1
|
Brugellis I, Grassi M, Malcovati P, Assini S. Plant Microbial Fuel Cells in a botanical perspective: Nomenclatural constraints and new insights on plant traits potentially affecting bioelectrical perfomance. Heliyon 2024; 10:e38733. [PMID: 39397903 PMCID: PMC11471249 DOI: 10.1016/j.heliyon.2024.e38733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024] Open
Abstract
Plant microbial fuel cells represent an innovative type of microbial fuel cell technology, utilizing plant rhizodeposition to fuel electrochemically active bacteria on the anode surface, thereby generating bioelectricity. This study delves into some botanical aspects of plant species employed in PMFCs and Constructed Wetland PMFCs, aiming to investigate whether their bioelectrical performance is influenced by Raunkiær life forms and root architecture. Our study involved 40 plant species described in 38 documents. In some cases, nomenclature issues prevented the interpretation of actual species used in the experiments. The bioelectrical performance of PMFCs appeared to be significantly affected by both life forms and root architecture. Therophytes and Hemicriptophytes exhibited higher median values than the other life forms, while the Geophyte group showed very high power density values despite a lower median value. In contrast, CW-PMFCs do not appeared to be significantly affected by the botanical traits considered, likely due to the limited data collected on this experimental configuration. The plant species that performed the best in PMFCs include Carex hirta, Alisma plantago-aquatica, Glyceria maxima and Canna indica, all of which have an adventitious root system. C. hirta, G. maxima and C. indica are geophytes, while A. plantago-aquatica is a hydrophyte. Consequently, epiphytes, chamaephytes and nanophanerophytes, as well as plants with fibrous root systems, appeared to be not recommended for PMFCs. Nevertheless, the results of our study may have certain limitation due to nomenclature issues that prevented the accurate identification of species used in the PMFCs, the absence of a standardized benchmark for electrical measurement, and the lack of clear match between each species and its bioelectrical performance, reducing the data pool.
Collapse
Affiliation(s)
- Ilaria Brugellis
- Department of Earth and Environmental Science, University of Pavia, Via Sant’Epifanio 14, 27100, Pavia, Italy
| | - Marco Grassi
- Department of Electrical Computer and Biomedical Engineering, University of Pavia, Via A. Ferrata 5, Pavia, Italy
| | - Piero Malcovati
- Department of Electrical Computer and Biomedical Engineering, University of Pavia, Via A. Ferrata 5, Pavia, Italy
| | - Silvia Assini
- Department of Earth and Environmental Science, University of Pavia, Via Sant’Epifanio 14, 27100, Pavia, Italy
| |
Collapse
|
2
|
Idris MO, Mohamad Ibrahim MN, Md Noh NA, Yaqoob AA, Hussin MH, Mohamad Shukri IA, Hamidon TS. Simultaneous naphthalene degradation and electricity production in a biowaste-powered microbial fuel cell. CHEMOSPHERE 2023; 340:139985. [PMID: 37640217 DOI: 10.1016/j.chemosphere.2023.139985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/15/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Naphthalene is a very common and hazardous environmental pollutant, and its biodegradation has received serious attention. As demonstrated in this study, naphthalene-contaminated wastewater can be biodegraded using a microbial fuel cell (MFC). Furthermore, the potential of MFC for electricity generation appears to be a promising technology to meet energy demands other than those produced from fossil fuels. Nowadays, efforts are being made to improve the overall performance of MFC by integrating biowaste materials for anode fabrication. In this study, palm kernel shell waste was used to produce palm kernel shell-derived graphene oxide (PKS-GO) and palm kernel shell-derived reduced graphene oxide (PKS-rGO), which were then fabricated into anode electrodes to improve the system's electron mobilization and transport. The MFC configuration with the PKS-rGO anode demonstrated greater energy production potential, with a maximum power density of 35.11 mW/m2 and a current density of 101.76 mA/m2, compared to the PKS-GO anode, which achieved a maximum power density of 17.85 mW/m2 and a current density of 72.56 mA/m2. Furthermore, there is simultaneous naphthalene biodegradation with energy production, where the biodegradation efficiency of naphthalene with PKS-rGO and PKS-GO is 85.5%, and 79.7%, respectively. In addition, the specific capacitance determined from the cyclic voltammetry curve revealed a value for PKS-rGO of 2.23 × 10-4 F/g, which is also higher than the value for PKS-GO (1.57 × 10-4 F/g) on the last day of operation. Anodic microbial analysis shows that electrogens thrive in the MFC process. Finally, a comparison with previous literature and the future prospects of the study are also presented.
