide distribution of extracellular electron transfer functionality in natural proteinaceous organic materials for microbial reductive dehalogenation. J Biosci Bioeng 2023; 135:238-249. [PMID: 36646568 DOI: 10.1016/j.jbiosc.2022.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 01/16/2023]
Abstract
Extracellular electron transfer materials (EETMs) in the environment, such as humic substances and biochar, are formed from the humification/heating of natural organic materials. However, the distribution of extracellular electron transfer (EET) functionality in fresh natural organic materials has not yet been explored. In the present study, we reveal the wide distribution of EET functionality in proteinaceous materials for the first time using an anaerobic pentachlorophenol dechlorinating consortium, whose activity depends on EETM. Out of 11 natural organic materials and 13 reference compounds, seven proteinaceous organic materials (albumin, beef, milk, pork, soybean, yolk, and bovine serum albumin) functioned as EETMs. Carbohydrates and lipids did not function as EETMs. Comparative spectroscopic analyses suggested that a β-sheet secondary structure was essential for proteins to function as EETMs, regardless of water solubility. A high content of reduced sulfur was potentially involved in EET functionality. Although proteinaceous materials have thus far been considered simply as nutrients, the wide distribution of EET functionality in these materials provides new insights into their impact on biogeochemical cycles. In addition, structural information on EET functionality can provide a scientific basis for the development of eco-friendly EETMs.
Collapse
Affiliation(s)
- Tingting Hu
- Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Chikusa, Nagoya 464-8603, Japan
| | - Mirai Yamaura
- Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Chikusa, Nagoya 464-8603, Japan
| | - Duyen Minh Pham
- Institute of Materials and Systems for Sustainability, Nagoya University, Tokai National Higher Education and Research System, Chikusa, Nagoya 464-8603, Japan
| | - Takuya Kasai
- Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Chikusa, Nagoya 464-8603, Japan; Institute of Materials and Systems for Sustainability, Nagoya University, Tokai National Higher Education and Research System, Chikusa, Nagoya 464-8603, Japan
| | - Arata Katayama
- Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Chikusa, Nagoya 464-8603, Japan; Institute of Materials and Systems for Sustainability, Nagoya University, Tokai National Higher Education and Research System, Chikusa, Nagoya 464-8603, Japan.
| |
Collapse
|
2
|
Jiang H, Chen D, Zheng D, Xiao Z. Anaerobic mineralization of toluene by enriched soil-free consortia with solid-phase humin as a terminal electron acceptor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120794. [PMID: 36460188 DOI: 10.1016/j.envpol.2022.120794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The anaerobic biodegradation of toluene proceeds very slowly owing to limited electron acceptors in contaminated aquifer. The liquid reagents traditionally used to enhance this process readily migrate away from the contaminated site, and continuous addition would cause secondary pollution. In our previous study, the reduced solid-phase humic substances (humin), which are redox active, were found to act as electron donors to promote the microbial reactions. Here, we provide new evidence that humin can promote the anaerobic biodegradation of toluene as a terminal electron acceptor. When inoculating nitrate-reducing (NR) and iron-reducing (IR) consortia with toluene degradation activities, the average toluene degradation rates reached 21.20 ± 1.18 μmol/(L·d) and 15.43 ± 0.41 μmol/(L·d) in the presence of a sediment humin (HMcj), and 94.69% ± 4.26% and 93.20% ± 3.73% of the electrons released from toluene oxidation to CO2 could be recovered by the reduction of HMcj, respectively. Spectroscopy analyses revealed that quinone moieties and nitrogen-containing moieties may be the electron-accepting groups of HMcj. Based on 16S rRNA sequencing, Cellulomonas spp. were the possible functional bacteria in the culture with NR consortium as the inoculum, while Azospira spp., Cellulomonas spp. and Bacillus spp. were the possible functional bacteria in the culture with IR consortium as the inoculum. Further Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analyses indicated that toluene oxidation and extracellular electron transfer functions were more abundant in HMcj amended cultures, suggesting a possible enhancement mechanism by HMcj. Additionally, experiments using natural groundwater illustrated that toluene degradation was highly dependent on its concentration, HMcj dosage, pH, and salinity. The study of a column filled with HMcj-coated quartz sand demonstrated a desirable level of toluene degradation in a continuous-flow mode without the presence of other electron acceptors. This study provided an effective and green approach for the remediation of the toluene-contaminated groundwater.
Collapse
Affiliation(s)
- Hongxia Jiang
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Dan Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Dan Zheng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
3
|
Hui K, Xi B, Tan W, Song Q. Long-term application of nitrogen fertilizer alters the properties of dissolved soil organic matter and increases the accumulation of polycyclic aromatic hydrocarbons. ENVIRONMENTAL RESEARCH 2022; 215:114267. [PMID: 36100105 DOI: 10.1016/j.envres.2022.114267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Soil is a key component of terrestrial ecosystems, as it provides nutrients and energy for all terrestrial organisms and is the site of various physical, chemical, and biological processes. Soil organic matter is particularly important for the role that it plays in element cycling, as well as the adsorption and degradation of soil pollutants. Nitrogen (N) fertilizer is an important nutrient element in the soil microenvironment. Applications of N fertilizer can improve soil quality, but the long-term excessive application of N fertilizer can lead to the deterioration of the soil environment, alter the properties of organic matter, and affect the adsorption and accumulation of soil pollutants. In recent years, several pollutants, especially polycyclic aromatic hydrocarbons (PAHs), have accumulated in farmland soil due to long-term sewage irrigation. However, few studies have examined the response of soil PAHs accumulation to long-term N application, as well as the relationship between this response and changes in soil microenvironmental indicators caused by N application. Here, we conducted field experiments to study changes in soil pH, total organic carbon, and dissolved organic matter (DOM) under long-term N application, as well as their effects on PAHs accumulation. The application of N fertilizer resulted in the aromatization and humification of soil DOM, enhanced the accumulation response ratio (-0.05-0.32) and the amount of PAHs accumulated in soil (more than 30%), and exacerbated the environmental risks of PAHs. Our findings provide new insights that could aid the management and control of PAHs pollution of soil in sewage-irrigated areas.
Collapse
Affiliation(s)
- Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Qidao Song
- Institute of Scientific and Technical Information, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
4
|
Hu T, Pham DM, Kasai T, Katayama A. The Emergence of Extracellular Electron Mediating Functionality in Rice Straw-Artificial Soil Mixture during Humification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15173. [PMID: 36429897 PMCID: PMC9691237 DOI: 10.3390/ijerph192215173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to elucidate the origin of extracellular electron mediating (EEM) functionality and redox-active center(s) in humic substances, where they are ubiquitously distributed. Here, we show the emergence of EEM functionality during the humification of rice straw in artificial soil (kaolin and sand) with a matric potential of -100 cm at 20 °C for one year. We used the dechlorination activity of an EEM material-dependent pentachlorophenol-dechlorinating anaerobic microbial consortium as an index of the EEM functionality. Although rice straw and its mixture with artificial soil did not initially have EEM functionality, it emerged after one month of humification and increased until six months after which the functionality was maintained for one year. Chemical and electrochemical characterizations demonstrated that the emergence and increase in EEM functionality were correlated with the degradation of rice straw, formation of quinone structures, a decrease in aromatic structures, an increase in nitrogenous and aliphatic structures, and specific electric capacitance during humification. The newly formed quinone structure was suggested as a potential redox-active center for the EEM functionality. These findings provide novel insights into the dynamic changes in EEM functionality during the humification of organic materials.
