1
|
Guo D, Li Q, Zhang Y, Duan J. Microbial remediation and deteriorated corrosion in marine oil pollution remediation engineering: A critical review. MARINE POLLUTION BULLETIN 2024; 209:117051. [PMID: 39393248 DOI: 10.1016/j.marpolbul.2024.117051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024]
Abstract
Research on mechanism of microbial deteriorated corrosion in oil-pollution remediation is limited. This paper discusses principles and technical methods of the cost-effective and environmental-friendly bioremediation in marine oil pollution control including the highly efficient microbial resources and bioenhancement technology. Deteriorated corrosion is creatively put forward to interpret the corrosion phenomenon under pollutant-degrading conditions, primarily induced by anaerobic electroactive microorganisms via electron transfer. It summarizes the potential link of microorganisms between oil pollutant degradation and corrosion destruction and illustrates the importance of screening microorganisms with hydrocarbon degradation and corrosion inhibition functions. We critically point out that the severe damage of metal materials in the oil-containing environment is related to the service environment and the interactions between microbial interspecies. The study of the material failure mechanism and the microbial protection technology in the oil-contaminated environment contributes to the sustainability of safe and clean marine ecological restoration engineering.
Collapse
Affiliation(s)
- Ding Guo
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
| | - Qiuyue Li
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
| | - Yimeng Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Jizhou Duan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
2
|
Yadav RK, Chaudhary S, Patil SA. Distinct microbial communities enriched in water-saturated and unsaturated reactors influence performance of integrated hydroponics-microbial electrochemical technology. BIORESOURCE TECHNOLOGY 2024; 406:130976. [PMID: 38879056 DOI: 10.1016/j.biortech.2024.130976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
This study aimed to understand the wastewater treatment and electricity generation performance besides the microbial communities of the integrated Hydroponics-Microbial Electrochemical Technology (iHydroMET) systems operated with water-saturated and water-unsaturated reactors. The organics removal was slightly higher in the water-unsaturated system (93 ± 4 %) than in the water-saturated system (87 ± 2 %). The total nitrogen removal and electric voltage were considerably higher in the water-saturated system (42 ± 5 %; 111 ± 8 V per reactor) than in the water-unsaturated system (18 ± 3 %; 95 ± 9 V per reactor). The enhanced organics and nitrogen removal and high voltage output in respective conditions were due to the dominance of polysaccharide-degrading aerobes (e.g., Pirellula), anammox bacteria (e.g., Anammoximicrobium), denitrifiers (e.g., Thauera and Rheinheimera), and electroactive microorganisms (e.g., Geobacter). The differential performance governed by distinct microbial communities under the tested conditions indicates that an appropriate balancing of water saturation and unsaturation in reactors is crucial to achieving optimum iHydroMET performance.
Collapse
Affiliation(s)
- Ravi K Yadav
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
| | - Srishti Chaudhary
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
| | - Sunil A Patil
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India.
| |
Collapse
|
3
|
Cui H, Feng Y, Lu W, Wang L, Li H, Teng Y, Bai Y, Qu K, Song Y, Cui Z. Effect of hydraulic retention time on denitrification performance and microbial communities of solid-phase denitrifying reactors using polycaprolactone/corncob composite. MARINE POLLUTION BULLETIN 2024; 205:116559. [PMID: 38852202 DOI: 10.1016/j.marpolbul.2024.116559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/08/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
This study investigated the effect of hydraulic retention time (HRT) on the denitrification performance and microbial composition of reactors, packed with composite polycaprolactone and corncob carbon sources, during the treatment mariculture wastewater. The optimal HRT was 3 h, and average nitrogen removal efficiency was 99.00 %, 99.07 %, and 98.98 % in the HRT =3, 5, and 7 h groups, respectively. However, the 3 h group (DOC 2.91 mg/L) was the only group with a lower DOC concentration than that of the influent group (3.31 mg/L). Moreover, species richness was lower at HRT =3 h, with a greater proportion of denitrification-dominant phyla, such as Proteobacteria. The abundance of the NarG, NirK, and NirS functional genes suggested that the HRT =3 h group had a significant advantage in the nitrate and nitrite reduction phases. Under a short HRT, the composite carbon source achieved a good denitrification effect.
