1
|
Matsuzawa T. Plant polysaccharide degradation-related enzymes in Aspergillus oryzae. Biosci Biotechnol Biochem 2024; 88:276-282. [PMID: 38066701 DOI: 10.1093/bbb/zbad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 02/22/2024]
Abstract
Plants synthesize large amounts of stored and structural polysaccharides. Aspergillus oryzae is used in traditional Japanese fermentation and produces many types of plant polysaccharide degradation-related enzymes. The carbohydrate-active enzymes of A. oryzae are important in the fermentation process and biotechnological applications. Because plant polysaccharides have a complex structure, cooperative and synergistic actions of enzymes are crucial for the degradation of plant polysaccharides. For example, the cooperative action of isoprimeverose-producing oligoxyloglucan hydrolase, β-galactosidase, and α-xylosidase is important for the degradation of xyloglucan, and A. oryzae coordinates these enzymes at the expression level. In this review, I focus on the plant polysaccharide degradation-related enzymes identified in A. oryzae.
Collapse
Affiliation(s)
- Tomohiko Matsuzawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
2
|
Arancibia-Díaz A, Astudillo-Castro C, Altamirano C, Soto-Maldonado C, Vergara-Castro M, Córdova A, Zúñiga-Hansen ME. Development of solid-state fermentation process of spent coffee grounds for the differentiated obtaining of chlorogenic, quinic, and caffeic acids. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:420-427. [PMID: 36373791 DOI: 10.1002/jsfa.12156] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/19/2022] [Accepted: 07/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Spent coffee grounds (SCGs) are a good source of chlorogenic acid (CGA), which can be hydrolyzed to quinic acid (QA) and caffeic acid (CA). These molecules have antioxidant and neuroprotective capacities, benefiting human health. The hydrolysis of CGA can be done by biotechnological processes, such as solid-state fermentation (SSF). This work evaluated the use of SSF with Aspergillus sp. for the joint release of the three molecules from SCGs. RESULTS Hydroalcoholic extraction of the total phenolic compounds (TPCs) from SCGs was optimized, obtaining 28.9 ± 1.97 g gallic acid equivalent (GAE) kg-1 SCGs using 0.67 L ethanol per 1 L, a 1:9 solid/liquid ratio, and a 63 min extraction time. Subsequently, SSF was performed for 30 days, achieving the maximum yields for CGA, QA, and TPCs on the 16th day: 7.12 ± 0.01 g kg-1 , 4.68 ± 0.11 g kg-1 , and 54.96 ± 0.49 g GAE kg-1 respectively. CA reached its maximum value on the 23rd day, at 4.94 ± 0.04 g kg-1 . The maximum antioxidant capacity was 635.7 mmol Trolox equivalents kg-1 on the 14th day. Compared with unfermented SCGs extracts, TPCs and CGA increase their maximum values 2.3-fold, 18.6-fold for CA, 14.2 for QA, and 6.4-fold for antioxidant capacity. Additionally, different extracts' profiles were obtained throughout the SSF process, allowing us to adjust the type of enriched extract to be produced based on the SSF time. CONCLUSION SSF represents an alternative to produce extracts with different compositions and, consequently, different antioxidant capacities, which is a potentially attractive fermentation process for different applications. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alejandra Arancibia-Díaz
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carolina Astudillo-Castro
- School of Food Engineering, Faculty of Agricultural and Food Sciences, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
- Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
| | - Claudia Altamirano
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
| | | | - Mauricio Vergara-Castro
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Andrés Córdova
- School of Food Engineering, Faculty of Agricultural and Food Sciences, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
- Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
| | - María Elvira Zúñiga-Hansen
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
| |
Collapse
|
3
|
Hernandez AI, Dos Santos Azevedo R, Werhli AV, Dos Santos Machado K, Nornberg BF, F Marins L. Phylogenetic analysis, computer modeling and catalytic prediction of an Amazonian soil β-glucosidase against a soybean saponin. Integr Biol (Camb) 2022; 14:204-211. [PMID: 36691944 DOI: 10.1093/intbio/zyad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023]
Abstract
Saponins are amphipathic glycosides with detergent properties present in vegetables. These compounds, when ingested, can cause difficulties in absorbing nutrients from food and even induce inflammatory processes in the intestine. There is already some evidence that saponins can be degraded by β-glucosidases of the GH3 family. In the present study, we evaluated, through computational tools, the possibility of a β-glucosidase (AMBGL17) obtained from a metagenomic analysis of the Amazonian soil, to catalytically interact with a saponin present in soybean. For this, the amino acid sequence of AMBGL17 was used in a phylogenetic analysis to estimate its origin and to determine its three-dimensional structure. The 3D structure of the enzyme was used in a molecular docking analysis to evaluate its interaction with soy saponin as a ligand. The results of the phylogenetic analysis showed that AMBGL17 comes from a microorganism of the phylum Chloroflexi, probably related to species of the order Aggregatinales. Molecular docking showed that soybean saponin can interact with the catalytic site of AMBGL17, with the amino acid GLY345 being important in this catalytic interaction, especially with a β-1,2 glycosidic bond present in the carbohydrate portion of saponin. In conclusion, AMBGL17 is an enzyme with interesting biotechnological potential in terms of mitigating the anti-nutritional and pro-inflammatory effects of saponins present in vegetables used for human and animal food.