Collapse
Affiliation(s)
- Tingting Hu
- Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8603, Japan
| | - Duyen Minh Pham
- Institute of Materials and Systems for Sustainability, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8603, Japan
| | - Takuya Kasai
- Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8603, Japan
- Institute of Materials and Systems for Sustainability, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8603, Japan
| | - Arata Katayama
- Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8603, Japan
- Institute of Materials and Systems for Sustainability, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8603, Japan
| |
Collapse
|
5
|
Kou B, Hui K, Miao F, He Y, Qu C, Yuan Y, Tan W. Differential responses of the properties of soil humic acid and fulvic acid to nitrogen addition in the North China Plain. ENVIRONMENTAL RESEARCH 2022; 214:113980. [PMID: 35998702 DOI: 10.1016/j.envres.2022.113980] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Humus (HS) is an important component of soil organic matter. Humic acid (HA) and fulvic acid (FA) are two of the most important components of HS, as they substantially affect biogeochemical processes and the migration and transformation of pollutants in soil. Long-term nitrogen (N) addition can lead to changes in soil physical and chemical properties, affect the structural characteristics of soil HS (HA and FA), cause changes in the adsorption and migration of pollutants, and ultimately result in the continuous deterioration of the soil ecological environment. However, few studies have examined the effects of N addition on the structural characteristics of soil HS, including the responses of soil HA and FA to N addition. Here, we conducted a long-term positioning experiment with different levels of N addition (CK: 0 kg N ha-1 yr-1, LN: 100 kg N ha-1 yr-1, and HN: 300 kg N ha-1 yr-1) in typical farmland soils of the North China Plain to study the response of soil HA and FA to N addition. N addition altered the physical and chemical properties of soil (e.g., pH, SOC, TN, and enzyme activity), which affected the responses of the chemical structure, quality indexes, and composition distribution of soil HA and FA to N addition. Differences in the response to N addition between HA and FA were observed. The structural characteristics of FA were stronger in response to HN compared with those of soil HA. As the level of N added increased, soil FA degradation increased, the composition distribution changed, the aromatization degree and molecular weight decreased, and the molecular structure became simpler. The properties of soil HA did not significantly respond to N addition. Given increases in the global N input (N addition and N deposition), our results have implications for agricultural fertilization, soil management, and other activities.
Collapse
Affiliation(s)
- Bing Kou
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Fang Miao
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yue He
- Beijing Guo Zhong Biology Technology Co., Ltd, Beijing, 101220, China
| | - Chengtun Qu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
6
|
Dey S, Kasai T, Katayama A. Promotion of Nitrogen Fixation of Diverse Heterotrophs by Solid-Phase Humin. Front Microbiol 2022; 13:853411. [PMID: 35992702 PMCID: PMC9389315 DOI: 10.3389/fmicb.2022.853411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Although biological nitrogen fixation (BNF) proceeds under mild conditions compared to the energy-intensive Haber–Bosch process, the slow kinetics of BNF necessitate the promotion of BNF activity in its practical application. The BNF promotion using purified nitrogenases and using genetically modified microorganisms has been studied, but these enzymes are unstable and expensive; moreover, designing genetically modified microorganisms is also a difficult task. Alternatively, the BNF promotion in non-modified (wild-type) microorganisms (enriched consortia) with humin has been shown, which is a humic substance insoluble at any pH and functions as an extracellular electron mediator. However, the taxonomic distribution of the diazotrophs promoted by humin, the levels of BNF promotion, and the underlying mechanism in BNF promotion with humin remain unknown. In this study, we show that taxonomically diverse heterotrophic diazotrophs, harboring nifH clusters I, II, and III, promoted their BNF by accepting extracellular electrons from humin, based on the characterization of the individual responses of isolated diazotrophs to humin. The reduced humin increased the acetylene reduction activity of the diazotrophs by 194–916% compared to the level achieved by the organic carbon source, causing adenosine triphosphate (ATP) synthesis in the diazotroph cells without increase in the CO2 production and direct electron donation to the MoFe protein of the nitrogenase in the cells without relying on the biological electron transfer system. These would result in BNF promotion in the wild-type diazotroph cells beyond their biochemical capacity. This significant promotion of BNF with humin would serve as a potential basis for sustainable technology for greener nitrogen fixation.
Collapse
Affiliation(s)
- Sujan Dey
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan
| | - Takuya Kasai
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan
| | - Arata Katayama
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan
- *Correspondence: Arata Katayama
| |
Collapse
|
7
|
Zhang L, Ban Q, Li J, Zhang S. An enhanced excess sludge fermentation process by anthraquinone-2-sulfonate as electron shuttles for the biorefinery of zero-carbon hydrogen. ENVIRONMENTAL RESEARCH 2022; 210:113005. [PMID: 35231458 DOI: 10.1016/j.envres.2022.113005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 05/23/2023]
Abstract
Excess sludge (ES) largely produced in municipal wastewater treatment plants is known as a waste biomass and the traditional treatment processes such as landfill and incineration are considered as unsustainable due to the negative environmental impact. Fermentation process of ES for the biorefinery of zero-carbon hydrogen has attracted an increasing interesting and was extensively researched in the last decades. However, the technology is far from commercial application due to the insufficient effectivity. In the present study, anthraquinone-2-sulfonate (AQS) as electron shuttles was introduced into the fermentation process of ES for mediating the composition and activity of bacterial community to get an enhanced biohydrogen production. Inoculated with the same anaerobic activated sludge of 1.12 gVSS/L, a series of batch anaerobic fermentation systems with various dosage of AQS were conducted at the same ES load of 2.75 gVSS/L, initial pH 6.5 and 35 °C. The results showed that the fermentation process was remarkably enhanced by the introduction of 100 mg/L AQS, accompanying the lag phase was shortened to 1.35 h from 7.62. The obtained biohydrogen yield and the specific biohydrogen production rate were also remarkably enhanced to 24.9 mL/gVSS and 0.3 mL/(gVSS·h), respectively. Illumina Miseq sequencing showed that Longilinea and Guggenheimella as the dominant genera had been enriched from 9.2% to 0-12.0% and 4.7%, respectively, in the presence of 100 mg/L AQS. Function predicted analysis suggested that the presence of AQS had increased the abundance of genes involved in the transport and metabolism of carbohydrate, amino acid and energy production. Further redundancy analysis (RDA) revealed that the enhanced hydrogen production was highly positively correlated with the enrichment of genera such as Longilinea and Guggenheimella. The research work presents a novel potential biorefinery of ES for the effective production of zero-carbon hydrogen.
Collapse
Affiliation(s)
- Liguo Zhang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China
| | - Qiaoying Ban
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China.