Collapse
Affiliation(s)
- Hongwu Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Yuna Feng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Weibin Lu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Lu Wang
- Laoshan Laboratory, Qingdao 266237, China
| | - Hao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Yu Teng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Ying Bai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Keming Qu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Yingying Song
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
4
|
Chen MX, Li YJ, Wu L, Lv XY, Li Y, Ru J, Yi Y. Optimal conditions and nitrogen removal performance of aerobic denitrifier Comamonas sp. pw-6 and its bioaugmented application in synthetic domestic wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3007-3020. [PMID: 38877627 DOI: 10.2166/wst.2024.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
To assess the possibility of using aerobic denitrification (AD) bacteria with high NO2--N accumulation for nitrogen removal in wastewater treatment, conditional optimization, as well as sole and mixed nitrogen source tests involving AD bacterium, Comamonas sp. pw-6 was performed. The results showed that the optimal carbon source, pH, C/N ratio, rotational speed, and salinity for this strain were determined to be succinate, 7, 20, 160 rpm, and 0%, respectively. Further, this strain preferentially utilized NH4+-N, NO3--N, and NO2--N, and when NO3--N was its sole nitrogen source, 92.28% of the NO3--N (150 mg·L-1) was converted to NO2--N. However, when NH4+-N and NO3--N constituted the mixed nitrogen source, NO3--N utilization by this strain was significantly lower (p < 0.05). Therefore, a strategy was proposed to combine pw-6 bacteria with traditional autotrophic nitrification to achieve the application of pw-6 bacteria in NH4+-N-containing wastewater treatment. Bioaugmented application experiments showed significantly higher NH4+-N removal (5.96 ± 0.94 mg·L-1·h-1) and lower NO3--N accumulation (2.52 ± 0.18 mg·L-1·h-1) rates (p < 0.05) than those observed for the control test. Thus, AD bacteria with high NO2--N accumulation can also be used for practical applications, providing a basis for expanding the selection range of AD strains for wastewater treatment.
Collapse
Affiliation(s)
- Maoxia X Chen
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China; South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China E-mail:
| | - Yanjun J Li
- South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| | - Liang Wu
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China; South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| | - Xiaoyu Y Lv
- South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| | - Yang Li
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China; South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| | - Jing Ru
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China; South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| | - Yan Yi
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China; South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| |
Collapse
|
5
|
Martinez-Moreno MF, Povedano-Priego C, Mumford AD, Morales-Hidalgo M, Mijnendonckx K, Jroundi F, Ojeda JJ, Merroun ML. Microbial responses to elevated temperature: Evaluating bentonite mineralogy and copper canister corrosion within the long-term stability of deep geological repositories of nuclear waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170149. [PMID: 38242445 DOI: 10.1016/j.scitotenv.2024.170149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Deep Geological Repositories (DGRs) consist of radioactive waste contained in corrosion-resistant canisters, surrounded by compacted bentonite clay, and buried few hundred meters in a stable geological formation. The effects of bentonite microbial communities on the long-term stability of the repository should be assessed. This study explores the impact of harsh conditions (60 °C, highly-compacted bentonite, low water activity), and acetate:lactate:sulfate addition, on the evolution of microbial communities, and their effect on the bentonite mineralogy, and corrosion of copper material under anoxic conditions. No bentonite illitization was observed in the treatments, confirming its mineralogical stability as an effective barrier for future DGR. Anoxic incubation at 60 °C reduced the microbial diversity, with Pseudomonas as the dominant genus. Culture-dependent methods showed survival and viability at 60 °C of moderate-thermophilic aerobic bacterial isolates (e.g., Aeribacillus). Despite the low presence of sulfate-reducing bacteria in the bentonite blocks, we proved their survival at 30 °C but not at 60 °C. Copper disk's surface remained visually unaltered. However, in the acetate:lactate:sulfate-treated samples, sulfide/sulfate signals were detected, along with microbial-related compounds. These findings offer new insights into the impact of high temperatures (60 °C) on the biogeochemical processes at the compacted bentonite/Cu canister interface post-repository closure.
