1
|
Bertelmann C, Bühler B. Strategies found not to be suitable for stabilizing high steroid hydroxylation activities of CYP450 BM3-based whole-cell biocatalysts. PLoS One 2024; 19:e0309965. [PMID: 39240904 PMCID: PMC11379211 DOI: 10.1371/journal.pone.0309965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 09/08/2024] Open
Abstract
The implementation of biocatalytic steroid hydroxylation processes plays a crucial role in the pharmaceutical industry due to a plethora of medicative effects of hydroxylated steroid derivatives and their crucial role in drug approval processes. Cytochrome P450 monooxygenases (CYP450s) typically constitute the key enzymes catalyzing these reactions, but commonly entail drawbacks such as poor catalytic rates and the dependency on additional redox proteins for electron transfer from NAD(P)H to the active site. Recently, these bottlenecks were overcome by equipping Escherichia coli cells with highly active variants of the self-sufficient single-component CYP450 BM3 together with hydrophobic outer membrane proteins facilitating cellular steroid uptake. The combination of the BM3 variant KSA14m and the outer membrane pore AlkL enabled exceptionally high testosterone hydroxylation rates of up to 45 U gCDW-1 for resting (i.e., living but non-growing) cells. However, a rapid loss of specific activity heavily compromised final product titers and overall space-time yields. In this study, several stabilization strategies were evaluated on enzyme-, cell-, and reaction level. However, neither changes in biocatalyst configuration nor variation of cultivation media, expression systems, or inducer concentrations led to considerable improvement. This qualified the so-far used genetic construct pETM11-ksa14m-alkL, M9 medium, and the resting-cell state as the best options enabling comparatively efficient activity along with fast growth prior to biotransformation. In summary, we report several approaches not enabling a stabilization of the high testosterone hydroxylation rates, providing vital guidance for researchers tackling similar CYP450 stability issues. A comparison with more stable natively steroid-hydroxylating CYP106A2 and CYP154C5 in equivalent setups further highlighted the high potential of the investigated CYP450 BM3-based whole-cell biocatalysts. The immense and continuously developing repertoire of enzyme engineering strategies provides promising options to stabilize the highly active biocatalysts.
Collapse
Affiliation(s)
- Carolin Bertelmann
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
| | - Bruno Bühler
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
| |
Collapse
|
2
|
Li J, Gao J, Ai J, Yin Z, Lu F, Qin HM, Mao S. Production of 17α-hydroxyprogesterone using an engineered biocatalyst with efficient electron transfer and improved 5-aminolevulinic acid synthesis coupled with a P450 hydroxylase. Int J Biol Macromol 2024; 273:132831. [PMID: 38825287 DOI: 10.1016/j.ijbiomac.2024.132831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/23/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
17α-Hydroxyprogesterone (17α-OH-PROG) is an important intermediate with a wide range of applications in the pharmaceutical industry. Strategies based on efficient electron transfer and cofactor regeneration were used for the production of 17α-OH-PROG. Here, CYP260A1, Fpr and Adx were expressed using a double plasmid system, resulting in higher biotransformation efficiency. Further optimization of reaction conditions and addition of polymyxin B increased the production of 17α-OH-PROG from 12.52 mg/L to 102.37 mg/L after 12 h of biotransformation. To avoid the addition of external 5-aminolevulinic acid (ALA) as a heme precursor for the P450 enzyme, a modified C5 pathway was introduced into the engineered strain, further reducing the overall process cost. The resulting whole-cell biocatalyst achieved the highest biotransformation yield of 17α-OH-PROG reported to date, offering a promising strategy for commercial application of P450 enzymes in industrial production of hydroxylated intermediates.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Jikai Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Jiaying Ai
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Ziyang Yin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Liu X, Li F, Sun T, Guo J, Zhang X, Zheng X, Du L, Zhang W, Ma L, Li S. Three pairs of surrogate redox partners comparison for Class I cytochrome P450 enzyme activity reconstitution. Commun Biol 2022; 5:791. [PMID: 35933448 PMCID: PMC9357085 DOI: 10.1038/s42003-022-03764-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
Most P450s require redox partners for the electron transfer during catalysis. However, little information is available on cognate redox partners for P450s, which greatly limits P450 function exploration and practical application. Thus, the stategy of building various hybrid P450 catalytic systems with surrogate redox partner has often adopted to engineer P450 biocatalysts. In this study, we compare three pairs of frequently-used surrogate redox partner SelFdx1499/SelFdR0978, Adx/AdR and Pdx/PdR and in terms of their electron transfer properties. The three selected bacterial Class I P450s include PikC, P450sca-2 and CYP-sb21, which are responsible for production of high-value-added products. Here we show that SelFdx1499/SelFdR0978 is the most promising redox partner compared to Adx/AdR and Pdx/PdR. The results provide insights into the domination for P450-redox partner interactions in modulating the catalytic activity of P450s. This study not only produces a more active biocatalyst but also suggests a general chose for a universal reductase which would facilitate engineering of P450 catalyst. Aiming for an efficient Class I cytochrome P450 catalytic system, three pairs of surrogate redox partners for biocatalyst applications are tested.
Collapse
Affiliation(s)
- Xiaohui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Fengwei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Tianjian Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Xianliang Zheng
- Center For Biocatalysis and Enzyme Technology, AngelYeast Co., Ltd., Cheng Dong Avenue, Yichang, Hubei, 443003, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| |
Collapse
|
4
|
Felpeto‐Santero C, Galán B, García JL. Production of 11α-hydroxysteroids from sterols in a single fermentation step by Mycolicibacterium smegmatis. Microb Biotechnol 2021; 14:2514-2524. [PMID: 33660943 PMCID: PMC8601193 DOI: 10.1111/1751-7915.13735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
11α-hydroxylated steroid synthons are one of the most important commercially pharmaceutical intermediates used for the production of contraceptive drugs and glucocorticoids. These compounds are currently produced by biotransformation using fungal strains in two sequential fermentation steps. In this work, we have developed by a rational design new recombinant bacteria able to produce 11α-hydroxylated synthons in a single fermentation step using cholesterol (CHO) or phytosterols (PHYTO) as feedstock. We have designed a synthetic operon expressing the 11α-hydroxylating enzymes from the fungus Rhizopus oryzae that was cloned into engineered mutant strains of Mycolicibacterium smegmatis that were previously created to produce 4-androstene-3,17-dione (AD), 1,4-androstadiene-3,17-dione (ADD) from sterols. The introduction of the fungal synthetic operon in these modified bacterial chassis has allowed producing for the first time 11αOH-AD and 11αOH-ADD with high yields directly from sterols in a single fermentation step. Remarkably, the enzymes of sterol catabolic pathway from M. smegmatis recognized the 11α-hydroxylated intermediates as alternative substrates and were able to efficiently funnel sterols to the desired hydroxylated end-products.
Collapse
Affiliation(s)
- Carmen Felpeto‐Santero
- Centro de Investigaciones Biológicas Margarita SalasAgencia del Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Beatriz Galán
- Centro de Investigaciones Biológicas Margarita SalasAgencia del Consejo Superior de Investigaciones CientíficasMadridSpain
| | - José Luis García
- Centro de Investigaciones Biológicas Margarita SalasAgencia del Consejo Superior de Investigaciones CientíficasMadridSpain
| |
Collapse
|
5
|
Felpeto-Santero C, Galán B, García JL. Engineering the Steroid Hydroxylating System from Cochliobolus lunatus in Mycolicibacterium smegmatis. Microorganisms 2021; 9:microorganisms9071499. [PMID: 34361934 PMCID: PMC8306143 DOI: 10.3390/microorganisms9071499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
14α-hydroxylated steroids are starting materials for the synthesis of contraceptive and anti-inflammatory compounds in the steroid industry. A synthetic bacterial operon containing the cytochrome P450 CYP103168 and the reductase CPR64795 of the fungus Cochlioboluslunatus able to hydroxylate steroids has been engineered into a shuttle plasmid named pMVFAN. This plasmid was used to transform two mutants of Mycolicibacterium smegmatis named MS6039-5941 and MS6039 that accumulate 4-androstene-3,17-dione (AD), and 1,4-androstadiene-3,17-dione (ADD), respectively. The recombinant mutants MS6039-5941 (pMVFAN) and MS6039 (pMVFAN) were able to efficiently express the hydroxylating CYP system of C.lunatus and produced in high yields 14αOH-AD and 14αOH-ADD, respectively, directly from cholesterol and phytosterols in a single fermentation step. These results open a new avenue for producing at industrial scale these and other hydroxylated steroidal synthons by transforming with this synthetic operon other Mycolicibacterium strains currently used for the commercial production of steroidal synthons from phytosterols as feedstock.