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Siyu Zhang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
8
|
Dey S, Kasai T, Katayama A. Promotion of biological H 2 (Bio-H 2) production by the nitrogen-fixing anaerobic microbial consortia using humin, a solid-phase humic substance. J Biosci Bioeng 2022; 134:144-152. [PMID: 35644797 DOI: 10.1016/j.jbiosc.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022]
Abstract
Dark fermentative biological hydrogen (Bio-H2) production is expected to be a clean and sustainable H2 production technology, and the technologies have been studied to increase in the product yield as index. This study achieved high product yields of Bio-H2 using nitrogen-fixing consortia under nitrogen-deficient conditions with glucose or mannitol as substrate and humin as the extracellular electron mediator: 4.12 mol-H2/mol-glucose and 3.12 mol-H2/mol-mannitol. The high Bio-H2 production was observed under the conditions where both nitrogenase and hydrogenase were active in the presence of humin. Nitrogenase activity was confirmed by acetylene reduction activity and hydrogenase activity by Bio-H2 production under nitrogenase-inhibiting conditions with NH4NO3. [Fe-Fe] hydrogenase detected by a specific PCR and acetate, butyrate, formate, lactate, and pyruvate produced as by-products suggested the involvement of both pyruvate-ferredoxin-oxidoreductase and pyruvate formate lyase pathways in Bio-H2 production. Humin promoted the Bio-H2 production beyond the capacity of the consortium, which had reached saturation with the optimum concentrations of glucose and mannitol. Carbon balance suggested the concurrent H2 consumption by hydrogenotrophic methanogenesis and acetogenesis. Bio-H2 production of the washed and starved consortium with reduced humin under conditions with or without NH4NO3 suggests that humin promoted hydrogenase and nitrogenase activity by donating extracellular electrons. Clostridium and Ruminococcus in the consortia were considered major hydrogen producers. Thus, this study demonstrated the outstanding potential of nitrogen-fixing consortia under nitrogen-deficient conditions with humin as an extracellular electron mediator for dark fermentative Bio-H2 production with high yields.
Collapse
Affiliation(s)
- Sujan Dey
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Chikusa, Nagoya 464-8603, Japan; Institute of Materials and Systems for Sustainability, Nagoya University, Tokai National Higher Education and Research System, Chikusa, Nagoya 464-8603, Japan
| | - Takuya Kasai
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Chikusa, Nagoya 464-8603, Japan; Institute of Materials and Systems for Sustainability, Nagoya University, Tokai National Higher Education and Research System, Chikusa, Nagoya 464-8603, Japan
| | - Arata Katayama
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, Chikusa, Nagoya 464-8603, Japan; Institute of Materials and Systems for Sustainability, Nagoya University, Tokai National Higher Education and Research System, Chikusa, Nagoya 464-8603, Japan.
| |
Collapse
|
9
|
Xiao Z, Yang L, Chen C, Chen D, Zhou X. Redox reaction between solid-phase humins and Fe(III) compounds: Toward a further understanding of the redox properties of humin and its possible environmental effects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114793. [PMID: 35220098 DOI: 10.1016/j.jenvman.2022.114793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Redox reactions between humic substances and Fe(III) compounds play a critical role in the biogeochemical cycle of pollutants. Most humic substances in soils and sediments are in a solid form (i.e. humin (HM)). In order to assess the contribution of electron shuttling via HM within the electron transfer network in natural environments and to predict environmental fate of pollutants associated with iron oxides, it is necessary to understand the electron transfer processes from HM to the environmentally relevant Fe(III) minerals, and to examine the redox reversibility of HM. The results of this study demonstrated that non-reduced HMs could only donate electrons to dissolved ferric citrate and poorly crystalline ferrihydrite, but reduced HMs could also reduce hematite and magnetite that had high crystallinity. The degree of reduction depended on the difference in redox potential and the crystallinity of the Fe(III) compounds. The electron-accepting capacities of different HMs correlated well with their organic carbon content, and quinones and Fe-bound organic component were important electron-accepting groups in HMs. Furthermore, the redox reversibility experiments demonstrated that HMs could maintain stable electron transfer capacities over three reduction-oxidation cycles, indicating that the HM could be an environmentally sustainable electron shuttle. Our results suggest that (1) HM may play an unrecognized and important role in biogeochemical cycles of pollutants in Fe(III) mineral-rich environments; (2) electron shuttling through HM to ferric citrate and ferrihydrite can occur even in the presence of O2; and (3) HM would be a promising material for environmental remediation.
Collapse
Affiliation(s)
- Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Lizhuang Yang
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Chuang Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Dan Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Xue Zhou
- College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
10
|
Ha BN, Pham DM, Kasai T, Awata T, Katayama A. Effect of Humin and Chemical Factors on CO 2-Fixing Acetogenesis and Methanogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052546. [PMID: 35270239 PMCID: PMC8909181 DOI: 10.3390/ijerph19052546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023]
Abstract
Acetogenesis and methanogenesis have attracted attention as CO2-fixing reactions. Humin, a humic substance insoluble at any pH, has been found to assist CO2-fixing acetogenesis as the sole electron donor. Here, using two CO2-fixing consortia with acetogenic and methanogenic activities, the effect of various parameters on these activities was examined. One consortium utilized humin and hydrogen (H2) as electron donors for acetogenesis, either separately or simultaneously, but with a preference for the electron use from humin. The acetogenic activity was accelerated 14 times by FeS at 0.2 g/L as the optimal concentration, while being inhibited by MgSO4 at concentration above 0.02 g/L and by NaCl at concentrations higher than 6 g/L. Another consortium did not utilize humin but H2 as electron donor, suggesting that humin was not a universal electron donor for acetogenesis. For methanogenesis, both consortia did not utilize extracellular electrons from humin unless H2 was present. The methanogenesis was promoted by FeS at 0.2 g/L or higher concentrations, especially without humin, and with NaCl at 2 g/L or higher concentrations regardless of the presence of humin, while no significant effect was observed with MgSO4. Comparative sequence analysis of partial 16S rRNA genes suggested that minor groups were the humin-utilizing acetogens in the consortium dominated by Clostridia, while Methanobacterium was the methanogen utilizing humin with H2.
Collapse
Affiliation(s)
- Biec Nhu Ha
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan; (B.N.H.); (T.K.)
| | - Duyen Minh Pham
- Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa, Nagoya 464-8603, Japan;
| | - Takuya Kasai
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan; (B.N.H.); (T.K.)
- Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa, Nagoya 464-8603, Japan;
| | - Takanori Awata
- Graduate School of Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan;
| | - Arata Katayama
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan; (B.N.H.); (T.K.)
- Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa, Nagoya 464-8603, Japan;
- Correspondence: ; Tel.: +81-52-789-5856
| |
Collapse
|
11
|
Pham DM, Dey S, Katayama A. Activation of extracellular electron network in non-electroactive bacteria by Bombyx mori silk. Int J Biol Macromol 2022; 195:1-11. [PMID: 34871655 DOI: 10.1016/j.ijbiomac.2021.11.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 11/05/2022]
Abstract
Extracellular electron transfer material (EETM) has increasingly attracted attentions for the enhancing effect on multiple microbial reactions. Especially, EETM is known to be essential to activate the energy network in non-electroactive bacteria. It is motivated to find out an EETM which is natural-based, environmentally friendly, and easily produced at large-scale. In this study, Bombyx mori silk is found, for the first time, to function as an EETM by using an EETM-dependent pentachlorophenol (PCP) dechlorinating anaerobic microbial culture. Subsequently, by dividing fibroin fiber into different soluble/insoluble fractions and correlating their EET functions with their structural properties based on various spectroscopic analyses, the β-sheet configuration is suggested as an essential structure supporting the EET function of silk materials. The analyses also suggested the involvement of sulfur-containing amino acids in this function. The EET function is not degraded by boiling or acid/alkaline treatments and the material can be utilized multiple times, although it is susceptible to UV irradiation. Bombyx mori silk also enhance other microbial reactions, including Fe(III)OOH reduction, CO2 reduction to acetate, and nitrogen fixation. This discovery provides a basis for developing biotechnology for environmental remediation, global warming reduction, and biofertilizer production using Bombyx mori silk and its wastes.