Collapse
Affiliation(s)
| | | | - Adam D Mumford
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Mar Morales-Hidalgo
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| | | | - Fadwa Jroundi
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| | - Jesus J Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Mohamed L Merroun
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
6
|
Zaffar R, Nazir R, Rather MA, Dar R. Biofilm formation and EPS production enhances the bioremediation potential of Pseudomonas species: a novel study from eutrophic waters of Dal lake, Kashmir, India. Arch Microbiol 2024; 206:89. [PMID: 38308703 DOI: 10.1007/s00203-023-03817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 02/05/2024]
Abstract
The present study was conducted with the aim of isolation and identification of the biofilm-forming denitrifying Pseudomonas bacterial strains from eutrophic waters of Dal lake, India, followed by the study of inter-relation of biofilm formation and denitrification potential of Pseudomonas strains. The bacterial strains were characterized by morphological observations and identified using 16S rDNA sequencing followed by the quantification of biofilm formation of these st by crystal violet (CV) assay using 96-well microtiter plate and extracellular polymeric substance (EPS) extraction. Lastly, the nitrate-reducing potential of all Pseudomonas species was studied. Our evaluation revealed that four different Pseudomonas species were observed to have the biofilm-forming potential and nitrate-reducing properties and the species which showed maximum biofilm-forming potential and maximum EPS production exhibited higher nitrate-removing capacity. Moreover, P. otitis was observed to have the highest denitrification capacity (89%) > P. cedrina (83%) > P. azotoform (79%) and the lowest for P. peli (70%). These results clearly signify a positive correlation of biofilm-forming capacity and nitrate-removing ability of Pseudomonas species. This study has for the first time successfully revealed the bioremediation potential of P. otitis, P. cedrina, P. azotoform, and P. peli species, thus contributing to the growing list of known nitrate-reducing Pseudomonas species. Based upon the results, these strains can be extrapolated to nitrate-polluted water systems for combating water pollution.
Collapse
Affiliation(s)
- Riasa Zaffar
- Microbiology Research Laboratory, Centre of Research for Development (CORD)/Department of Environmental Science, University of Kashmir, Srinagar, J&K, India
| | - Ruqeya Nazir
- Microbiology Research Laboratory, Centre of Research for Development (CORD)/Department of Environmental Science, University of Kashmir, Srinagar, J&K, India.
| | - Mushtaq Ahmad Rather
- Energy Engineering Lab, Department of Chemical Engineering, National Institute of Technology (NIT), Srinagar, J&K, India
| | - Rubiya Dar
- Microbiology Research Laboratory, Centre of Research for Development (CORD)/Department of Environmental Science, University of Kashmir, Srinagar, J&K, India
| |
Collapse
|
7
|
Cui H, Feng Y, Yin Z, Qu K, Wang L, Li J, Jin T, Bai Y, Cui Z. Organic carbon release, denitrification performance and microbial community of solid-phase denitrification reactors using the blends of agricultural wastes and artificial polymers for the treatment of mariculture wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114791. [PMID: 36934547 DOI: 10.1016/j.ecoenv.2023.114791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
This paper explored the possibility of heterotrophic denitrification driven by composite solid carbon sources in low carbon/nitrogen ratio marine recirculating aquaculture wastewater. In this study, two agricultural wastes, reed straw (RS), corn cob (CC) and two artificial polymers, polycaprolactone (PCL), poly3-hydroxybutyrate-hydroxypropionate (PHBV) were mixed in a 1:1 ratio to compare the carbon release characteristics of the four composite carbon sources (RS+PCL, RS+PHBV, CC+PCL, and CC+PHBV) and their effects on improving the mariculture wastewater for denitrification. Dissolved organic carbon (DOC) after carbon source release (4.96-1.07 mg/g), total organic carbon/chemical oxygen demand (1.9-0.79) and short-chain fatty acids (SCFAs) (4.23-0.21 mg/g) showed that all the four composite solid carbon sources had excellent organic carbon release ability, and the CC+PCL group had the highest release of DOC and SCFAs. Energy-dispersive X-ray spectroscopy, scanning electron microscopy, and Fourier-transform infrared spectroscopy were used to observe the changes in the surface characteristics of the composite carbon source before and after application. And results showed that the stable internal structure enabled CC+PCL group to have continuous carbon release performance and achieved the maximum denitrification efficiency (93.32 %). The NRE results were supported by the abundance of the Proteobacteria microbial community at the phylum level and Marinobacter at the genus level. Quantitative real-time PCR (q-PCR) indicated CC-containing composite carbon source groups have good nitrate reduction ability, while PCL-containing composite carbon source groups have better nitrite reduction level. In conclusion, the carbon source for agricultural wastes and artificial polymers can be used as an economic and effective solid carbon source for denitrification and treatment of marine recirculating aquaculture wastewater.