Collapse
|
6
|
Efimova VS, Isaeva LV, Orekhov PS, Bozdaganyan ME, Rubtsov MA, Novikova LA. Using a viral 2A peptide-based strategy to reconstruct the bovine P450scc steroidogenic system in S. cerevisiae: Bovine P450scc system expression using 2A peptides. J Biotechnol 2020; 325:186-195. [PMID: 33157198 DOI: 10.1016/j.jbiotec.2020.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Abstract
Cytochrome P450scc system performs the first rate-limiting stage of steroidogenesis in mammals. The bovine P450scc system was reconstructed in Saccharomyces cerevisiae, using a foot-and-mouth disease virus 2A peptide (F2A)-based construct, to co-express cytochrome P450scc, adrenodoxin (Adx), and adrenodoxin reductase (AdR). During the translation of the self-processing fusion protein P450scc-F2A-Adx-F2A-AdR, the first and the second linkers are cleaved with different efficiencies (96 % and 11 %, respectively), resulting in the unbalanced expression of individual proteins. The low cleavage efficiency and the relative Adx and AdR protein levels were increased through replacing the second F2A peptide with different sequences and changing the order of Adx and AdR. The P450scc, AdR, and Adx sequences located upstream of the F2A affected F2A processing, to various degrees. Moreover, using molecular dynamics (MD) simulations, we showed that the 2A peptide fused to the C-terminus of Adx formed the steric hindrance during enzymatic complex formation, resulting in the reduction of catalytic activity. Thus, the functional activity of the reconstructed P450scc system was determined not only by the efficiency of 2A peptides but also by the overall sequence of the expressed 2A-polyprotein. Our results can be applied to the development of 2A-based co-translation strategies, to produce other multicomponent protein systems.
Collapse
Affiliation(s)
- Vera S Efimova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119991, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia
| | - Ludmila V Isaeva
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119991, Russia
| | - Philipp S Orekhov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia; Department of Biochemistry, Institute for Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya st. 2, Moscow, 119991 Russia; Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow, 141701, Russia
| | - Marine E Bozdaganyan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia; Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow, 141701, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow, 119991, Russia
| | - Mikhail A Rubtsov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia; Department of Biochemistry, Institute for Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya st. 2, Moscow, 119991 Russia
| | - Ludmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119991, Russia.
| |
Collapse
|
7
|
Zhang X, Peng Y, Zhao J, Li Q, Yu X, Acevedo-Rocha CG, Li A. Bacterial cytochrome P450-catalyzed regio- and stereoselective steroid hydroxylation enabled by directed evolution and rational design. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-019-0290-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractSteroids are the most widely marketed products by the pharmaceutical industry after antibiotics. Steroid hydroxylation is one of the most important functionalizations because their derivatives enable a higher biological activity compared to their less polar non-hydroxylated analogs. Bacterial cytochrome P450s constitute promising biocatalysts for steroid hydroxylation due to their high expression level in common workhorses like Escherichia coli. However, they often suffer from wrong or insufficient regio- and/or stereoselectivity, low activity, narrow substrate range as well as insufficient thermostability, which hampers their industrial application. Fortunately, these problems can be generally solved by protein engineering based on directed evolution and rational design. In this work, an overview of recent developments on the engineering of bacterial cytochrome P450s for steroid hydroxylation is presented.
Collapse
|
8
|
Felpeto‐Santero C, Galán B, Luengo JM, Fernández‐Cañon JM, del Cerro C, Medrano FJ, García JL. Identification and expression of the 11β-steroid hydroxylase from Cochliobolus lunatus in Corynebacterium glutamicum. Microb Biotechnol 2019; 12:856-868. [PMID: 31197939 PMCID: PMC6680611 DOI: 10.1111/1751-7915.13428] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/01/2022] Open
Abstract
Hydroxylation of steroids has acquired special relevance for the pharmaceutical industries. Particularly, the 11β-hydroxylation of steroids is a reaction of biotechnological importance currently carried out at industrial scale by the fungus Cochliobolus lunatus. In this work, we have identified the genes encoding the cytochrome CYP103168 and the reductase CPR64795 of C. lunatus responsible for the 11β-hydroxylase activity in this fungus, which is the key step for the preparative synthesis of cortisol in industry. A recombinant Corynebacterium glutamicum strain harbouring a plasmid expressing both genes forming a synthetic bacterial operon was able to 11β-hydroxylate several steroids as substrates. This is a new example to show that the industrial strain C. glutamicum can be used as a suitable chassis to perform steroid biotransformation expressing eukaryotic cytochromes.
Collapse
Affiliation(s)
| | - Beatriz Galán
- Department of Environmental BiologyCentro de Investigaciones BiológicasCSICMadridSpain
| | - José M. Luengo
- Department of Molecular BiologyUniversity of LeónLeónSpain
| | | | - Carlos del Cerro
- Department of Environmental BiologyCentro de Investigaciones BiológicasCSICMadridSpain
| | - Francisco J. Medrano
- Department of Chemical and Physical BiologyCentro de Investigaciones BiológicasCSICMadridSpain
| | - José L. García
- Department of Environmental BiologyCentro de Investigaciones BiológicasCSICMadridSpain
- Department of Applied BiotechnologyInstitute for Integrative Systems Biology (I2SysBio)(Universidad de Valencia‐CSIC)ValenciaSpain
| |
Collapse
|
9
|
Rieck C, Geiger D, Munkert J, Messerschmidt K, Petersen J, Strasser J, Meitinger N, Kreis W. Biosynthetic approach to combine the first steps of cardenolide formation in Saccharomyces cerevisiae. Microbiologyopen 2019; 8:e925. [PMID: 31436030 PMCID: PMC6925150 DOI: 10.1002/mbo3.925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/30/2022] Open
Abstract
A yeast expression plasmid was constructed containing a cardenolide biosynthetic module, referred to as CARD II, using the AssemblX toolkit, which enables the assembly of large DNA constructs. The genes cloned into the vector were (a) a Δ5‐3β‐hydroxysteroid dehydrogenase gene from Digitalis lanata, (b) a steroid Δ5‐isomerase gene from Comamonas testosteronii, (c) a mutated steroid‐5β‐reductase gene from Arabidopsis thaliana, and (d) a steroid 21‐hydroxylase gene from Mus musculus. A second plasmid bearing an ADR/ADX fusion gene from Bos taurus was also constructed. A Saccharomyces cerevisiae strain bearing these two plasmids was generated. This strain, termed “CARD II yeast”, was capable of producing 5β‐pregnane‐3β,21‐diol‐20‐one, a central intermediate in 5β‐cardenolide biosynthesis, starting from pregnenolone which was added to the culture medium. Using this approach, five consecutive steps in cardenolide biosynthesis were realized in baker's yeast.