Collapse
Affiliation(s)
- Duyen M Pham
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan.
| | - Sujan Dey
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Arata Katayama
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan; Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| |
Collapse
|
12
|
Pham DM, Kasai T, Yamaura M, Katayama A. Humin: No longer inactive natural organic matter. CHEMOSPHERE 2021; 269:128697. [PMID: 33139048 DOI: 10.1016/j.chemosphere.2020.128697] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The discovery of the function of humin (HM), an insoluble fraction of humic substances (HSs), as an extracellular electron mediator (EEM) in 2012 has provided insight into the role of HM in nature and its potential for in situ bioremediation of pollutants. The EEM function is thought to enable the energy network of various microorganisms using HM. Recently, a number of studies on the application of HM as EEM in anaerobic microbial cultures have been conducted. Even so, there is a need for developing a holistic view of HM EEM function. In this paper, we summarize all the available information on the properties of HM EEM function, its applications, possible redox-active structures, and the interaction between HM and microbial cells. We also suggest scopes for future HM research.
Collapse
Affiliation(s)
- Duyen Minh Pham
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603, Japan
| | - Takuya Kasai
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603, Japan; Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Mirai Yamaura
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Arata Katayama
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, 464-8603, Japan; Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.
| |
Collapse
|
13
|
Dey S, Awata T, Mitsushita J, Zhang D, Kasai T, Matsuura N, Katayama A. Promotion of biological nitrogen fixation activity of an anaerobic consortium using humin as an extracellular electron mediator. Sci Rep 2021; 11:6567. [PMID: 33753787 PMCID: PMC7985497 DOI: 10.1038/s41598-021-85955-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/05/2021] [Indexed: 11/09/2022] Open
Abstract
Nitrogen fertiliser is manufactured using the industrial Haber–Bosch process, although it is extremely energy-consuming. One sustainable alternative technology is the electrochemical promotion of biological nitrogen fixation (BNF). This study reports the promotion of BNF activity of anaerobic microbial consortia by humin, a solid-phase humic substance, at any pH, functioning as an extracellular electron mediator, to levels of 5.7–11.8 times under nitrogen-deficient conditions. This was evidenced by increased acetylene reduction activity and total nitrogen content of the consortia. Various humins from different origins promoted anaerobic BNF activity, although the degree of promotion differed. The promotion effected by humin differed from the effects of chemical reducing agents and the effects of supplemental micronutrients and vitamins. The promotion of anaerobic BNF activity by only reduced humin without any other electron donor suggested that humin did not serve as organic carbon source but as extracellular electron mediator, for electron donation to the nitrogen-fixing microorganisms. The next generation sequencing (NGS) of partial 16S rRNA genes showed the predominance of Clostridiales (Firmicutes) in the consortia. These findings suggest the effectiveness of humin as a solid-phase extracellular electron mediator for the promotion of anaerobic BNF activity, potentially to serve for the basis for a sustainable technology.
Collapse
Affiliation(s)
- Sujan Dey
- Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Takanori Awata
- National Institute for Land and Infrastructure Management, Asahi 1, Tsukuba, Ibaraki, 305-0804, Japan
| | - Jumpei Mitsushita
- Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Dongdong Zhang
- Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan.,Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Takuya Kasai
- Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan.,Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Norihisa Matsuura
- School of Geosciences and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Arata Katayama
- Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan. .,Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
14
|
Liu SJ, Zheng MX, Sun XJ, Xi BD, He XS, Xiao X. Evolution properties and dechlorination capacities of particulate organic matter from a landfill. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123313. [PMID: 32947713 DOI: 10.1016/j.jhazmat.2020.123313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/28/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Particulate organic matter (POM) includes humin and non-degradable residues, and the knowledge about its composition, evolution and environmental behavior is limited. The composition, evolution and its influence on dechlorination of the POM in landfill was studied. The results show that POM accounts for 27 %-57 % of the organic matter in landfill cell, which is mainly composed of protein-, fulvic- and humic-like components. Firmicutes and Proteobacteria were the main microorganisms driving the compositional evolution of POM during the landfilling process. The electron acceptance capacities (EAC) and electron donating capacities (EDC) of POM were in the range of 0.05-0.51 μmol/gC-1 and 0.13-0.66 μmol/gC-1, respectively, and the average EAC and EDC of POM in the intermediate and old stage of landfill were higher than those in the initial stage. The combined action of MR-1 and POM increased the degradation rate of PCP by 20 %-40 %, which was ascribed to the reduction capacities and electron transfer process of POM. POM derived from the intermediate and old stages promoted PCP dechlorination more effectively when compared with the initial stage due to its high electron transfer capacities (ETC), which are of great significance for soil in-situ bioremediation.
Collapse
Affiliation(s)
- Si-Jia Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ming-Xia Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiao-Jie Sun
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Bei-Dou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiao-Song He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiao Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
15
|
Zhang Y, Zhang Z, Liu W, Chen Y. New applications of quinone redox mediators: Modifying nature-derived materials for anaerobic biotransformation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140652. [PMID: 32693271 DOI: 10.1016/j.scitotenv.2020.140652] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Due to their wide-distribution, high-biocompatibility and low-cost, nature-derived quinone redox mediators (NDQRM) have shown great potential in bioremediation through mediating electron transfers between microorganisms and between microorganisms and contaminants in anaerobic biotransformation processes. It is obvious that their performance in bioremediation was limited by the availability of quinone-based groups in NDQRM. A sustainable solution is to enhance the electron transfer capacity and retention capacity by the modification of NDQRM. Therefore, this review comprehensively summarized the modification techniques of NDQRM according to their multiple roles in anaerobic biotransformation systems. In addition, their potential applications in greenhouse gas mitigation, contaminant degradation in anaerobic digestion, contaminant bioelectrochemical remediation and energy recovery were discussed. And the problems that need to be addressed in the future were pointed out. The obtained knowledge would promote the exploration of novel NDQRM, and provide suggestions for the design of anaerobic consortia in biotransformation systems.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhengzhe Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Weiguo Liu
- College of Resources and Environment Science, Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi 830046, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
16
|
Laskar M, Kasai T, Awata T, Katayama A. Humin Assists Reductive Acetogenesis in Absence of Other External Electron Donor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124211. [PMID: 32545640 PMCID: PMC7344539 DOI: 10.3390/ijerph17124211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 01/04/2023]
Abstract
The utilization of extracellular electron transfer by microorganism is highly engaging for remediation of toxic pollutants under “energy-starved” conditions. Humin, an organo-mineral complex of soil, has been instrumental as an external electron mediator for suitable electron donors in the remediative works of reductive dehalogenation, denitrification, and so forth. Here, we report, for the first time, that humin assists microbial acetogenesis as the extracellular electron donor using the electron acceptor CO2. Humin was obtained from Kamajima paddy soil, Japan. The anaerobic acetogenic consortium in mineral medium containing CO2/HCO3− as the inorganic carbon source used suspended humin as the energy source under mesophilic dark conditions. Retardation of acetogenesis under the CO2-deficient conditions demonstrated that humin did not function as the organic carbon source but as electron donor in the CO2-reducing acetogenesis. The consortium with humin also achieved anaerobic dechlorination with limited methanogenic activity. Total electron-donating capacity of humin was estimated at about 87 µeeq/g-humin. The metagenomic sequencing of 16S rRNA genes showed the predominance of Firmicutes (71.8 ± 2.5%) in the consortium, and Lachnospiraceae and Ruminococcaceae were considered as the CO2-reducing acetogens in the consortium. Thus, microbial fixation of CO2 using humin introduces new insight to the holistic approach for sustainable treatment of contaminants in environment.
Collapse
Affiliation(s)
- Mahasweta Laskar
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan; (M.L.); (T.K.)