Collapse
Affiliation(s)
- Andrea I Hernandez
- Laboratory of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Raíza Dos Santos Azevedo
- Laboratory of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Adriano V Werhli
- Center of Computational Science (C3), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Karina Dos Santos Machado
- Center of Computational Science (C3), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Bruna F Nornberg
- Laboratory of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Luis F Marins
- Laboratory of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| |
Collapse
|
4
|
Arif S, Nait M’Barek H, Oulghazi S, Audenaert K, Hajjaj H. Lignocellulose-degrading fungi newly isolated from central Morocco are potent biocatalysts for olive pomace valorization. Arch Microbiol 2022; 204:704. [DOI: 10.1007/s00203-022-03318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022]
|
5
|
Antioxidant, flavor profile and quality of wheat dough bread incorporated with kiwifruit fermented by β-glucosidase producing lactic acid bacteria strains. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Biochemical Characterization of Thermostable Carboxymethyl Cellulase and β-Glucosidase from Aspergillus fumigatus JCM 10253. Appl Biochem Biotechnol 2022; 194:2503-2527. [PMID: 35138555 DOI: 10.1007/s12010-022-03839-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
Abstract
Second-generation biofuel production has emerged as a prominent sustainable and alternative energy. The biochemical properties of cellulolytic enzymes are imperative for cellulosic biomass conversion into fermentable sugars. In the present study, thermostable CMCase and β-glucosidase were purified and characterized from Aspergillus fumigatus JCM 10253. The enzymes were purified through 80% ammonium sulfate precipitation, followed by dialysis and DEAE-cellulose ion-exchange chromatography. The molecular masses of the purified CMCase and β-glucosidase were estimated to be 125 kDa and 90 kDa, respectively. The CMCase and β-glucosidase demonstrated optimum activities at pH 6.0 and 5.0, respectively. Their respective maximum temperatures were 50 and 60 °C. The cellulase activities were stimulated by 10 mM concentration of Ca2+, Ni2+, Fe2+, Mg2+, Cu2+, Mn2+, Zn2+, and Pb2+ ions. The CMCase activity was enhanced by surfactant Triton X-100 but marginally influenced by most inhibitors. The β-glucosidase retained its activity in the presence of organic solvents (30%) isoamyl alcohol, heptane, toluene, and ethyl acetate, while CMCase was retained with acetone during a prolonged incubation of 168 h. The Km and Vmax values of the two cellulases were studied. The properties of high thermostability and good tolerance against organic solvents could signify its potential use in biofuel production and other value-added products.