Collapse
Affiliation(s)
- Hongwu Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Yuna Feng
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; National Experimental Teaching Demonstration Center for Aquatic Science, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhendong Yin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Lu Wang
- Laoshan Laboratory, Qingdao 266237, China
| | - Jiaxin Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tongtong Jin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Bai
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
8
|
Chen C, Zhang Z, Xu P, Hu H, Tang H. Anaerobic biodegradation of polycyclic aromatic hydrocarbons. ENVIRONMENTAL RESEARCH 2023; 223:115472. [PMID: 36773640 DOI: 10.1016/j.envres.2023.115472] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Although many anaerobic microorganisms that can degrade PAHs have been harnessed, there is still a large gap between laboratory achievements and practical applications. Here, we review the recent advances in the biodegradation of PAHs under anoxic conditions and highlight the mechanistic insights into the metabolic pathways and functional genes. Achievements of practical application and enhancing strategies of anaerobic PAHs bioremediation in soil were summarized. Based on the concerned issues during research, perspectives of further development were proposed including time-consuming enrichment, byproducts with unknown toxicity, and activity inhibition with low temperatures. In addition, meta-omics, synthetic biology and engineering microbiome of developing microbial inoculum for anaerobic bioremediation applications are discussed. We anticipate that integrating the theoretical research on PAHs anaerobic biodegradation and its successful application will advance the development of anaerobic bioremediation.
Collapse
Affiliation(s)
- Chao Chen
- College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhan Zhang
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou, 450000, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
9
|
Zhang L, Ali A, Su J, Wang Z, Huang T, Zhang R, Liu Y. Microencapsulated reactor for simultaneous removal of calcium, fluoride and phenol using microbially induced calcium precipitation: Mechanism and functional characterization. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130704. [PMID: 36603427 DOI: 10.1016/j.jhazmat.2022.130704] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Fluoride ions (F-) and phenol in groundwater have become a great hurdle to the pursuit of a healthy drinking water source. This study established a microencapsulated immobilization reactor with Aquabacterium sp. CZ3 for the simultaneous removal of nitrate (NO3--N), calcium (Ca2+), F-, and phenol from groundwater with 100%, 67.84%, 88.67%, and 100% removal efficiencies, respectively. The three-dimensional mesh structure of microcapsules facilitated the transport and metabolism of substances, while their synergistic effect with bacteria promoted the removal of contaminants. F- was removed by co-precipitation to generate Ca5(PO4)3F and CaF2 and adsorption. On one hand, the phenol toxicity promoted the production of extracellular polymers and improved the tolerance of bacteria; on the other hand, the degradation of phenol provided a carbon source for bacteria and promoted the denitrification. The development of microencapsulated immobilized reactor provided a clear mechanism for phenol and F- removal under the microbially induced calcium precipitation (MICP) technique, while providing a valuable solution for the treatment of complex groundwater resources.
Collapse
Affiliation(s)
- Lingfei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
10
|
Xie C, Zhang Q, Li X, Dan Q, Qin L, Wang C, Wang S, Peng Y. Highly efficient transformation of slowly-biodegradable organic matter into endogenous polymers during hydrolytic fermentation for achieving effective nitrite production by endogenous partial denitrification. WATER RESEARCH 2023; 230:119537. [PMID: 36587520 DOI: 10.1016/j.watres.2022.119537] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The utilization of slowly-biodegradable organic matter (SBOM) to provide nitrite efficiently for anaerobic ammonia oxidation (anammox) process is an essential topic. High nitrite concentration without inhibition of exogenous organic matter is optimal condition for anammox process. In this study, hydrolytic fermentation (HF) of SBOM was applied to drive an endogenous partial denitrification (EPD) process (nitrate to nitrite) during an anaerobic-anoxic operation in a starch-fed system. With a limited production of exogenous organic matter (22.3 ± 4.9 mg COD/L), 79.0% of SBOM was transformed into poly-hydroxyalkanoates (PHA) through a pathway of simultaneous HF-absorption and endogenous polymer synthesis, corresponding to a hydrolytic fermentation ratio of 86.0%. A high nitrate to nitrite transformation ratio of 85.4% was achieved under an influent carbon to nitrogen ratio of 4.8. Denitrifying glycogen-accumulating organisms (DGAOs) was enriched from 0.6% to 10.9%, with an increase from 0.7 to 1.0 of nitrate reductase genes to nitrite reductase genes ratio. Subsequently, nitrate reduction rate was 5.6-fold higher than the nitrate reduction rate. A prominent migration of exogenous complete denitrification to EPD was accomplished. Furthermore, the starch-fed system exhibited performance with significant adaptability and stability in the presence of different SBOMs (dissolved protein and primary sludge). Therefore, the HF-EPD system achieved efficient nitrite production through EPD with the addition of various SBOMs, providing a potential alternative to anammox systems for the treatment of SBOM-rich wastewater.