Collapse
Affiliation(s)
- Mustapha Omenesa Idris
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Department of Pure and Industrial Chemistry, Kogi State (Prince Abubakar Audu) University, P.M.B 1008 Anyigba, Kogi State, Nigeria
| | - Mohamad Nasir Mohamad Ibrahim
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| | - Nur Asshifa Md Noh
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Asim Ali Yaqoob
- Université Paris-Saclay, INRAE, PROSE, 92160, Antony, France.
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | | | - Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Gupta S, Patro A, Mittal Y, Dwivedi S, Saket P, Panja R, Saeed T, Martínez F, Yadav AK. The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-microbial fuel cells, and constructed wetlands-microbial fuel cells: Applications and technology readiness level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162757. [PMID: 36931518 DOI: 10.1016/j.scitotenv.2023.162757] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 03/05/2023] [Indexed: 05/17/2023]
Abstract
Microbial fuel cell (MFC) is an interesting technology capable of converting the chemical energy stored in organics to electricity. It has raised high hopes among researchers and end users as the world continues to face climate change, water, energy, and land crisis. This review aims to discuss the journey of continuously progressing MFC technology from the lab to the field so far. It evaluates the historical development of MFC, and the emergence of different variants of MFC or MFC-associated other technologies such as sediment-microbial fuel cell (S-MFC), plant-microbial fuel cell (P-MFC), and integrated constructed wetlands-microbial fuel cell (CW-MFC). This review has assessed primary applications and challenges to overcome existing limitations for commercialization of these technologies. In addition, it further illustrates the design and potential applications of S-MFC, P-MFC, and CW-MFC. Lastly, the maturity and readiness of MFC, S-MFC, P-MFC, and CW-MFC for real-world implementation were assessed by multicriteria-based assessment. Wastewater treatment efficiency, bioelectricity generation efficiency, energy demand, cost investment, and scale-up potential were mainly considered as key criteria. Other sustainability criteria, such as life cycle and environmental impact assessments were also evaluated.
Collapse
Affiliation(s)
- Supriya Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Ashmita Patro
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Yamini Mittal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Saurabh Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Palak Saket
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore- 453552, India
| | - Rupobrata Panja
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Fernando Martínez
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles 28933, Madrid, Spain
| | - Asheesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India; Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles 28933, Madrid, Spain.
| |
Collapse
|
4
|
Advanced biological and non-biological technologies for carbon sequestration, wastewater treatment, and concurrent valuable recovery: A review. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Jyoti Sarma P, Mohanty K. A novel three-chamber modular PMFC with bentonite/flyash based clay membrane and oxygen reducing biocathode for long term sustainable bioelectricity generation. Bioelectrochemistry 2022; 144:107996. [PMID: 34801808 DOI: 10.1016/j.bioelechem.2021.107996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
In this work, a novel three-chamber modular plant microbial fuel cell (PMFC) was designed and tested for long term sustainable generation of bioelecricity. The modular setup makes operation easy and hassle-free as placing every components, i.e., membranes, electrodes, and even changing the plants, becomes very convenient. The novel membrane assembly design combined with pre-activated electrodes with increased surface area helped promote biofilm growth and electrocatalytic activity on anode and cathode surface. The new design resulted in improved performance and stability of the PMFC system for long term usage with minimal maintenance. The use of composite membrane consisting of clay, bentonite, and fly ash mixture was used for the first time in PMFC research and proved to be an excellent alternative to existing expensive Nafion membranes. The power density and current density has increased up to 24.56 mW m-2 and 52 mA m-2 respectively, which is 63% increase in power production and is amongst the highest in PMFC research.
Collapse
Affiliation(s)
- Pranab Jyoti Sarma
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kaustubha Mohanty
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
6
|
Maddalwar S, Kumar Nayak K, Kumar M, Singh L. Plant microbial fuel cell: Opportunities, challenges, and prospects. BIORESOURCE TECHNOLOGY 2021; 341:125772. [PMID: 34411941 DOI: 10.1016/j.biortech.2021.125772] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFCs) are considered as greener technologies for generation of bioenergy and simultaneously treatment of wastewater. However, the major drawback of these technologies was, rapid utilization of substrate by the microbes to generate power. This drawback is solved to a great extent by plant microbial fuel cell (PMFC) technology. Therefore, this review critically explored the challenges associated with PMFC technology and approaches to be employed for making it commercially feasible, started with brief introduction of MFCs, and PMFCs. This review also covered various factors like light intensity, carbon dioxide concentration in air, type of plant used, microbial flora in rhizosphere and also electrode material used which influence the efficiency of PMFC. Finally, this review comprehensively revealed the possibility of future intervention, such as application of biochar and preferable plants species which improve the performance of PMFC along with their opportunities challenges and prospects.