Collapse
Affiliation(s)
- Christoph Rieck
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel Geiger
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jennifer Munkert
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Jan Petersen
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Juliane Strasser
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Nadine Meitinger
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Kreis
- Department Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
10
|
Analysis of In Vivo Activity of the Bovine Cholesterol Hydroxylase/Lyase System Proteins Expressed in Escherichia coli. Mol Biotechnol 2019; 61:261-273. [PMID: 30729436 DOI: 10.1007/s12033-019-00158-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cholesterol hydroxylase/lyase (CHL) system, located in the mitochondria of the mammalian adrenal cortex cells, consists of cytochrome P450scc (CYP11A1), adrenodoxin (Adx), and adrenodoxin reductase (AdR) and performs the first stage of the steroidogenesis: AdR and Adx enable the electron transfer between NADPH and cytochrome P450scc, and P450scc catalyzes the conversion of cholesterol into pregnenolone. CHL system was reconstructed in Escherichia coli using the polycistronic plasmid pTrc99A/CHL. In E. coli cells, the recombinant proteins form the catalytically active system. CHL activity towards 22R-hydroxycholesterol was 4.0 ± 1.3 nmol pregnenolone/h per 1 mg homogenate protein. The alteration of the order of heterologous cDNAs in the expression cassette from AdR-Adx-P450scc to P450scc-Adx-AdR results in alteration of stoichiometric ratio P450scc/Adx/AdR from 1:1.45:4.2 to 1:1.67:0.98; the former ratio is more optimal for the functioning of the cytochrome P450scc. The application of modified cDNA of Adx (AdxS112W) does not increase the CHL activity; however, the introduction of the second copy of AdxS112W gene into the expression cassette increases both the expression level of АdxS112W and the CHL activity in comparison with P450scc/АdxS112W/AdR system. In vivo activity of the CHL system in bacteria is limited by the substrate uptake by bacterial cells: it varied in the range of 0.05-0.62 mg pregnenolone/l resting cell suspension per 1-day cultivation, depending on the type and concentration of permeabilizing agents in the medium. The obtained results contribute to the knowledge of CHL system functioning in living bacteria.
Collapse
|
11
|
Glyakina AV, Strizhov NI, Karpov MV, Dovidchenko NV, Matkarimov BT, Isaeva LV, Efimova VS, Rubtsov MA, Novikova LA, Donova MV, Galzitskaya OV. Ile351, Leu355 and Ile461 residues are essential for catalytic activity of bovine cytochrome P450scc (CYP11A1). Steroids 2019; 143:80-90. [PMID: 30641046 DOI: 10.1016/j.steroids.2019.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 11/23/2022]
Abstract
Cytochrome P450scc (CYP11A1) is a mammalian mitochondrial enzyme which catalyzes cholesterol side chain cleavage to form pregnenolone. Along with cholesterol, some other steroids including sterols with a branched side chain like β-sitosterol are the substrates for the enzyme, but the activity towards β-sitosterol is rather low. Modification of the catalytic site conformation could provide more effective β-sitosterol bioconversion by the enzyme. This study was aimed to find out the amino acid residues substitution of which could modify the conformation of the active site providing possible higher enzyme activity towards β-sitosterol. After structural and bioinformatics analysis three amino acid residues I351, L355, I461 were chosen. Molecular dynamics simulations of P450scc evidenced the stability of the wild type, double (I351A/L355A) and triple (I351A/L355A/I461A) mutants. Mutant variants of cDNA encoding P450scc with the single, double and triple mutations were obtained by site-directed mutagenesis. However, the experimental data indicate that the introduced single mutations Ile351A, Leu355A and Ile461A dramatically decrease the target catalytic activity of CYP11A1, and no activity was observed for double and triple mutants obtained. Therefore, isoleucine residues 351 and 461, and leucine residue 355 are important for the cytochrome P450scc functioning towards sterols both with unbranched (cholesterol) and branched (sitosterol) side chains.
Collapse
Affiliation(s)
- Anna V Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Nicolai I Strizhov
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; Pharmins, Ltd., R&D, 142290 Pushchino, Moscow Region, Russia
| | - Mikhail V Karpov
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; Pharmins, Ltd., R&D, 142290 Pushchino, Moscow Region, Russia
| | - Nikita V Dovidchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | | | - Ludmila V Isaeva
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/40, 119234 Moscow, Russia
| | - Vera S Efimova
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia
| | - Mikhail A Rubtsov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia; Department of Biochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ludmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/40, 119234 Moscow, Russia
| | - Marina V Donova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; Pharmins, Ltd., R&D, 142290 Pushchino, Moscow Region, Russia.
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
12
|
Szaleniec M, Wojtkiewicz AM, Bernhardt R, Borowski T, Donova M. Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms. Appl Microbiol Biotechnol 2018; 102:8153-8171. [PMID: 30032434 PMCID: PMC6153880 DOI: 10.1007/s00253-018-9239-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
Abstract
The steroid superfamily includes a wide range of compounds that are essential for living organisms of the animal and plant kingdoms. Structural modifications of steroids highly affect their biological activity. In this review, we focus on hydroxylation of steroids by bacterial hydroxylases, which take part in steroid catabolic pathways and play an important role in steroid degradation. We compare three distinct classes of metalloenzymes responsible for aerobic or anaerobic hydroxylation of steroids, namely: cytochrome P450, Rieske-type monooxygenase 3-ketosteroid 9α-hydroxylase, and molybdenum-containing steroid C25 dehydrogenases. We analyze the available literature data on reactivity, regioselectivity, and potential application of these enzymes in organic synthesis of hydroxysteroids. Moreover, we describe mechanistic hypotheses proposed for all three classes of enzymes along with experimental and theoretical evidences, which have provided grounds for their formulation. In case of the 3-ketosteroid 9α-hydroxylase, such a mechanistic hypothesis is formulated for the first time in the literature based on studies conducted for other Rieske monooxygenases. Finally, we provide comparative analysis of similarities and differences in the reaction mechanisms utilized by bacterial steroid hydroxylases.
Collapse
Affiliation(s)
- Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland.
| | - Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - Rita Bernhardt
- Lehrstuhl für Biochemie, Universität des Saarlandes, Campus B2 2, 66123, Saarbrücken, Germany
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - Marina Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Oblast, 142290, Russia
| |
Collapse
|
13
|
Worsch A, Eggimann FK, Girhard M, von Bühler CJ, Tieves F, Czaja R, Vogel A, Grumaz C, Sohn K, Lütz S, Kittelmann M, Urlacher VB. A novel cytochrome P450 mono-oxygenase from Streptomyces platensis resembles activities of human drug metabolizing P450s. Biotechnol Bioeng 2018; 115:2156-2166. [PMID: 29943426 DOI: 10.1002/bit.26781] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/28/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
Abstract
Cytochrome P450 mono-oxygenases (P450) are versatile enzymes which play essential roles in C-source assimilation, secondary metabolism, and in degradations of endo- and exogenous xenobiotics. In humans, several P450 isoforms constitute the largest part of phase I metabolizing enzymes and catalyze oxidation reactions which convert lipophilic xenobiotics, including drugs, to more water soluble species. Recombinant human P450s and microorganisms are applied in the pharmaceutical industry for the synthesis of drug metabolites for pharmacokinetics and toxicity studies. Compared to the membrane-bound eukaryotic P450s, prokaryotic ones exhibit some advantageous features, such as high stability and generally easier heterologous expression. Here, we describe a novel P450 from Streptomyces platensis DSM 40041 classified as CYP107L that efficiently converts several commercial drugs of various size and properties. This P450 was identified by screening of actinobacterial strains for amodiaquine and ritonavir metabolizing activities, followed by genome sequencing and expression of the annotated S. platensis P450s in Escherichia coli. Performance of CYP107L in biotransformations of amodiaquine, ritonavir, amitriptyline, and thioridazine resembles activities of the main human metabolizing P450s, namely CYPs 3A4, 2C8, 2C19, and 2D6. For application in the pharmaceutical industry, an E. coli whole-cell biocatalyst expressing CYP107L was developed and evaluated for preparative amodiaquine metabolite production.
