1
|
Huo H, Zong L, Liu Y, Chen W, Chen J, Wei G. Rhizobial HmuS pSym as a heme-binding factor is required for optimal symbiosis between Mesorhizobium amorphae CCNWGS0123 and Robinia pseudoacacia. PLANT, CELL & ENVIRONMENT 2022; 45:2191-2210. [PMID: 35419804 DOI: 10.1111/pce.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/15/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen-fixing root nodules are formed by symbiotic association of legume hosts with rhizobia in nitrogen-deprived soils. Successful symbiosis is regulated by signals from both legume hosts and their rhizobial partners. HmuS is a heme degrading factor widely distributed in bacteria, but little is known about the role of rhizobial hmuS in symbiosis with legumes. Here, we found that inactivation of hmuSpSym in the symbiotic plasmid of Mesorhizobium amorphae CCNWGS0123 disrupted rhizobial infection, primordium formation, and nitrogen fixation in symbiosis with Robinia pseudoacacia. Although there was no difference in bacteroids differentiation, infected plant cells were shrunken and bacteroids were disintegrated in nodules of plants infected by the ΔhmuSpSym mutant strain. The balance of defence reaction was also impaired in ΔhmuSpSym strain-infected root nodules. hmuSpSym was strongly expressed in the nitrogen-fixation zone of mature nodules. Furthermore, the HmuSpSym protein could bind to heme but not degrade it. Inactivation of hmuSpSym led to significantly decreased expression levels of oxygen-sensing related genes in nodules. In summary, hmuSpSym of M. amorphae CCNWGS0123 plays an essential role in nodule development and maintenance of bacteroid survival within R. pseudoacacia cells, possibly through heme-binding in symbiosis.
Collapse
Affiliation(s)
- Haibo Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Le Zong
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Busset N, Gully D, Teulet A, Fardoux J, Camuel A, Cornu D, Severac D, Giraud E, Mergaert P. The Type III Effectome of the Symbiotic Bradyrhizobium vignae Strain ORS3257. Biomolecules 2021; 11:1592. [PMID: 34827590 PMCID: PMC8615406 DOI: 10.3390/biom11111592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
Many Bradyrhizobium strains are able to establish a Nod factor-independent symbiosis with the leguminous plant Aeschynomene indica by the use of a type III secretion system (T3SS). Recently, an important advance in the understanding of the molecular factors supporting this symbiosis has been achieved by the in silico identification and functional characterization of 27 putative T3SS effectors (T3Es) of Bradyrhizobium vignae ORS3257. In the present study, we experimentally extend this catalog of T3Es by using a multi-omics approach. Transcriptome analysis under non-inducing and inducing conditions in the ORS3257 wild-type strain and the ttsI mutant revealed that the expression of 18 out of the 27 putative effectors previously identified, is under the control of TtsI, the global transcriptional regulator of T3SS and T3Es. Quantitative shotgun proteome analysis of culture supernatant in the wild type and T3SS mutant strains confirmed that 15 of the previously determined candidate T3Es are secreted by the T3SS. Moreover, the combined approaches identified nine additional putative T3Es and one of them was experimentally validated as a novel effector. Our study underscores the power of combined proteome and transcriptome analyses to complement in silico predictions and produce nearly complete effector catalogs. The establishment of the ORS3257 effectome will form the basis for a full appraisal of the symbiotic properties of this strain during its interaction with various host legumes via different processes.
Collapse
Affiliation(s)
- Nicolas Busset
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91198 Gif-sur-Yvette, France; (N.B.); (D.C.)
| | - Djamel Gully
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD-Campus de Baillarguet, F-34398 Montpellier, France; (D.G.); (A.T.); (J.F.); (A.C.)
| | - Albin Teulet
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD-Campus de Baillarguet, F-34398 Montpellier, France; (D.G.); (A.T.); (J.F.); (A.C.)
| | - Joël Fardoux
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD-Campus de Baillarguet, F-34398 Montpellier, France; (D.G.); (A.T.); (J.F.); (A.C.)
| | - Alicia Camuel
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD-Campus de Baillarguet, F-34398 Montpellier, France; (D.G.); (A.T.); (J.F.); (A.C.)
| | - David Cornu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91198 Gif-sur-Yvette, France; (N.B.); (D.C.)
| | - Dany Severac
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, F-34094 Montpellier, France;
- Montpellier GenomiX, France Génomique, F-34094 Montpellier, France
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/Université de Montpellier/CIRAD-Campus de Baillarguet, F-34398 Montpellier, France; (D.G.); (A.T.); (J.F.); (A.C.)
| | - Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91198 Gif-sur-Yvette, France; (N.B.); (D.C.)
| |
Collapse
|
3
|
Pérez-Giménez J, Iturralde ET, Torres Tejerizo G, Quelas JI, Krol E, Borassi C, Becker A, Estevez JM, Lodeiro AR. A Stringent-Response-Defective Bradyrhizobium diazoefficiens Strain Does Not Activate the Type 3 Secretion System, Elicits an Early Plant Defense Response, and Circumvents NH 4NO 3-Induced Inhibition of Nodulation. Appl Environ Microbiol 2021; 87:e02989-20. [PMID: 33608284 PMCID: PMC8091029 DOI: 10.1128/aem.02989-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
When subjected to nutritional stress, bacteria modify their amino acid metabolism and cell division activities by means of the stringent response, which is controlled by the Rsh protein in alphaproteobacteria. An important group of alphaproteobacteria are the rhizobia, which fix atmospheric N2 in symbiosis with legume plants. Although nutritional stress is common for rhizobia while infecting legume roots, the stringent response has scarcely been studied in this group of soil bacteria. In this report, we obtained a mutant with a kanamycin resistance insertion in the rsh gene of Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean. This mutant was defective for type 3 secretion system induction, plant defense suppression at early root infection, and nodulation competition. Furthermore, the mutant produced smaller nodules, although with normal morphology, which led to lower plant biomass production. Soybean (Glycine max) genes GmRIC1 and GmRIC2, involved in autoregulation of nodulation, were upregulated in plants inoculated with the mutant under the N-free condition. In addition, when plants were inoculated in the presence of 10 mM NH4NO3, the mutant produced nodules containing bacteroids, and GmRIC1 and GmRIC2 were downregulated. The rsh mutant released more auxin to the culture supernatant than the wild type, which might in part explain its symbiotic behavior in the presence of combined N. These results indicate that the B. diazoefficiens stringent response integrates into the plant defense suppression and regulation of nodulation circuits in soybean, perhaps mediated by the type 3 secretion system.IMPORTANCE The symbiotic N2 fixation carried out between prokaryotic rhizobia and legume plants performs a substantial contribution to the N cycle in the biosphere. This symbiotic association is initiated when rhizobia infect and penetrate the root hairs, which is followed by the growth and development of root nodules, within which the infective rhizobia are established and protected. Thus, the nodule environment allows the expression and function of the enzyme complex that catalyzes N2 fixation. However, during early infection, the rhizobia find a harsh environment while penetrating the root hairs. To cope with this nuisance, the rhizobia mount a stress response known as the stringent response. In turn, the plant regulates nodulation in response to the presence of alternative sources of combined N in the surrounding medium. Control of these processes is crucial for a successful symbiosis, and here we show how the rhizobial stringent response may modulate plant defense suppression and the networks of regulation of nodulation.
Collapse
Affiliation(s)
- Julieta Pérez-Giménez
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Esteban T Iturralde
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan Ignacio Quelas
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Elizaveta Krol
- Center for Synthetic Microbiology (SYNMIKRO), Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Cecilia Borassi
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - José M Estevez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Aníbal R Lodeiro
- IBBM, Facultad de Ciencias Exactas, CCT-La Plata CONICET, Universidad Nacional de La Plata, La Plata, Argentina
- Laboratorio de Genética, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
4
|
Ratu STN, Teulet A, Miwa H, Masuda S, Nguyen HP, Yasuda M, Sato S, Kaneko T, Hayashi M, Giraud E, Okazaki S. Rhizobia use a pathogenic-like effector to hijack leguminous nodulation signalling. Sci Rep 2021; 11:2034. [PMID: 33479414 PMCID: PMC7820406 DOI: 10.1038/s41598-021-81598-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/06/2021] [Indexed: 01/29/2023] Open
Abstract
Legume plants form a root-nodule symbiosis with rhizobia. This symbiosis establishment generally relies on rhizobium-produced Nod factors (NFs) and their perception by leguminous receptors (NFRs) that trigger nodulation. However, certain rhizobia hijack leguminous nodulation signalling via their type III secretion system, which functions in pathogenic bacteria to deliver effector proteins into host cells. Here, we report that rhizobia use pathogenic-like effectors to hijack legume nodulation signalling. The rhizobial effector Bel2-5 resembles the XopD effector of the plant pathogen Xanthomonas campestris and could induce nitrogen-fixing nodules on soybean nfr mutant. The soybean root transcriptome revealed that Bel2-5 induces expression of cytokinin-related genes, which are important for nodule organogenesis and represses ethylene- and defense-related genes that are deleterious to nodulation. Remarkably, Bel2-5 introduction into a strain unable to nodulate soybean mutant affected in NF perception conferred nodulation ability. Our findings show that rhizobia employ and have customized pathogenic effectors to promote leguminous nodulation signalling.
