• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4632504)   Today's Articles (329)   Subscriber (49903)
For: Tsuya T, Ferri S, Fujikawa M, Yamaoka H, Sode K. Cloning and functional expression of glucose dehydrogenase complex of Burkholderia cepacia in Escherichia coli. J Biotechnol 2006;123:127-36. [PMID: 16337300 DOI: 10.1016/j.jbiotec.2005.10.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/02/2005] [Accepted: 10/24/2005] [Indexed: 11/26/2022]
Number Cited by Other Article(s)
1
Kerrigan JA, Yoshida H, Okuda-Shimazaki J, Temple B, Kojima K, Sode K. Improvement of substrate specificity of the direct electron transfer type FAD-dependent glucose dehydrogenase catalytic subunit. J Biotechnol 2024:S0168-1656(24)00256-6. [PMID: 39326560 DOI: 10.1016/j.jbiotec.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
2
Sowa K, Okuda-Shimazaki J, Fukawa E, Sode K. Direct Electron Transfer-Type Oxidoreductases for Biomedical Applications. Annu Rev Biomed Eng 2024;26:357-382. [PMID: 38424090 DOI: 10.1146/annurev-bioeng-110222-101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
3
Probst D, Twiddy J, Hatada M, Pavlidis S, Daniele M, Sode K. Development of Direct Electron Transfer-Type Extended Gate Field Effect Transistor Enzymatic Sensors for Metabolite Detection. Anal Chem 2024;96:4076-4085. [PMID: 38408165 DOI: 10.1021/acs.analchem.3c04599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
4
Wijayanti SD, Schachinger F, Ludwig R, Haltrich D. Electrochemical and biosensing properties of an FAD-dependent glucose dehydrogenase from Trichoderma virens. Bioelectrochemistry 2023;153:108480. [PMID: 37269684 DOI: 10.1016/j.bioelechem.2023.108480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
5
Okuda-Shimazaki J, Yoshida H, Lee I, Kojima K, Suzuki N, Tsugawa W, Yamada M, Inaka K, Tanaka H, Sode K. Microgravity environment grown crystal structure information based engineering of direct electron transfer type glucose dehydrogenase. Commun Biol 2022;5:1334. [PMID: 36473944 PMCID: PMC9727119 DOI: 10.1038/s42003-022-04286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]  Open
6
Lee I, Wakako T, Ikebukuro K, Sode K. In Vitro Continuous 3 Months Operation of Direct Electron Transfer Type Open Circuit Potential Based Glucose Sensor: Heralding the Next CGM Sensor. J Diabetes Sci Technol 2022;16:1107-1113. [PMID: 35466718 PMCID: PMC9445357 DOI: 10.1177/19322968221092449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
7
Inoue Y, Kusaka Y, Shinozaki K, Lee I, Sode K. In Vitro Evaluation of Miniaturized Amperometric Enzyme Sensor Based on the Direct Electron Transfer Principle for Continuous Glucose Monitoring. J Diabetes Sci Technol 2022;16:1101-1106. [PMID: 34986665 PMCID: PMC9445329 DOI: 10.1177/19322968211070614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
8
The development of micro-sized enzyme sensor based on direct electron transfer type open circuit potential sensing principle. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
9
Lee I, Probst D, Klonoff D, Sode K. Continuous glucose monitoring systems - Current status and future perspectives of the flagship technologies in biosensor research -. Biosens Bioelectron 2021;181:113054. [DOI: 10.1016/j.bios.2021.113054] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
10
Hiraka K, Tsugawa W, Asano R, Yokus MA, Ikebukuro K, Daniele MA, Sode K. Rational design of direct electron transfer type l-lactate dehydrogenase for the development of multiplexed biosensor. Biosens Bioelectron 2021;176:112933. [PMID: 33395570 DOI: 10.1016/j.bios.2020.112933] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
11
Cohen R, Cohen Y, Mukha D, Yehezkeli O. Oxygen insensitive amperometric glucose biosensor based on FAD dependent glucose dehydrogenase co-entrapped with DCPIP or DCNQ in a polydopamine layer. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
12
Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes at Nanostructured Electrodes. Catalysts 2020. [DOI: 10.3390/catal10020236] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]  Open
13
Okuda-Shimazaki J, Yoshida H, Sode K. FAD dependent glucose dehydrogenases - Discovery and engineering of representative glucose sensing enzymes. Bioelectrochemistry 2019;132:107414. [PMID: 31838457 DOI: 10.1016/j.bioelechem.2019.107414] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/24/2019] [Accepted: 11/10/2019] [Indexed: 11/17/2022]
14
Yoshida H, Kojima K, Shiota M, Yoshimatsu K, Yamazaki T, Ferri S, Tsugawa W, Kamitori S, Sode K. X-ray structure of the direct electron transfer-type FAD glucose dehydrogenase catalytic subunit complexed with a hitchhiker protein. Acta Crystallogr D Struct Biol 2019;75:841-851. [PMID: 31478907 PMCID: PMC6719666 DOI: 10.1107/s2059798319010878] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022]  Open