Collapse
Affiliation(s)
- Anne Worsch
- Heinrich Heine University Düsseldorf, Institute of Biochemistry, Düsseldorf, Germany
| | | | - Marco Girhard
- Heinrich Heine University Düsseldorf, Institute of Biochemistry, Düsseldorf, Germany
| | - Clemens J von Bühler
- Heinrich Heine University Düsseldorf, Institute of Biochemistry, Düsseldorf, Germany.,Present address: Bayer AG, Drug Discovery, Pharmaceuticals DM, Wuppertal, Germany
| | - Florian Tieves
- Heinrich Heine University Düsseldorf, Institute of Biochemistry, Düsseldorf, Germany.,Present address: Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | | | - Christian Grumaz
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Kai Sohn
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Stephan Lütz
- Novartis Pharma AG, Basel, Switzerland.,Present address:, Technische Universität Dortmund, Bio- und Chemieingenieurwesen, Bioprozesstechnik, Dortmund, Germany
| | | | - Vlada B Urlacher
- Heinrich Heine University Düsseldorf, Institute of Biochemistry, Düsseldorf, Germany
| |
Collapse
|
14
|
Efimova VS, Isaeva LV, Makeeva DS, Rubtsov MA, Novikova LA. Expression of Cholesterol Hydroxylase/Lyase System Proteins in Yeast S. cerevisiae Cells as a Self-Processing Polyprotein. Mol Biotechnol 2018; 59:394-406. [PMID: 28799023 DOI: 10.1007/s12033-017-0028-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
2A peptide discovered in Picornaviridae is capable of self-cleavage providing an opportunity to carry out synthesis of several proteins using one transcript. Dissociation in the 2A sequence during translation leads to the individual proteins formation. We constructed cDNA including genes of the bovine cholesterol hydroxylase/lyase (CHL) system proteins-cytochrome P450scc (CYP11A1), adrenodoxin (Adx) and adrenodoxin reductase (AdR), that are fused into a single ORF using FMDV 2A nucleotide sequences. The constructed vectors direct the expression of cDNA encoding polyprotein P450scc-2A-Adx-2A-AdR (CHL-2A) in Escherichia coli and Saccharomyces cerevisiae. The induced bacterial cells exhibit a high level of CHL-2A expression, but polyprotein is not cleaved at the FMDV sites. In yeast S. cerevisiae, the discrete proteins P450scc-2A, Adx-2A and AdR are expressed. Moreover, a significant proportion of AdR and Adx is present in a fusion Adx-2A-AdR. Thus, the first 2A linker provides an efficient cleavage of the polyprotein, while the second 2A linker demonstrates lower efficiency. Cholesterol hydroxylase/lyase activity registered in the recombinant yeast cell homogenate indicates that the catalytically active CHL system is present in these cells. Consequently, for the first time the mammalian system of cytochrome P450 has been successfully reconstructed in yeast cells through expressing the self-processing polyprotein.
Collapse
Affiliation(s)
- Vera S Efimova
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, Moscow, Russia, 119234. .,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France. .,LIA 1066 French-Russian Joint Cancer Research Laboratory, Moscow, Russia.
| | - Ludmila V Isaeva
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Desislava S Makeeva
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail A Rubtsov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, Moscow, Russia, 119234.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France.,Department of Biochemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Strategic Management Department, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Moscow, Russia
| | - Ludmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
15
|
Fernández-Cabezón L, Galán B, García JL. New Insights on Steroid Biotechnology. Front Microbiol 2018; 9:958. [PMID: 29867863 PMCID: PMC5962712 DOI: 10.3389/fmicb.2018.00958] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Nowadays steroid manufacturing occupies a prominent place in the pharmaceutical industry with an annual global market over $10 billion. The synthesis of steroidal active pharmaceutical ingredients (APIs) such as sex hormones (estrogens, androgens, and progestogens) and corticosteroids is currently performed by a combination of microbiological and chemical processes. Several mycobacterial strains capable of naturally metabolizing sterols (e.g., cholesterol, phytosterols) are used as biocatalysts to transform phytosterols into steroidal intermediates (synthons), which are subsequently used as key precursors to produce steroidal APIs in chemical processes. These synthons can also be modified by other microbial strains capable of introducing regio- and/or stereospecific modifications (functionalization) into steroidal molecules. Most of the industrial microbial strains currently available have been improved through traditional technologies based on physicochemical mutagenesis and selection processes. Surprisingly, Synthetic Biology and Systems Biology approaches have hardly been applied for this purpose. This review attempts to highlight the most relevant research on Steroid Biotechnology carried out in last decades, focusing specially on those works based on recombinant DNA technologies, as well as outlining trends and future perspectives. In addition, the need to construct new microbial cell factories (MCF) to design more robust and bio-sustainable bioprocesses with the ultimate aim of producing steroids à la carte is discussed.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
16
|
Schmitz D, Janocha S, Kiss FM, Bernhardt R. CYP106A2-A versatile biocatalyst with high potential for biotechnological production of selectively hydroxylated steroid and terpenoid compounds. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:11-22. [PMID: 28780179 DOI: 10.1016/j.bbapap.2017.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
CYP106A2 from Bacillus megaterium ATCC13368, was identified in the 1970s as one of the first bacterial steroid hydroxylases responsible for the conversion of progesterone to 15β-hydroxyprogesterone. Later on it has been proven to be a potent hydroxylase of numerous 3-oxo-Δ4 as well as 3-hydroxy-Δ5-steroids and has recently also been characterized as a regioselective allylic bacterial diterpene hydroxylase. The main hydroxylation position of CYP106A2 is thought to be influenced by the functional groups at C3 position in the steroid core leading to a favored 15β-hydroxylation of 3-oxo-Δ4-steroids and 7β-hydroxylation of 3-hydroxy-Δ5-steroids. However, in some cases the hydroxylation is not strictly selective, resulting in the formation of undesired side-products. To overcome the unspecific hydroxylations or, on the contrary, to gain more of these products in case they are of industrial interest, rational protein design and directed evolution have been successfully performed to shift the stereoselectivity of hydroxylation by CYP106A2. The subsequently obtained hydroxylated steroid and terpene derivatives are especially useful as drug metabolites and drug precursors for the pharmaceutical industry, due to their diverse biological properties and hardship of their chemical synthesis. As a soluble prokaryotic P450 with broad substrate spectrum and hydroxylating capacity, CYP106A2 is an outstanding candidate to establish bioconversion processes. It has been expressed with respectable yields in Escherichia coli and Bacillus megaterium and was applied for the preparative hydroxylation of several steroids and terpenes. Recently, the application of the enzyme was assessed under process conditions as well, depicting a successfully optimized process development and getting us closer to industrial scale process requirements and a future large scale application. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Daniela Schmitz
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbruecken, Germany
| | - Simon Janocha
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbruecken, Germany
| | - Flora Marta Kiss
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbruecken, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbruecken, Germany.
| |
Collapse
|
17
|
Nikolaus J, Nguyen KT, Virus C, Riehm JL, Hutter M, Bernhardt R. Engineering of CYP106A2 for steroid 9α- and 6β-hydroxylation. Steroids 2017; 120:41-48. [PMID: 28163026 DOI: 10.1016/j.steroids.2017.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/07/2017] [Accepted: 01/17/2017] [Indexed: 11/25/2022]
Abstract
CYP 106A2 from Bacillus megaterium ATCC 13368 has been described as a 15β-hydroxylase showing also minor 11α-, 9α- and 6β-hydroxylase activity for progesterone conversion. Previously, mutant proteins with a changed selectivity towards 11α-OH-progesterone have already been produced. The challenge of this work was to create mutant proteins with a higher regioselectivity towards hydroxylation at positions 9 and 6 of the steroid molecule. 9α-hydroxyprogesterone exhibits pharmaceutical importance, because it is a useful intermediate in the production of physiologically active substances which possess progestational activity. Sixteen mutant proteins were selected from a library containing mutated proteins created by a combination of site-directed and saturation mutagenesis of active site residues. Four mutant proteins out of these catalyzed the conversion of progesterone to 9α-OH-progesterone as a main product. For further optimization site-directed mutagenesis was performed. The introduction of seven mutations (D217V, A243V, A106T, F165L, T89N, T247V or T247W) into these four mutant proteins led to 28 new variants, which were also used for an in vivo conversion of progesterone. The best mutant protein, F165L/A395E/G397V, showed a ten-fold increase in the selectivity towards progesterone 9α-hydroxylation compared with the wild type CYP106A2. Also 6β-OH-progesterone is a pharmaceutically important compound, especially as intermediate for the production of drugs against breast cancer. For the rational design of mutant proteins with 6β-selectivity, docking of the 3D-structure of CYP106A2 with progesterone was performed. The introduction of three mutations (T247A, A243S, F173A) led to seven new mutant proteins. Clone A243S showed the greatest improvement in 6β-selectivity being more than ten-fold. Finally, an in vivo conversion of 11-deoxycorticosterone (DOC), testosterone and cortisol with the best five mutant proteins displaying 9α- or 6β-hydroxylation, respectively, of progesterone was performed to investigate whether the introduced mutations also effected the conversion of other substrates.