Collapse
|
7
|
Liu Z, Liu S, Gao D, Li Y, Tian Y, Bai E. An Optical Sensing Platform for Beta-Glucosidase Activity Using Protein-Inorganic Hybrid Nanoflowers. J Fluoresc 2022; 32:669-680. [PMID: 35040029 DOI: 10.1007/s10895-021-02859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
In this work, a convenient and dual-signal readout optical sensing platform for the sensitively and selectively determination of beta-glucosidase (β-Glu) activity was reported using protein-inorganic hybrid nanoflowers [BSA-Cu3(PO4)2·3H2O] possessing peroxidase-mimicking activity. The nanoflowers (NFs) were facilely synthesized through a self-assembled synthesis strategy at room temperature. The as-prepared NFs could catalytically convert the colorless and non-fluorescent Amplex Red into colored and highly fluorescent resorufin in the presence of hydrogen peroxide via electron transfer process. β-Glu could hydrolyze cyanogenic glycoside, using amygdalin (Amy) as a model, into cyanide ions (CN-), which can subsequently efficiently suppress the catalytic activity of NFs, accompanied with the fluorescence decrease and the color fading. The concentration of CN- was controlled by β-Glu-triggered enzymatic reaction of Amy. Thus, a sensing system was established for fluorescent and visual determination of β-Glu activity. Under the optimum conditions, the present fluorescent and visual bimodal sensing platform exhibited good sensitivity for β-Glu activity assay with a detection limit of 0.33 U·L-1. The sensing platform was further applied to determinate β-Glu in real samples and satisfactory results were attained. Additionally, the optical sensing system can potentially be a promising candidate for β-Glu inhibitors screening.
Collapse
Affiliation(s)
- Ziping Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China.,School of Geographical Sciences, Northeast Normal University, People's Street 5268, Changchun Jilin, 130024, China
| | - Shasha Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
| | - Decai Gao
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Yanan Li
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Ye Tian
- Jilin Province Product Quality Supervision Testing Institute, Changchun, 130012, People's Republic of China
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
8
|
Characterization of an extracellular α-xylosidase involved in xyloglucan degradation in Aspergillus oryzae. Appl Microbiol Biotechnol 2021; 106:675-687. [PMID: 34971412 DOI: 10.1007/s00253-021-11744-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
α-Xylosidases release the α-D-xylopyranosyl side chain from di- and oligosaccharides derived from xyloglucans and are involved in xyloglucan degradation. In this study, an extracellular α-xylosidase, named AxyB, is identified and characterized in Aspergillus oryzae. AxyB belongs to the glycoside hydrolase family 31 and releases D-xylose from isoprimeverose (α-D-xylopyranosyl-(1 → 6)-D-glucopyranose) and xyloglucan oligosaccharides. In the hydrolysis of xyloglucan oligosaccharides (XLLG, Glc4Xyl3Gal2 nonasaccharide; XLXG/XXLG, Glc4Xyl3Gal1 octasaccharide; and XXXG, Glc4Xyl3 heptasaccharide), AxyB releases one molecule of the xylopyranosyl side chain attached to the non-reducing end of the β-1,4-glucan main chain of these xyloglucan oligosaccharides to yield GLLG (Glc4Xyl2Gal2), GLXG/GXLG (Glc4Xyl2Gal1), and GXXG (Glc4Xyl2). A. oryzae has both extracellular and intracellular α-xylosidase, suggesting that xyloglucan oligosaccharides are degraded by a combination of isoprimeverose-producing oligoxyloglucan hydrolase and intracellular α-xylosidase and a combination of extracellular α-xylosidase and β-glucosidase(s) in A. oryzae. KEY POINTS: • An extracellular α-xylosidase, AxyB, is identified in Aspergillus oryzae. • AxyB releases the xylopyranosyl side chain from xyloglucan oligosaccharides. • Different sets of glycosidases degrade xyloglucan oligosaccharides in A. oryzae.