Collapse
Affiliation(s)
- Chen Xie
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiongpeng Dan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Luyang Qin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Chuanxin Wang
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd., China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
11
|
Zhang Y, Zhang Q, Peng H, Zhang W, Li M, Feng J, He J, Su J. The changing C/N of aggressive aniline: Metagenomic analysis of pollutant removal, metabolic pathways and functional genes. CHEMOSPHERE 2022; 309:136598. [PMID: 36174730 DOI: 10.1016/j.chemosphere.2022.136598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/06/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
In order to optimize the degradation of high-concentration aniline wastewater, the operation of sequencing batch bioaugmentation reactors with different aniline concentrations (200 mg/L, 600 mg/L, 1000 mg/L) was studied. The results showed that the removal rates of aniline and COD in the three reactors could reach 100%. When the aniline increased to 600 mg/L, the nitrogen removal efficiency reached the peak (51.85%). The increase of aniline inhibited the nitrification, while denitrification was enhanced due to the increase of C/N ratio. But this change was reversed by the toxicity of high concentrations of aniline. The metagenomic analysis showed that when the aniline concentration was 600 mg/L, the abundance distribution of microbial samples was more uniform. The improved of aniline concentration had led to the increase of aromatic compounds degradation metabolic pathways. In addition, the abundance of aniline degradation and nitrogen metabolism genes (dmpB, xylE, norB) was also promoted.
Collapse
Affiliation(s)
- Yunjie Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Qian Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Haojin Peng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Wenli Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jing He
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Junhao Su
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| |
Collapse
|
12
|
Lu H, Li J, Fu Z, Wang X, Zhou J, Wang J. Comparison of the accelerating effect of graphene oxide and graphene on anaerobic transformation of bisphenol F by Pseudomonas sp. LS. ENVIRONMENTAL TECHNOLOGY 2022; 43:4249-4256. [PMID: 34152266 DOI: 10.1080/09593330.2021.1946167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
It was found that bisphenol F (BPF) could be anaerobically transformed to 4,4-dihydroxybenzophenone using nitrate as an electron acceptor by Pseudomonas sp. LS. However, BPF removal was a slow process under anaerobic conditions. In the present study, effects of graphene oxide (GO) and graphene on the anaerobic transformation of BPF were studied in detail. Results showed that GO (2-10 mg/L) and graphene (2-20 mg/L) could increase the anaerobic biotransformation rate of BPF. For GO-mediated system, GO was partially reduced, and then the reduced GO (rGO) as an electron mediator increased biotransformation rate of BPF. Further analysis showed that the promoting effect of 10 mg/L GO was over 1.5-fold higher compared with that of 10 mg/L graphene. BPF could be transformed using GO as an electron acceptor. GO and graphene was also used as nutrient scaffolds to promote cell growth via adsorbing proteins. Moreover, GO was a better cell growth promoter than graphene. These studies indicated that GO played more roles and exhibited a better accelerating effect on anaerobic removal of BPF compared with graphene.
Collapse
Affiliation(s)
- Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Jingyi Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Ze Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Xiaolei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| |
Collapse
|
13
|
Huang Q, Alengebawy A, Zhu X, Raza AF, Chen L, Chen W, Guo J, Ai P, Li D. Performance of Paracoccus pantotrophus MA3 in heterotrophic nitrification-anaerobic denitrification using formic acid as a carbon source. Bioprocess Biosyst Eng 2022; 45:1661-1672. [PMID: 35984504 DOI: 10.1007/s00449-022-02771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022]
Abstract
Excess amount of nitrogen in wastewater has caused serious concerns, such as water eutrophication. Paracoccus pantotrophus MA3, a novel isolated strain of heterotrophic nitrification-anaerobic denitrification bacteria, was evaluated for nitrogen removal using formic acid as the sole carbon source. The results showed that the maximum ammonium removal efficiency was observed under the optimum conditions of 26.25 carbon to nitrogen ratio, 3.39% (v/v) inoculation amount, 34.64 °C temperature, and at 180 rpm shaking speed, respectively. In addition, quantitative real-time PCR technique analysis assured that the gene expression level of formate dehydrogenase, formate tetrahydrofolate ligase, 5,10-methylenetetrahydrofolate dehydrogenase, serine hydroxymethyltransferase, respiratory nitrate reductase beta subunit, L-glutamine synthetase, glutamate dehydrogenase, and glutamate synthase were up-regulated compared to the control group, and combined with nitrogen mass balance analysis to conclude that most of the ammonium was removed by assimilation. A small amount of nitrate and nearly no nitrite were accumulated during heterotrophic nitrification. MA3 exhibited significant denitrification potential under anaerobic conditions with a maximum nitrate removal rate of 4.39 mg/L/h, and the only gas produced was N2. Additionally, 11.50 ± 0.06 mg/L/h of NH4+-N removal rate from biogas slurry was achieved.