Collapse
Affiliation(s)
- Julia Nikolaus
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Kim Thoa Nguyen
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Cornelia Virus
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Jan L Riehm
- Center for Bioinformatics, Saarland University, Campus E2.1, 66123 Saarbrücken, Germany
| | - Michael Hutter
- Center for Bioinformatics, Saarland University, Campus E2.1, 66123 Saarbrücken, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany.
| |
Collapse
|
18
|
Milhim M, Gerber A, Neunzig J, Hannemann F, Bernhardt R. A Novel NADPH-dependent flavoprotein reductase from Bacillus megaterium acts as an efficient cytochrome P450 reductase. J Biotechnol 2016; 231:83-94. [DOI: 10.1016/j.jbiotec.2016.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/20/2016] [Accepted: 05/25/2016] [Indexed: 02/02/2023]
|
19
|
Pochekailov S, Black RR, Chavali VP, Khakhar A, Seelig G. A Fluorescent Readout for the Oxidation State of Electron Transporting Proteins in Cell Free Settings. ACS Synth Biol 2016; 5:662-71. [PMID: 27049848 DOI: 10.1021/acssynbio.5b00274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pathways involving sequential electron transfer between multiple proteins are ubiquitous in nature. Here, we demonstrate a new class of fluorescent protein-based reporters for monitoring electron transport through such multistage cascades, specifically those involving ferredoxin-like electron transporters. We created protein fusions between mammalian Adrenodoxin (Adx) and plant Ferredoxin (Fdx) with fluorescent proteins of different colors and found that the fluorescence of such fusions is highly sensitive to the redox state of the electron transporter. The increase in fluorescence from the oxidized to the reduced state was inversely proportional to the linker length between the fusion partners. We first used our approach to quantitatively characterize electron transfer from NADPH through Adrenodoxin Reductase (AdR) to Adrenodoxin (Adx). Our data allowed us to build a detailed mathematical model of this mitochondrial electron transfer chain and validate previously proposed mechanisms. Then, we showed that an Adx-GFP fusion could serve as a sensor for the activity of bacterial Type I Cytochrome P450s (CYPs), a very large class of enzymes with important roles in biotechnology. We further showed that fluorescence of a direct fusion between CYP and GFP was sensitive to CYP activity, suggesting that our approach is applicable to an even broader class of proteins, which undergo a redox state change during their work cycle.
Collapse
Affiliation(s)
- Sergii Pochekailov
- Department
of Electrical Engineering, University of Washington, Seattle, 98195 Washington, United States
| | - Rebecca R. Black
- Department
of Electrical Engineering, University of Washington, Seattle, 98195 Washington, United States
| | - Venkata Pramod Chavali
- Department
of Electrical Engineering, University of Washington, Seattle, 98195 Washington, United States
| | - Arjun Khakhar
- Department
of Electrical Engineering, University of Washington, Seattle, 98195 Washington, United States
| | - Georg Seelig
- Department
of Electrical Engineering, University of Washington, Seattle, 98195 Washington, United States
- Department
of Computer Science and Engineering, University of Washington, Seattle, 98195 Washington, United States
| |
Collapse
|
20
|
Janocha S, Carius Y, Hutter M, Lancaster CRD, Bernhardt R. Crystal Structure of CYP106A2 in Substrate-Free and Substrate-Bound Form. Chembiochem 2016; 17:852-60. [DOI: 10.1002/cbic.201500524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Simon Janocha
- Department of Biochemistry; Saarland University; Campus B2.2 66123 Saarbrücken Germany
| | - Yvonne Carius
- Department of Structural Biology, ZHMB; Saarland University; Building 60 66421 Homburg Germany
| | - Michael Hutter
- Center for Bioinformatics; Saarland University; Campus E2.1 66123 Saarbrücken Germany
| | - C. Roy D. Lancaster
- Department of Structural Biology, ZHMB; Saarland University; Building 60 66421 Homburg Germany
| | - Rita Bernhardt
- Department of Biochemistry; Saarland University; Campus B2.2 66123 Saarbrücken Germany
| |
Collapse
|
21
|
Restaino OF, Marseglia M, Diana P, Borzacchiello MG, Finamore R, Vitiello M, D’Agostino A, De Rosa M, Schiraldi C. Advances in the 16α-hydroxy transformation of hydrocortisone by Streptomyces roseochromogenes. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Brixius-Anderko S, Schiffer L, Hannemann F, Janocha B, Bernhardt R. A CYP21A2 based whole-cell system in Escherichia coli for the biotechnological production of premedrol. Microb Cell Fact 2015; 14:135. [PMID: 26374204 PMCID: PMC4572648 DOI: 10.1186/s12934-015-0333-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/31/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Synthetic glucocorticoids like methylprednisolone (medrol) are of high pharmaceutical interest and represent powerful drugs due to their anti-inflammatory and immunosuppressive effects. Since the chemical hydroxylation of carbon atom 21, a crucial step in the synthesis of the medrol precursor premedrol, exhibits a low overall yield because of a poor stereo- and regioselectivity, there is high interest in a more sustainable and efficient biocatalytic process. One promising candidate is the mammalian cytochrome P450 CYP21A2 which is involved in steroid hormone biosynthesis and performs a selective oxyfunctionalization of C21 to provide the precursors of aldosterone, the main mineralocorticoid, and cortisol, the most important glucocorticoid. In this work, we demonstrate the high potential of CYP21A2 for a biotechnological production of premedrol, an important precursor of medrol. RESULTS We successfully developed a CYP21A2-based whole-cell system in Escherichia coli by coexpressing the cDNAs of bovine CYP21A2 and its redox partner, the NADPH-dependent cytochrome P450 reductase (CPR), via a bicistronic vector. The synthetic substrate medrane was selectively 21-hydroxylated to premedrol with a max. yield of 90 mg L(-1) d(-1). To further improve the biocatalytic activity of the system by a more effective electron supply, we exchanged the CPR with constructs containing five alternative redox systems. A comparison of the constructs revealed that the redox system with the highest endpoint yield converted 70 % of the substrate within the first 2 h showing a doubled initial reaction rate compared with the other constructs. Using the best system we could increase the overall yield of premedrol to a maximum of 320 mg L(-1) d(-1) in shaking flasks. Optimization of the biotransformation in a bioreactor could further improve the premedrol gain to a maximum of 0.65 g L(-1) d(-1). CONCLUSIONS We successfully established a CYP21-based whole-cell system for the biotechnological production of premedrol, a pharmaceutically relevant glucocorticoid, in E. coli and could improve the system by optimizing the redox system concerning reaction velocity and endpoint yield. This is the first step for a sustainable replacement of a complicated chemical low-yield hydroxylation by a biocatalytic cytochrome P450-based whole-cell system.
Collapse
Affiliation(s)
| | - Lina Schiffer
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Bernd Janocha
- Sanofi-Aventis Deutschland GmbH, C&BD Frankfurt Biotechnology, 65926, Frankfurt-Höchst, Germany.