Collapse
Affiliation(s)
- Safirah Tasa Nerves Ratu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Albin Teulet
- Laboratoire Des Symbioses Tropicales Et Méditerranéennes, Institut de Recherche Pour Le Développement, UMR Institut de Recherche Pour Le Développement/SupAgro/Institut National de Recherche Pour L'Agriculture, L'Alimentation Et L'Environnement, Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement, 34398, Montpellier Cedex 5, France
| | - Hiroki Miwa
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Sachiko Masuda
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Hien P Nguyen
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Michiko Yasuda
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Takakazu Kaneko
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, 603-8555, Japan
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Eric Giraud
- Laboratoire Des Symbioses Tropicales Et Méditerranéennes, Institut de Recherche Pour Le Développement, UMR Institut de Recherche Pour Le Développement/SupAgro/Institut National de Recherche Pour L'Agriculture, L'Alimentation Et L'Environnement, Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement, 34398, Montpellier Cedex 5, France
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan.
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
5
|
Wang X, Huo H, Luo Y, Liu D, Zhao L, Zong L, Chou M, Chen J, Wei G. Type III secretion systems impact Mesorhizobium amorphae CCNWGS0123 compatibility with Robinia pseudoacacia. TREE PHYSIOLOGY 2019; 39:1533-1550. [PMID: 31274160 DOI: 10.1093/treephys/tpz077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/26/2018] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Rhizobia and legume plants are famous mutualistic symbiosis partners who provide nitrogen nutrition to the natural environment. Rhizobial type III secretion systems (T3SSs) deliver effectors that manipulate the metabolism of eukaryotic host cells. Mesorhizobium amorphae CCNWGS0123 (GS0123) contains two T3SS gene clusters, T3SS-I and T3SS-II. T3SS-I contains all the basal components for an integrated T3SS, and the expression of T3SS-I genes is up-regulated in the presence of flavonoids. In contrast, T3SS-II lacks the primary extracellular elements of T3SSs, and the expression of T3SS-II genes is down-regulated in the presence of flavonoids. Inoculation tests on Robinia pseudoacacia displayed considerable differences in gene expression patterns and levels among roots inoculated with GS0123 and T3SS-deficient mutant (GS0123ΔrhcN1 (GS0123ΔT1), GS0123ΔrhcN2 (GS0123ΔT2) and GS0123ΔrhcN1ΔrhcN2 (GS0123ΔS)). Compared with the GS0123-inoculated plants, GS0123ΔT1-inoculated roots formed very few infection threads and effective nodules, while GS0123ΔT2-inoculated roots formed a little fewer infection threads and effective nodules with increased numbers of bacteroids enclosed in one symbiosome. Moreover, almost no infection threads or effective nodules were observed in GS0123ΔS-inoculated roots. In addition to evaluations of plant immunity signals, we observed that the coexistence of T3SS-I and T3SS-II promoted infection by suppressing host defense response in the reactive oxygen species defense response pathway. Future studies should focus on identifying rhizobial T3SS effectors and their host target proteins.
Collapse
Affiliation(s)
- Xinye Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haibo Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yantao Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Dongying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Liang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Le Zong
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
6
|
Alaswad AA, Oehrle NW, Krishnan HB. Classical Soybean ( Glycine max (L.) Merr) Symbionts, Sinorhizobium fredii USDA191 and Bradyrhizobium diazoefficiens USDA110, Reveal Contrasting Symbiotic Phenotype on Pigeon Pea ( Cajanus cajan (L.) Millsp). Int J Mol Sci 2019; 20:E1091. [PMID: 30832430 PMCID: PMC6429105 DOI: 10.3390/ijms20051091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
Pigeon pea (Cajanus cajan (L.) Millspaugh) is cultivated widely in semiarid agricultural regions in over 90 countries around the world. This important legume can enter into symbiotic associations with a wide range of rhizobia including Bradyrhizobium and fast-growing rhizobia. In comparison with other major legumes such as soybean and common bean, only limited information is available on the symbiotic interaction of pigeon pea with rhizobia. In this study, we investigated the ability of two classical soybean symbionts-S. fredii USDA191 and B. diazoefficiens USDA110-and their type 3 secretion system (T3SS) mutants, to nodulate pigeon pea. Both S. fredii USDA191 and a T3SS mutant S. fredii RCB26 formed nitrogen-fixing nodules on pigeon pea. Inoculation of pigeon pea roots with B. diazoefficiens USDA110 and B. diazoefficiens Δ136 (a T3SS mutant) resulted in the formation of Fix- and Fix+ nodules, respectively. Light and transmission electron microscopy of Fix- nodules initiated by B. diazoefficiens USDA110 revealed the complete absence of rhizobia within these nodules. In contrast, Fix+ nodules formed by B. diazoefficiens Δ136 revealed a central region that was completely filled with rhizobia. Ultrastructural investigation revealed the presence of numerous bacteroids surrounded by peribacteroid membranes in the infected cells. Analysis of nodule proteins by one- and two-dimensional gel electrophoresis revealed that leghemoglobin was absent in B. diazoefficiens USDA110 nodules, while it was abundantly present in B. diazoefficiens Δ136 nodules. Results of competitive nodulation assays indicated that B. diazoefficiens Δ136 had greater competitiveness for nodulation on pigeon pea than did the wild type strain. Our results suggest that this T3SS mutant of B. diazoefficiens, due to its greater competitiveness and ability to form Fix+ nodules, could be exploited as a potential inoculant to boost pigeon pea productivity.
Collapse
Affiliation(s)
- Alaa A Alaswad
- Plant Science Division, University of Missouri, Columbia, MO 65211, USA.
- King Abdul Aziz University, 21589 Jeddah, Saudi Arabia.
| | - Nathan W Oehrle
- Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO 65211, USA.
| | - Hari B Krishnan
- Plant Science Division, University of Missouri, Columbia, MO 65211, USA.
- Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO 65211, USA.
| |
Collapse
|
7
|
Sugawara M, Takahashi S, Umehara Y, Iwano H, Tsurumaru H, Odake H, Suzuki Y, Kondo H, Konno Y, Yamakawa T, Sato S, Mitsui H, Minamisawa K. Variation in bradyrhizobial NopP effector determines symbiotic incompatibility with Rj2-soybeans via effector-triggered immunity. Nat Commun 2018; 9:3139. [PMID: 30087346 PMCID: PMC6081438 DOI: 10.1038/s41467-018-05663-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/12/2018] [Indexed: 12/31/2022] Open
Abstract
Genotype-specific incompatibility in legume-rhizobium symbiosis has been suggested to be controlled by effector-triggered immunity underlying pathogenic host-bacteria interactions. However, the rhizobial determinant interacting with the host resistance protein (e.g., Rj2) and the molecular mechanism of symbiotic incompatibility remain unclear. Using natural mutants of Bradyrhizobium diazoefficiens USDA 122, we identified a type III-secretory protein NopP as the determinant of symbiotic incompatibility with Rj2-soybean. The analysis of nopP mutations and variants in a culture collection reveal that three amino acid residues (R60, R67, and H173) in NopP are required for Rj2-mediated incompatibility. Complementation of rj2-soybean by the Rj2 allele confers the incompatibility induced by USDA 122-type NopP. In response to incompatible strains, Rj2-soybean plants activate defense marker gene PR-2 and suppress infection thread number at 2 days after inoculation. These results suggest that Rj2-soybeans monitor the specific variants of NopP and reject bradyrhizobial infection via effector-triggered immunity mediated by Rj2 protein.
Collapse
Affiliation(s)
- Masayuki Sugawara
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
| | - Satoko Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Yosuke Umehara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hiroya Iwano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Hirohito Tsurumaru
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Haruka Odake
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Yuta Suzuki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Hitoshi Kondo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Yuki Konno
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Takeo Yamakawa
- Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
8
|
Functional Genomics Approaches to Studying Symbioses between Legumes and Nitrogen-Fixing Rhizobia. High Throughput 2018; 7:ht7020015. [PMID: 29783718 PMCID: PMC6023288 DOI: 10.3390/ht7020015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 01/24/2023] Open
Abstract
Biological nitrogen fixation gives legumes a pronounced growth advantage in nitrogen-deprived soils and is of considerable ecological and economic interest. In exchange for reduced atmospheric nitrogen, typically given to the plant in the form of amides or ureides, the legume provides nitrogen-fixing rhizobia with nutrients and highly specialised root structures called nodules. To elucidate the molecular basis underlying physiological adaptations on a genome-wide scale, functional genomics approaches, such as transcriptomics, proteomics, and metabolomics, have been used. This review presents an overview of the different functional genomics approaches that have been performed on rhizobial symbiosis, with a focus on studies investigating the molecular mechanisms used by the bacterial partner to interact with the legume. While rhizobia belonging to the alpha-proteobacterial group (alpha-rhizobia) have been well studied, few studies to date have investigated this process in beta-proteobacteria (beta-rhizobia).
Collapse
|
9
|
Ramongolalaina C, Teraishi M, Okumoto Y. QTLs underlying the genetic interrelationship between efficient compatibility of Bradyrhizobium strains with soybean and genistein secretion by soybean roots. PLoS One 2018; 13:e0194671. [PMID: 29617389 PMCID: PMC5884529 DOI: 10.1371/journal.pone.0194671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/07/2018] [Indexed: 12/18/2022] Open
Abstract
Soybean plants establish symbiotic relationships with soil rhizobia which form nodules on the plant roots. Nodule formation starts when the plant roots exudate isoflavonoids that induce nod gene expression of a specific Bradyrhizobium. We examined the specific indigenous rhizobia that form nodules with the soybean cultivars Peking and Tamahomare in different soils. PCR-RFLP analysis targeted to the 16S-23S rRNA gene internal transcribed spacer (ITS) region of the bacterial type of each root nodule showed that Bradyrhizobium japonicum (USDA110-type) and Bradyrhizobium elkanii (USDA94-type) had high compatibility with the Tamahomare and Peking cultivars, respectively. We grew 93 recombinant inbred lines (RIL) of soybean seeds derived from the cross between Peking and Tamahomare in three different field soils and identified the indigenous rhizobia nodulating each line using the same PCR-RFLP analysis. QTL analysis identified one QTL region in chromosome-18 with a highly significant additive effect that controls compatibility with both B. japonicum USDA110 and B. elkanii USDA94. We also measured the amount of daidzein and genistein secretion from roots of the 93 RILs by HPLC analysis. QTL analysis showed one QTL region in chromosome-18 controlling genistein secretion from roots and coinciding with that regulating compatibility of specific indigenous rhizobia with soybean. The amount of genistein may be a major regulatory factor in soybean-rhizobium compatibility.