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
| | - Takuya Kasai
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan; (M.L.); (T.K.)
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
| | - Takanori Awata
- National Institute for Land and Infrastructure Management, Tsukuba 305-0804, Japan;
| | - Arata Katayama
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan; (M.L.); (T.K.)
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
- Correspondence: ; Tel.: +81-(0)52-789-5856
| |
Collapse
|
17
|
Wang W, Niu J, Yang Z. An efficient reduction of unsaturated bonds and halogen-containing groups by nascent hydrogen over Raney Ni catalyst. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121912. [PMID: 31874759 DOI: 10.1016/j.jhazmat.2019.121912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Presence of unsaturated bonds and halogen-containing groups is the most common characteristic of toxic and harmful environmental pollutants. Herein, catalytic hydrogenation was chosen as a water quality control method for such contaminants. Considering the safety, availability and activity of the hydrogen source, electrochemical in situ hydrogen generation was introduced. Under the combined action of Raney Ni (R-Ni) and nascent hydrogen (Nas-H2), three compounds (50 mg L-1, 90 ml), i.e., acrylamide, 2, 6-dibromo-4-nitrophenol and 2-chloro-4-fluorobenzonitrile achieved complete hydrogenation reduction in a short time. The improved system realized the quantitative consumption of hydrogen source and the efficient operation of hydrogenation reaction under mild conditions. Additionally, the alkaline environment formed by hydrogen evolution reaction (HER) avoided secondary pollution caused by catalyst dissolution. Atomic hydrogen (H·) produced from R-Ni and Nas-H2 was the active free radical of the reaction. The hydrogenation activities of different functional groups were obtained according to the following order: Ph-NO2 > -C = C- > Ph-C≡N > Ph-Br > Ph-Cl > Ph-F. This work indicates that the catalytic hydrogenation system consisting of R-Ni and Nas-H2 is a promising technology to reduce unsaturated bonds and halogen-containing groups.
Collapse
Affiliation(s)
- Weilai Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, People's Republic of China
| | - Junfeng Niu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, People's Republic of China.
| | - Zhifeng Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
18
|
Zhang D, Dang H, Li Z, Zhang C. Redox characteristics of humins and their coupling with potential PCB dechlorinators in southern Yellow Sea sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:296-304. [PMID: 31158658 DOI: 10.1016/j.envpol.2019.05.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Natural attenuation of polychlorinated biphenyls (PCBs) by indigenous bacteria is an effective remediation strategy for polluted marine sediments. This study investigated the relationships between PCB concentrations in sediment pore water, humin electron transfer capacity, and potential PCB dechlorinators at eight sediment sampling sites in the southern Yellow Sea, China, with differential PCB contamination. Station A2 showed the highest PCB concentration (453.16 ng L-1 for seven indicator PCBs), especially of less chlorinated PCB congeners (≤5 Cl atoms), humin redox activity, and Dehalococcoides abundance (p < 0.05). Statistical analyses revealed a highly positive correlation between Dehalococcoides abundance and PCB concentration (r = 0.836, p < 0.05) and the electron shuttling ability of humins (r = 0.952, p < 0.01), whereas this was not observed for total bacteria and other potential PCB dechlorinators, e.g., Dehalobacter and Dehalogenimonas. Based on these results, Dehalococcoides might play an important role in the in situ reductive dechlorination of PCBs involving humins in marine sediments, and the natural microbial PCB attenuation capacity at station A2 was high. Chemical characterizations, electrochemical properties, and Fourier transform infrared analysis suggested that humins at station A2 had the highest electron transfer capacity. Furthermore, quinones are likely to be the functional groups that shuttle electrons during PCB dechlorination. Overall, this study provides a useful foundation for evaluating the natural microbial attenuation potential and fates of PCBs in marine sediments and for determining the role of humins as redox mediators in in situ PCB dechlorination by putative indigenous dechlorinators.
Collapse
Affiliation(s)
- Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, Fujian, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, 541006, Guangxi, China.
| |
Collapse
|
19
|
Laskar M, Awata T, Kasai T, Katayama A. Anaerobic Dechlorination by a Humin-Dependent Pentachlorophenol-Dechlorinating Consortium under Autotrophic Conditions Induced by Homoacetogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2873. [PMID: 31405258 PMCID: PMC6720667 DOI: 10.3390/ijerph16162873] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/03/2019] [Accepted: 08/09/2019] [Indexed: 11/16/2022]
Abstract
Anoxic aquifers suffer from energy limitations due to the unavailability of organic substrates, as dictated by hydrogen (H2) for various electron-accepting processes. This deficiency often results in the accumulation of persistent organic pollutants, where bioremediation using organic compounds often leads to secondary contamination. This study involves the reductive dechlorination of pentachlorophenol (PCP) by dechlorinators that do not use H2 directly, but rather through a reduced state of humin-a solid-phase humic substance-as the extracellular electron donor, which requires an organic donor such as formate, lactate, etc. This shortcoming was addressed by the development of an anaerobic mixed culture that was capable of reductively dechlorinating PCP using humin under autotrophic conditions induced by homoacetogenesis. Here, H2 was used for carbon-dioxide fixation to acetate; the acetate produced was used for the reduction of humin; and consequently used for dechlorination through reduced humin. The 16SrRNA gene sequencing analysis showed Dehalobacter and Dehalobacterium as the possible dechlorinators, while Clostridium and Oxobacter were identified as the homoacetogens. Thus, this work contributes to the development of an anaerobic consortium that balanced H2 dependency, where efficiency of humin reduction extends the applicability of anaerobic microbial remediation in aquifers through autotrophy, syntrophy, and reductive dechlorination.
Collapse
Affiliation(s)
- Mahasweta Laskar
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Takanori Awata
- National Institute for Land and Infrastructure Management, Tsukuba 305-0804, Japan
| | - Takuya Kasai
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
| | - Arata Katayama
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan.
| |
Collapse
|
20
|
Liu G, Zhu J, Jin R, Zhou J, Gao Z, Wang J. Accelerating effects of humin on sulfide-mediated azo dye reduction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:102-109. [PMID: 30889399 DOI: 10.1016/j.ecoenv.2019.03.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
As an important fraction of humic substances, humin has been found capable of stimulating bioreduction reactions. However, whether humin could promote abiotic reduction and the effects of coexisting soluble humic substance and insoluble mineral remained unsolved. In this study, a humin sample was isolated from a paddy soil. Cyclic voltammetry, electron paramagnetic resonance, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses of the humin indicated the existence of redox-active quinone moieties and other oxygen-containing groups. The humin could be reduced by sulfide and its presence stimulated the abiotic reduction of acid red 27 (AR27) and four other azo dyes by sulfide. In the presence of 100-1000 mg/L intact humin, the sulfide-mediated AR27 reduction efficiency in 7 d was enhanced from 56.3% to 92.5%. The stimulating behavior of intact humin was observed for 100-300 mg/L AR27 and increased with the increase of sulfide concentration (1.2-3.0 mM). Much higher stimulating effects were found with the presence of humin pre-reduced by sulfide. Moreover, for sulfide-mediated AR27 reduction, the coexistence of humin (500 mg/L) and humic acid (10-30 mg/L) or Wyoming sodium-montmorillonite (SWy-2, 1-4 g/L) led to better promotion activities than the presence of single component. And synergistic promotion of sulfide-mediated AR27 reduction was observed with coexisting humin and SWy-2 due to enhanced Fe(II) production. These findings extended our understanding of the influence of humin on reductive transformation of pollutants in the environment.