Collapse
Affiliation(s)
- Qun Huang
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
- Tianjin Key Laboratory for Industrial Biological, Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West Seven Road, Airport Economic District, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangyu Zhu
- Tianjin Key Laboratory for Industrial Biological, Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West Seven Road, Airport Economic District, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Amin Farrukh Raza
- Tianjin Key Laboratory for Industrial Biological, Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West Seven Road, Airport Economic District, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological, Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West Seven Road, Airport Economic District, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological, Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West Seven Road, Airport Economic District, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Jiahao Guo
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Ai
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological, Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West Seven Road, Airport Economic District, Tianjin, China.
- National Innovation Centre for Synthetic Biology, Tianjin, China.
| |
Collapse
|
14
|
Nitrate Water Contamination from Industrial Activities and Complete Denitrification as a Remediation Option. WATER 2022. [DOI: 10.3390/w14050799] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Freshwater is a scarce resource that continues to be at high risk of pollution from anthropogenic activities, requiring remediation in such cases for its continuous use. The agricultural and mining industries extensively use water and nitrogen (N)-dependent products, mainly in fertilizers and explosives, respectively, with their excess accumulating in different water bodies. Although removal of NO3 from water and soil through the application of chemical, physical, and biological methods has been studied globally, these methods seldom yield N2 gas as a desired byproduct for nitrogen cycling. These methods predominantly cause secondary contamination with deposits of chemical waste such as slurry brine, nitrite (NO2), ammonia (NH3), and nitrous oxide (N2O), which are also harmful and fastidious to remove. This review focuses on complete denitrification facilitated by bacteria as a remedial option aimed at producing nitrogen gas as a terminal byproduct. Synergistic interaction of different nitrogen metabolisms from different bacteria is highlighted, with detailed attention to the optimization of their enzymatic activities. A biotechnological approach to mitigating industrial NO3 contamination using indigenous bacteria from wastewater is proposed, holding the prospect of optimizing to the point of complete denitrification. The approach was reviewed and found to be durable, sustainable, cost effective, and environmentally friendly, as opposed to current chemical and physical water remediation technologies.
Collapse
|
15
|
Di Gregorio S, Levin DB. Editorial: New Microbial Isolates From Hostile Environments: Perspectives for a Cleaner Future. Front Microbiol 2022; 12:740735. [PMID: 35058890 PMCID: PMC8764129 DOI: 10.3389/fmicb.2021.740735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
| | - David B Levin
- Department of Biosystem Engineering, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
16
|
Hu J, Yan J, Wu L, Bao Y, Yu D, Li J. Simultaneous nitrification and denitrification of hypersaline wastewater by a robust bacterium Halomonas salifodinae from a repeated-batch acclimation. BIORESOURCE TECHNOLOGY 2021; 341:125818. [PMID: 34455251 DOI: 10.1016/j.biortech.2021.125818] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Biotreatment of hypersaline wastewater requires robust strains with high resistance to activity inhibition and even bacterium death, which remains a worldwide challenge. Here Halomonas salifodinae, a simultaneous nitrification and denitrification (SND) bacterium, was isolated by performing repeated-batch acclimation, showing efficient nitrogen removal at 0-15% salinity and low activity inhibition prominently superior to that of other strains such as Pseudomonas sp. and Acinetobacter sp. Community analysis as well as comparison of microbial activity at different salinities revealed an increased relative abundance of halotolerant populations by stimulating their salt tolerance during the repeated-batch process. For single or mixed nitrogen sources at 15% salinity, the SND efficiencies of the isolated strain reached above 95%. The high activities were attributed to the key enzymes AMO and HAO for nitrification as well as NAP and NIR for denitrification. The findings provide a promising acclimation pathway to obtain robust bacteria for biotreatment of hypersaline wastewater.