Collapse
MESH Headings
- Bradyrhizobium/genetics
- Bradyrhizobium/physiology
- DNA, Bacterial/isolation & purification
- DNA, Bacterial/metabolism
- Flavonoids/metabolism
- Genistein/metabolism
- Isoflavones/metabolism
- Plant Roots/genetics
- Plant Roots/metabolism
- Plant Roots/microbiology
- Quantitative Trait Loci
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Glycine max/genetics
- Glycine max/metabolism
- Glycine max/microbiology
- Symbiosis
Collapse
Affiliation(s)
| | - Masayoshi Teraishi
- Graduate School of Agriculture, Kyoto University, Oiwake, Kitashirakawa, Sakyo, Kyoto, Japan
| | - Yutaka Okumoto
- Graduate School of Agriculture, Kyoto University, Oiwake, Kitashirakawa, Sakyo, Kyoto, Japan
| |
Collapse
|
10
|
Durán D, Imperial J, Palacios J, Ruiz-Argüeso T, Göttfert M, Zehner S, Rey L. Characterization of a novel MIIA domain-containing protein (MdcE) in Bradyrhizobium spp. FEMS Microbiol Lett 2018; 365:4769627. [PMID: 29281013 DOI: 10.1093/femsle/fnx276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/20/2017] [Indexed: 11/14/2022] Open
Abstract
Several genes coding for proteins with metal ion-inducible autocleavage (MIIA) domains were identified in type III secretion system tts gene clusters from draft genomes of recently isolated Bradyrhizobium spp. MIIA domains have been first described in the effectors NopE1 and NopE2 of Bradyrhizobium diazoefficiens USDA 110. All identified genes are preceded by tts box promoter motifs. The identified proteins contain one or two MIIA domains. A phylogenetic analysis of 35 MIIA domain sequences from 16 Bradyrhizobium strains revealed four groups. The protein from Bradyrhizobium sp. LmjC strain contains a single MIIA domain and was designated MdcE (MdcELmjC). It was expressed as a fusion to maltose-binding protein (MalE) in Escherichia coli and subsequently purified by affinity chromatography. Recombinant MalE-MdcELmjC-Strep protein exhibited autocleavage in the presence of Ca2+, Cu2+, Cd2+ and Mn2+, but not in the presence of Mg2+, Ni2+ or Co2+. Site-directed mutagenesis at the predicted cleavage site abolished autocleavage activity of MdcELmjC. An LmjC mdcE- mutant was impaired in the ability to nodulate Lupinus angustifolius and Macroptilium atropurpureum.
Collapse
Affiliation(s)
- David Durán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid.,Instituto de Ciencias Agrarias (ICA), Consejo Superior Investigaciones Científicas, Serrano 115, bis, 28006 Madrid, Spain
| | - José Palacios
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| | - Tomás Ruiz-Argüeso
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| | - Michael Göttfert
- Institute of Genetics, Technische Universität Dresden, Helmholtzstrasse 10, 01062 Dresden, Germany
| | - Susanne Zehner
- Institute of Genetics, Technische Universität Dresden, Helmholtzstrasse 10, 01062 Dresden, Germany
| | - Luis Rey
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| |
Collapse
|
11
|
Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose. Genes (Basel) 2017; 9:genes9010001. [PMID: 29267254 PMCID: PMC5793154 DOI: 10.3390/genes9010001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022] Open
Abstract
Simultaneous quantification of transcripts of the whole bacterial genome allows the analysis of the global transcriptional response under changing conditions. RNA-seq and microarrays are the most used techniques to measure these transcriptomic changes, and both complement each other in transcriptome profiling. In this review, we exhaustively compiled the symbiosis-related transcriptomic reports (microarrays and RNA sequencing) carried out hitherto in rhizobia. This review is specially focused on transcriptomic changes that takes place when five rhizobial species, Bradyrhizobium japonicum (=diazoefficiens) USDA 110, Rhizobium leguminosarum biovar viciae 3841, Rhizobium tropici CIAT 899, Sinorhizobium (=Ensifer) meliloti 1021 and S. fredii HH103, recognize inducing flavonoids, plant-exuded phenolic compounds that activate the biosynthesis and export of Nod factors (NF) in all analysed rhizobia. Interestingly, our global transcriptomic comparison also indicates that each rhizobial species possesses its own arsenal of molecular weapons accompanying the set of NF in order to establish a successful interaction with host legumes.
Collapse
|
12
|
Liu Y, Jiang X, Guan D, Zhou W, Ma M, Zhao B, Cao F, Li L, Li J. Transcriptional analysis of genes involved in competitive nodulation in Bradyrhizobium diazoefficiens at the presence of soybean root exudates. Sci Rep 2017; 7:10946. [PMID: 28887528 PMCID: PMC5591287 DOI: 10.1038/s41598-017-11372-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
Nodulation competition is a key factor that limits symbiotic nitrogen fixation between rhizobia and their host legumes. Soybean root exudates (SREs) are thought to act as signals that influence Bradyrhizobium ability to colonize roots and to survive in the rhizosphere, and thus they act as a key determinant of nodulation competitiveness. In order to find the competitiveness-related genes in B. diazoefficiens, the transcriptome of two SREs treated B. diazoefficiens with completely different nodulation abilities (B. diazoefficiens 4534 and B. diazoefficiens 4222) were sequenced and compared. In SREs treated strain 4534 (SREs-4534), 253 unigenes were up-regulated and 204 unigenes were down-regulated. In SREs treated strain 4534 (SREs-4222), the numbers of up- and down-regulated unigenes were 108 and 185, respectively. There were considerable differences between the SREs-4534 and SREs-4222 gene expression profiles. Some differentially expressed genes are associated with a two-component system (i.g., nodW, phyR-σEcfG), bacterial chemotaxis (i.g., cheA, unigene04832), ABC transport proteins (i.g., unigene02212), IAA (indole-3-acetic acid) metabolism (i.g., nthA, nthB), and metabolic fitness (i.g., put.), which may explain the higher nodulation competitiveness of B. diazoefficiens in the rhizosphere. Our results provide a comprehensive transcriptomic resource for SREs treated B. diazoefficiens and will facilitate further studies on competitiveness-related genes in B. diazoefficiens.
Collapse
Affiliation(s)
- Yao Liu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China.
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Zhou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China
| | - Baisuo Zhao
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China
| | - Li Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
13
|
Abstract
Beneficial microbes such as rhizobia possess effector proteins that are secreted into the host cytoplasm where they modulate host-signaling pathways. Among these effectors, type 3 secreted effectors (T3Es) of rhizobia play roles in promoting nitrogen-fixing nodule symbiosis, suppressing host defenses and directly activating symbiosis-related processes. Rhizobia use the same strategy as pathogenic bacteria to suppress host defenses such as targeting the MAPK cascade. In addition, rhizobial T3E can promote root nodule symbiosis by directly activating Nod factor signaling, which bypasses Nod factor perception. The various strategies employed by beneficial microbes to promote infection and maintain viability in the host are therefore crucial for plant endosymbiosis.
Collapse
Affiliation(s)
- Hiroki Miwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Shin Okazaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
14
|
The naringenin-induced exoproteome of Rhizobium etli CE3. Arch Microbiol 2017; 199:737-755. [PMID: 28255691 DOI: 10.1007/s00203-017-1351-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 01/29/2023]
Abstract
Flavonoids excreted by legume roots induce the expression of symbiotically essential nodulation (nod) genes in rhizobia, as well as that of specific protein export systems. In the bean microsymbiont Rhizobium etli CE3, nod genes are induced by the flavonoid naringenin. In this study, we identified 693 proteins in the exoproteome of strain CE3 grown in minimal medium with or without naringenin, with 101 and 100 exoproteins being exclusive to these conditions, respectively. Four hundred ninety-two (71%) of the extracellular proteins were found in both cultures. Of the total exoproteins identified, nearly 35% were also present in the intracellular proteome of R. etli bacteroids, 27% had N-terminal signal sequences and a significant number had previously demonstrated or possible novel roles in symbiosis, including bacterial cell surface modification, adhesins, proteins classified as MAMPs (microbe-associated molecular patterns), such as flagellin and EF-Tu, and several normally cytoplasmic proteins as Ndk and glycolytic enzymes, which are known to have extracellular "moonlighting" roles in bacteria that interact with eukaryotic cells. It is noteworthy that the transmembrane ß (1,2) glucan biosynthesis protein NdvB, an essential symbiotic protein in rhizobia, was found in the R. etli naringenin-induced exoproteome. In addition, potential binding sites for two nod-gene transcriptional regulators (NodD) occurred somewhat more frequently in the promoters of genes encoding naringenin-induced exoproteins in comparison to those ofexoproteins found in the control condition.