Collapse
Affiliation(s)
- Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiaqi Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Zhanming Gao
- Chemistry Analysis & Research Center, Faculty of Chemical, Environmental & Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
21
|
Bottino F, Cunha-Santino MB, Bianchini I. Kinetic aspects of humic substances derived from macrophyte detritus decomposition under different nutrient conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15931-15942. [PMID: 30963433 DOI: 10.1007/s11356-019-04882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Autochthonous particulate organic carbon (POC) is an important precursor of humic substances (HS), and macrophytes represent the major source of POC in tropical aquatic ecosystems. Autochthonous HS influence the carbon supply, light regime, and primary production within freshwater systems. This study addresses the conversion of POC from two macrophyte species into HS and their mineralization under different nutrient conditions (oligotrophic to hypereutrophic). A first-order kinetic model was adopted to describe the conversion routes. The POC conversion rate to HS for detritus derived from Paspalum repens was similar under different nutrient conditions, but eutrophication decreased the kR (global coefficient reaction) for detritus from Pistia stratiotes due to its high detritus quality (C:N:P ratio). Fulvic acids were the main fraction of HS in both plants. The mineralization of humic acids from P. stratiotes was inhibited at higher nutrient availability, while eutrophication increased the mineralization of fulvic acids from P. repens. The main route of POC cycling is humification through fulvic acid formation (up to 40% of POC). The intrinsic characteristics of the source detritus were the main forcing functions that stimulated the cycling of HS. In tropical aquatic ecosystems, the degradation of autochthonous carbon decreased due to eutrophication, thus contributing to the diagenetic process in the long term.
Collapse
Affiliation(s)
- Flávia Bottino
- Universidade do Estado de MinasGerais, Unidade Acadêmica de Passos, Avenida Juca Stockler, 1130, Passos, MG, CEP 37900-106, Brazil.
| | - Marcela Bianchessi Cunha-Santino
- Universidade Federal de São Carlos, Departamento de Hidrobiologia, Rodovia Washington Luís, km 235, São Carlos, SP, CEP 13565-905, Brazil
| | - Irineu Bianchini
- Universidade Federal de São Carlos, Departamento de Hidrobiologia, Rodovia Washington Luís, km 235, São Carlos, SP, CEP 13565-905, Brazil
| |
Collapse
|
22
|
Chen H, Jin R, Liu G, Tian T, Gu C, Zhou J, Xing D. Effects of sludge lysate for Cr(VI) bioreduction and analysis of bioaugmentation mechanism of sludge humic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5065-5075. [PMID: 30604364 DOI: 10.1007/s11356-018-3917-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
This study evaluated the effects of sludge lysate (SL) on the anaerobic bioreduction of Cr(VI) and the role of sludge humic acid (SHA) during this process. The results showed that supplement of SL significantly enhanced the efficiency of Cr(VI) bioreduction by 29.61%, in 12 h compared with that of the control without SL. Moreover, SHA exhibited promoting effects on bioreduction of Cr(VI), and the promotion increased with increasing SHA concentrations from 100 to 300 mg/L. In the presence of 300 mg/L SHA, Cr(VI) (98.21 mg/L) was completely reduced after 24 h with a removal rate increased by 34.3% compared with that of the control without SHA. Further investigation on the bioaugmentation mechanism of SHA by studying the nature of SHA and the reaction mechanism between SHA and Cr(VI) revealed that SHA exhibited a strong adsorption ability, which could adsorb and combine with Cr(VI). The adsorption capacity of Cr(VI) by SHA was calculated as 34.4 mg/g with 0.2 g of SHA and 10 mg/L of Cr(VI). It could also act as redox mediators to accelerate the electron transfer between microorganisms and Cr(VI) to promote reduction of Cr(VI). Furthermore, the effects of SL on the microbial community compositions of the anaerobic Cr(VI) bioreduction system were studied. Brachymonas was the primary bacteria at the genus level. The abundance of electroactive bacteria, such as Acinetobacter, Pseudomonas, and Arcobacter, increased in the SL-amended system. These findings expand the versatility of SL and justify wider use of residual activated sludge, which might contribute to the treatment of heavy metal-contaminated wastewater.
Collapse
Affiliation(s)
- Hongling Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
- Drainage Management Office, Tongliao Municipal Commission of Housing Urban-Rural Development, Tongliao, 028000, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Chen Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
23
|
Pham DM, Katayama A. Humin as an External Electron Mediator for Microbial Pentachlorophenol Dechlorination: Exploration of Redox Active Structures Influenced by Isolation Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15122753. [PMID: 30563164 PMCID: PMC6313380 DOI: 10.3390/ijerph15122753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/13/2018] [Accepted: 12/02/2018] [Indexed: 01/26/2023]
Abstract
Humin (HM) has been reported to function as an external electron mediator (EEM) in various microbial reducing reactions. In this study, the effect of isolation methods on EEM functionality and the chemical/electrochemical structures of HM were examined based on the correlation between dechlorination rates in the anaerobic HM-dependent pentachlorophenol (PCP)-dechlorinating consortium and the chemical/electrochemical structures of HM. A lack of PCP dechlorination activity suggested no EEM function in the HM samples prepared as a soluble fraction in dimethyl sulfoxide and sulfuric acid (which did not contain any electric capacitance). Other HM samples exhibited EEM functionality as shown by the dechlorination activity ranging from 0.55 to 3.48 (µmol Cl−) L−1d−1. The comparison of dechlorination activity with chemical structural characteristics suggested that HM with EEM functionalities had predominantly aliphatic and carbohydrate carbons with the partial structures C=O, O=C–N, and O=C–O. EEM functionality positively correlated with the proportion of O=C–N and O=C–O, suggesting an association between peptidoglycan structure and EEM functionality. The lack of detection of a quinone structure in one HM sample with EEM functionality and a negative correlation with aromatic or C=C carbon suggested that the mechanism containing quinone structures is a minor component for the functionality of EEM.
Collapse
Affiliation(s)
- Duyen Minh Pham
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan.
| | - Arata Katayama
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan.
| |
Collapse
|
24
|
Lipczynska-Kochany E. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. CHEMOSPHERE 2018; 202:420-437. [PMID: 29579677 DOI: 10.1016/j.chemosphere.2018.03.104] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/19/2018] [Accepted: 03/15/2018] [Indexed: 05/27/2023]
Abstract
Depicted as large polymers by the traditional model, humic substances (HS) tend to be considered resistant to biodegradation. However, HS should be regarded as supramolecular associations of rather small molecules. There is evidence that they can be degraded not only by aerobic but also by anaerobic bacteria. HS presence alters biological transformations of organic pollutants in water and soil. HS, including humin, have a great potential for an application in aerobic and anaerobic wastewater treatment as well as in bioremediation. Black carbon materials, including char (biochar) and activated carbon (AC), long recognized effective sorbents, have been recently discovered to act as effective redox mediators (RM), which may significantly accelerate degradation of organic pollutants in a way similar to HS. Humic-like coating on the biochar surface has been identified. Explanation of mechanisms and possibility of applications of black carbon materials have only started to be explored. Results of many original and review papers, presented and discussed in this article, show an enormous potential for an interesting, multidisciplinary research as well as for a development of new, green technologies for biological wastewater treatment and bioremediation. Future research areas have been suggested.