Collapse
Affiliation(s)
- Jie Hu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiabao Yan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ling Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yanzhou Bao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Danqing Yu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
17
|
Fang J, Liao S, Zhang S, Li L, Tan S, Li W, Wang A, Ye J. Characteristics of a novel heterotrophic nitrification-aerobic denitrification yeast, Barnettozyma californica K1. BIORESOURCE TECHNOLOGY 2021; 339:125665. [PMID: 34332179 DOI: 10.1016/j.biortech.2021.125665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Yeast strain K1, isolated from surface sediment, was identified as Barnettozyma californica. The strain showed efficient heterotrophic nitrification and aerobic denitrification (HN-AD) at initial ammonium, nitrite and nitrate concentrations of 14-140 mg/L. Additionally, the optimum carbon source for its growth and nitrogen removal activity was sucrose, followed by glucose, acetate and citrate. The maximum removal efficiencies of ammonium, nitrite and nitrate were 99.11%, 99.13% and 98.84% under 48 h of culture with sucrose at 140 mg/L nitrogen and the corresponding removal efficiencies of total nitrogen were 90.16%, 86.65% and 81.48%, respectively. The optimum conditions for the inorganic nitrogen removal and growth of strain K1 were a C/N of 18 and a salinity of 5-15 ppt. The amoA, nirK and nosZ genes of K1 were detected. All the results suggest that B. californica K1 is capable of HN-AD and has the potential to remove inorganic nitrogen from wastewater.
Collapse
Affiliation(s)
- Jinkun Fang
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Shaoan Liao
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Shanshan Zhang
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Li Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Simin Tan
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Wenzhuo Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Anli Wang
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Jianmin Ye
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, PR China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China.
| |
Collapse
|
18
|
Zhang S, Ali A, Su J, Huang T, Zheng Z, Wang Y, Li M. Lower C/N ratio induces prior utilization of soluble microbial products with more dramatic variability and higher biodegradability in denitrification by strain YSF15. BIORESOURCE TECHNOLOGY 2021; 335:125281. [PMID: 34015568 DOI: 10.1016/j.biortech.2021.125281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
The emphasis of this study lies in how strain SYF15 regulates molecular weight (MW) fractions of soluble microbial products (SMPs) in response to low carbon to nitrogen (C/N) ratio, with high denitrification performance (over 99%). Results indicated SMPs with MW >100 and <50 kDa undoubtedly participated in denitrification before 12.0 h in C/N = 2.0, while sodium acetate was preferred in C/N = 5.0, indicating strain YSF15 was induced to degrade SMPs as a carbon source in low C/N. Additionally, lower C/N activated the extracellular metabolism, with increased fluorescence regional integration (FRI) volume amplitude by 48.08 and 53.43% (versus C/N = 5.0) in MW = 50-10 and 10-3 kDa, respectively. The FRI volume of proteins yielded greater with more degradable components than higher C/N in MW = 100-3 kDa, whereas polysaccharide and protein concentrations differed little with considerable biodegradability, implying components inside protein changed dramatically. This pioneering work contributed to the understanding of denitrification with carbon source deficiency.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
19
|
Ke S, Chen J, Zheng X, Sun X. Reference ion method: A simple and fast method for quantitatively identifying the source of nitrate and denitrification rate in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144555. [PMID: 33482555 DOI: 10.1016/j.scitotenv.2020.144555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The effective control and management of nitrate (NO3-) pollution requires the identification of the sources of NO3- pollution in groundwater and quantification of their contribution rates. In this study, the molar concentration ratio of NO3-/Cl- (n(NO3-)/n(Cl-)) and the molar concentration of Cl- (n(Cl-)) (reference ion method; RIM) was first used to identify the NO3- sources and estimate their contribution rates in groundwater. The relationship between the Cl- concentration and NO3- concentration (reference ion method; RIM) was used to judge whether denitrification had occurred and to estimate the denitrification rate in groundwater. It was proved that homology analysis was the prerequisite for applying the RIM. The main NO3- sources included chemical fertilizers (CF), sewage/manure (M&S) and soil nitrogen (SN). The contribution rate of CF in the vegetable planting area (upstream regions) (69.12%) was significantly higher than that in the grain planting area (midstream regions and downstream regions) (14.29% and 14.29%). The difference in the contribution rates of NO3- in the grain planting area was greater than that in the vegetable planting area. The results indicated that denitrification rate in the grain planting area was higher than that in the vegetable planting area, while the temporal variations in the denitrification rate in the vegetable planting area were consistent with in the grain planting area. The RIM offers a useful and simple way to quantify the contribution rates of NO3- sources and denitrification rates in groundwater.