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
23
|
Comparison of CYP106A1 and CYP106A2 from Bacillus megaterium – identification of a novel 11-oxidase activity. Appl Microbiol Biotechnol 2015; 99:8495-514. [DOI: 10.1007/s00253-015-6563-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/09/2015] [Accepted: 03/19/2015] [Indexed: 12/13/2022]
|
24
|
Kiss FM, Lundemo MT, Zapp J, Woodley JM, Bernhardt R. Process development for the production of 15β-hydroxycyproterone acetate using Bacillus megaterium expressing CYP106A2 as whole-cell biocatalyst. Microb Cell Fact 2015; 14:28. [PMID: 25890176 PMCID: PMC4354754 DOI: 10.1186/s12934-015-0210-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/18/2015] [Indexed: 12/19/2022] Open
Abstract
Background CYP106A2 from Bacillus megaterium ATCC 13368 was first identified as a regio- and stereoselective 15β-hydroxylase of 3-oxo-∆4-steroids. Recently, it was shown that besides 3-oxo-∆4-steroids, 3-hydroxy-∆5-steroids as well as di- and triterpenes can also serve as substrates for this biocatalyst. It is highly selective towards the 15β position, but the 6β, 7α/β, 9α, 11α and 15α positions have also been described as targets for hydroxylation. Based on the broad substrate spectrum and hydroxylating capacity, it is an excellent candidate for the production of human drug metabolites and drug precursors. Results In this work, we demonstrate the conversion of a synthetic testosterone derivative, cyproterone acetate, by CYP106A2 under in vitro and in vivo conditions. Using a Bacillus megaterium whole-cell system overexpressing CYP106A2, sufficient amounts of product for structure elucidation by nuclear magnetic resonance spectroscopy were obtained. The product was characterized as 15β-hydroxycyproterone acetate, the main human metabolite. Since the product is of pharmaceutical interest, our aim was to intensify the process by increasing the substrate concentration and to scale-up the reaction from shake flasks to bioreactors to demonstrate an efficient, yet green and cost-effective production. Using a bench-top bioreactor and the recombinant Bacillus megaterium system, both a fermentation and a transformation process were successfully implemented. To improve the yield and product titers for future industrial application, the main bottlenecks of the reaction were addressed. Using 2-hydroxypropyl-β-cyclodextrin, an effective bioconversion of 98% was achieved using 1 mM substrate concentration, corresponding to a product formation of 0.43 g/L, at a 400 mL scale. Conclusions Here we describe the successful scale-up of cyproterone acetate conversion from shake flasks to bioreactors, using the CYP106A2 enzyme in a whole-cell system. The substrate was converted to its main human metabolite, 15β-hydroxycyproterone acetate, a highly interesting drug candidate, due to its retained antiandrogen activity but significantly lower progestogen properties than the mother compound. Optimization of the process led to an improvement from 55% to 98% overall conversion, with a product formation of 0.43 g/L, approaching industrial process requirements and a future large-scale application.
Collapse
Affiliation(s)
- Flora M Kiss
- Institute of Biochemistry, University of Saarland, Campus B 2.2, 66123, Saarbruecken, Germany.
| | - Marie T Lundemo
- CAPEC-PROCESS, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| | - Josef Zapp
- Institute of Pharmaceutical Biology, University of Saarland, Campus B 2.2, 66123, Saarbruecken, Germany.
| | - John M Woodley
- CAPEC-PROCESS, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| | - Rita Bernhardt
- Institute of Biochemistry, University of Saarland, Campus B 2.2, 66123, Saarbruecken, Germany.
| |
Collapse
|
25
|
Schiffer L, Anderko S, Hobler A, Hannemann F, Kagawa N, Bernhardt R. A recombinant CYP11B1 dependent Escherichia coli biocatalyst for selective cortisol production and optimization towards a preparative scale. Microb Cell Fact 2015; 14:25. [PMID: 25880059 PMCID: PMC4347555 DOI: 10.1186/s12934-015-0209-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human mitochondrial CYP11B1 catalyzes a one-step regio- and stereoselective 11β-hydroxylation of 11-deoxycortisol yielding cortisol which constitutes not only the major human stress hormone but also represents a commercially relevant therapeutic drug due to its anti-inflammatory and immunosuppressive properties. Moreover, it is an important intermediate in the industrial production of synthetic pharmaceutical glucocorticoids. CYP11B1 thus offers a great potential for biotechnological application in large-scale synthesis of cortisol. Because of its nature as external monooxygenase, CYP11B1-dependent steroid hydroxylation requires reducing equivalents which are provided from NADPH via a redox chain, consisting of adrenodoxin reductase (AdR) and adrenodoxin (Adx). RESULTS We established an Escherichia coli based whole-cell system for selective cortisol production from 11-deoxycortisol by recombinant co-expression of the demanded 3 proteins. For the subsequent optimization of the whole-cell activity 3 different approaches were pursued: Firstly, CYP11B1 expression was enhanced 3.3-fold to 257 nmol∗L(-1) by site-directed mutagenesis of position 23 from glycine to arginine, which was accompanied by a 2.6-fold increase in cortisol yield. Secondly, the electron transfer chain was engineered in a quantitative manner by introducing additional copies of the Adx cDNA in order to enhance Adx expression on transcriptional level. In the presence of 2 and 3 copies the initial linear conversion rate was greatly accelerated and the final product concentration was improved 1.4-fold. Thirdly, we developed a screening system for directed evolution of CYP11B1 towards higher hydroxylation activity. A culture down-scale to microtiter plates was performed and a robot-assisted, fluorescence-based conversion assay was applied for the selection of more efficient mutants from a random library. CONCLUSIONS Under optimized conditions a maximum productivity of 0.84 g cortisol∗L(-1)∗d(-1) was achieved, which clearly shows the potential of the developed system for application in the pharmaceutical industry.
Collapse
Affiliation(s)
- Lina Schiffer
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Simone Anderko
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Anna Hobler
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Norio Kagawa
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
26
|
Zhang A, Zhang T, Hall EA, Hutchinson S, Cryle MJ, Wong LL, Zhou W, Bell SG. The crystal structure of the versatile cytochrome P450 enzyme CYP109B1 from Bacillus subtilis. MOLECULAR BIOSYSTEMS 2015; 11:869-81. [PMID: 25587700 DOI: 10.1039/c4mb00665h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The crystal structure of the versatile CYP109B1 enzyme from Bacillus subtilis has been solved at 1.8 Å resolution. This is the first structure of an enzyme from this CYP family, whose members are prevalent across diverse species of bacteria. In the crystal structure the enzyme has an open conformation with an access channel leading from the heme to the surface. The substrate-free structure reveals the location of the key residues in the active site that are responsible for binding the substrate in the correct orientation for regioselective oxidation. Importantly, there are significant differences among these residues in members of the CYP109 and closely related CYP106 families and these likely account for the variations in substrate binding and oxidation profiles observed with these enzymes. A whole-cell oxidation biosystem was developed, which contains CYP109B1 and a phthalate family oxygenase reductase (PFOR), from Pseudomonas putida KT24440, as the electron transfer partner. This electron transfer system is able to support CYP109B1 activity resulting in the regioselective hydroxylation of both α- and β-ionone in vivo and in vitro. The PFOR is therefore a versatile electron transfer partner that is able to support the activity of CYP enzymes from other bacterium. The crystal structure of CYP109B1 has a positively charged proximal face and this explains why it can interact with PFOR and adrenodoxin which are predominantly negatively charged around their [2Fe-2S] clusters.
Collapse
Affiliation(s)
- Aili Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hlavica P. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:247-97. [PMID: 26002739 DOI: 10.1007/978-3-319-16009-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Goethestrasse 33, 80336, München, Germany,
| |
Collapse
|
28
|
Schifrin A, Ly TTB, Günnewich N, Zapp J, Thiel V, Schulz S, Hannemann F, Khatri Y, Bernhardt R. Characterization of the Gene Cluster CYP264B1-geoA fromSorangium cellulosumSo ce56: Biosynthesis of (+)-Eremophilene and Its Hydroxylation. Chembiochem 2014; 16:337-44. [DOI: 10.1002/cbic.201402443] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Indexed: 11/06/2022]
|
29
|
Design and characterization of an efficient CYP105A1-based whole-cell biocatalyst for the conversion of resin acid diterpenoids in permeabilized Escherichia coli. Appl Microbiol Biotechnol 2013; 97:7639-49. [PMID: 23793341 DOI: 10.1007/s00253-013-5008-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/02/2013] [Accepted: 05/19/2013] [Indexed: 10/26/2022]
Abstract
Cytochrome P450 enzymes exhibit a tremendous potential for biotechnological applications due to their ability to introduce oxygen into non-activated carbon atoms. Their catalytic diversity is complemented by a broad substrate range covering many natural compounds. Especially the functionalization of terpenoids by P450s becomes increasingly interesting due to the diverse biological effects of these compounds. The bacterial CYP105A1 from Streptomyces griseolus was recently identified to carry out a one-step hydroxylation of several abietane-type resin acids. In this work, a whole-cell system for CYP105A1 with its heterologous electron transfer proteins Arh1 and Etp1(fd) from Schizosaccharomyces pombe was designed in Escherichia coli JM109 cells. Additionally, an enzyme-coupled cofactor regeneration system was integrated by co-expression of alcohol dehydrogenase from Lactobacillus brevis. In order to overcome mass transfer limitations of substrate into the cell, different agents were tested towards their permeabilizing activity on the E. coli membrane. The peptide antibiotic polymyxin B proved to be the most effective permeabilizer. After optimising the expression and conversion conditions, the cells were able to completely convert 200 μM of abietic acid into 15-hydroxyabietic acid within 2 h, exhibiting an initial conversion rate of 125 μM/h. These results demonstrate the high potential of this whole-cell system for the synthesis of functionalized resin acid diterpenoids.