Collapse
|
9
|
Production of β-glucosidase from okara fermentation using Kluyveromyces marxianus. Journal of Food Science and Technology 2020; 58:366-376. [PMID: 33505081 DOI: 10.1007/s13197-020-04550-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 01/22/2023]
Abstract
The effective utilization of okara (soybean residue) has become a considerable challenge in recent years. In this paper, the potential advantages of β-glucosidase production from okara fermented by Kluyveromyces marxianus were evaluated and the properties of the β-glucosidase were also characterized. The results showed that okara can significantly induce the production of β-glucosidase from K. marxianus. The β-glucosidase activity was up to 4.5 U/mg under optimized fermentation conditions. The optimal parameters were as follows: fermentation temperature 35 °C, cultivation time 98 h, inoculum concentration 10%, and 30 g/L of okara. After two steps of purification using ammonium sulfate precipitation and Sephadex G-75 column chromatography, the activity of β-glucosidase was 71.4 U/mg. The native enzyme was an approximately 66 kDa dimer consisting of two different subunits (22 and 44 kDa). The kinetic parameters of the K. marxianus β-glucosidase, using pNPG as substrate, were V max 8.34 μmol min-1 mg-1 and K m 7.42 mM. The β-glucosidase showed high thermostability and acid-alkali tolerance as well as low inhibition by DMSO (10-50%). In conclusion, this study supports the notion that okara fermentation by K. marxianus could be a useful process to produce β-glucosidase.
Collapse
|
10
|
Monteiro LMO, Vici AC, Pinheiro MP, Heinen PR, de Oliveira AHC, Ward RJ, Prade RA, Buckeridge MS, Polizeli MDLTDM. A Highly Glucose Tolerant ß-Glucosidase from Malbranchea pulchella (MpBg3) Enables Cellulose Saccharification. Sci Rep 2020; 10:6998. [PMID: 32332833 PMCID: PMC7181827 DOI: 10.1038/s41598-020-63972-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
β-glucosidases catalyze the hydrolysis β-1,4, β-1,3 and β-1,6 glucosidic linkages from non-reducing end of short chain oligosaccharides, alkyl and aryl β-D-glucosides and disaccharides. They catalyze the rate-limiting reaction in the conversion of cellobiose to glucose in the saccharification of cellulose for second-generation ethanol production, and due to this important role the search for glucose tolerant enzymes is of biochemical and biotechnological importance. In this study we characterize a family 3 glycosyl hydrolase (GH3) β-glucosidase (Bgl) produced by Malbranchea pulchella (MpBgl3) grown on cellobiose as the sole carbon source. Kinetic characterization revealed that the MpBgl3 was highly tolerant to glucose, which is in contrast to many Bgls that are completely inhibited by glucose. A 3D model of MpBgl3 was generated by molecular modeling and used for the evaluation of structural differences with a Bgl3 that is inhibited by glucose. Taken together, our results provide new clues to understand the glucose tolerance in GH3 β-glucosidases.
Collapse
Affiliation(s)
- Lummy Maria Oliveira Monteiro
- Faculdade de Medicina de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Ana Claudia Vici
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Matheus Pinto Pinheiro
- Laboratório Nacional de Biociência (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | - Paulo Ricardo Heinen
- Faculdade de Medicina de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14049-900, Ribeirão Preto, SP, Brazil
| | | | - Richard John Ward
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rolf Alexander Prade
- Department of Microbiology and Molecular Genetics. Oklahoma State University, Stillwater, USA
| | - Marcos S Buckeridge
- Instituto de Biociências, Universidade de São Paulo. Matão Street, 277, 05508-090, São Paulo, SP, Brazil
| | - Maria de Lourdes Teixeira de Moraes Polizeli
- Faculdade de Medicina de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14049-900, Ribeirão Preto, SP, Brazil. .,Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
11
|
Matsuzawa T, Kameyama A, Yaoi K. Identification and characterization of α-xylosidase involved in xyloglucan degradation in Aspergillus oryzae. Appl Microbiol Biotechnol 2019; 104:201-210. [PMID: 31781819 DOI: 10.1007/s00253-019-10244-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022]
Abstract
Aspergillus oryzae produces hydrolases involved in xyloglucan degradation and induces the expression of genes encoding xyloglucan oligosaccharide hydrolases in the presence of xyloglucan oligosaccharides. A gene encoding α-xylosidase (termed AxyA), which is induced in the presence of xyloglucan oligosaccharides, is identified and expressed in Pichia pastoris. AxyA is a member of the glycoside hydrolase family 31 (GH31). AxyA hydrolyzes isoprimeverose (α-D-xylopyranosyl-(1→6)-D-glucopyranose) into D-xylose and D-glucose and shows hydrolytic activity with other xyloglucan oligosaccharides such as XXXG (heptasaccharide, Glc4Xyl3) and XLLG (nonasaccharide, Glc4Xyl3Gal2). Isoprimeverose is a preferred AxyA substrate over other xyloglucan oligosaccharides. In the hydrolysis of XXXG, AxyA releases one molecule of D-xylose from one molecule of XXXG to yield GXXG (hexasaccharide, Glc4Xyl2). AxyA does not contain a signal peptide for secretion and remains within the cell. The intracellular localization of AxyA may help determine the order of hydrolases acting on xyloglucan oligosaccharides.