Collapse
|
25
|
Zhang N, Zhang DD, Ji HD, Yu XW, Zhang ZC, Yang SM, Zhang CF. Redox Structures of Humic Acids Derived From Different Sediments and Their Effects on Microbial Reduction Reactions. Front Microbiol 2018; 9:1225. [PMID: 29937758 PMCID: PMC6002622 DOI: 10.3389/fmicb.2018.01225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
Abstract
Herein, we investigated the chemical, electrochemical, and spectroscopic characteristics of humic acids (HAs) extracted from sediments of different origin [Ling Qiao river, Xi Xi wetland, Qi Zhen lake (QZ), and Hu Zhou pond in Zhejiang province, China], paying particular attention to their role in the enhancement of nitrate and FeOOH reduction. Notably, the highest C/N ratio (16.16), O/C ratio (1.89), and Fe content (11.57 g kg-1 sample) were observed for HAs extracted from QZ sediment. Cyclic voltammetry analyses confirmed that all HAs contained redox-active groups and exhibited redox potentials between -0.36 and -0.28 V vs. the standard hydrogen electrode. All HAs showed similar Fourier transform infrared spectra with variable absorption intensity, the spectra verified the presence of aromatic C=C, C–H, and C=O of quinone ketones group in HAs. Electron spin resonance suggested that quinone moieties within HAs are the redox-active centers. All HAs promoted the microbial reduction of nitrate and amorphous FeOOH by Shewanella oneidensis strain MR-1, achieving high nitrate reduction extents of 79–98.4%, compared to the biotic and abiotic control values of 29.6 and 0.006%, respectively. The corresponding extents of Fe(II) production equaled 43.25–60.5%, exceeding those of biotic and abiotic controls (28.5 and 0.005%, respectively). In addition to the highest C/N, O/C ratio, and Fe content, HA extracted from QZ sediment also exhibited the highest nitrate and FeOOH reduction performances. Although the proportion of organic redox-active carbon is small, the potential electron-mediating ability is not ignorable. HAs are redox active for enhancing microbial reduction of nitrate and amorphous FeOOH regardless of the location or texture of parent sediments, implying their great potential for acting as redox mediator in enhancing multiple microbial reduction, thereby affecting various biogeochemical processes (i.e., iron cycle, nitrogen cycle, etc.) as well as in situ remediation in anaerobic environment.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Hangzhou, China
| | - Dong-Dong Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Hangzhou, China
| | - Hong-Da Ji
- Wuxi Dongfang Environmental Engineering Design and Research Institute, Wuxi, China
| | - Xin-Wei Yu
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, China
| | - Zhi-Chao Zhang
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, China
| | - Sheng-Mao Yang
- Institute of Environment Resources and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chun-Fang Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Guo P, Zhang C, Wang Y, Yu X, Zhang Z, Zhang D. Effect of long-term fertilization on humic redox mediators in multiple microbial redox reactions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:107-114. [PMID: 29172040 DOI: 10.1016/j.envpol.2017.10.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the effects of different long-term fertilizations on humic substances (HSs), humic acids (HAs) and humins, functioning as redox mediators for various microbial redox biotransformations, including 2,2',4,4',5,5'- hexachlorobiphenyl (PCB153) dechlorination, dissimilatory iron reduction, and nitrate reduction, and their electron-mediating natures. The redox activity of HSs for various microbial redox metabolisms was substantially enhanced by long-term application of organic fertilizer (pig manure). As a redox mediator, only humin extracted from soils with organic fertilizer amendment (OF-HM) maintained microbial PCB153 dechlorination activity (1.03 μM PCB153 removal), and corresponding HA (OF-HA) most effectively enhanced iron reduction and nitrate reduction by Shewanella putrefaciens. Electrochemical analysis confirmed the enhancement of their electron transfer capacity and redox properties. Fourier transform infrared analysis showed that C=C and C=O bonds, and carboxylic or phenolic groups in HSs might be the redox functional groups affected by fertilization. This research enhances our understanding of the influence of anthropogenic fertility on the biogeochemical cycling of elements and in situ remediation ability in agroecosystems through microorganisms' metabolisms.
Collapse
Affiliation(s)
- Peng Guo
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chunfang Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Yi Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xinwei Yu
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan 316021, Zhejiang, China
| | - Zhichao Zhang
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan 316021, Zhejiang, China
| | - Dongdong Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; School of Fisheries, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China.
| |
Collapse
|
27
|
Xiao Z, Awata T, Zhang D, Katayama A. Denitrification by Pseudomonas stutzeri coupled with CO2 reduction by Sporomusa ovata with hydrogen as an electron donor assisted by solid-phase humin. J Biosci Bioeng 2016; 122:307-13. [DOI: 10.1016/j.jbiosc.2016.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
|
28
|
Xiao Z, Awata T, Zhang D, Zhang C, Li Z, Katayama A. Enhanced denitrification of Pseudomonas stutzeri by a bioelectrochemical system assisted with solid-phase humin. J Biosci Bioeng 2016; 122:85-91. [DOI: 10.1016/j.jbiosc.2015.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/21/2015] [Accepted: 11/12/2015] [Indexed: 11/27/2022]
|
29
|
Chang CH, Wei CC, Lin LH, Tu TH, Liao VHC. Humic acids enhance the microbially mediated release of sedimentary ferrous iron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4176-4184. [PMID: 25997809 DOI: 10.1007/s11356-015-4703-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
Iron (Fe) is an essential element for many organisms, but high concentrations of iron can be toxic. The complex relation between iron, arsenic (As), bacteria, and organic matter in sediments and groundwater is still an issue of environmental concern. The present study addresses the effects of humic acids and microorganisms on the mobilization of iron in sediments from an arsenic-affected area, and the microbial diversity was analyzed. The results showed that the addition of 50, 100, and 500 mg/L humic acids enhanced ferrous iron (Fe(II)) release in a time-dependent and dose-dependent fashion under anaerobic conditions. A significant increase in the soluble Fe(II) concentrations occurred in the aqueous phases of the samples during the first 2 weeks, and aqueous Fe(II) reached its maximum concentrations after 8 weeks at the following Fe(II) concentrations: 28.95 ± 1.16 mg/L (original non-sterilized sediments), 32.50 ± 0.71 mg/L (50 mg/L humic acid-amended, non-sterilized sediments), 37.50 ± 1.85 mg/L (100 mg/L humic acid-amended, non-sterilized sediments), and 39.00 ± 0.43 mg/L (500 mg/L humic acid-amended, non-sterilized sediments). These results suggest that humic acids can further enhance the microbially mediated release of sedimentary iron under anaerobic conditions. By contrast, very insignificant amounts of iron release were observed from sterilized sediments (the abiotic controls), even with the supplementation of humic acids under anaerobic incubation. In addition, the As(III) release was increased from 50 ± 10 μg/L (original non-sterilized sediments) to 110 ± 45 μg/L (100 mg/L humic acid-amended, non-sterilized sediments) after 8 weeks of anaerobic incubation. Furthermore, a microbial community analysis indicated that the predominant class was changed from Alphaproteobacteria to Deltaproteobacteria, and clearly increased populations of Geobacter sp., Paludibacter sp., and Methylophaga sp. were found after adding humic acids along with the increased release of iron and arsenic. Our findings provide evidence that humic acids can enhance the microbially mediated release of sedimentary ferrous iron in an arsenic-affected area. It is thus suggested that the control of anthropogenic humic acid use and entry into the environment is important for preventing the subsequent iron contamination in groundwater.