Collapse
|
30
|
Munro AW, Girvan HM, Mason AE, Dunford AJ, McLean KJ. What makes a P450 tick? Trends Biochem Sci 2013; 38:140-50. [DOI: 10.1016/j.tibs.2012.11.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/15/2012] [Accepted: 11/21/2012] [Indexed: 12/31/2022]
|
31
|
Makeeva DS, Dovbnya DV, Donova MV, Novikova LA. Functional reconstruction of bovine P450scc steroidogenic system in <i>Escherichia coli</i>. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajmb.2013.34023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Application of a new versatile electron transfer system for cytochrome P450-based Escherichia coli whole-cell bioconversions. Appl Microbiol Biotechnol 2012; 97:7741-54. [PMID: 23254762 DOI: 10.1007/s00253-012-4612-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/14/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
Abstract
Cytochromes P450 monooxygenases are highly interesting biocatalysts for biotechnological applications, since they perform a diversity of reactions on a broad range of organic molecules. Nevertheless, the application of cytochromes P450 is limited compared to other enzymes mainly because of the necessity of a functional redox chain to transfer electrons from NAD(P)H to the monooxygenase. In this study, we established a novel robust redox chain based on adrenodoxin, which can deliver electrons to mitochondrial, bacterial and microsomal P450s. The natural membrane-associated reductase of adrenodoxin was replaced by the soluble Escherichia coli reductase. We could demonstrate for the first time that this reductase can transfer electrons to adrenodoxin. In the first step, the electron transfer properties and the potential of this new system were investigated in vitro, and in the second step, an efficient E. coli whole-cell system using CYP264A1 from Sorangium cellulosum So ce56 was developed. It could be demonstrated that this novel redox chain leads to an initial conversion rate of 55 μM/h, which was 52 % higher compared to the 36 μM/h of the redox chain containing adrenodoxin reductase. Moreover, we optimized the whole-cell biotransformation system by a detailed investigation of the effects of different media. Finally, we are able to demonstrate that the new system is generally applicable to other cytochromes P450 by combining it with the biotechnologically important steroid hydroxylase CYP106A2 from Bacillus megaterium.
Collapse
|
33
|
|
34
|
Donova MV, Egorova OV. Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 2012; 94:1423-47. [PMID: 22562163 DOI: 10.1007/s00253-012-4078-0] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 12/14/2022]
Abstract
Studies of steroid modifications catalyzed by microbial whole cells represent a well-established research area in white biotechnology. Still, advances over the last decade in genetic and metabolic engineering, whole-cell biocatalysis in non-conventional media, and process monitoring raised research in this field to a new level. This review summarizes the data on microbial steroid conversion obtained since 2003. The key reactions of structural steroid functionalization by microorganisms are highlighted including sterol side-chain degradation, hydroxylation at various positions of the steroid core, and redox reactions. We also describe methods for enhancement of bioprocess productivity, selectivity of target reactions, and application of microbial transformations for production of valuable pharmaceutical ingredients and precursors. Challenges and prospects of whole-cell biocatalysis applications in steroid industry are discussed.
Collapse
Affiliation(s)
- Marina V Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, Moscow Region 142290, Russia.
| | | |
Collapse
|
35
|
Nguyen KT, Virus C, Günnewich N, Hannemann F, Bernhardt R. Changing the Regioselectivity of a P450 from C15 to C11 Hydroxylation of Progesterone. Chembiochem 2012; 13:1161-6. [DOI: 10.1002/cbic.201100811] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Indexed: 11/11/2022]
|
36
|
Girhard M, Tieves F, Weber E, Smit MS, Urlacher VB. Cytochrome P450 reductase from Candida apicola: versatile redox partner for bacterial P450s. Appl Microbiol Biotechnol 2012; 97:1625-35. [DOI: 10.1007/s00253-012-4026-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
|
37
|
Urlacher VB, Girhard M. Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 2012; 30:26-36. [DOI: 10.1016/j.tibtech.2011.06.012] [Citation(s) in RCA: 342] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 01/14/2023]
|
38
|
Bleif S, Hannemann F, Lisurek M, von Kries JP, Zapp J, Dietzen M, Antes I, Bernhardt R. Identification of CYP106A2 as a Regioselective Allylic Bacterial Diterpene Hydroxylase. Chembiochem 2011; 12:576-82. [DOI: 10.1002/cbic.201000404] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Indexed: 11/06/2022]
|
39
|
Janocha S, Bichet A, Zöllner A, Bernhardt R. Substitution of lysine with glutamic acid at position 193 in bovine CYP11A1 significantly affects protein oligomerization and solubility but not enzymatic activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:126-31. [DOI: 10.1016/j.bbapap.2010.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/19/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
|
40
|
The CYPome of Sorangium cellulosum So ce56 and Identification of CYP109D1 as a New Fatty Acid Hydroxylase. ACTA ACUST UNITED AC 2010; 17:1295-305. [DOI: 10.1016/j.chembiol.2010.10.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 09/13/2010] [Accepted: 10/08/2010] [Indexed: 01/22/2023]
|
41
|
Khatri Y, Girhard M, Romankiewicz A, Ringle M, Hannemann F, Urlacher VB, Hutter MC, Bernhardt R. Regioselective hydroxylation of norisoprenoids by CYP109D1 from Sorangium cellulosum So ce56. Appl Microbiol Biotechnol 2010; 88:485-95. [PMID: 20645086 DOI: 10.1007/s00253-010-2756-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/29/2010] [Accepted: 06/29/2010] [Indexed: 11/26/2022]
Abstract
Sesquiterpenes are particularly interesting as flavorings and fragrances or as pharmaceuticals. Regio- or stereoselective functionalizations of terpenes are one of the main goals of synthetic organic chemistry, which are possible through radical reactions but are not selective enough to introduce the desired chiral alcohol function into those compounds. Cytochrome P450 monooxygenases are versatile biocatalysts and are capable of performing selective oxidations of organic molecules. We were able to demonstrate that CYP109D1 from Sorangium cellulosum So ce56 functions as a biocatalyst for the highly regioselective hydroxylation of norisoprenoids, alpha- and beta-ionone, which are important aroma compounds of floral scents. The substrates alpha- and beta-ionone were regioselectively hydroxylated to 3-hydroxy-alpha-ionone and 4-hydroxy-beta-ionone, respectively, which was confirmed by (1)H NMR and (13)C NMR. The results of docking alpha- and beta-ionone into a homology model of CYP109D1 gave a rational explanation for the regio-selectivity of the hydroxylation. Kinetic studies revealed that alpha- and beta-ionone can be hydroxylated with nearly identical V (max) and K (m) values. This is the first comprehensive investigation of the regioselective hydroxylation of norisoprenoids by CYP109D1.