15
Improvement in the thermal stability of Mucor prainii-derived FAD-dependent glucose dehydrogenase via protein chimerization. Enzyme Microb Technol 2019;132:109387. [PMID: 31731974 DOI: 10.1016/j.enzmictec.2019.109387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 11/23/2022]
16
Ito Y, Okuda-Shimazaki J, Tsugawa W, Loew N, Shitanda I, Lin CE, La Belle J, Sode K. Third generation impedimetric sensor employing direct electron transfer type glucose dehydrogenase. Biosens Bioelectron 2019;129:189-197. [PMID: 30721794 DOI: 10.1016/j.bios.2019.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 01/30/2023]
17
Lee I, Loew N, Tsugawa W, Ikebukuro K, Sode K. Development of a third-generation glucose sensor based on the open circuit potential for continuous glucose monitoring. Biosens Bioelectron 2018;124-125:216-223. [PMID: 30388564 DOI: 10.1016/j.bios.2018.09.099] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/10/2018] [Accepted: 09/29/2018] [Indexed: 10/28/2022]
18
Lee YS, Baek S, Lee H, Reginald SS, Kim Y, Kang H, Choi IG, Chang IS. Construction of Uniform Monolayer- and Orientation-Tunable Enzyme Electrode by a Synthetic Glucose Dehydrogenase without Electron-Transfer Subunit via Optimized Site-Specific Gold-Binding Peptide Capable of Direct Electron Transfer. ACS APPLIED MATERIALS & INTERFACES 2018;10:28615-28626. [PMID: 30067023 DOI: 10.1021/acsami.8b08876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
19
Miyazaki R, Yamazaki T, Yoshimatsu K, Kojima K, Asano R, Sode K, Tsugawa W. Elucidation of the intra- and inter-molecular electron transfer pathways of glucoside 3-dehydrogenase. Bioelectrochemistry 2018;122:115-122. [DOI: 10.1016/j.bioelechem.2018.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 11/24/2022]
20
Okuda-Shimazaki J, Loew N, Hirose N, Kojima K, Mori K, Tsugawa W, Sode K. Construction and characterization of flavin adenine dinucleotide glucose dehydrogenase complex harboring a truncated electron transfer subunit. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
21
Yamashita Y, Suzuki N, Hirose N, Kojima K, Tsugawa W, Sode K. Mutagenesis Study of the Cytochrome c Subunit Responsible for the Direct Electron Transfer-Type Catalytic Activity of FAD-Dependent Glucose Dehydrogenase. Int J Mol Sci 2018;19:ijms19040931. [PMID: 29561779 PMCID: PMC5979317 DOI: 10.3390/ijms19040931] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/09/2018] [Accepted: 02/17/2018] [Indexed: 11/19/2022]  Open
22
Lee I, Loew N, Tsugawa W, Lin CE, Probst D, La Belle JT, Sode K. The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers. Bioelectrochemistry 2017;121:1-6. [PMID: 29291433 DOI: 10.1016/j.bioelechem.2017.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/16/2017] [Accepted: 12/16/2017] [Indexed: 10/18/2022]
23
Algov I, Grushka J, Zarivach R, Alfonta L. Highly Efficient Flavin-Adenine Dinucleotide Glucose Dehydrogenase Fused to a Minimal Cytochrome C Domain. J Am Chem Soc 2017;139:17217-17220. [PMID: 28915057 DOI: 10.1021/jacs.7b07011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
24
Lee I, Sode T, Loew N, Tsugawa W, Lowe C, Sode K. Continuous operation of an ultra-low-power microcontroller using glucose as the sole energy source. Biosens Bioelectron 2017;93:335-339. [DOI: 10.1016/j.bios.2016.09.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 11/15/2022]
25
An Fe-S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes. Bioelectrochemistry 2016;112:178-83. [PMID: 26951961 DOI: 10.1016/j.bioelechem.2016.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 01/31/2016] [Accepted: 01/31/2016] [Indexed: 11/21/2022]
26
La Belle JT, Adams A, Lin CE, Engelschall E, Pratt B, Cook CB. Self-monitoring of tear glucose: the development of a tear based glucose sensor as an alternative to self-monitoring of blood glucose. Chem Commun (Camb) 2016;52:9197-204. [DOI: 10.1039/c6cc03609k] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
27
Ravenna Y, Xia L, Gun J, Mikhaylov AA, Medvedev AG, Lev O, Alfonta L. Biocomposite based on reduced graphene oxide film modified with phenothiazone and flavin adenine dinucleotide-dependent glucose dehydrogenase for glucose sensing and biofuel cell applications. Anal Chem 2015;87:9567-71. [PMID: 26334692 DOI: 10.1021/acs.analchem.5b02949] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
28