Collapse
Affiliation(s)
- Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chia-Cheng Wei
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Li-Hung Lin
- Department of Geosciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Tzu-Hsuan Tu
- Department of Geosciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan.
| |
Collapse
|
30
|
Tadini AM, Nicolodelli G, Mounier S, Montes CR, Milori DMBP. The importance of humin in soil characterisation: A study on Amazonian soils using different fluorescence techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 537:152-158. [PMID: 26282749 DOI: 10.1016/j.scitotenv.2015.07.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 06/04/2023]
Abstract
Soil organic matter (SOM) is a complex mixture of molecules with different physicochemical properties, with humic substances (HS) being the main component as it represents around 20-50% of SOM structure. Soil of the Amazon region is considered one of the larger carbon pools of the world; thus, studies of the humic fractions are important for understanding the dynamics of organic matter (OM) in these soils. The aim of this study was to use laser-induced fluorescence spectroscopy (LIFS) and a combination of excitation-emission matrix (EEM) fluorescence with Parallel Factor Analysis (CP/PARAFAC) to assess the characteristics of humin (HU) extracted from Amazonian soils. The results obtained using LIFS showed that there was an increasing gradient of humification degree with depth, the deeper horizon presenting a higher amount of aromatic groups in the structure of HU. From the EEM, the contribution of two fluorophores with similar behaviour in the structures of HU and whole soil was assessed. Additionally, the results showed that the HU fraction might represent a larger fraction of SOM than previously thought: about 80-93% of some Amazon soils. Therefore, HU is an important humic fraction, thus indicating its role in environmental analysis, mainly in soil analysis.
Collapse
Affiliation(s)
- Amanda Maria Tadini
- Embrapa Agricultural Instrumentation, São Carlos, SP, Brazil; Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, SP, Brazil.
| | | | - Stephane Mounier
- Laboratoire PROTEE, EA3819, Université de Toulon, CS 60584, 83041 Toulon CEDEX 9, France
| | - Célia Regina Montes
- Centro de Energia Nuclear na Agricultura and NUPEGEL, University of São Paulo, Piracicaba, SP, Brazil
| | | |
Collapse
|
31
|
Kan H, Zhao F, Zhang XX, Ren H, Gao S. Correlations of Gut Microbial Community Shift with Hepatic Damage and Growth Inhibition of Carassius auratus Induced by Pentachlorophenol Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11894-11902. [PMID: 26378342 DOI: 10.1021/acs.est.5b02990] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Goldfish (Carassius auratus) were exposed to 0-100 μg/L pentachlorophenol (PCP) for 28 days to investigate the correlations of fish gut microbial community shift with the induced toxicological effects. PCP exposure caused accumulation of PCP in the fish intestinal tract in a time- and dose-dependent manner, while hepatic PCP reached the maximal level after a 21 day exposure. Under the relatively higher PCP stress, the fish body weight and liver weight were reduced and hepatic CAT and SOD activities were inhibited, demonstrating negative correlations with the PCP levels in liver and gut content (R < -0.5 and P < 0.05 each). Pyrosequencing of the 16S rRNA gene indicated that PCP exposure increased the abundance of Bacteroidetes in the fish gut. Within the Bacteroidetes phylum, the Bacteroides genus had the highest abundance, which was significantly correlated with PCP exposure dosage and duration (R > 0.5 and P < 0.05 each). Bioinformatic analysis revealed that Bacteroides showed quantitatively negative correlations with Chryseobacterium, Microbacterium, Arthrobacter, and Legionella in the fish gut, and the Bacteroidetes abundance, Bacteroides abundance, and Firmicutes/Bacteroidetes ratio played crucial roles in the reduction of body weight and liver weight under PCP stress. The results may extend our knowledge regarding the roles of gut microbiota in ecotoxicology.
Collapse
Affiliation(s)
- Haifeng Kan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Fuzheng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| |
Collapse
|
32
|
Zhang C, Zhang D, Xiao Z, Li Z, Suzuki D, Katayama A. Characterization of humins from different natural sources and the effect on microbial reductive dechlorination of pentachlorophenol. CHEMOSPHERE 2015; 131:110-6. [PMID: 25819981 DOI: 10.1016/j.chemosphere.2015.02.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 05/26/2023]
Abstract
Humins have been reported to function as an electron mediator for microbial reducing reactions. However, the physicochemical properties and the functional moieties of humins from different natural sources have been poorly characterized. In this study, humins extracted from seven types of soil and from a river sediment were examined on the effect on microbial reductive dechlorination of pentachlorophenol (PCP) and characterized polyphasically. All humins facilitated microbial reductive dechlorination of PCP as electron mediators using formate as carbon source, with different dechlorination rates ranging from 0.99 to 7.63 (μmol Cl-) L(-1) d(-1). The highest rates were observed in humins with high carbon contents, extracted from Andisols containing allophone as major clay. Yields of the humins and the elemental compositions varied among sources. Fourier transform infrared analysis showed that all the humins exhibited similar spectra with different absorbance intensity; these data are indicative of their similar structures and identical classes of functional groups. The electron spin resonance spectra of humins prepared at different pH showed typical changes for the semiquinone-type radicals, suggestive of quinone moieties for the redox activity of the humins. Cyclic voltammetry analysis confirmed the presence of redox-active moieties in all the humins, with the estimated redox potentials in the range of -0.30 to -0.13 V (versus a standard hydrogen electrode), falling into the range of standard redox potential between the oxidation of formate as electron donor and the initial dechlorination of PCP as electron acceptor.
Collapse
Affiliation(s)
- Chunfang Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Hangzhou 310058, China; EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan
| | - Dongdong Zhang
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Zhixing Xiao
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Zhiling Li
- EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan
| | - Daisuke Suzuki
- EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan
| | - Arata Katayama
- EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan; Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| |
Collapse
|
33
|
Zhou X, Zhang C, Zhang D, Awata T, Xiao Z, Yang Q, Katayama A. Polyphasic characterization of an anaerobic hexachlorobenzene-dechlorinating microbial consortium with a wide dechlorination spectrum for chlorobenzenes. J Biosci Bioeng 2015; 120:62-8. [PMID: 25795569 DOI: 10.1016/j.jbiosc.2014.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/23/2014] [Accepted: 11/28/2014] [Indexed: 10/23/2022]
Abstract
An anaerobic consortium that was capable of reductively dechlorinating hexachlorobenzene (HCB) to benzene was enriched from contaminated sediment. The consortium was capable of dechlorinating all chlorobenzene isomers except 1,4-dichlorobenzene. Singly and doubly flanked chlorines, as well as unflanked meta-substituted chlorines, were dechlorinated, although doubly flanked chlorines were preferred. Formate, acetate and lactate (but not ethanol) could be utilized as optimum electron donors for reductive dechlorination. Alternative electron acceptors, including nitrate and sulfate, completely inhibited HCB degradation, whereas amorphous iron oxide (FeOOH) did not suppress dechlorination activity. No degradation was found in chloramphenicol-treated consortium; however, vancomycin, molybdate, and 2-bromoethanesulfonate did not inhibit HCB dechlorination. The results of inhibitory treatments suggested that the dechlorinators were non-sulfate-reducing gram-negative or vancomycin resistant gram-positive bacteria. In addition to physiological characterization, analyses of 16S rRNA gene library of the consortium and quantitative PCR of 16S rRNA genes suggested that Dehalococcoides sp. was involved in the reductive dechlorination of HCB, and Geobacter sp. may serve as a dechlorinating candidate.
Collapse
Affiliation(s)
- Xue Zhou
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8603, Japan
| | - Chunfang Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Hangzhou 310058, China; EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan
| | - Dongdong Zhang
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Takanori Awata
- EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan; Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Zhixing Xiao
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Qi Yang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Arata Katayama
- Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8603, Japan; EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Japan; Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| |
Collapse
|