Collapse
|
15
|
Abstract
Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial Nops (nodulation outer proteins) play a crucial symbiotic role in many strain-host combinations. Nops are defined as proteins secreted via a rhizobial T3SS (type III secretion system). Functional T3SSs have been characterized in many rhizobial strains. Nops have been identified using various genetic, biochemical, proteomic, genomic and experimental approaches. Certain Nops represent extracellular components of the T3SS, which are visible in electron micrographs as bacterial surface appendages called T3 (type III) pili. Other Nops are T3 effector proteins that can be translocated into plant cells. Rhizobial T3 effectors manipulate cellular processes in host cells to suppress plant defence responses against rhizobia and to promote symbiosis-related processes. Accordingly, mutant strains deficient in synthesis or secretion of T3 effectors show reduced symbiotic properties on certain host plants. On the other hand, direct or indirect recognition of T3 effectors by plant cells expressing specific R (resistance) proteins can result in effector triggered defence responses that negatively affect rhizobial infection. Hence Nops are double-edged swords that may promote establishment of symbiosis with one legume (symbiotic factors) and impair symbiotic processes when bacteria are inoculated on another legume species (asymbiotic factors). In the present review, we provide an overview of our current understanding of Nops. We summarize their symbiotic effects, their biochemical properties and their possible modes of action. Finally, we discuss future perspectives in the field of T3 effector research.
Collapse
|
16
|
Vinardell JM, Acosta-Jurado S, Zehner S, Göttfert M, Becker A, Baena I, Blom J, Crespo-Rivas JC, Goesmann A, Jaenicke S, Krol E, McIntosh M, Margaret I, Pérez-Montaño F, Schneiker-Bekel S, Serranía J, Szczepanowski R, Buendía AM, Lloret J, Bonilla I, Pühler A, Ruiz-Sainz JE, Weidner S. The Sinorhizobium fredii HH103 Genome: A Comparative Analysis With S. fredii Strains Differing in Their Symbiotic Behavior With Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:811-24. [PMID: 25675256 DOI: 10.1094/mpmi-12-14-0397-fi] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sinorhizobium fredii HH103 is a fast-growing rhizobial strain infecting a broad range of legumes including both American and Asiatic soybeans. In this work, we present the sequencing and annotation of the HH103 genome (7.25 Mb), consisting of one chromosome and six plasmids and representing the structurally most complex sinorhizobial genome sequenced so far. Comparative genomic analyses of S. fredii HH103 with strains USDA257 and NGR234 showed that the core genome of these three strains contains 4,212 genes (61.7% of the HH103 genes). Synteny plot analysis revealed that the much larger chromosome of USDA257 (6.48 Mb) is colinear to the HH103 (4.3 Mb) and NGR324 chromosomes (3.9 Mb). An additional region of the USDA257 chromosome of about 2 Mb displays similarity to plasmid pSfHH103e. Remarkable differences exist between HH103 and NGR234 concerning nod genes, flavonoid effect on surface polysaccharide production, and quorum-sensing systems. Furthermore a number of protein secretion systems have been found. Two genes coding for putative type III-secreted effectors not previously described in S. fredii, nopI and gunA, have been located on the HH103 genome. These differences could be important to understand the different symbiotic behavior of S. fredii strains HH103, USDA257, and NGR234 with soybean.
Collapse
Affiliation(s)
- José-María Vinardell
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Sebastián Acosta-Jurado
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Susanne Zehner
- 2 Technische Universität Dresden, Institut für Genetik, Helmholtzstrasse 10, 01062 Dresden, Germany
| | - Michael Göttfert
- 2 Technische Universität Dresden, Institut für Genetik, Helmholtzstrasse 10, 01062 Dresden, Germany
| | - Anke Becker
- 3 LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Faculty of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Irene Baena
- 4 Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049-Madrid, Spain
| | - Jochem Blom
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - Juan Carlos Crespo-Rivas
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Alexander Goesmann
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - Sebastian Jaenicke
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - Elizaveta Krol
- 3 LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Faculty of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Matthew McIntosh
- 3 LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Faculty of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Isabel Margaret
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Francisco Pérez-Montaño
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Susanne Schneiker-Bekel
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - Javier Serranía
- 3 LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Faculty of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Rafael Szczepanowski
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - Ana-María Buendía
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Javier Lloret
- 4 Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049-Madrid, Spain
| | - Ildefonso Bonilla
- 4 Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049-Madrid, Spain
| | - Alfred Pühler
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - José-Enrique Ruiz-Sainz
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Stefan Weidner
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| |
Collapse
|
17
|
Guo Gao T, Yuan Xu Y, Jiang F, Zhen Li B, Shui Yang J, Tao Wang E, Li Yuan H. Nodulation Characterization and Proteomic Profiling of Bradyrhizobium liaoningense CCBAU05525 in Response to Water-Soluble Humic Materials. Sci Rep 2015; 5:10836. [PMID: 26054030 PMCID: PMC4650689 DOI: 10.1038/srep10836] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/14/2015] [Indexed: 12/16/2022] Open
Abstract
The lignite biodegradation procedure to produce water-soluble humic materials (WSHM) with a Penicillium stain was established by previous studies in our laboratory. This study researched the effects of WSHM on the growth of Bradyrhizobium liaoningense CCBAU05525 and its nodulation on soybean. Results showed that WSHM enhanced the cell density of CCBAU05525 in culture, and increased the nodule number, nodule fresh weight and nitrogenase activity of the inoculated soybean plants. Then the chemical compounds of WSHM were analyzed and flavonoid analogues were identified in WSHM through tetramethyl ammonium hydroxide (TMAH)-py-GC/MS analysis. Protein expression profiles and nod gene expression of CCBAU05525 in response to WSHM or genistein were compared to illustrate the working mechanism of WSHM. The differently expressed proteins in response to WSHM were involved in nitrogen and carbon metabolism, nucleic acid metabolism, signaling, energy production and some transmembrane transports. WSHM was found more effective than genistein in inducing the nod gene expression. These results demonstrated that WSHM stimulated cell metabolism and nutrient transport, which resulted in increased cell density of CCBAU05525 and prepared the bacteria for better bacteroid development. Furthermore, WSHM had similar but superior functions to flavone in inducing nod gene and nitrogen fixation related proteins expression in CCBAU05525.
Collapse
Affiliation(s)
- Tong Guo Gao
- State Key Laboratory of AgroBiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
- College of Life Science, Agricultural University of Hebei, Baoding 071001, P. R. China
| | - Yuan Yuan Xu
- State Key Laboratory of AgroBiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Feng Jiang
- State Key Laboratory of AgroBiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Bao Zhen Li
- State Key Laboratory of AgroBiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Jin Shui Yang
- State Key Laboratory of AgroBiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - En Tao Wang
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F. 11340, Mexico
| | - Hong Li Yuan
- State Key Laboratory of AgroBiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
18
|
Gomes DF, da Silva Batista JS, Rolla AAP, da Silva LP, Bloch C, Galli-Terasawa LV, Hungria M. Proteomic analysis of free-living Bradyrhizobium diazoefficiens: highlighting potential determinants of a successful symbiosis. BMC Genomics 2014; 15:643. [PMID: 25086822 PMCID: PMC4287336 DOI: 10.1186/1471-2164-15-643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Strain CPAC 7 (=SEMIA 5080) was recently reclassified into the new species Bradyrhizobium diazoefficiens; due to its outstanding efficiency in fixing nitrogen, it has been used in commercial inoculants for application to crops of soybean [Glycine max (L.) Merr.] in Brazil and other South American countries. Although the efficiency of B. diazoefficiens inoculant strains is well recognized, few data on their protein expression are available. RESULTS We provided a two-dimensional proteomic reference map of CPAC 7 obtained under free-living conditions, with the successful identification of 115 spots, representing 95 different proteins. The results highlighted the expression of molecular determinants potentially related to symbiosis establishment (e.g. inositol monophosphatase, IMPase), fixation of atmospheric nitrogen (N2) (e.g. NifH) and defenses against stresses (e.g. chaperones). By using bioinformatic tools, it was possible to attribute probable functions to ten hypothetical proteins. For another ten proteins classified as "NO related COG" group, we analyzed by RT-qPCR the relative expression of their coding-genes in response to the nodulation-gene inducer genistein. Six of these genes were up-regulated, including blr0227, which may be related to polyhydroxybutyrate (PHB) biosynthesis and competitiveness for nodulation. CONCLUSIONS The proteomic map contributed to the identification of several proteins of B. diazoefficiens under free-living conditions and our approach-combining bioinformatics and gene-expression assays-resulted in new information about unknown genes that might play important roles in the establishment of the symbiosis with soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mariangela Hungria
- Embrapa Soja, Embrapa Soja, C,P, 231, 86001-970 Londrina, Paraná, Brazil.
| |
Collapse
|
19
|
Okazaki S, Kaneko T, Sato S, Saeki K. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc Natl Acad Sci U S A 2013; 110:17131-6. [PMID: 24082124 PMCID: PMC3801068 DOI: 10.1073/pnas.1302360110] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Root-nodule symbiosis between leguminous plants and nitrogen-fixing bacteria (rhizobia) involves molecular communication between the two partners. Key components for the establishment of symbiosis are rhizobium-derived lipochitooligosaccharides (Nod factors; NFs) and their leguminous receptors (NFRs) that initiate nodule development and bacterial entry. Here we demonstrate that the soybean microsymbiont Bradyrhizobium elkanii uses the type III secretion system (T3SS), which is known for its delivery of virulence factors by pathogenic bacteria, to promote symbiosis. Intriguingly, wild-type B. elkanii, but not the T3SS-deficient mutant, was able to form nitrogen-fixing nodules on soybean nfr mutant En1282. Furthermore, even the NF-deficient B. elkanii mutant induced nodules unless T3SS genes were mutated. Transcriptional analysis revealed that expression of the soybean nodulation-specific genes ENOD40 and NIN was increased in the roots of En1282 inoculated with B. elkanii but not with its T3SS mutant, suggesting that T3SS activates host nodulation signaling by bypassing NF recognition. Root-hair curling and infection threads were not observed in the roots of En1282 inoculated with B. elkanii, indicating that T3SS is involved in crack entry or intercellular infection. These findings suggest that B. elkanii has adopted a pathogenic system for activating host symbiosis signaling to promote its infection.