Collapse
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Akihiko Kameyama
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| |
Collapse
|
12
|
A “turn off-on” fluorescent nanoprobe consisting of CuInS2 quantum dots for determination of the activity of β-glucosidase and for inhibitor screening. Mikrochim Acta 2019; 186:806. [DOI: 10.1007/s00604-019-3918-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
|
13
|
|
14
|
A Biotransformation Process for Production of Genistein from Sophoricoside by a Strain of Rhizopus oryza. Sci Rep 2019; 9:6564. [PMID: 31024087 PMCID: PMC6484079 DOI: 10.1038/s41598-019-42996-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/12/2019] [Indexed: 11/08/2022] Open
Abstract
Genistein is known to have multiple biological activities and has great potential for use as a preventative medicine and in disease treatment. Genistein can be extracted from plants, but also can be obtained from its glycoside form, sophoricoside, which is more abundant in some plants. Biotransformation by unpurified microbial enzymes has the advantage of low cost and is a preferred method for production of natural compounds. This study isolated a strain of Rhizopus oryzae that could produce β-glucosidase, which efficiently hydrolyzes sophoricoside into genistein, from an enrichment culture of the dried fruits of Sophora japonica. After the composition of enzyme-producing medium and biotransformation conditions were optimized, a genistein yield of 85.6% was obtained after 24 h in a shake-flask biotransformation at pH 7.0 using an initial substrate concentration of 1 g/L. The developed process provides an alternative method for production of genistein, and would be suitable for scale-up production in the pharmaceutical industry.
Collapse
|
15
|
Thermal and operational deactivation of Aspergillus fumigatus β-glucosidase in ethanol/water pretreated wheat straw enzymatic hydrolysis. J Biotechnol 2019; 292:32-38. [DOI: 10.1016/j.jbiotec.2019.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/25/2018] [Accepted: 01/06/2019] [Indexed: 01/13/2023]
|
16
|
Enhancement of antioxidant properties from green coffee as promising ingredient for food and cosmetic industries. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
An acid-stable β-glucosidase from Aspergillus aculeatus: Gene expression, biochemical characterization and molecular dynamics simulation. Int J Biol Macromol 2018; 119:462-469. [PMID: 30063929 DOI: 10.1016/j.ijbiomac.2018.07.165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 11/23/2022]
Abstract
β-Glucosidases hydrolyze terminal, non-reducing β-d-glucosyl residues and thereby release β-d-glucose. They have applications in the production of biofuels, beverages and pharmaceuticals. In this study, a β-glucosidase derived from Aspergillus aculeatus (BGLA) was expressed, characterized, and the molecular mechanism of its acid denaturation was comprehensively probed. BGLA exhibited maximal activity at pH 5.0-6.0. Its optimal temperature was 70 °C. Its enzyme activity was enhanced by Mg2+, Ca2+ and Ba2+, while Cu2+, Mn2+, Zn2+, Fe2+ and Fe3+ had a negative effect. BGLA showed activity on a broad range of substrates including salicin, cellobiose, arbutin, geniposide and polydatin. Finally, the acid-denaturation mechanism of BGLA was probed using molecular dynamics (MD) simulations. The results of simulation at pH 2.0 imply that the contact number, solvent accessible surface area and number of hydrogen bonds in BGLA decreased greatly. Moreover, the distance between the residues Asp280 and Glu509 that are part of the active site increased, which eventually destroyed the enzyme's catalytic activity. These MD results explain the molecular mechanism of acid denaturation of BGLA, which will greatly benefit the rational design of more acid-stable β-glucosidase variants in the future.