Collapse
Affiliation(s)
- Shrirang Maddalwar
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur 493225, India
| | - Kush Kumar Nayak
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur 493225, India
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR- NEERI), Nagpur 440020, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR- NEERI), Nagpur 440020, India.
| |
Collapse
|
7
|
Synthesizing developments in the usage of solid organic matter in microbial fuel cells: A review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
8
|
Shahid K, Ramasamy DL, Kaur P, Sillanpää M, Pihlajamäki A. Effect of modified anode on bioenergy harvesting and nutrients removal in a microbial nutrient recovery cell. BIORESOURCE TECHNOLOGY 2021; 332:125077. [PMID: 33823475 DOI: 10.1016/j.biortech.2021.125077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The microbial nutrient recovery cell i.e. modified microbial fuel cell containing a middle recovery chamber can be used to purify wastewater and remove valuable nutrients, while simultaneously generating electricity. The study investigated nutrient removal and microorganism interactions with carbon (CB- HT and CB- APTES) and stainless steel (SSB-HT) modified anodes used in microbial nutrient recovery cells. The removal efficiencies of ammonium ions were found higher in carbon-based CB-APTES (~98%) and CB-HT (~98.27%) systems in comparison to SSB-HT (~87.16%) system. On comparing further, the removal efficiencies of chemical oxygen demand (~99.5%) and total phosphorus (~99%) in CB- APTES system were superior to the cases of CB- HT, and SSB- HT systems. Besides, the CB-APTES based microbial fuel cell (MFC) displayed an average stable voltage of 0.5 V and a maximum power density of ~ 850 mW/m2.
Collapse
Affiliation(s)
- Kanwal Shahid
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland.
| | - Deepika Lakshmi Ramasamy
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Parminder Kaur
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, QLD, 4350, Australia; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Arto Pihlajamäki
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
9
|
Avcı O, Büyüksünetçi YT, Erden E, Timur S, Anık Ü. Pseudomonas fragi/graphene–gold hybrid nanomaterial bioanode based microbial fuel cell. NEW J CHEM 2021. [DOI: 10.1039/d1nj01108a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Pseudomonas fragi (P. fragi) and graphene–gold hybrid nanomaterial included a carbon felt electrode (graphene–Au/CFE) bioanode was developed and optimized.
Collapse
Affiliation(s)
- Okan Avcı
- Mugla Sitki Kocman University
- Faculty of Science, Chemistry Department
- Mugla
- Turkey
| | | | - Emre Erden
- Ege University
- Faculty of Science
- Department of Biochemistry
- Izmir
- Turkey
| | - Suna Timur
- Ege University
- Faculty of Science
- Department of Biochemistry
- Izmir
- Turkey
| | - Ülkü Anık
- Mugla Sitki Kocman University
- Faculty of Science, Chemistry Department
- Mugla
- Turkey
| |
Collapse
|
10
|
Abstract
Dramatic changes in electricity generation, use and storage are needed to keep pace with increasing demand while reducing carbon dioxide emissions. There is great potential for application of bioengineering in this area. We have the tools to re-engineer biological molecules and systems, and a significant amount of research and development is being carried out on technologies such as biophotovoltaics, biocapacitors, biofuel cells and biobatteries. However, there does not seem to be a satisfactory overarching term to describe this area, and I propose a new word-'electrosynbionics'. This is to be defined as: the creation of engineered devices that use components derived from or inspired by biology to perform a useful electrical function. Here, the phrase 'electrical function' is taken to mean the generation, use and storage of electricity, where the primary charge carriers may be either electrons or ions. 'Electrosynbionics' is distinct from 'bioelectronics', which normally relates to applications in sensing, computing or electroceuticals. Electrosynbionic devices have the potential to solve challenges in electricity generation, use and storage by exploiting or mimicking some of the desirable attributes of biological systems, including high efficiency, benign operating conditions and intricate molecular structures.
Collapse
Affiliation(s)
- Katherine E Dunn
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3DW, Scotland, United Kingdom
| |
Collapse
|
11
|
Gul MM, Ahmad KS. Bioelectrochemical systems: Sustainable bio-energy powerhouses. Biosens Bioelectron 2019; 142:111576. [DOI: 10.1016/j.bios.2019.111576] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023]
|