Collapse
Affiliation(s)
- Shin Okazaki
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Takakazu Kaneko
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Chiba 292-0818, Japan; and
| | - Kazuhiko Saeki
- Department of Biological Sciences, Faculty of Science and
- Kyousei Science Center for Life and Nature, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
20
|
Tsukui T, Eda S, Kaneko T, Sato S, Okazaki S, Kakizaki-Chiba K, Itakura M, Mitsui H, Yamashita A, Terasawa K, Minamisawa K. The type III Secretion System of Bradyrhizobium japonicum USDA122 mediates symbiotic incompatibility with Rj2 soybean plants. Appl Environ Microbiol 2013; 79:1048-51. [PMID: 23204412 PMCID: PMC3568557 DOI: 10.1128/aem.03297-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/26/2012] [Indexed: 11/20/2022] Open
Abstract
The rhcJ and ttsI mutants of Bradyrhizobium japonicum USDA122 for the type III protein secretion system (T3SS) failed to secrete typical effector proteins and gained the ability to nodulate Rj2 soybean plants (Hardee), which are symbiotically incompatible with wild-type USDA122. This suggests that effectors secreted via the T3SS trigger incompatibility between these two partners.
Collapse
Affiliation(s)
- Takahiro Tsukui
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shima Eda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takakazu Kaneko
- Faculty of Engineering, Kyoto Sangyo University, Kyoto, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Shin Okazaki
- Faculty of Agriculture, Tokyo University of Agricultural Technology, Tokyo, Japan
| | | | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
21
|
Fotiadis CT, Dimou M, Georgakopoulos DG, Katinakis P, Tampakaki AP. Functional characterization of NopT1 and NopT2, two type III effectors of Bradyrhizobium japonicum. FEMS Microbiol Lett 2012; 327:66-77. [PMID: 22112296 DOI: 10.1111/j.1574-6968.2011.02466.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/08/2011] [Accepted: 11/15/2011] [Indexed: 12/16/2023] Open
Abstract
NopT1 and NopT2, putative type III effectors from the plant symbiotic bacterium Bradyrhizobium japonicum, are predicted to belong to a family of YopT/AvrPphB effectors, which are cysteine proteases. In the present study, we showed that both NopT1 and NopT2 indeed possess cysteine protease activity. When overexpressed in Escherichia coli, both NopT1 and NopT2 undergo autoproteolytic processing which is largely abolished in the presence of E-64, a papain family-specific inhibitor. Mutations of NopT1 disrupting either the catalytic triad or the putative autoproteolytic site reduce or markedly abolish the protease activity. Autocleavage likely occurs between residues K48 and M49, though another potential cleavage site is also possible. NopT1 also elicitis HR-like cell death when transiently expressed in tobacco plants and its cysteine protease activity is essential for this ability. In contrast, no macroscopic symptoms were observed for NopT2. Furthermore, mutational analysis provided evidence that NopT1 may undergo acylation inside plant cells and that this would be required for its capacity to elicit HR-like cell death in tobacco.
Collapse
Affiliation(s)
- Christos T Fotiadis
- Laboratory of General and Agricultural Microbiology, Department of Agricultural Biotechnology, Agricultural University of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
22
|
da Silva Batista JS, Hungria M. Proteomics reveals differential expression of proteins related to a variety of metabolic pathways by genistein-induced Bradyrhizobium japonicum strains. J Proteomics 2011; 75:1211-9. [PMID: 22119543 DOI: 10.1016/j.jprot.2011.10.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 11/19/2022]
Abstract
The rhizobia-legume symbiosis requires a coordinated molecular interaction between the symbionts, initiated by seed and root exudation of several compounds, mainly flavonoids, that trigger the expression of nodulation genes in the bacteria. Since the role of flavonoids seems to be broader than the induction of nodulation genes, we aimed at characterizing genistein-induced proteins of Bradyrhizobium japonicum CPAC 15 (=SEMIA 5079), used in commercial soybean inoculants in Brazil, and of two genetically related strains grown in vitro. Whole-cell proteins were extracted both from induced (1 μM genistein) and from non-induced cultures of the three strains, and separated by two-dimensional electrophoresis. Spot profiles were compared between the two conditions and selected spots were excised and identified by mass spectrometry. Forty-seven proteins were significantly induced by genistein, including several hypothetical proteins, the cytoplasmic flagellar component FliG, periplasmic ABC transporters, a protein related to biosynthesis of exopolysaccharides (ExoN), and proteins involved in redox-state maintenance. Noteworthy was the induction of the PhyR-σ(EcfG) regulon, recently demonstrated to be involved in the symbiotic efficiency of, and general stress response in B. japonicum. Our results confirm that the role of flavonoids, such as genistein, can go far beyond the expression of nodulation-related proteins in B. japonicum.
Collapse
|
23
|
Krishnan HB, Natarajan SS, Kim WS. Distinct cell surface appendages produced by Sinorhizobium fredii USDA257 and S. fredii USDA191, cultivar-specific and nonspecific symbionts of soybean. Appl Environ Microbiol 2011; 77:6240-8. [PMID: 21764962 PMCID: PMC3165413 DOI: 10.1128/aem.05366-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/05/2011] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium fredii USDA257 and S. fredii USDA191 are fast-growing rhizobia that form nitrogen-fixing nodules on soybean roots. In contrast to USDA191, USDA257 exhibits cultivar specificity and can form nodules only on primitive soybean cultivars. In response to flavonoids released from soybean roots, these two rhizobia secrete nodulation outer proteins (Nop) to the extracellular milieu through a type III secretion system. In spite of the fact that Nops are known to regulate legume nodulation in a host-specific manner, very little is known about the differences in the compositions of Nops and surface appendages elaborated by USDA191 and USDA257. In this study we compared the Nop profiles of USDA191 and USDA257 by one-dimensional (1D) and 2D gel electrophoresis and identified several of these proteins by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and liquid chromatography-tandem MS (LC-MS/MS). Examination of the surface appendages elaborated by these two strains of soybean symbionts by transmission electron microscopy revealed distinct differences in their morphologies. Even though the flagella produced by USDA191 and USDA257 were similar in their morphologies, they differed in their flagellin composition. USDA257 pili resembled long thin filaments, while USDA191 pili were short, rod shaped, and much thinner than the flagella. 2D gel electrophoresis of pilus-like appendages of USDA191 and USDA257 followed by mass spectrometry resulted in the identification of several of the Nops along with some proteins previously undetected in these strains. Some of the newly identified proteins show homology to putative zinc protease and a LabA-like protein from Bradyrhizobium sp. ORS278, fimbrial type 4 assembly proteins from Ralstonia solanacearum, and the type III effector Hrp-dependent protein from Rhizobium leguminosarum bv. trifolii.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, USDA ARS, 108 Curtis Hall, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
24
|
Characterization of the self-cleaving effector protein NopE1 of Bradyrhizobium japonicum. J Bacteriol 2011; 193:3733-9. [PMID: 21642459 DOI: 10.1128/jb.00437-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NopE1 is a type III-secreted protein of the symbiont Bradyrhizobium japonicum which is expressed in nodules. In vitro it exhibits self-cleavage in a duplicated domain of unknown function (DUF1521) but only in the presence of calcium. Here we show that either domain is self-sufficient for cleavage. An exchange of the aspartic acid residue at the cleavage site with asparagine prevented cleavage; however, cleavage was still observed with glutamic acid at the same position, indicating that a negative charge at the cleavage site is sufficient. Close to each cleavage site, an EF-hand-like motif is present. A replacement of one of the conserved aspartic acid residues with alanine prevented cleavage at the neighboring site. Except for EDTA, none of several protease inhibitors blocked cleavage, suggesting that a known protease-like mechanism is not involved in the reaction. In line with this, the reaction takes place within a broad pH and temperature range. Interestingly, magnesium, manganese, and several other divalent cations did not induce cleavage, indicating a highly specific calcium-binding site. Based on results obtained by blue-native gel electrophoresis, it is likely that the uncleaved protein forms a dimer and that the fragments of the cleaved protein oligomerize. A database search reveals that the DUF1521 domain is present in proteins encoded by Burkholderia phytofirmans PsNJ (a plant growth-promoting betaproteobacterium) and Vibrio coralliilyticus ATCC BAA450 (a pathogenic gammaproteobacterium). Obviously, this domain is more widespread in proteobacteria, and it might contribute to the interaction with hosts.
Collapse
|
25
|
Meneses N, Mendoza-Hernández G, Encarnación S. The extracellular proteome of Rhizobium etli CE3 in exponential and stationary growth phase. Proteome Sci 2010; 8:51. [PMID: 20942974 PMCID: PMC2964644 DOI: 10.1186/1477-5956-8-51] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 10/14/2010] [Indexed: 02/06/2023] Open
Abstract
Background The extracellular proteome or secretome of symbiotic bacteria like Rhizobium etli is presumed to be a key element of their infection strategy and survival. Rhizobia infect the roots of leguminous plants and establish a mutually beneficial symbiosis. To find out the possible role of secreted proteins we analyzed the extracellular proteome of R. etli CE3 in the exponential and stationary growth phases in minimal medium, supplemented with succinate-ammonium. Results The extracellular proteins were obtained by phenol extraction and identified by LC-ESI MS/MS. We identified 192 and 191 proteins for the exponential and stationary phases respectively. Using the software Signal P, we predicted signal peptides for 12.95% and 35.60% of the proteins identified in the exponential and stationary phases, respectively, which could therefore be secreted by the Sec pathway. For the exponential growth phase, we found in abundance proteins like the ribosomal proteins, toxins and proteins belonging to the group "defence mechanisms". For the stationary growth phase, we found that the most abundant proteins were those with unknown function, and in many of these we identified characteristic domains of proteases and peptidases. Conclusions Our study provided the first dataset of the secretome of R. etli and its modifications, which may lead to novel insights into the adaptive response of different stages of growth. In addition, we found a high number of proteins with unknown function; these proteins could be analyzed in future research to elucidate their role in the extracellular proteome of R. etli.
Collapse
Affiliation(s)
- Niurka Meneses
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo, Postal 565-A, Cuernavaca, Morelos, CP 62210, México.
| | | | | |
Collapse
|
26
|
da Silva Batista JS, Torres AR, Hungria M. Towards a two-dimensional proteomic reference map of Bradyrhizobium japonicum
CPAC 15: Spotlighting “hypothetical proteins”. Proteomics 2010; 10:3176-89. [DOI: 10.1002/pmic.201000092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Wei M, Takeshima K, Yokoyama T, Minamisawa K, Mitsui H, Itakura M, Kaneko T, Tabata S, Saeki K, Omori H, Tajima S, Uchiumi T, Abe M, Ishii S, Ohwada T. Temperature-dependent expression of type III secretion system genes and its regulation in Bradyrhizobium japonicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:628-637. [PMID: 20367471 DOI: 10.1094/mpmi-23-5-0628] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The genome-wide expression profiles of Bradyrhizobium japonicum in response to soybean (Glycine max (L.) Merr.) seed extract (SSE) and genistein were monitored with time at a low temperature (15 degrees C). A comparison with the expression profiles of the B. japonicum genome previously captured at the common growth temperature (30 degrees C) revealed that the expression of SSE preferentially induced genomic loci, including a large gene cluster encoding the type III secretion system (T3SS), were considerably delayed at 15 degrees C, whereas most nodulation (nod) gene loci, including nodD1 and nodW, were rapidly and strongly induced by both SSE and genistein. Induction of the T3SS genes was progressively activated upon the elevation of temperature to 30 degrees C and positively responded to culture population density. In addition, genes nolA and nodD2 were dramatically induced by SSE, concomitantly with the expression of T3SS genes. However, the deletion mutation of nodD2 but not nolA led to elimination of the T3SS genes expression. These results indicate that the expression of the T3SS gene cluster is tightly regulated with integration of environmental cues such as temperature and that NodD2 may be involved in its efficient induction in B. japonicum.
Collapse
Affiliation(s)
- Min Wei
- Department of Food Sciences, Obihiro University of Agiculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Okazaki S, Okabe S, Higashi M, Shimoda Y, Sato S, Tabata S, Hashiguchi M, Akashi R, Göttfert M, Saeki K. Identification and functional analysis of type III effector proteins in Mesorhizobium loti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:223-34. [PMID: 20064065 DOI: 10.1094/mpmi-23-2-0223] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mesorhizobium loti MAFF303099, a microsymbiont of the model legume Lotus japonicus, possesses a cluster of genes (tts) that encode a type III secretion system (T3SS). In the presence of heterologous nodD from Rhizobium leguminosarum and a flavonoid naringenin, we observed elevated expression of the tts genes and secretion of several proteins into the culture medium. Inoculation experiments with wild-type and T3SS mutant strains revealed that the presence of the T3SS affected nodulation at a species level within the Lotus genus either positively (L. corniculatus subsp. frondosus and L. filicaulis) or negatively (L. halophilus and two other species). By inoculating L. halophilus with mutants of various type III effector candidate genes, we identified open reading frame mlr6361 as a major determinant of the nodulation restriction observed for L. halophilus. The predicted gene product of mlr6361 is a protein of 3,056 amino acids containing 15 repetitions of a sequence motif of 40 to 45 residues and a shikimate kinase-like domain at its carboxyl terminus. Homologues with similar repeat sequences are present in the hypersensitive-response and pathogenicity regions of several plant pathogens, including strains of Pseudomonas syringae, Ralstonia solanacearum, and Xanthomonas species. These results suggest that L. halophilus recognizes Mlr6361 as potentially pathogen derived and subsequently halts the infection process.
Collapse
Affiliation(s)
- Shin Okazaki
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wenzel M, Friedrich L, Göttfert M, Zehner S. The type III-secreted protein NopE1 affects symbiosis and exhibits a calcium-dependent autocleavage activity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:124-9. [PMID: 19958145 DOI: 10.1094/mpmi-23-1-0124] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The type III-secreted proteins NopE1 and NopE2 of Bradyrhizobium japonicum contain a repeated domain of unknown function (DUF1521), which is present in a few uncharacterized proteins. A nopE1/nopE2 double mutant strain exhibited higher nodulation efficiency on Vigna radiata KPS2 than the wild type or single nopE1 or nopE2 mutants. This indicates that both proteins are effectors that functionally overlap. To test translocation into the plant cell compartment during symbiosis, NopE1 and NopE2 were fused with adenylate cyclase (cya) as reporter. A fusion with the full-length proteins or N-terminal peptides resulted in increased cAMP levels in nodules, indicating translocation. Purified NopE1 exhibited self-cleavage in the presence of Ca(2+). Two identical cleavage sites (GD'PHVD) were identified inside the DUF1521 domains. The C-terminal cleavage site was analyzed by alanine scanning. Protein variants in which aspartate or proline next to the cleavage sites was substituted displayed no cleavage. A noncleavable protein was obtained by exchange of the aspartate residues preceding both cleavage sites. Complementation analysis with the noncleavable NopE1 variant did not restore wild-type phenotype on Vigna radiata KPS2, indicating a physiological role of NopE1 cleavage in effector function.
Collapse
Affiliation(s)
- Mandy Wenzel
- Institute of Genetics, Dresden University of Technology, Helmholtzstrasse 10, D-01062 Dresden, Germany
| | | | | | | |
Collapse
|
30
|
Downie JA. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 2009; 34:150-70. [PMID: 20070373 DOI: 10.1111/j.1574-6976.2009.00205.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Rhizobia adopt many different lifestyles including survival in soil, growth in the rhizosphere, attachment to root hairs and infection and growth within legume roots, both in infection threads and in nodules where they fix nitrogen. They are actively involved in extracellular signalling to their host legumes to initiate infection and nodule morphogenesis. Rhizobia also use quorum-sensing gene regulation via N-acyl-homoserine lactone signals and this can enhance their interaction with legumes as well as their survival under stress and their ability to induce conjugation of plasmids and symbiotic islands, thereby spreading their symbiotic capacity. They produce several surface polysaccharides that are critical for attachment and biofilm formation; some of these polysaccharides are specific for their growth on root hairs and can considerably enhance their ability to infect their host legumes. Different rhizobia use several different types of protein secretion mechanisms (Types I, III, IV, V and VI), and many of the secreted proteins play an important role in their interaction with plants. This review summarizes many of the aspects of the extracellular biology of rhizobia, in particular in relation to their symbiotic interaction with legumes.
Collapse
|
31
|
Sánchez C, Iannino F, Deakin WJ, Ugalde RA, Lepek VC. Characterization of the Mesorhizobium loti MAFF303099 type-three protein secretion system. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:519-28. [PMID: 19348570 DOI: 10.1094/mpmi-22-5-0519] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Type III secretion systems (T3SS) have been found in several species of rhizobia. Proteins (termed effectors) secreted by this system are involved in host-range determination and influence nodulation efficiency. Mesorhizobium loti MAFF303099 possesses a functional T3SS in its symbiotic island whose expression is induced by flavonoids. As in other rhizobia, conserved cis-elements (tts box) were found in the promoter regions of genes or operons encoding T3SS components. Using a bioinformatics approach, we searched for other tts-box-controlled genes, and confirmed this transcriptional regulation for some of them using lacZ fusions to the predicted promoter regions. Translational fusions to a reporter peptide were created to demonstrate T3SS-mediated secretion of two new MAFF303099 effectors. Finally, we showed that mutation of the M. loti MAFF303099 T3SS affects its competitiveness on Lotus glaber and investigated, at the molecular level, responses of the model legume L. japonicus to the T3SS.
Collapse
Affiliation(s)
- Cintia Sánchez
- Instituto de Investigaciones Biotecnológicas, INTECH, Universidad Nacional de General San Martín, CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
32
|
Abstract
Rhizobia - a diverse group of soil bacteria - induce the formation of nitrogen-fixing nodules on the roots of legumes. Nodulation begins when the roots initiate a molecular dialogue with compatible rhizobia in the soil. Most rhizobia reply by secreting lipochitooligosaccharidic nodulation factors that enable entry into the legume. A molecular exchange continues, which, in compatible interactions, permits rhizobia to invade root cortical cells, differentiate into bacteroids and fix nitrogen. Rhizobia also use additional molecular signals, such as secreted proteins or surface polysaccharides. One group of proteins secreted by rhizobia have homologues in bacterial pathogens and may have been co-opted by rhizobia for symbiotic purposes.
Collapse
|
33
|
Hempel J, Zehner S, Göttfert M, Patschkowski T. Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum. J Biotechnol 2008; 140:51-8. [PMID: 19095018 DOI: 10.1016/j.jbiotec.2008.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/20/2008] [Accepted: 11/20/2008] [Indexed: 11/29/2022]
Abstract
Proteins from the supernatant of Bradyrhizobium japonicum were separated by two-dimensional gel electrophoresis and stained with Coomassie. This revealed more than 100 protein spots. Sixty-eight proteins were identified by mass spectrometry. Thirty-five are predicted to contain an N-terminal signal peptide characteristic for proteins transported by the general secretory pathway. Most of these appear to be substrate-binding proteins of the ABC transporter family. Ten proteins were categorized as unclassified conserved or hypothetical. None of the proteins has similarity to proteins transported by a type I secretion system or to autotransporters. Three of the proteins might be located in the outer membrane. The addition of genistein led to changes in the spot pattern of three flagellar proteins and resulted in the identification of the nodulation outer protein Pgl. Moreover, the application of shot-gun mass spectrometry resulted in the first-time identification of NopB, NopH and NopT, which were present only after genistein induction. Replacing genistein with daidzein or coumestrol reduced the amount of the type III-secreted protein GunA2.
Collapse
Affiliation(s)
- Jana Hempel
- Institut für Genetik, Technische Universität Dresden, Dresden, Germany
| | | | | | | |
Collapse
|
34
|
Barcellos FG, Batista JSDS, Menna P, Hungria M. Genetic differences between Bradyrhizobium japonicum variant strains contrasting in N(2)-fixation efficiency revealed by representational difference analysis. Arch Microbiol 2008; 191:113-22. [PMID: 18854979 DOI: 10.1007/s00203-008-0432-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 07/01/2008] [Accepted: 09/05/2008] [Indexed: 01/05/2023]
Abstract
Two variant strains of Bradyrhizobium japonicum, derived from SEMIA 566, adapted to the stressful environmental conditions of the Brazilian Cerrados and characterized by contrasting capacities for N(2) fixation, were compared by representational difference analysis (RDA). Twenty-four gene sequences that are unique to the highly effective strain S 370 were identified, eight showing high similarity to known genes, nine encoding putative proteins and seven representing conserved hypothetical or hypothetical proteins; they were classified in eight functional categories. Among those genes, some were highlighted for their known or potential functions in plant-microbe interactions. The nodulation outer protein P (nopP), related to the type-III secretion system (TTSS) and a major determinant of nodulation of some tropical legumes, was detected in the genome of strain S 370. Three coding sequences (CDS) identified by RDA were expressed in proteomics experiments with B. japonicum strain USDA 110 (ChvE and NopP). The use of the sequences identified by RDA in the highly effective strain S 370 might represent an important tool to speed up strain selection programs, accelerating pre-screening procedures. Additionally, the conserved hypothetical and hypothetical proteins identified in strain S 370 might encode important but still unknown proteins related to the symbiosis that deserve further study.
Collapse
Affiliation(s)
- Fernando Gomes Barcellos
- Laboratório de Biotecnologia dos Solos, Embrapa Soja, Cx. Postal 231, Londrina, 86001-970, PR, Brazil,
| | | | | | | |
Collapse
|
35
|
López-Baena FJ, Vinardell JM, Pérez-Montaño F, Crespo-Rivas JC, Bellogín RA, Espuny MDR, Ollero FJ. Regulation and symbiotic significance of nodulation outer proteins secretion in Sinorhizobium fredii HH103. MICROBIOLOGY-SGM 2008; 154:1825-1836. [PMID: 18524937 DOI: 10.1099/mic.0.2007/016337-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this work we show that the Sinorhizobium fredii HH103 ttsI gene is essential for the expression of the tts genes and secretion of nodulation outer proteins (Nops). Moreover, we demonstrate for the first time, to our knowledge, that the nod box preceding ttsI is necessary for Nops secretion. TtsI is responsible for the transcriptional activation of nopX, nopA, rhcJ and rhcQ. We confirm that the S. fredii HH103 ttsI gene is activated by NodD1 and repressed by NolR. In contrast, NodD2 is not involved in the regulation of ttsI expression. Despite the dependence of expression of both ttsI and nodA on NodD1 and flavonoids, clear differences in the capacity of some flavonoids to activate these genes were found. The expression of the ttsI and nodA genes was also sensitive to differences in the pH of the media. Secretion of Nops in the ttsI mutant could not be complemented with a DNA fragment containing the ttsI gene and its nod box, but it was restored when a plasmid harbouring the ttsI, rhcC2 and y4xK genes was transferred to the mutant strain. The symbiotic effect of Nops secretion was host-dependent but independent of the type of nodule formed by the host legume. Nops are beneficial in the symbiosis with Glycine max and Glycyrrhiza uralensis, and detrimental in the case of the tropical legume Erythrina variegata.
Collapse
Affiliation(s)
| | - José María Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | | | - Ramón A Bellogín
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Ma Del Rosario Espuny
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
36
|
Zehner S, Schober G, Wenzel M, Lang K, Göttfert M. Expression of the Bradyrhizobium japonicum type III secretion system in legume nodules and analysis of the associated tts box promoter. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1087-93. [PMID: 18616405 DOI: 10.1094/mpmi-21-8-1087] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In Bradyrhizobium japonicum, as in some other rhizobia, symbiotic efficiency is influenced by a type III secretion system (T3SS). Most genes encoding the transport machinery and secreted proteins are preceded by a conserved 30-bp motif, the type-three secretion (tts) box. In this study, we found that regions downstream of 34 tts boxes are transcribed. For nopB, nopL, and gunA2, the transcriptional start sites were found to be 12, 11, and 10 bp downstream of their tts boxes, respectively. The deletion of this motif or modification of two or more conserved residues strongly reduced expression of nopB. This indicates that the tts box is an essential promoter element. Data obtained with lacZ reporter gene fusions of five genes preceded by a tts box (gunA2, nopB, rhcV, nopL, and blr1806) revealed that they are expressed in 4-week-old nodules of Macroptilium atropurpureum. These data suggest that the T3SS is active in mature nitrogen-fixing nodules. The two-component response regulator TtsI is required for the expression of rhcV, nopL, and blr1806 in bacteroids. Staining of inoculated roots showed that nopB is also expressed in early infection stages.
Collapse
Affiliation(s)
- Susanne Zehner
- Institute of Genetics, Dresden University of Technology, Helmholtzstrasse 10, Dresden, Germany.
| | | | | | | | | |
Collapse
|
37
|
Wei M, Yokoyama T, Minamisawa K, Mitsui H, Itakura M, Kaneko T, Tabata S, Saeki K, Omori H, Tajima S, Uchiumi T, Abe M, Ohwada T. Soybean seed extracts preferentially express genomic loci of Bradyrhizobium japonicum in the initial interaction with soybean, Glycine max (L.) Merr. DNA Res 2008; 15:201-14. [PMID: 18511436 PMCID: PMC2575884 DOI: 10.1093/dnares/dsn012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 05/02/2008] [Indexed: 11/12/2022] Open
Abstract
Initial interaction between rhizobia and legumes actually starts via encounters of both partners in the rhizosphere. In this study, the global expression profiles of Bradyrhizobium japonicum USDA 110 in response to soybean (Glycine max) seed extracts (SSE) and genistein, a major soybean-released isoflavone for nod genes induction of B. japonicum, were compared. SSE induced many genomic loci as compared with genistein (5.0 microM), nevertheless SSE-supplemented medium contained 4.7 microM genistein. SSE markedly induced four predominant genomic regions within a large symbiosis island (681 kb), which include tts genes (type III secretion system) and various nod genes. In addition, SSE-treated cells expressed many genomic loci containing genes for polygalacturonase (cell-wall degradation), exopolysaccharide synthesis, 1-aminocyclopropane-1-carboxylate deaminase, ribosome proteins family and energy metabolism even outside symbiosis island. On the other hand, genistein-treated cells exclusively showed one expression cluster including common nod gene operon within symbiosis island and six expression loci including multidrug resistance, which were shared with SSE-treated cells. Twelve putatively regulated genes were indeed validated by quantitative RT-PCR. Several SSE-induced genomic loci likely participate in the initial interaction with legumes. Thus, these results can provide a basic knowledge for screening novel genes relevant to the B. japonicum- soybean symbiosis.
Collapse
Affiliation(s)
- Min Wei
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Tadashi Yokoyama
- Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu 183-8509, Tokyo, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Science, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Science, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Manabu Itakura
- Graduate School of Life Science, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Takakazu Kaneko
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Chiba 292-0812, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Chiba 292-0812, Japan
| | - Kazuhiko Saeki
- Department of Biological Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Hirofumi Omori
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shigeyuki Tajima
- Department of Life Science, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Toshiki Uchiumi
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan
| | - Mikiko Abe
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan
| | - Takuji Ohwada
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
38
|
Dai WJ, Zeng Y, Xie ZP, Staehelin C. Symbiosis-promoting and deleterious effects of NopT, a novel type 3 effector of Rhizobium sp. strain NGR234. J Bacteriol 2008; 190:5101-10. [PMID: 18487326 PMCID: PMC2447009 DOI: 10.1128/jb.00306-08] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 05/07/2008] [Indexed: 11/20/2022] Open
Abstract
Establishment of symbiosis between certain host plants and nitrogen-fixing bacteria ("rhizobia") depends on type 3 effector proteins secreted via the bacterial type 3 secretion system (T3SS). Here, we report that the open reading frame y4zC of strain NGR234 encodes a novel rhizobial type 3 effector, termed NopT (for nodulation outer protein T). Analysis of secreted proteins from NGR234 and T3SS mutants revealed that NopT is secreted via the T3SS. NopT possessed autoproteolytic activity when expressed in Escherichia coli or human HEK 293T cells. The processed NopT exposed a glycine (G50) to the N terminus, which is predicted to be myristoylated in eukaryotic cells. NopT with a point mutation at position C93, H205, or D220 (catalytic triad) showed strongly reduced autoproteolytic activity, indicating that NopT is a functional protease of the YopT-AvrPphB effector family. When transiently expressed in tobacco plants, proteolytically active NopT elicited a rapid hypersensitive reaction. Arabidopsis plants transformed with nopT showed chlorotic and necrotic symptoms, indicating a cytotoxic effect. Inoculation experiments with mutant derivatives of NGR234 indicated that NopT affected nodulation either positively (Phaseolus vulgaris cv. Yudou No. 1; Tephrosia vogelii) or negatively (Crotalaria juncea). We suggest that NopT-related polymorphism may be involved in evolutionary adaptation of NGR234 to particular host legumes.
Collapse
Affiliation(s)
- Wei-Jun Dai
- State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-Sen (Zhongshan) University, East Campus, Bei San Road, Guangzhou 510006, China
| | | | | | | |
Collapse
|
39
|
Wassem R, Kobayashi H, Kambara K, Le Quéré A, Walker GC, Broughton WJ, Deakin WJ. TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes. Mol Microbiol 2008; 68:736-48. [PMID: 18363648 DOI: 10.1111/j.1365-2958.2008.06187.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infection of legumes by Rhizobium sp. NGR234 and subsequent development of nitrogen-fixing nodules are dependent on the coordinated actions of Nod factors, proteins secreted by a type III secretion system (T3SS) and modifications to surface polysaccharides. The production of these signal molecules is dependent on plant flavonoids which trigger a regulatory cascade controlled by the transcriptional activators NodD1, NodD2, SyrM2 and TtsI. TtsI is known to control the genes responsible for T3SS function and synthesis of a symbiotically important rhamnose-rich lipo-polysaccharide, most probably by binding to cis elements termed tts boxes. Eleven tts boxes were identified in the promoter regions of target genes on the symbiotic plasmid of NGR234. Expression profiles of lacZ fusions to these tts boxes showed that they are part of a TtsI-dependent regulon induced by plant-derived flavonoids. TtsI was purified and demonstrated to bind directly to two of these tts boxes. DNase I footprinting revealed that TtsI occupied not only the tts box consensus sequence, but also upstream and downstream regions in a concentration-dependent manner. Highly conserved bases of the consensus tts box were mutated and, although TtsI binding was still observed in vitro, gfp fusions were no longer transcribed in vivo. Random mutagenesis of a tts box-containing promoter revealed more nucleotides critical for transcriptional activity outside of the consensus.
Collapse
Affiliation(s)
- Roseli Wassem
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Sciences III, 30 Quai Ernest-Ansermet, Université de Genève, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
40
|
Lang K, Lindemann A, Hauser F, Göttfert M. The genistein stimulon of Bradyrhizobium japonicum. Mol Genet Genomics 2008; 279:203-11. [PMID: 18214545 DOI: 10.1007/s00438-007-0280-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 07/30/2007] [Indexed: 12/25/2022]
Abstract
An initializing step in the rhizobia-legume symbiosis is the secretion of flavonoids by plants that leads to the expression of nodulation genes in rhizobia. Here we report the genome-wide transcriptional response of Bradyrhizobium japonicum to genistein, an isoflavone secreted by soybean. About 100 genes were induced in the wild type. This included all nod box-associated genes, the flagellar cluster and several genes that are likely to be involved in transport processes. To elucidate the role of known regulators, we analysed mutant strains. This revealed that the two-component response regulator NodW is essential for induction of almost all genistein-inducible genes, with the exception of 8 genes. The phenotype of the nodW mutant could be partially suppressed by overexpression of NwsB, which is also a two-component response regulator. These data indicate that genistein has a much broader function than mere induction of nod genes.
Collapse
Affiliation(s)
- Kathrin Lang
- Institute of Genetics, Dresden University of Technology, Helmholtzstrasse 10, 01069, Dresden, Germany
| | | | | | | |
Collapse
|
41
|
Identification of protein secretion systems and novel secreted proteins in Rhizobium leguminosarum bv. viciae. BMC Genomics 2008; 9:55. [PMID: 18230162 PMCID: PMC2275737 DOI: 10.1186/1471-2164-9-55] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 01/29/2008] [Indexed: 12/24/2022] Open
Abstract
Background Proteins secreted by bacteria play an important role in infection of eukaryotic hosts. Rhizobia infect the roots of leguminous plants and establish a mutually beneficial symbiosis. Proteins secreted during the infection process by some rhizobial strains can influence infection and modify the plant defence signalling pathways. The aim of this study was to systematically analyse protein secretion in the recently sequenced strain Rhizobium leguminosarum bv. viciae 3841. Results Similarity searches using defined protein secretion systems from other Gram-negative bacteria as query sequences revealed that R. l. bv. viciae 3841 has ten putative protein secretion systems. These are the general export pathway (GEP), a twin-arginine translocase (TAT) secretion system, four separate Type I systems, one putative Type IV system and three Type V autotransporters. Mutations in genes encoding each of these (except the GEP) were generated, but only mutations affecting the PrsDE (Type I) and TAT systems were observed to affect the growth phenotype and the profile of proteins in the culture supernatant. Bioinformatic analysis and mass fingerprinting of tryptic fragments of culture supernatant proteins identified 14 putative Type I substrates, 12 of which are secreted via the PrsDE, secretion system. The TAT mutant was defective for the symbiosis, forming nodules incapable of nitrogen fixation. Conclusion None of the R. l. bv. viciae 3841 protein secretion systems putatively involved in the secretion of proteins to the extracellular space (Type I, Type IV, Type V) is required for establishing the symbiosis with legumes. The PrsDE (Type I) system was shown to be the major route of protein secretion in non-symbiotic cells and to secrete proteins of widely varied size and predicted function. This is in contrast to many Type I systems from other bacteria, which typically secrete specific substrates encoded by genes often localised in close proximity to the genes encoding the secretion system itself.
Collapse
|
42
|
Chang WS, Franck WL, Cytryn E, Jeong S, Joshi T, Emerich DW, Sadowsky MJ, Xu D, Stacey G. An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1298-307. [PMID: 17918631 DOI: 10.1094/mpmi-20-10-1298] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A DNA microarray, comprising 70-mer oligonucleotides, representing 8,453 open reading frames (ORFs), was constructed based on the Bradyrhizobium japonicum strain USDA110 genomic sequence. New annotation predicted 199 additional genes, which were added to the microarray and were shown to be transcribed. These arrays were used to profile transcription in cells under a variety of conditions, including growth in minimal versus rich medium, osmotic stress, and free-living cells versus bacteroids. Increased expression was seen for genes involved in translation, motility, and cell envelope synthesis in rich medium whereas expression increased in minimal medium for genes involved in vitamin biosynthesis and stress responses. Treatment with 50 mM NaCl activated stress-inducible genes but repressed genes involved in chemotaxis and motility. Strikingly, no known transport systems for accumulation of compatible solutes or osmoprotectants were induced in response to osmotic stress. A number of nif, fix, and hup genes, but not all, were upregulated in bacteroids. The B. japonicum type III secretion system, known to be important in early nodulation, was downregulated in bacteroids. The availability of a reliable, low-cost B. japonicum microarray provides a useful tool for functional genomic studies of one of the most agriculturally important bacteria.
Collapse
Affiliation(s)
- Woo-Suk Chang
- National Center for Soybean Biotechnology, University of Missouri, Columbia 65211, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Krishnan HB, Kim WS, Sun-Hyung J. Calcium regulates the production of nodulation outer proteins (Nops) and precludes pili formation by Sinorhizobium fredii USDA257, a soybean symbiont. FEMS Microbiol Lett 2007; 271:59-64. [PMID: 17391367 DOI: 10.1111/j.1574-6968.2007.00698.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Sinorhizobium fredii USDA257 forms nitrogen-fixing nodules on primitive soybean cultivars such as 'Peking' but is unable to establish efficient symbiosis with North American cultivars. USDA257 when grown in presence of genistein, a potent nodD-inducing isoflavonoid, secretes at least six nodulation outer proteins (NopX, NopB, NopL, NopP, NopA and NopC) to the extracellular milieu through a type III secretion system. These proteins regulate legume nodulation in a host-specific manner. Here, it is demonstrated that calcium prevents the accumulation of NopB and NopA, and drastically reduces that of NopX and NopL. The inhibitory effect on Nops accumulation appears to be mediated specifically by calcium since other divalent cations such as Mg(2+) and Mn(2+) had no detectable effect. Calcium does not appear to interfere with the secretion of these proteins since Western blot analysis revealed that these Nops do not accumulate inside the cell. The inhibitory effect of calcium on Nops production is mediated at the posttranscriptional level. Studies by the authors indicate that the production of Nops, which function as determinants of host-range, is regulated by calcium.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
44
|
Cooper J. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 2007; 103:1355-65. [DOI: 10.1111/j.1365-2672.2007.03366.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|