Collapse
Affiliation(s)
- Shengnan Ke
- Key Laboratory for Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiajun Chen
- Key Laboratory for Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xilai Zheng
- Key Laboratory of Marine Environment and Ecological Education, Ocean University of China, Qingdao 266100, China
| | - Xiaowen Sun
- Key Laboratory of Marine Environment and Ecological Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
20
|
Groundwater Nitrate Removal Performance of Selected Pseudomonas Strains Carrying nosZ Gene in Aerobic Granular Sequential Batch Reactors. WATER 2021. [DOI: 10.3390/w13081119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Four granular sequencing batch reactors (GSBRs) were inoculated with four denitrifying Pseudomonas strains carrying nosZ to study the process of granule formation, the operational conditions of the bioreactors, and the carbon concentration needed for nitrate removal. The selected Pseudomonas strains were P. stutzeri I1, P. fluorescens 376, P. denitrificans Z1, and P. fluorescens PSC26, previously reported as denitrifying microorganisms carrying the nosZ gene. Pseudomonas denitrificans Z1 produced fluffy, low-density granules, with a decantation speed below 10 m h−1. However, P. fluorescens PSC26, P. stutzeri I1, and P. fluorescens 376 formed stable granules, with mean size from 7 to 15 mm, related to the strain and carbon concentration. P. stutzeri I1 and P. fluorescens 376 removed nitrate efficiently with a ratio in the range of 96%, depending on the source and concentration of organic matter. Therefore, the findings suggest that the inoculation of GSBR systems with denitrifying strains of Pseudomonas spp. containing the nosZ gene enables the formation of stable granules, the efficient removal of nitrate, and the transformation of nitrate into nitrogen gas, a result of considerable environmental interest to avoid the generation of nitrous oxide.
Collapse
|
21
|
Zhang S, Su J, Zheng Z, Yang S. Denitrification strategies of strain YSF15 in response to carbon scarcity: Based on organic nitrogen, soluble microbial products and extracellular polymeric substances. BIORESOURCE TECHNOLOGY 2020; 314:123733. [PMID: 32619805 DOI: 10.1016/j.biortech.2020.123733] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 05/06/2023]
Abstract
This paper aims to determine the denitrification strategies of strain YSF15 in carbon scarcity condition from novel view of organic nitrogen, soluble microbial products (SMP) and extracellular polymeric substances (EPS). The batch tests demonstrated that strain YSF15 could achieve complete denitrification at C/N of 3.0. The conversion ratio of nitrogen gas accounted for 89.03%, 85.29% and 82.95% among total nitrogen in C/N systems from 3.0 to 5.0, respectively, indicating denitrification instead of assimilation was the major contribution to nitrogen removal. C/N could affect composition and content of organic nitrogen, SMP and EPS. The biodegradability of EPS was better than SMP, whereas polysaccharide (PS) likely correlated with nitrogen removal, predating the protein (PN). These results implied high biodegradability of EPS and more electron donors for denitrification both improved denitrification capacity of strain YSF15, which revealed the potential contribution of bacterium with production of biodegradable SMP or EPS in biological treatment process.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
22
|
Chen H, Zeng L, Wang D, Zhou Y, Yang X. Recent advances in nitrous oxide production and mitigation in wastewater treatment. WATER RESEARCH 2020; 184:116168. [PMID: 32683143 DOI: 10.1016/j.watres.2020.116168] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 07/10/2020] [Indexed: 05/21/2023]
Abstract
Nitrous oxide (N2O) emitted from wastewater treatment plants has caused widespread concern. Over the past decade, people have made tremendous efforts to discover the microorganisms responsible for N2O production, elucidate metabolic pathways, establish production models and formulate mitigation strategies. The ultimate goal of all these efforts is to shed new light on how N2O is produced and how to reduce it, and one of the best ways is to find key opportunities by integrating the information obtained. This review article critically evaluates the knowledge gained in the field within a decade, especially in N2O production microbiology, biochemistry, models and mitigation strategies, with a focus on denitrification. Previous research has greatly deepened the understanding of the N2O generation mechanism, but further efforts are still needed due to the lack of standardized methodology for establishing N2O mitigation strategies in full-scale systems. One of the challenges seems to be to convert the denitrification process from a net N2O source into an effective sink, which is recommended as a key opportunity to reduce N2O production in this review.
Collapse
Affiliation(s)
- Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Long Zeng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Yaoyu Zhou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiao Yang
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|