Collapse
Affiliation(s)
- Yogan Khatri
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ewen KM, Kleser M, Bernhardt R. Adrenodoxin: the archetype of vertebrate-type [2Fe-2S] cluster ferredoxins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:111-25. [PMID: 20538075 DOI: 10.1016/j.bbapap.2010.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/28/2010] [Accepted: 06/01/2010] [Indexed: 11/15/2022]
Abstract
Adrenodoxin is probably the best characterized member of the vertebrate-type [2Fe-2S]-cluster ferredoxins. It has been in the spotlight of scientific interest for many years due to its essential role in mammalian steroid hormone biosynthesis, where it acts as electron mediator between the NADPH-dependent adrenodoxin reductase and several mitochondrial cytochromes P450. In this review we will focus on the present knowledge about protein-protein recognition in the mitochondrial cytochrome P450 system and the modulation of the electron transfer between Adx and its redox partners, AdR and CYP(s). We also intend to point out the potential biotechnological applications of Adx as a versatile electron donor to different cytochromes P450, both in vitro and in vivo. Finally we will address the comparison between the mammalian cytochrome P450-associated adrenodoxin and ferredoxins involved in iron-sulfur-cluster biosynthesis. Despite their different functions, these proteins display an amazing similarity regarding their primary sequence, tertiary structure and biophysical features.
Collapse
Affiliation(s)
- Kerstin Maria Ewen
- Department of Biochemistry, Saarland University, D-66041 Saarbrücken, Germany
| | | | | |
Collapse
|
43
|
Girhard M, Klaus T, Khatri Y, Bernhardt R, Urlacher VB. Characterization of the versatile monooxygenase CYP109B1 from Bacillus subtilis. Appl Microbiol Biotechnol 2010; 87:595-607. [DOI: 10.1007/s00253-010-2472-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/25/2010] [Accepted: 01/25/2010] [Indexed: 11/24/2022]
|
44
|
Zehentgruber D, Hannemann F, Bleif S, Bernhardt R, Lütz S. Towards Preparative Scale Steroid Hydroxylation with Cytochrome P450 Monooxygenase CYP106A2. Chembiochem 2010; 11:713-21. [DOI: 10.1002/cbic.200900706] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Goñi G, Zöllner A, Lisurek M, Velázquez-Campoy A, Pinto S, Gómez-Moreno C, Hannemann F, Bernhardt R, Medina M. Cyanobacterial electron carrier proteins as electron donors to CYP106A2 from Bacillus megaterium ATCC 13368. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1635-42. [DOI: 10.1016/j.bbapap.2009.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/02/2009] [Accepted: 07/17/2009] [Indexed: 11/15/2022]
|
46
|
Zehentgruber D, Hannemann F, Bleif S, Bernhardt R, Lütz S. Reaktionstechnische Optimierung von Steroidhydoxylierungen mit CYP106A2. CHEM-ING-TECH 2009. [DOI: 10.1002/cite.200950168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Kirby J, Keasling JD. Biosynthesis of plant isoprenoids: perspectives for microbial engineering. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:335-55. [PMID: 19575586 DOI: 10.1146/annurev.arplant.043008.091955] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Isoprenoids are a large and highly diverse group of natural products with many functions in plant primary and secondary metabolism. Isoprenoids are synthesized from common prenyl diphosphate precursors through the action of terpene synthases and terpene-modifying enzymes such as cytochrome P450 monooxygenases. Many isoprenoids have important applications in areas such as human health and nutrition, and much effort has been directed toward their production in microbial hosts. However, many hurdles must be overcome in the elucidation and functional microbial expression of the genes responsible for biosynthesis of an isoprenoid of interest. Here, we review investigations into isoprenoid function and gene discovery in plants as well as the latest advances in isoprenoid pathway engineering in both plant and microbial hosts.
Collapse
Affiliation(s)
- James Kirby
- California Institute of Quantitative Biomedical Research, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
48
|
Virus C, Bernhardt R. Molecular evolution of a steroid hydroxylating cytochrome P450 using a versatile steroid detection system for screening. Lipids 2008; 43:1133-41. [PMID: 18830657 DOI: 10.1007/s11745-008-3236-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 08/30/2008] [Indexed: 11/26/2022]
Abstract
Molecular evolution is a powerful tool for improving or changing activities of enzymes for their use in biotechnological processes. Cytochromes P450 are highly interesting enzymes for biotechnological purposes because they are able to hydroxylate a broad variety of substrates with high regio- and stereoselectivity. One promising steroid hydroxylating cytochrome P450 for biotechnological applications is CYP106A2 from Bacillus megaterium ATCC 13368. It is one of a few known bacterial cytochromes P450 able to transform steroids such as progesterone and 11-deoxycortisol. CYP106A2 can be easily expressed in Escherichia coli with a high yield and can be reconstituted using the adrenal redox proteins, adrenodoxin and adrenodoxin reductase. We developed a simple screening assay for this system and performed random mutagenesis of CYP106A2, yielding variants with improved 11-deoxycortisol and progesterone hydroxylation activity. After two generations of directed evolution, we were able to improve the k (cat)/K (m) of the 11-deoxycortisol hydroxylation by a factor of more than four. At the same time progesterone conversion was improved about 1.4-fold. Mapping the mutations identified in catalytically improved CYP106A2 variants into the structure of a CYP106A2 model suggests that these mutations influence the mobility of the F/G loop, and the interaction with the redox partner adrenodoxin. The results show the evolution of a soluble steroid hydroxylase as a potential new catalyst for the production of steroidogenic compounds.
Collapse
Affiliation(s)
- Cornelia Virus
- Naturwissenschaftlich-Technische Fakultät III, Institut für Biochemie, Universität des Saarlandes, Postfach 151150, 66041, Saarbrücken, Germany.
| | | |
Collapse
|
49
|
Ruijssenaars HJ, Sperling EMGM, Wiegerinck PHG, Brands FTL, Wery J, de Bont JAM. Testosterone 15β-hydroxylation by solvent tolerant Pseudomonas putida S12. J Biotechnol 2007; 131:205-8. [PMID: 17655961 DOI: 10.1016/j.jbiotec.2007.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 06/12/2007] [Indexed: 11/26/2022]
Abstract
A steroid 15beta-hydroxylating whole-cell solvent tolerant biocatalyst was constructed by expressing the Bacillus megaterium steroid hydroxylase CYP106A2 in the solvent tolerant Pseudomonas putida S12. Testosterone hydroxylation was improved by a factor 16 by co-expressing Fer, a putative Fe-S protein from Bacillus subtilis. In addition, the specificity for 15beta-hydroxylation was improved by mutating threonine residue 248 of CYP106A2 into valine. These new insights provide the basis for an optimized whole-cell steroid-hydroxylating biocatalyst that can be applied with an organic solvent phase.
Collapse
|
50
|
Olry A, Schneider-Belhaddad F, Heintz D, Werck-Reichhart D. A medium-throughput screening assay to determine catalytic activities of oxygen-consuming enzymes: a new tool for functional characterization of cytochrome P450 and other oxygenases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:331-40. [PMID: 17610545 DOI: 10.1111/j.1365-313x.2007.03140.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A challenge of the post-genomic era is to determine the functions of a plethora of orphan genes. This is a more acute problem when dealing with large gene families, such as the superfamily encoding cytochrome P450 enzymes in higher plants. We propose here a new, simple, medium-throughput methodology to screen for potential substrates of orphan P450 mono-oxygenases. The same technique can also be applied to screening for inhibitors of the oxygenases involved in the biosynthesis of compounds essential for plant development, such as growth regulators. The method is based on a commercially available microplate system, which detects the oxygen consumed by the catalytic reaction via an oxygen-sensing fluorophore. It is optimized using as a model CYP73A1, the cinnamic acid hydroxylase from Helianthus tuberosus, expressed in yeast. We show that the procedure is suitable not only for the detection and real-time monitoring, but also for the quantitative evaluation of enzyme activity. This new method has broad application for the identification of candidate substrates and inhibitors in chemical libraries, to support determination of physiological substrates, development of plant growth regulators, investigations on herbicide and pollutant metabolism, synthesis of valuable compounds and drug design. It also provides a fast-assay platform for determination of catalytic and inhibition parameters. The method applies to plant P450 enzymes, but also to cytochromes P450 from other organisms, and all types of oxygenases. The critical steps, calculation of oxygen consumption from fluorescence signal, and limits of the methods are discussed.
Collapse
Affiliation(s)
- Alexandre Olry
- Department of Plant Metabolic Responses, Institute of Plant Molecular Biology CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | | | | | | |
Collapse
|