Collapse
|
18
|
Gtgen3A, a novel plant GH3 β-glucosidase, modulates gentio-oligosaccharide metabolism in Gentiana. Biochem J 2018; 475:1309-1322. [PMID: 29581147 DOI: 10.1042/bcj20170866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 01/19/2023]
Abstract
Gentiobiose, a β-1,6-linked glycosyl-disaccharide, accumulates abundantly in Gentianaceae and is involved in aspects of plant development, such as fruits ripening and release of bud dormancy. However, the mechanisms regulating the amount of gentio-oligosaccharide accumulation in plants remain obscure. The present study aimed to identify an enzyme that modulates gentio-oligosaccharide amount in gentian (Gentiana triflora). A protein responsible for gentiobiose hydrolysis, GtGen3A, was identified by partial purification and its peptide sequence analysis. The enzyme had a molecular mass of ∼67 kDa without a secretory signal peptide sequence. Sequence analysis revealed that GtGen3A could be a β-glucosidase member belonging to glycoside hydrolase family 3 (GH3). GtGen3A showed a homology to GH3 β-glucan exohydrolases, ExoI of Hordeum vulgare, and ExgI from Zea mays, which preferentially hydrolyzed β-1,3- and β-1,4-linked oligosaccharides. The purified recombinant GtGen3A (rGtGen3A) produced in Escherichia coli showed optimal reaction at pH 6.5 and 20°C. The rGtGen3A liberated glucose from β-1,2-, β-1,3-, β-1,4-, and β-1,6-linked oligosaccharides, and showed the highest activity toward gentiotriose among the substrates tested. Kinetic analysis also revealed that rGtGen3A preferentially hydrolyzed gentiotriose. Virus-induced gene silencing of Gtgen3A in gentian plantlets resulted in predominant accumulation of gentiotriose rather than gentiobiose. Furthermore, the expression level of Gtgen3A was almost similar to the amount of gentiobiose in field-grown gentians. These findings suggest that the main function of GtGen3A is the hydrolysis of gentiotriose to gentiobiose, and that GtGen3A plays a role in modulating gentiobiose amounts in gentian.
Collapse
|
19
|
Nair RB, Taherzadeh MJ. Valorization of sugar-to-ethanol process waste vinasse: A novel biorefinery approach using edible ascomycetes filamentous fungi. BIORESOURCE TECHNOLOGY 2016; 221:469-476. [PMID: 27668880 DOI: 10.1016/j.biortech.2016.09.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
The aim of the present work was to study the integration of edible ascomycetes filamentous fungi into the existing sugar- or molasses-to-ethanol processes, to grow on vinasse or stillage and produce ethanol and protein-rich fungal biomass. Two fungal strains, Neurospora intermedia and Aspergillus oryzae were examined in shake flasks and airlift-bioreactors, resulting in reduction of vinasse COD by 34% and viscosity by 21%. Utilization of glycerol and sugars were observed, yielding 202.4 or 222.8g dry fungal biomass of N. intermedia or A. oryzae respectively, per liter of vinasse. Integration of the current process at an existing ethanol facility producing about 100,000m3 of ethanol per year could produce around 200,000-250,000tons of dry fungal biomass (40-45% protein) together with about 8800-12,600m3 extra ethanol (8.8-12.6% of production-rate improvement).
Collapse
Affiliation(s)
- Ramkumar B Nair
- Swedish Centre for Resource Recovery, University of Borås, SE 50190 Borås, Sweden.