Yoshida H, Sakai G, Mori K, Kojima K, Kamitori S, Sode K. Structural analysis of fungus-derived FAD glucose dehydrogenase. Sci Rep 2015;5:13498. [PMID: 26311535 PMCID: PMC4642536 DOI: 10.1038/srep13498] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/28/2015] [Indexed: 11/29/2022]  Open
29
Aiba H, Nishiya Y, Azuma M, Yokooji Y, Atomi H, Imanaka T. Characterization of a thermostable glucose dehydrogenase with strict substrate specificity from a hyperthermophilic archaeon Thermoproteus sp. GDH-1. Biosci Biotechnol Biochem 2015;79:1094-102. [DOI: 10.1080/09168451.2015.1018120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
30
Fapyane D, Lee Y, Lim CY, Ahn JH, Kim SW, Chang IS. Immobilisation of Flavin-Adenine-Dinucleotide-Dependent Glucose Dehydrogenase α Subunit in Free-Standing Graphitised Carbon Nanofiber Paper Using a Bifunctional Cross-Linker for an Enzymatic Biofuel Cell. ChemElectroChem 2014. [DOI: 10.1002/celc.201402035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
31
Fapyane D, Lee SJ, Kang SH, Lim DH, Cho KK, Nam TH, Ahn JP, Ahn JH, Kim SW, Chang IS. High performance enzyme fuel cells using a genetically expressed FAD-dependent glucose dehydrogenase α-subunit of Burkholderia cepacia immobilized in a carbon nanotube electrode for low glucose conditions. Phys Chem Chem Phys 2013;15:9508-12. [DOI: 10.1039/c3cp51864g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
32
Electrochemical biosensors using aptamers for theranostics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013;140:183-202. [PMID: 23873093 DOI: 10.1007/10_2013_226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
33
Heterologous overexpression and characterization of a flavoprotein-cytochrome c complex fructose dehydrogenase of Gluconobacter japonicus NBRC3260. Appl Environ Microbiol 2012;79:1654-60. [PMID: 23275508 DOI: 10.1128/aem.03152-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
34
Yamashita Y, Ferri S, Huynh ML, Shimizu H, Yamaoka H, Sode K. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase. Enzyme Microb Technol 2012;52:123-8. [PMID: 23273282 DOI: 10.1016/j.enzmictec.2012.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 11/03/2012] [Accepted: 11/05/2012] [Indexed: 11/15/2022]
35
Hanashi T, Yamazaki T, Tsugawa W, Ikebukuro K, Sode K. BioRadioTransmitter: a self-powered wireless glucose-sensing system. J Diabetes Sci Technol 2011;5:1030-5. [PMID: 22027294 PMCID: PMC3208857 DOI: 10.1177/193229681100500502] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
36
Yamada S. Historical achievements of self-monitoring of blood glucose technology development in Japan. J Diabetes Sci Technol 2011;5:1300-6. [PMID: 22027333 PMCID: PMC3208896 DOI: 10.1177/193229681100500541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
37
Development of a novel biosensing system based on the structural change of a polymerized guanine-quadruplex DNA nanostructure. Biosens Bioelectron 2011;26:4837-41. [PMID: 21704505 DOI: 10.1016/j.bios.2011.05.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 05/30/2011] [Indexed: 11/23/2022]
38
BioCapacitor—A novel category of biosensor. Biosens Bioelectron 2009;24:1837-42. [DOI: 10.1016/j.bios.2008.09.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/30/2008] [Accepted: 09/08/2008] [Indexed: 11/18/2022]
39
Yamazaki T, Okuda-Shimazaki J, Sakata C, Tsuya T, Sode K. Construction and Characterization of Direct Electron Transfer-Type Continuous Glucose Monitoring System Employing Thermostable Glucose Dehydrogenase Complex. ANAL LETT 2008. [DOI: 10.1080/00032710802350567] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
40
Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of Burkholderia cepacia. Biotechnol Lett 2008;30:1967-72. [PMID: 18581061 DOI: 10.1007/s10529-008-9777-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
41
Biofuel cell system employing thermostable glucose dehydrogenase. Biotechnol Lett 2008;30:1753-8. [DOI: 10.1007/s10529-008-9749-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 04/28/2008] [Accepted: 05/02/2008] [Indexed: 11/25/2022]
42
Kakehi N, Yamazaki T, Tsugawa W, Sode K. A novel wireless glucose sensor employing direct electron transfer principle based enzyme fuel cell. Biosens Bioelectron 2007;22:2250-5. [PMID: 17166711 DOI: 10.1016/j.bios.2006.11.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 09/20/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
43
Yamaoka H, Sode K. SPCE based glucose sensor employing novel thermostable glucose dehydrogenase, FADGDH: blood glucose measurement with 150nL sample in one second. J Diabetes Sci Technol 2007;1:28-35. [PMID: 19888376 PMCID: PMC2769609 DOI: 10.1177/193229680700100105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA