1
|
Ma S, Xu S, Tao H, Huang Y, Feng C, Huang G, Lin S, Sun Y, Chen X, Fabrice Kabore MA, Tareke Woldegiorgis S, Ai Y, Zhang L, Liu W, He H. OsBRW1, a novel blast-resistant gene, coded a NBS-LRR protein to interact with OsSRFP1 to balance rice growth and resistance. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39492591 DOI: 10.1111/pbi.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/28/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
It is urgent to mine novel blast-resistant genes in rice and develop new rice varieties with pyramiding blast-resistant genes. In this study, a new blast-resistant gene, OsBRW1, was screened from a set of rice near-isogenic lines (NILs) with different blast-resistant ability. Under the infection of Magnaporthe oryzae (M. oryzae), OsBRW1 in the resistant NIL Pi-4b was highly induced than that in the susceptible NIL Pi-1 and their parent line CO39, and the blast-resistant ability of OsBRW1 was further confirmed by using CRISPR/Cas9 knockout and over-expression methods. The protein encoded by OsBRW1 was a typical NBS-LRR with NB-ARC domain and localized in both cytoplasm and nucleus, and the transient expression of OsBRW1 was capable of triggering hypersensitive response in tobacco leaves. Protein interaction experiments showed that OsBRW1 protein directly interacted with OsSRFP1. At the early infection stage of M. oryzae, OsBRW1 gene induced OsSRFP1 to highly expression level and accumulated H2O2, up-regulated the defence responsive signalling transduction genes and the pathogenesis-related genes and increased JA and SA content in the resistant NIL Pi-4b. By contrary, lower content of endogenous JA and SA in osbrw1 mutants was found at the same stage. After that, OsSRFP1 was down-regulated to constitution abundance to balance the growth of the resistant NIL Pi-4b. In summary, OsBRW1 solicited OsSRFP1 to resist the infection of blast fungus in rice by inducing the synergism of induced systemic resistance (ISR) and system acquired resistance (SAR) and to balance the growth of rice plants.
Collapse
Affiliation(s)
- Shiwei Ma
- College of Environmental and Biological Engineering, Putian University, Putian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shichang Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huan Tao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunxia Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changqing Feng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guanpeng Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shoukai Lin
- College of Environmental and Biological Engineering, Putian University, Putian, China
| | - Yiqiong Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuan Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | | | - Yufang Ai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lina Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huaqin He
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Zhong Q, Xu Y, Rao Y. Mechanism of Rice Resistance to Bacterial Leaf Blight via Phytohormones. PLANTS (BASEL, SWITZERLAND) 2024; 13:2541. [PMID: 39339516 PMCID: PMC11434988 DOI: 10.3390/plants13182541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Rice is one of the most important food crops in the world, and its yield restricts global food security. However, various diseases and pests of rice pose a great threat to food security. Among them, bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious bacterial diseases affecting rice globally, creating an increasingly urgent need for research in breeding resistant varieties. Phytohormones are widely involved in disease resistance, such as auxin, abscisic acid (ABA), ethylene (ET), jasmonic acid (JA), and salicylic acid (SA). In recent years, breakthroughs have been made in the analysis of their regulatory mechanism in BLB resistance in rice. In this review, a series of achievements of phytohormones in rice BLB resistance in recent years were summarized, the genes involved and their signaling pathways were reviewed, and a breeding strategy combining the phytohormones regulation network with modern breeding techniques was proposed, with the intention of applying this strategy to molecular breeding work and playing a reference role for how to further improve rice resistance.
Collapse
Affiliation(s)
- Qianqian Zhong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuqing Xu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuchun Rao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
3
|
Jesudoss D, Ponnurangan V, Kumar MPR, Kumar KK, Mannu J, Sankarasubramanian H, Duraialagaraja S, Eswaran K, Loganathan A, Shanmugam V. Advances in breeding, biotechnology, and nanotechnological approaches to combat sheath blight disease in rice. Mol Biol Rep 2024; 51:958. [PMID: 39230778 DOI: 10.1007/s11033-024-09889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Sheath blight, caused by the fungus Rhizoctonia solani, is a major problem that significantly impacts rice production and can lead to substantial yield losses. The disease has become increasingly problematic in recent years due to the widespread use of high-yielding semi-dwarf rice cultivars, dense planting, and heavy application of nitrogenous fertilizers. The disease has become more challenging to manage due to its diverse host range and the lack of resistant cultivars. Despite utilizing traditional methods, the problem persists without a satisfactory solution. Therefore, modern approaches, including advanced breeding, transgenic methods, genome editing using CRISPR/Cas9 technology, and nanotechnological interventions, are being explored to develop rice plants resistant to sheath blight disease. This review primarily focuses on these recent advancements in combating the sheath blight disease.
Collapse
Affiliation(s)
- David Jesudoss
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Vignesh Ponnurangan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Mohana Pradeep Rangaraj Kumar
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Krish K Kumar
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Harish Sankarasubramanian
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Sudhakar Duraialagaraja
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kokiladevi Eswaran
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Arul Loganathan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Varanavasiappan Shanmugam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| |
Collapse
|
4
|
Yu W, He J, Wu J, Xu Z, Lai F, Zhong X, Zhang M, Ji H, Fu Q, Zhou X, Peng Y. Resistance to Planthoppers and Southern Rice Black-Streaked Dwarf Virus in Rice Germplasms. PLANT DISEASE 2024; 108:2321-2329. [PMID: 38127636 DOI: 10.1094/pdis-10-23-2025-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The damage caused by the white-back planthopper (WBPH, Sogatella furcifera) and brown planthopper (BPH, Nilaparvata lugens), as well as southern rice black-streaked dwarf virus (SRBSDV), considerably decreases the grain yield of rice. Identification of rice germplasms with sufficient resistance to planthoppers and SRBSDV is essential to the breeding and deployment of resistant varieties and, hence, the control of the pests and disease. In this study, 318 rice accessions were evaluated for their reactions to the infestation of both BPH and WBPH at the seedling stage using the standard seed-box screening test method; insect quantification was further conducted at the end of the tillering and grain-filling stages in field trials. Accessions HN12-239 and HN12-328 were resistant to both BPH and WBPH at all tested stages. Field trials were conducted to identify resistance in the collection to SRBSDV based on the virus infection rate under artificial inoculation. Rathu Heenati (RHT) and HN12-239 were moderately resistant to SRBSDV. In addition, we found that WBPH did not penetrate stems with stylets but did do more probing bouts and xylem sap ingestion when feeding on HN12-239 than the susceptible control rice Taichung Native 1. The resistance of rice accessions HN12-239, HN12-328, and RHT to BPH, WBPH, and/or SRBSDV should be valuable to the development of resistant rice varieties.
Collapse
Affiliation(s)
- Wenjuan Yu
- Ministry of Agriculture Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Jiachun He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhi Xu
- Ministry of Agriculture Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Fengxiang Lai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Xuelian Zhong
- Ministry of Agriculture Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Mei Zhang
- Plant Protection Station, Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, Sichuan 610041, China
| | - Hongli Ji
- Ministry of Agriculture Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunliang Peng
- Ministry of Agriculture Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
5
|
Wan SR, Yang YH, Tian GM, An L, Liu SS, Yi MY, Yan TS, Bao XP. Design, synthesis, and antimicrobial evaluation of 2-aminothiazole derivatives bearing the 4-aminoquinazoline moiety against plant pathogenic bacteria and fungi. PEST MANAGEMENT SCIENCE 2023; 79:4535-4546. [PMID: 37428867 DOI: 10.1002/ps.7655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND To find more effective agricultural antibiotics, a class of new 2-aminothiazole derivatives containing the 4-aminoquinazoline moiety were synthesized and evaluated for their antimicrobial properties against phytopathogenic bacteria and fungi of agricultural importance. RESULTS All the target compounds were fully characterized by 1 H NMR, 13 C NMR, and high-resolution mass spectrometry. The bioassay results showed that compound F29 with a 2-pyridinyl substituent exhibited an outstanding antibacterial effect against Xanthomonas oryzae pv. oryzicola (Xoc) in vitro, having an half-maximal effective concentration (EC50 ) value as low as 2.0 μg/mL (over 30-fold more effective than the commercialized agrobactericide bismerthiazol, with an EC50 value of 64.3 μg/mL). In addition, compound F8 with a 2-fluorophenyl group demonstrated a good inhibitory activity toward the bacterium Xanthomonas axonopodis pv. citri (Xac), around twofold more active than bismerthiazol in terms of their EC50 values (22.8 versus 71.5 μg/mL). Interestingly, this compound also demonstrated a notable fungicidal effect against Phytophthora parasitica var. nicotianae, with an EC50 value largely comparable with that of the commercialized fungicide carbendazim. Finally, mechanistic studies revealed that compound F29 exerted its antibacterial effects by increasing the permeability of bacterial membranes, reducing the release of extracellular polysaccharides, and triggering morphological changes of bacterial cells. CONCLUSION Compound F29 has promising potential as a lead compound for developing more efficient bactericides to fight against Xoc. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Su-Ran Wan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| | - Ye-Hui Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Guang-Min Tian
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Lian An
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Song-Song Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ming-Yan Yi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Tai-Sen Yan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiao-Ping Bao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Wang P, Liu J, Lyu Y, Huang Z, Zhang X, Sun B, Li P, Jing X, Li H, Zhang C. A Review of Vector-Borne Rice Viruses. Viruses 2022; 14:v14102258. [PMID: 36298813 PMCID: PMC9609659 DOI: 10.3390/v14102258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the major staple foods for global consumption. A major roadblock to global rice production is persistent loss of crops caused by plant diseases, including rice blast, sheath blight, bacterial blight, and particularly various vector-borne rice viral diseases. Since the late 19th century, 19 species of rice viruses have been recorded in rice-producing areas worldwide and cause varying degrees of damage on the rice production. Among them, southern rice black-streaked dwarf virus (SRBSDV) and rice black-streaked dwarf virus (RBSDV) in Asia, rice yellow mottle virus (RYMV) in Africa, and rice stripe necrosis virus (RSNV) in America currently pose serious threats to rice yields. This review systematizes the emergence and damage of rice viral diseases, the symptomatology and transmission biology of rice viruses, the arm races between viruses and rice plants as well as their insect vectors, and the strategies for the prevention and control of rice viral diseases.
Collapse
Affiliation(s)
- Pengyue Wang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianjian Liu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agronomy, Yangtze University, Jingzhou 434025, China
| | - Yajing Lyu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Ziting Huang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoli Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingjian Sun
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengbai Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinxin Jing
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Honglian Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| |
Collapse
|
7
|
Zhang Y, Chen B, Sun Z, Liu Z, Cui Y, Ke H, Wang Z, Wu L, Zhang G, Wang G, Li Z, Yang J, Wu J, Shi R, Liu S, Wang X, Ma Z. A large-scale genomic association analysis identifies a fragment in Dt11 chromosome conferring cotton Verticillium wilt resistance. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2126-2138. [PMID: 34160879 PMCID: PMC8486238 DOI: 10.1111/pbi.13650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 05/26/2023]
Abstract
Verticillium wilt (VW) is a destructive disease that results in great losses in cotton yield and quality. Identifying genetic variation that enhances crop disease resistance is a primary objective in plant breeding. Here we reported a GWAS of cotton VW resistance in a natural-variation population, challenged by different pathogenicity stains and different environments, and found 382 SNPs significantly associated with VW resistance. The associated signal repeatedly peaked in chromosome Dt11 (68 798 494-69 212 808) containing 13 core elite alleles undescribed previously. The core SNPs can make the disease reaction type from susceptible to tolerant or resistant in accessions with alternate genotype compared to reference genotype. Of the genes associated with the Dt11 signal, 25 genes differentially expressed upon Verticillium dahliae stress, with 21 genes verified in VW resistance via gene knockdown and/or overexpression experiments. We firstly discovered that a gene cluster of L-type lectin-domain containing receptor kinase (GhLecRKs-V.9) played an important role in VW resistance. These results proved that the associated Dt11 region was a major genetic locus responsible for VW resistance. The frequency of the core elite alleles (FEA) in modern varieties was significantly higher than the early/middle varieties (12.55% vs 4.29%), indicating that the FEA increased during artificial selection breeding. The current developmental resistant cultivars, JND23 and JND24, had fixed these core elite alleles during breeding without yield penalty. These findings unprecedentedly provided genomic variations and promising alleles for promoting cotton VW resistance improvement.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| | - Yanru Cui
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| | - Zhicheng Wang
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| | - Jinhua Wu
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| | - Rongkang Shi
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| | - Song Liu
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory for Crop Germplasm Resources of HebeiHebei Agricultural UniversityBaodingChina
| |
Collapse
|
8
|
Angeles-Shim RB, Shim J, Vinarao RB, Lapis RS, Singleton JJ. A novel locus from the wild allotetraploid rice species Oryza latifolia Desv. confers bacterial blight (Xanthomonas oryzae pv. oryzae) resistance in rice (O. sativa). PLoS One 2020; 15:e0229155. [PMID: 32084193 PMCID: PMC7034821 DOI: 10.1371/journal.pone.0229155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022] Open
Abstract
Bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major limiting factor to rice productivity worldwide. Genetic control through the identification of novel sources of bacterial blight resistance and their utilization in resistance breeding remains the most effective and economical strategy to manage the disease. Here we report the identification of a novel locus from the wild Oryza species, Oryza latifolia, conferring a race-specific resistance to Philippine Xoo race 9A (PXO339). The locus was identified from two introgression lines i.e. WH12-2252 and WH12-2256 that segregated from O. latifolia monosomic alien addition lines (MAALs). The discrete segregation ratio of susceptible and resistant phenotypes in the F2 (χ2[3:1] = 0.22 at p>0.05) and F3 (χ2[3:1] = 0.36 at p>0.05) populations indicates that PXO339 resistance in the MAAL-derived introgression lines (MDILs) is controlled by a single, recessive gene. Genotyping of a total of 216 F2, 1130 F3 and 288 F4 plants derived from crossing either of the MDILs with the recurrent parent used to generate the MAALs narrowed the candidate region to a 1,817 kb locus that extends from 10,425 to 12,266 kb in chromosome 12. Putative candidate genes that were identified by data mining and comparative sequence analysis can provide targets for further studies on mapping and cloning of the causal gene for PXO339 resistance in the MDILs. To our knowledge, this is the first report of a genetic locus from the allotetraploid wild rice, O. latifolia conferring race-specific resistance to bacterial blight.
Collapse
Affiliation(s)
| | - Junghyun Shim
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Ricky B. Vinarao
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Ruby S. Lapis
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Joshua J. Singleton
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| |
Collapse
|
9
|
Kankanala P, Nandety RS, Mysore KS. Genomics of Plant Disease Resistance in Legumes. FRONTIERS IN PLANT SCIENCE 2019; 10:1345. [PMID: 31749817 PMCID: PMC6842968 DOI: 10.3389/fpls.2019.01345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/27/2019] [Indexed: 05/15/2023]
Abstract
The constant interactions between plants and pathogens in the environment and the resulting outcomes are of significant importance for agriculture and agricultural scientists. Disease resistance genes in plant cultivars can break down in the field due to the evolution of pathogens under high selection pressure. Thus, the protection of crop plants against pathogens is a continuous arms race. Like any other type of crop plant, legumes are susceptible to many pathogens. The dawn of the genomic era, in which high-throughput and cost-effective genomic tools have become available, has revolutionized our understanding of the complex interactions between legumes and pathogens. Genomic tools have enabled a global view of transcriptome changes during these interactions, from which several key players in both the resistant and susceptible interactions have been identified. This review summarizes some of the large-scale genomic studies that have clarified the host transcriptional changes during interactions between legumes and their plant pathogens while highlighting some of the molecular breeding tools that are available to introgress the traits into breeding programs. These studies provide valuable insights into the molecular basis of different levels of host defenses in resistant and susceptible interactions.
Collapse
|
10
|
Yang D, Tang J, Yang D, Chen Y, Ali J, Mou T. Improving rice blast resistance of Feng39S through molecular marker-assisted backcrossing. RICE (NEW YORK, N.Y.) 2019; 12:70. [PMID: 31502096 PMCID: PMC6733936 DOI: 10.1186/s12284-019-0329-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/30/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Rice blast caused by Magnaporthe oryzae is one of the most widespread biotic constraints that threaten rice production. Using major resistance genes for rice blast resistance improvement is considered to be an efficient and technically feasible approach to achieve optimal grain yield. RESULTS We report here the introgression of the broad-spectrum blast resistance gene Pi2 into the genetic background of an elite PTGMS line, Feng39S, for enhancing it and its derived hybrid blast resistance through marker-assisted backcrossing (MABC) coupled with genomics-based background selection. Two PTGMS lines, designated as DB16206-34 and DB16206-38, stacking homozygous Pi2 were selected, and their genetic background had recurrent parent genome recovery of 99.67% detected by the SNP array RICE6K. DB16206-34 and DB16206-38 had high resistance frequency, with an average of 94.7%, when infected with 57 blast isolates over 2 years, and the resistance frequency of their derived hybrids ranged from 68.2% to 95.5% under inoculation of 22 blast isolates. The evaluation of results under natural blast epidemic field conditions showed that the selected PTGMS lines and their derived hybrids were resistant against leaf and neck blast. The characterizations of the critical temperature point of fertility-sterility alternation of the selected PTGMS lines, yield, main agronomic traits, and rice quality of the selected PTGMS lines and their hybrids were identical to those of the recurrent parent and its hybrids. DB16206-34/9311 or DB16206-38/9311 can be used as a blast-resistant version to replace the popular hybrid Fengliangyou 4. Likewise, DB16206-34/FXH No.1 or DB16206-38/FXH No.1 can also be used as a blast-resistant version to replace another popular hybrid Fengliangyou Xiang 1. CONCLUSIONS Our evaluation is the first successful case to apply MABC with genomics-based background selection to improve the blast resistance of PTGMS lines for two-line hybrid rice breeding.
Collapse
Affiliation(s)
- Dabing Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Jianhao Tang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Di Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ying Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Tongmin Mou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Tonnessen BW, Bossa-Castro AM, Mauleon R, Alexandrov N, Leach JE. Shared cis-regulatory architecture identified across defense response genes is associated with broad-spectrum quantitative resistance in rice. Sci Rep 2019; 9:1536. [PMID: 30733489 PMCID: PMC6367480 DOI: 10.1038/s41598-018-38195-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
Plant disease resistance that is durable and effective against diverse pathogens (broad-spectrum) is essential to stabilize crop production. Such resistance is frequently controlled by Quantitative Trait Loci (QTL), and often involves differential regulation of Defense Response (DR) genes. In this study, we sought to understand how expression of DR genes is orchestrated, with the long-term goal of enabling genome-wide breeding for more effective and durable resistance. We identified short sequence motifs in rice promoters that are shared across Broad-Spectrum DR (BS-DR) genes co-expressed after challenge with three major rice pathogens (Magnaporthe oryzae, Rhizoctonia solani, and Xanthomonas oryzae pv. oryzae) and several chemical elicitors. Specific groupings of these BS-DR-associated motifs, called cis-Regulatory Modules (CRMs), are enriched in DR gene promoters, and the CRMs include cis-elements known to be involved in disease resistance. Polymorphisms in CRMs occur in promoters of genes in resistant relative to susceptible BS-DR haplotypes providing evidence that these CRMs have a predictive role in the contribution of other BS-DR genes to resistance. Therefore, we predict that a CRM signature within BS-DR gene promoters can be used as a marker for future breeding practices to enrich for the most responsive and effective BS-DR genes across the genome.
Collapse
Affiliation(s)
| | | | - Ramil Mauleon
- International Rice Research Institute, Manila, Philippines
| | | | - Jan E Leach
- Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
12
|
Differential Expression Proteins Contribute to Race-Specific Resistant Ability in Rice ( Oryza sativa L.). PLANTS 2019; 8:plants8020029. [PMID: 30678057 PMCID: PMC6410114 DOI: 10.3390/plants8020029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 11/20/2022]
Abstract
Rice blast, caused by the fungus, Magnaporthe grisea (M. grisea), lead to the decrease of rice yields widely and destructively, threatening global food security. Although many resistant genes had been isolated and identified in various rice varieties, it is still not enough to clearly understand the mechanism of race-specific resistant ability in rice, especially on the protein level. In this research, proteomic methods were employed to analyze the differentially expressed proteins (DEPs) in susceptible rice variety CO39 and its two near isogenic lines (NILs), CN-4a and CN-4b, in response to the infection of two isolates with different pathogenicity, GUY11 and 81278ZB15. A total of 50 DEPs with more than 1.5-fold reproducible change were identified. At 24 and 48 hpi of GUY11, 32 and 16 proteins in CN-4b were up-regulated, among which 16 and five were paralleled with the expression of their corresponding RNAs. Moreover, 13 of 50 DEPs were reported to be induced by M. grisea in previous publications. Considering the phenotypes of the three tested rice varieties, we found that 21 and 23 up-regulated proteins were responsible for the rice resistant ability to the two different blast isolates, 81278ZB15 and GUY11, respectively. Two distinct branches corresponding to GUY11 and 81278ZB15 were observed in the expression and function of the module cluster of DEPs, illuminating that the DEPs could be responsible for race-specific resistant ability in rice. In other words, DEPs in rice are involved in different patterns and functional modules’ response to different pathogenic race infection, inducing race-specific resistant ability in rice.
Collapse
|
13
|
Abstract
Durable disease resistance is a key component of global food security, and combining resistance genes into "pyramids" is an important way to increase durability of resistance. The mechanisms by which pyramids impart durability are not well known. The traditional view of resistance pyramids considers the use of major resistance gene (R-gene) combinations deployed against pathogens that are primarily asexual. Interestingly, published examples of the successful use of pyramids in the traditional sense are rare. In contrast, most published descriptions of durable pyramids in practice are for cereal rusts, and tend to indicate an association between durability and cultivars combining major R-genes with incompletely expressed, adult plant resistance genes. Pyramids have been investigated experimentally for a diversity of pathogens, and many reduce disease levels below that of the single best gene. Resistance gene combinations have been identified through phenotypic reactions, molecular markers, and challenge against effector genes. As resistance genes do not express equally in all genetic backgrounds, however, a combination of genetic information and phenotypic analyses provide the ideal scenario for testing of putative pyramids. Not all resistance genes contribute equally to pyramids, and approaches have been suggested to identify the best genes and combinations of genes for inclusion. Combining multiple resistance genes into a single plant genotype quickly is a challenge that is being addressed through alternative breeding approaches, as well as through genomics tools such as resistance gene cassettes and gene editing. Experimental and modeling tests of pyramid durability are in their infancy, but have promise to help direct future studies of pyramids. Several areas for further work on resistance gene pyramids are suggested.
Collapse
Affiliation(s)
- Christopher C Mundt
- Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis 97331-2902
| |
Collapse
|
14
|
Singh PK, Nag A, Arya P, Kapoor R, Singh A, Jaswal R, Sharma TR. Prospects of Understanding the Molecular Biology of Disease Resistance in Rice. Int J Mol Sci 2018; 19:E1141. [PMID: 29642631 PMCID: PMC5979409 DOI: 10.3390/ijms19041141] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
Rice is one of the important crops grown worldwide and is considered as an important crop for global food security. Rice is being affected by various fungal, bacterial and viral diseases resulting in huge yield losses every year. Deployment of resistance genes in various crops is one of the important methods of disease management. However, identification, cloning and characterization of disease resistance genes is a very tedious effort. To increase the life span of resistant cultivars, it is important to understand the molecular basis of plant host-pathogen interaction. With the advancement in rice genetics and genomics, several rice varieties resistant to fungal, bacterial and viral pathogens have been developed. However, resistance response of these varieties break down very frequently because of the emergence of more virulent races of the pathogen in nature. To increase the durability of resistance genes under field conditions, understanding the mechanismof resistance response and its molecular basis should be well understood. Some emerging concepts like interspecies transfer of pattern recognition receptors (PRRs) and transgenerational plant immunitycan be employed to develop sustainable broad spectrum resistant varieties of rice.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Akshay Nag
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Preeti Arya
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Akshay Singh
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| |
Collapse
|
15
|
Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc Natl Acad Sci U S A 2018; 115:3174-3179. [PMID: 29432165 PMCID: PMC5866533 DOI: 10.1073/pnas.1705927115] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crops carrying broad-spectrum resistance loci provide an effective strategy for controlling infectious disease because these loci typically confer resistance to diverse races of a pathogen or even multiple species of pathogens. Despite their importance, only a few crop broad-spectrum resistance loci have been reported. Here, we report the identification and characterization of the rice bsr-k1 (broad-spectrum resistance Kitaake-1) mutant, which confers broad-spectrum resistance against Magnaporthe oryzae and Xanthomonas oryzae pv oryzae with no major penalty on key agronomic traits. Map-based cloning reveals that Bsr-k1 encodes a tetratricopeptide repeats (TPRs)-containing protein, which binds to mRNAs of multiple OsPAL (OsPAL1-7) genes and promotes their turnover. Loss of function of the Bsr-k1 gene leads to accumulation of OsPAL1-7 mRNAs in the bsr-k1 mutant. Furthermore, overexpression of OsPAL1 in wild-type rice TP309 confers resistance to M. oryzae, supporting the role of OsPAL1 Our discovery of the bsr-k1 allele constitutes a significant conceptual advancement and provides a valuable tool for breeding broad-spectrum resistant rice.
Collapse
|
16
|
Ke Y, Deng H, Wang S. Advances in understanding broad-spectrum resistance to pathogens in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:738-748. [PMID: 27888533 DOI: 10.1111/tpj.13438] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 05/22/2023]
Abstract
Rice diseases caused by multiple pathogen species are a major obstacle to achieving optimal yield. Using host pathogen species-non-specific broad-spectrum resistance (BSR) for rice improvement is an efficient way to control diseases. Recent advances in rice genomics and improved understanding of the mechanisms of rice-pathogen interactions have shown that using a single gene to improve rice BSR to multiple pathogen species is technically possible and the necessary resources exist. A variety of rice genes, including major disease resistance genes and defense-responsive genes, which function in pattern-triggered immunity signaling, effector-triggered immunity signaling or quantitative resistance, can mediate BSR to two or more pathogen species independently. These genes encode diverse proteins and function differently in promoting disease resistance, thus providing a relatively broad choice for different breeding programs. This updated knowledge will facilitate rice improvement with pathogen species-non-specific BSR via gene marker-assisted selection or biotechnological approaches.
Collapse
Affiliation(s)
- Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanqing Deng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
17
|
Yeo FKS, Bouchon R, Kuijken R, Loriaux A, Boyd C, Niks RE, Marcel TC. High-resolution mapping of genes involved in plant stage-specific partial resistance of barley to leaf rust. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2017; 37:45. [PMID: 28356783 PMCID: PMC5352788 DOI: 10.1007/s11032-017-0624-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/20/2017] [Indexed: 05/30/2023]
Abstract
Partial resistance quantitative trait loci (QTLs) Rphq11 and rphq16 against Puccinia hordei isolate 1.2.1 were previously mapped in seedlings of the mapping populations Steptoe/Morex and Oregon Wolfe Barleys, respectively. In this study, QTL mapping was performed at adult plant stage for the two mapping populations challenged with the same rust isolate. The results suggest that Rphq11 and rphq16 are effective only at seedling stage, and not at adult plant stage. The cloning of several genes responsible for partial resistance of barley to P. hordei will allow elucidation of the molecular basis of this type of plant defence. A map-based cloning approach requires to fine-map the QTL in a narrow genetic window. In this study, Rphq11 and rphq16 were fine-mapped using an approach aiming at speeding up the development of plant material and simplifying its evaluation. The plant materials for fine-mapping were identified from early plant materials developed to produce QTL-NILs. The material was first selected to carry the targeted QTL in heterozygous condition and susceptibility alleles at other resistance QTLs in homozygous condition. This strategy took four to five generations to obtain fixed QTL recombinants (i.e., homozygous resistant at the Rphq11 or rphq16 QTL alleles, homozygous susceptible at the non-targeted QTL alleles). In less than 2 years, Rphq11 was fine-mapped into a 0.2-cM genetic interval and a 1.4-cM genetic interval for rphq16. The strongest candidate gene for Rphq11 is a phospholipid hydroperoxide glutathione peroxidase. Thus far, no candidate gene was identified for rphq16.
Collapse
Affiliation(s)
- F. K. S. Yeo
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, 6700 AJ Wageningen, the Netherlands
- Department of Plant Science and Environmental Ecology, Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - R. Bouchon
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, 6700 AJ Wageningen, the Netherlands
| | - R. Kuijken
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, 6700 AJ Wageningen, the Netherlands
| | - A. Loriaux
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, 6700 AJ Wageningen, the Netherlands
| | - C. Boyd
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-4660 USA
| | - R. E. Niks
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, 6700 AJ Wageningen, the Netherlands
| | - T. C. Marcel
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, 6700 AJ Wageningen, the Netherlands
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| |
Collapse
|
18
|
He Q, Kim K, Park Y. Population genomics identifies the origin and signatures of selection of Korean weedy rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:357-366. [PMID: 27589078 PMCID: PMC5316921 DOI: 10.1111/pbi.12630] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/25/2016] [Accepted: 08/21/2016] [Indexed: 05/25/2023]
Abstract
Weedy rice is the same biological species as cultivated rice (Oryza sativa); it is also a noxious weed infesting rice fields worldwide. Its formation and population-selective or -adaptive signatures are poorly understood. In this study, we investigated the phylogenetics, population structure and signatures of selection of Korean weedy rice by determining the whole genomes of 30 weedy rice, 30 landrace rice and ten wild rice samples. The phylogenetic tree and results of ancestry inference study clearly showed that the genetic distance of Korean weedy rice was far from the wild rice and near with cultivated rice. Furthermore, 537 genes showed evidence of recent positive or divergent selection, consistent with some adaptive traits. This study indicates that Korean weedy rice originated from hybridization of modern indica/indica or japonica/japonica rather than wild rice. Moreover, weedy rice is not only a notorious weed in rice fields, but also contains many untapped valuable traits or haplotypes that may be a useful genetic resource for improving cultivated rice.
Collapse
Affiliation(s)
- Qiang He
- Department of Plant ResourcesCollege of Industrial ScienceKongju National UniversityYesan32439Korea
| | - Kyu‐Won Kim
- Department of Plant ResourcesCollege of Industrial ScienceKongju National UniversityYesan32439Korea
| | - Yong‐Jin Park
- Department of Plant ResourcesCollege of Industrial ScienceKongju National UniversityYesan32439Korea
- Center for crop genetic resource and breeding (CCGRB)Kongju National UniversityCheonan31080Republic of Korea
| |
Collapse
|
19
|
Wang Z, Yu L, Jin L, Wang W, Zhao Q, Ran L, Li X, Chen Z, Guo R, Wei Y, Yang Z, Liu E, Hu D, Song B. Evaluation of Rice Resistance to Southern Rice Black-Streaked Dwarf Virus and Rice Ragged Stunt Virus through Combined Field Tests, Quantitative Real-Time PCR, and Proteome Analysis. Viruses 2017; 9:E37. [PMID: 28241456 PMCID: PMC5332956 DOI: 10.3390/v9020037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/18/2017] [Accepted: 02/18/2017] [Indexed: 01/30/2023] Open
Abstract
Diseases caused by southern rice black-streaked dwarf virus (SRBSDV) and rice ragged stunt virus (RRSV) considerably decrease grain yield. Therefore, determining rice cultivars with high resistance to SRBSDV and RRSV is necessary. In this study, rice cultivars with high resistance to SRBSDV and RRSV were evaluated through field trials in Shidian and Mangshi county, Yunnan province, China. SYBR Green I-based quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to quantitatively detect virus gene expression levels in different rice varieties. The following parameters were applied to evaluate rice resistance: acre yield (A.Y.), incidence of infected plants (I.I.P.), virus load (V.L.), disease index (D.I.), and insect quantity (I.Q.) per 100 clusters. Zhongzheyou1 (Z1) and Liangyou2186 (L2186) were considered the most suitable varieties with integrated higher A.Y., lower I.I.P., V.L., D.I. and I.Q. FEATURES In order to investigate the mechanism of rice resistance, comparative label-free shotgun liquid chromatography tandem-mass spectrometry (LC-MS/MS) proteomic approaches were applied to comprehensively describe the proteomics of rice varieties' SRBSDV tolerance. Systemic acquired resistance (SAR)-related proteins in Z1 and L2186 may result in the superior resistance of these varieties compared with Fengyouxiangzhan (FYXZ).
Collapse
Affiliation(s)
- Zhenchao Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
- College of Pharmacy, Guizhou University, Guiyang 550025, China.
| | - Lu Yu
- College of Life Science, Guizhou University, Guiyang 550025, China.
| | - Linhong Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Wenli Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Qi Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Longlu Ran
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Zhuo Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Rong Guo
- National Agricultural Extension Service Centre, Beijing 100026, China.
| | - Yongtian Wei
- Shidian Plant Protection Station, Shidian 678200, China.
| | | | - Enlong Liu
- Mangshi Plant Protection & Quarantine Station, Mangshi 678400, China.
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
20
|
Hu K, Cao J, Zhang J, Xia F, Ke Y, Zhang H, Xie W, Liu H, Cui Y, Cao Y, Sun X, Xiao J, Li X, Zhang Q, Wang S. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. NATURE PLANTS 2017; 3:17009. [PMID: 28211849 DOI: 10.1038/nplants.2017.9] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 01/21/2017] [Indexed: 05/03/2023]
Abstract
The major disease resistance gene Xa4 confers race-specific durable resistance against Xanthomonas oryzae pv. oryzae, which causes the most damaging bacterial disease in rice worldwide. Although Xa4 has been one of the most widely exploited resistance genes in rice production worldwide, its molecular nature remains unknown. Here we show that Xa4, encoding a cell wall-associated kinase, improves multiple traits of agronomic importance without compromising grain yield by strengthening the cell wall via promoting cellulose synthesis and suppressing cell wall loosening. Strengthening of the cell wall by Xa4 enhances resistance to bacterial infection, and also increases mechanical strength of the culm with slightly reduced plant height, which may improve lodging resistance of the rice plant. The simultaneous improvement of multiple agronomic traits conferred by Xa4 may account for its widespread and lasting utilization in rice breeding programmes globally.
Collapse
Affiliation(s)
- Keming Hu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbo Cao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Xia
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wenya Xie
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Cui
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yinglong Cao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xinli Sun
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Abstract
Many plants, both in nature and in agriculture, are resistant to multiple diseases. Although much of the plant innate immunity system provides highly specific resistance, there is emerging evidence to support the hypothesis that some components of plant defense are relatively nonspecific, providing multiple disease resistance (MDR). Understanding MDR is of fundamental and practical interest to plant biologists, pathologists, and breeders. This review takes stock of the available evidence related to the MDR hypothesis. Questions about MDR are considered primarily through the lens of forward genetics, starting at the organismal level and proceeding to the locus level and, finally, to the gene level. At the organismal level, MDR may be controlled by clusters of R genes that evolve under diversifying selection, by dispersed, pathogen-specific genes, and/or by individual genes providing MDR. Based on the few MDR loci that are well-understood, MDR is conditioned by diverse mechanisms at the locus and gene levels.
Collapse
Affiliation(s)
- Tyr Wiesner-Hanks
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853; ,
| | - Rebecca Nelson
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|
22
|
Fahad S, Nie L, Khan FA, Chen Y, Hussain S, Wu C, Xiong D, Jing W, Saud S, Khan FA, Li Y, Wu W, Khan F, Hassan S, Manan A, Jan A, Huang J. Disease resistance in rice and the role of molecular breeding in protecting rice crops against diseases. Biotechnol Lett 2015; 36:1407-20. [PMID: 24658743 DOI: 10.1007/s10529-014-1510-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/03/2014] [Indexed: 01/24/2023]
Abstract
Rice diseases (bacterial, fungal, or viral) threaten food productivity. Host resistance is the most efficient, environmentally friendly method to cope with such diverse pathogens. Quantitative resistance conferred by quantitative trait loci (QTLs) is a valuable resource for rice disease resistance improvement. Although QTLs confer partial but durable resistance to many pathogen species in different crop plants, the molecular mechanisms of quantitative disease resistance remain mostly unknown. Quantitative resistance and non-host resistance are types of broad-spectrum resistance, which are mediated by resistance (R) genes. Because R genes activate different resistance pathways, investigating the genetic spectrum of resistance may lead to minimal losses from harmful diseases. Genome studies can reveal interactions between different genes and their pathways and provide insight into gene functions. Protein–protein interaction (proteomics) studies using molecular and bioinformatics tools may further enlighten our understanding of resistance phenomena.
Collapse
|
23
|
Li N, Li X, Xiao J, Wang S. Comprehensive analysis of VQ motif-containing gene expression in rice defense responses to three pathogens. PLANT CELL REPORTS 2014; 33:1493-505. [PMID: 24871256 DOI: 10.1007/s00299-014-1633-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/04/2014] [Accepted: 05/16/2014] [Indexed: 05/11/2023]
Abstract
Expression levels of rice VQ motif-containing genes in response to pathogen infection vary among pathogens, and some of the genes are co-expressed with defense-response WRKY genes. Recent studies have revealed that some VQ (FxxxVQxLTG) motif-containing proteins in plants partner with WRKY transcription factors to participate in their functions. Accumulating information suggests that WRKY proteins play important roles in the response of rice plants to pathogen infection. However, the functions of rice VQ motif-containing proteins are unknown. To explore whether VQ motif-containing proteins are involved in defense against pathogens in rice, we performed a comprehensive expression analysis of the genes for these proteins. The rice VQ motif-containing family consists of 40 genes, all of which encode proteins harboring a 21-amino acid VQ-containing motif, which in turn contains the known VQ motif. On the basis of their phylogenetic relationships and tissue-specific and developmental stage-specific expression characteristics, we transcriptionally analyzed 13 representative genes in rice responses to three pathogens: Xanthomonas oryzae pv. oryzae, which causes bacterial blight disease; X. oryzae pv. oryzicola, which causes bacterial streak disease; and Magnaporthe oryzae, which causes fungal blast disease. The expression of some of the genes changed markedly in response to infection by at least one of the pathogen species, and some of the genes also showed markedly different expression in resistant and susceptible reactions. In addition, some defense-responsive VQ motif-containing genes were co-expressed with defense-response WRKY genes. These results provide a new perspective on the putative roles of rice VQ motif-containing proteins and their putative WRKY partners in rice-pathogen interactions.
Collapse
Affiliation(s)
- Na Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China,
| | | | | | | |
Collapse
|
24
|
Lee S, Mian MAR, Sneller CH, Wang H, Dorrance AE, McHale LK. Joint linkage QTL analyses for partial resistance to Phytophthora sojae in soybean using six nested inbred populations with heterogeneous conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:429-44. [PMID: 24247235 DOI: 10.1007/s00122-013-2229-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 10/31/2013] [Indexed: 05/10/2023]
Abstract
Partial resistance to Phytophthora sojae in soybean is controlled by multiple quantitative trait loci (QTL). With traditional QTL mapping approaches, power to detect such QTL, frequently of small effect, can be limited by population size. Joint linkage QTL analysis of nested recombinant inbred line (RIL) populations provides improved power to detect QTL through increased population size, recombination, and allelic diversity. However, uniform development and phenotyping of multiple RIL populations can prove difficult. In this study, the effectiveness of joint linkage QTL analysis was evaluated on combinations of two to six nested RIL populations differing in inbreeding generation, phenotypic assay method, and/or marker set used in genotyping. In comparison to linkage analysis in a single population, identification of QTL by joint linkage analysis was only minimally affected by different phenotypic methods used among populations once phenotypic data were standardized. In contrast, genotyping of populations with only partially overlapping sets of markers had a marked negative effect on QTL detection by joint linkage analysis. In total, 16 genetic regions with QTL for partial resistance against P. sojae were identified, including four novel QTL on chromosomes 4, 9, 12, and 16, as well as significant genotype-by-isolate interactions. Resistance alleles from PI 427106 or PI 427105B contributed to a major QTL on chromosome 18, explaining 10-45% of the phenotypic variance. This case study provides guidance on the application of joint linkage QTL analysis of data collected from populations with heterogeneous assay conditions and a genetic framework for partial resistance to P. sojae.
Collapse
Affiliation(s)
- Sungwoo Lee
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA,
| | | | | | | | | | | |
Collapse
|
25
|
Barbary A, Palloix A, Fazari A, Marteu N, Castagnone-Sereno P, Djian-Caporalino C. The plant genetic background affects the efficiency of the pepper major nematode resistance genes Me1 and Me3. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:499-507. [PMID: 24258389 DOI: 10.1007/s00122-013-2235-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 11/05/2013] [Indexed: 06/02/2023]
Abstract
The plant genetic background influences the efficiency of major resistance genes to root-knot nematodes in pepper and has to be considered in breeding strategies. Root-knot nematodes (RKNs), Meloidogyne spp., are extremely polyphagous plant parasites worldwide. Since the use of most chemical nematicides is being prohibited, genetic resistance is an efficient alternative way to protect crops against these pests. However, nematode populations proved able to breakdown plant resistance, and genetic resources in terms of resistance genes (R-genes) are limited. Sustainable management of these valuable resources is thus a key point of R-gene durability. In pepper, Me1 and Me3 are two dominant major R-genes, currently used in breeding programs to control M. arenaria, M. incognita and M. javanica, the three main RKN species. These two genes differ in the hypersensitive response induced by nematode infection. In this study, they were introgressed in either a susceptible or a partially resistant genetic background, in either homozygous or heterozygous allelic status. Challenging these genotypes with an avirulent M. incognita isolate demonstrated that (1) the efficiency of the R-genes in reducing the reproductive potential of RKNs is strongly affected by the plant genetic background, (2) the allelic status of the R-genes has no effect on nematode reproduction. These results highlight the primary importance of the choice of both the R-gene and the genetic background into which it is introgressed during the selection of new elite cultivars by plant breeders.
Collapse
Affiliation(s)
- A Barbary
- INRA, UMR1355 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France,
| | | | | | | | | | | |
Collapse
|
26
|
Cole SJ, Diener AC. Diversity in receptor-like kinase genes is a major determinant of quantitative resistance to Fusarium oxysporum f.sp. matthioli. THE NEW PHYTOLOGIST 2013; 200:172-184. [PMID: 23790083 DOI: 10.1111/nph.12368] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/15/2013] [Indexed: 05/20/2023]
Abstract
Resistance to wilt fungus Fusarium oxysporum f.sp. matthioli (FOM) is a polygenic trait in Arabidopsis thaliana. RFO3 is one of six quantitative trait loci accounting for the complete resistance of accession Columbia-0 (Col-0) and susceptibility of accession Taynuilt-0 (Ty-0). We find that Col-0 and Ty-0 alleles of RFO3 are representative of two common variants in wild Arabidopsis accessions, that resistance and susceptibility to FOM are ancestral features of the two variants and that resistance from RFO3 is unrivalled by other genes in a genome-wide survey of diversity in accessions. A single receptor-like kinase (RLK) gene in Col-0 is responsible for the resistance of RFO3, although the susceptible Ty-0 allele codes for two RLK homologs. Expression of RFO3 is highest in vascular tissue, which F. oxysporum infects, and root-expressed RFO3 restricts FOM infection of the vascular system. RFO3 confers specific resistance to FOM and provides no resistance to two other crucifer-infecting F. oxysporum pathogens. RFO3's identity, expression and specificity suggest that RFO3 represents diversity in pattern-recognition receptor (PRR) genes. The characteristics of RFO3 and the previously published RFO1 suggest that diversity in RLK PRRs is a major determinant of quantitative resistance in wild plant populations.
Collapse
Affiliation(s)
- Stephanie J Cole
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Andrew C Diener
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
27
|
Shen Y, Diener AC. Arabidopsis thaliana resistance to fusarium oxysporum 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection. PLoS Genet 2013; 9:e1003525. [PMID: 23717215 PMCID: PMC3662643 DOI: 10.1371/journal.pgen.1003525] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/09/2013] [Indexed: 12/28/2022] Open
Abstract
In the plant Arabidopsis thaliana, multiple quantitative trait loci (QTLs), including RFO2, account for the strong resistance of accession Columbia-0 (Col-0) and relative susceptibility of Taynuilt-0 (Ty-0) to the vascular wilt fungus Fusarium oxysporum forma specialis matthioli. We find that RFO2 corresponds to diversity in receptor-like protein (RLP) genes. In Col-0, there is a tandem pair of RLP genes: RFO2/At1g17250 confers resistance while RLP2 does not. In Ty-0, the highly diverged RFO2 locus has one RLP gene conferring weaker resistance. While the endogenous RFO2 makes a modest contribution to resistance, transgenic RFO2 provides strong pathogen-specific resistance. The extracellular leucine-rich repeats (eLRRs) in RFO2 and RLP2 are interchangeable for resistance and remarkably similar to eLRRs in the receptor-like kinase PSY1R, which perceives tyrosine-sulfated peptide PSY1. Reduced infection in psy1r and mutants of related phytosulfokine (PSK) receptor genes PSKR1 and PSKR2 shows that tyrosine-sulfated peptide signaling promotes susceptibility. The related eLRRs in RFO2 and PSY1R are not interchangeable; and expression of the RLP nPcR, in which eLRRs in RFO2 are replaced with eLRRs in PSY1R, results in constitutive resistance. Counterintuitively, PSY1 signaling suppresses nPcR because psy1r nPcR is lethal. The fact that PSK signaling does not similarly affect nPcR argues that PSY1 signaling directly downregulates the expression of nPcR. Our results support a speculative but intriguing model to explain RFO2's role in resistance. We propose that F. oxysporum produces an effector that inhibits the normal negative feedback regulation of PSY1R, which stabilizes PSY1 signaling and induces susceptibility. However, RFO2, acting as a decoy receptor for PSY1R, is also stabilized by the effector and instead induces host immunity. Overall, the quantitative resistance of RFO2 is reminiscent of the better-studied monogenic resistance traits.
Collapse
Affiliation(s)
- Yunping Shen
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Andrew C. Diener
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Singh A, Singh VK, Singh SP, Pandian RTP, Ellur RK, Singh D, Bhowmick PK, Gopala Krishnan S, Nagarajan M, Vinod KK, Singh UD, Prabhu KV, Sharma TR, Mohapatra T, Singh AK. Molecular breeding for the development of multiple disease resistance in Basmati rice. AOB PLANTS 2012; 2012:pls029. [PMID: 23125910 PMCID: PMC3487461 DOI: 10.1093/aobpla/pls029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 09/14/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Basmati rice grown in the Indian subcontinent is highly valued for its unique culinary qualities. Production is, however, often constrained by diseases such as bacterial blight (BB), blast and sheath blight (ShB). The present study developed Basmati rice with inbuilt resistance to BB, blast and ShB using molecular marker-assisted selection. METHODOLOGY The rice cultivar 'Improved Pusa Basmati 1' (carrying the BB resistance genes xa13 and Xa21) was used as the recurrent parent and cultivar 'Tetep' (carrying the blast resistance gene Pi54 and ShB resistance quality trait loci (QTL), qSBR11-1) was the donor. Marker-assisted foreground selection was employed to identify plants possessing resistance alleles in the segregating generations along with stringent phenotypic selection for faster recovery of the recurrent parent genome (RPG) and phenome (RPP). Background analysis with molecular markers was used to estimate the recovery of RPG in improved lines. PRINCIPAL RESULTS Foreground selection coupled with stringent phenotypic selection identified plants homozygous for xa13, Xa21 and Pi54, which were advanced to BC(2)F(5) through pedigree selection. Marker-assisted selection for qSBR11-1 in BC(2)F(5) using flanking markers identified seven homozygous families. Background analysis revealed that RPG recovery was up to 89.5%. Screening with highly virulent isolates of BB, blast and ShB showed that the improved lines were resistant to all three diseases and were on a par with 'Improved Pusa Basmati 1' for yield, duration and Basmati grain quality. CONCLUSIONS This is the first report of marker-assisted transfer of genes conferring resistance to three different diseases in rice wherein genes xa13 and Xa21 for BB resistance, Pi54 for blast resistance, and a major QTL qSBR11-1 have been combined through marker-assisted backcross breeding. In addition to offering the potential for release as cultivars, the pyramided lines will serve as useful donors of gene(s) for BB, blast and ShB in future Basmati rice breeding programmes.
Collapse
Affiliation(s)
- Atul Singh
- Division of Genetics, Rice Section, Indian Agricultural Research Institute, New Delhi 110 012, India
- Department of Genetics and Plant Breeding, C.C.S. University, Meerut 200 005, India
| | - Vikas K. Singh
- Division of Genetics, Rice Section, Indian Agricultural Research Institute, New Delhi 110 012, India
- Department of Genetics and Plant Breeding, C.C.S. University, Meerut 200 005, India
| | - S. P. Singh
- Department of Genetics and Plant Breeding, C.C.S. University, Meerut 200 005, India
| | - R. T. P. Pandian
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Ranjith K. Ellur
- Division of Genetics, Rice Section, Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Devinder Singh
- Division of Genetics, Rice Section, Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Prolay K. Bhowmick
- Division of Genetics, Rice Section, Indian Agricultural Research Institute, New Delhi 110 012, India
| | - S. Gopala Krishnan
- Division of Genetics, Rice Section, Indian Agricultural Research Institute, New Delhi 110 012, India
| | - M. Nagarajan
- Rice Breeding and Genetics Research Centre, Aduthurai 612101, Tamil Nadu, India
| | - K. K. Vinod
- Rice Breeding and Genetics Research Centre, Aduthurai 612101, Tamil Nadu, India
| | - U. D. Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110 012, India
| | - K. V. Prabhu
- Division of Genetics, Rice Section, Indian Agricultural Research Institute, New Delhi 110 012, India
| | - T. R. Sharma
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi 110 012, India
| | - T. Mohapatra
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi 110 012, India
- Current address: Central Rice Research Institute, Cuttack 753 006, Odisha, India
| | - A. K. Singh
- Division of Genetics, Rice Section, Indian Agricultural Research Institute, New Delhi 110 012, India
| |
Collapse
|
29
|
Deng H, Liu H, Li X, Xiao J, Wang S. A CCCH-type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease. PLANT PHYSIOLOGY 2012; 158:876-89. [PMID: 22158700 PMCID: PMC3271775 DOI: 10.1104/pp.111.191379] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bacterial blight is a devastating disease of rice (Oryza sativa) caused by Xanthomonas oryzae pv oryzae (Xoo). Zinc finger proteins harboring the motif with three conserved cysteine residues and one histidine residue (CCCH) belong to a large family. Although at least 67 CCCH-type zinc finger protein genes have been identified in the rice genome, their functions are poorly understood. Here, we report that one of the rice CCCH-type zinc finger proteins, C3H12, containing five typical CX(8)-CX(5)-CX(3)-H zinc finger motifs, is involved in the rice-Xoo interaction. Activation of C3H12 partially enhanced resistance to Xoo, accompanied by the accumulation of jasmonic acid (JA) and induced expression of JA signaling genes in rice. In contrast, knockout or suppression of C3H12 resulted in partially increased susceptibility to Xoo, accompanied by decreased levels of JA and expression of JA signaling genes in rice. C3H12 colocalized with a minor disease resistance quantitative trait locus to Xoo, and the enhanced resistance of randomly chosen plants in the quantitative trait locus mapping population correlated with an increased expression level of C3H12. The C3H12 protein localized in the nucleus and possessed nucleic acid-binding activity in vitro. These results suggest that C3H12, as a nucleic acid-binding protein, positively and quantitatively regulates rice resistance to Xoo and that its function is likely associated with the JA-dependent pathway.
Collapse
|