| | | |
Collapse
|
20
|
Yang P, Zhang H, Cao L, Zheng Z, Jiang S. Construction of Aspergillus niger integrated with cellulase gene from Ampullaria gigas Spix for improved enzyme production and saccharification of alkaline-pretreated rice straw. 3 Biotech 2016; 6:236. [PMID: 28330308 PMCID: PMC5095100 DOI: 10.1007/s13205-016-0545-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/07/2016] [Indexed: 11/27/2022] Open
Abstract
Aspergillus niger is an important microorganism that has been used for decades to produce extracellular enzymes. In this study, a novel Aspergillus niger strain integrated with a eukaryotic expression vector harboring the gpd-Shi promoter of shiitake mushrooms and cellulase gene of Ampullaria gigas Spix was engineered to improve cellulase production for the achievement of highly efficient saccharification of agricultural residues. In one strain, designated ACShi27, which exhibited the highest total cellulase expression, total cellulase, endoglucanase, exoglucanase, and xylanase expression levels were 1.73, 16.23, 17.73, and 150.83 U ml−1, respectively; these values were 14.5, 22.3, 24.6, and 17.3% higher than those of the wild-type Aspergillus niger M85 using wheat bran as an induction substrate. Production of cellulases and xylanase by solid-state fermentation followed by in situ saccharification of ACShi27 was investigated with alkaline-pretreated rice straw as a substrate. After 2 days of enzyme induction at 30 °C, followed by 48 h of saccharification at 50 °C, the conversion rate of carbon polymers into reducing sugar reached 293.2 mg g−1, which was 1.23-fold higher than that of the wild-type strain. The expression of sestc in Aspergillus niger can improve the total cellulase and xylanase activity and synergism, thereby enhancing the lignocellulose in situ saccharification.
Collapse
Affiliation(s)
- Peizhou Yang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, Hefei, 230009, China.
| | - Haifeng Zhang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, Hefei, 230009, China
| | - Lili Cao
- College of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, Hefei, 230009, China
| | - Zhi Zheng
- College of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, Hefei, 230009, China
| | - Shaotong Jiang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
21
|
Matsuzawa T, Mitsuishi Y, Kameyama A, Yaoi K. Identification of the Gene Encoding Isoprimeverose-producing Oligoxyloglucan Hydrolase in Aspergillus oryzae. J Biol Chem 2016; 291:5080-7. [PMID: 26755723 DOI: 10.1074/jbc.m115.701474] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Indexed: 11/06/2022] Open
Abstract
Aspergillus oryzae produces a unique β-glucosidase, isoprimeverose-producing oligoxyloglucan hydrolase (IPase), that recognizes and releases isoprimeverose (α-D-xylopyranose-(1 → 6)-D-glucopyranose) units from the non-reducing ends of oligoxyloglucans. A gene encoding A. oryzae IPase, termed ipeA, was identified and expressed in Pichia pastoris. With the exception of cellobiose, IpeA hydrolyzes a variety of oligoxyloglucans and is a member of the glycoside hydrolase family 3. Xylopyranosyl branching at the non-reducing ends was vital for IPase activity, and galactosylation at a α-1,6-linked xylopyranosyl side chain completely abolished IpeA activity. Hepta-oligoxyloglucan saccharide (Xyl3Glc4) substrate was preferred over tri- (Xyl1Glc2) and tetra- (Xyl2Glc2) oligoxyloglucan saccharides substrates. IpeA transferred isoprimeverose units to other saccharides, indicating transglycosylation activity. The ipeA gene was expressed in xylose and xyloglucan media and was strongly induced in the presence of xyloglucan endo-xyloglucanase-hydrolyzed products. This is the first study to report the identification of a gene encoding IPase in eukaryotes.
Collapse
Affiliation(s)
| | | | - Akihiko Kameyama
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | |
Collapse
|
22
|
Serdiuk IE, Reszka M, Myszka H, Krzymiński K, Liberek B, Roshal AD. Flavonol-based fluorescent indicator for determination of β-glucosidase activity. RSC Adv 2016. [DOI: 10.1039/c6ra06062e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A flavonol-based ESIPT fluorescence probe for evaluation of β-glucosidase activity was synthesized and tested for sensitivity to enzymatic cleavage at different conditions.
Collapse
Affiliation(s)
- Illia E. Serdiuk
- Department of Chemistry
- University of Gdańsk
- 80-308 Gdańsk
- Poland
- Institute of Chemistry
| | - Milena Reszka
- Department of Chemistry
- University of Gdańsk
- 80-308 Gdańsk
- Poland
| | - Henryk Myszka
- Department of Chemistry
- University of Gdańsk
- 80-308 Gdańsk
- Poland
| | | | - Beata Liberek
- Department of Chemistry
- University of Gdańsk
- 80-308 Gdańsk
- Poland
| | - Alexander D. Roshal
- Institute of Chemistry
- V. N. Karazin Kharkiv National University
- Kharkiv
- 61022 Ukraine
| |
Collapse
|