1
|
Kurjahn M, Abbaspour L, Papenfuß F, Bittihn P, Golestanian R, Mahault B, Karpitschka S. Collective self-caging of active filaments in virtual confinement. Nat Commun 2024; 15:9122. [PMID: 39443452 PMCID: PMC11499643 DOI: 10.1038/s41467-024-52936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Motility coupled to responsive behavior is essential for many microorganisms to seek and establish appropriate habitats. One of the simplest possible responses, reversing the direction of motion, is believed to enable filamentous cyanobacteria to form stable aggregates or accumulate in suitable light conditions. Here, we demonstrate that filamentous morphology in combination with responding to light gradients by reversals has consequences far beyond simple accumulation: Entangled aggregates form at the boundaries of illuminated regions, harnessing the boundary to establish local order. We explore how the light pattern, in particular its boundary curvature, impacts aggregation. A minimal mechanistic model of active flexible filaments resembles the experimental findings, thereby revealing the emergent and generic character of these structures. This phenomenon may enable elongated microorganisms to generate adaptive colony architectures in limited habitats or guide the assembly of biomimetic fibrous materials.
Collapse
Affiliation(s)
- Maximilian Kurjahn
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Leila Abbaspour
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Franziska Papenfuß
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Philip Bittihn
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Benoît Mahault
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany.
| | - Stefan Karpitschka
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany.
- Fachbereich Physik, Universität Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, Universität Konstanz, Konstanz, Germany.
| |
Collapse
|
2
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
3
|
Ray S, Jin JO, Choi I, Kim M. Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources. Front Bioeng Biotechnol 2023; 10:907500. [PMID: 36686222 PMCID: PMC9852868 DOI: 10.3389/fbioe.2022.907500] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Growing concerns over the use of limited fossil fuels and their negative impacts on the ecological niches have facilitated the exploration of alternative routes. The use of conventional plastic material also negatively impacts the environment. One such green alternative is polyhydroxyalkanoates, which are biodegradable, biocompatible, and environmentally friendly. Recently, researchers have focused on the utilization of waste gases particularly those belonging to C1 sources derived directly from industries and anthropogenic activities, such as carbon dioxide, methane, and methanol as the substrate for polyhydroxyalkanoates production. Consequently, several microorganisms have been exploited to utilize waste gases for their growth and biopolymer accumulation. Methylotrophs such as Methylobacterium organophilum produced highest amount of PHA up to 88% using CH4 as the sole carbon source and 52-56% with CH3OH. On the other hand Cupriavidus necator, produced 71-81% of PHA by utilizing CO and CO2 as a substrate. The present review shows the potential of waste gas valorization as a promising solution for the sustainable production of polyhydroxyalkanoates. Key bottlenecks towards the usage of gaseous substrates obstructing their realization on a large scale and the possible technological solutions were also highlighted. Several strategies for PHA production using C1 gases through fermentation and metabolic engineering approaches are discussed. Microbes such as autotrophs, acetogens, and methanotrophs can produce PHA from CO2, CO, and CH4. Therefore, this article presents a vision of C1 gas into bioplastics are prospective strategies with promising potential application, and aspects related to the sustainability of the system.
Collapse
Affiliation(s)
- Subhasree Ray
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Myunghee Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| |
Collapse
|
4
|
Kumar N, Kar S, Shukla P. Role of regulatory pathways and multi-omics approaches for carbon capture and mitigation in cyanobacteria. BIORESOURCE TECHNOLOGY 2022; 366:128104. [PMID: 36257524 DOI: 10.1016/j.biortech.2022.128104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria are known for their metabolic potential and carbon capture and sequestration capabilities. These cyanobacteria are not only an effective source for carbon minimization and resource mobilization into value-added products for biotechnological gains. The present review focuses on the detailed description of carbon capture mechanisms exerted by the various cyanobacterial strains, the role of important regulatory pathways, and their subsequent genes responsible for such mechanisms. Moreover, this review will also describe effectual mechanisms of central carbon metabolism like isoprene synthesis, ethylene production, MEP pathway, and the role of Glyoxylate shunt in the carbon sequestration mechanisms. This review also describes some interesting facets of using carbon assimilation mechanisms for valuable bio-products. The role of regulatory pathways and multi-omics approaches in cyanobacteria will not only be crucial towards improving carbon utilization but also will give new insights into utilizing cyanobacterial bioresource for carbon neutrality.
Collapse
Affiliation(s)
- Niwas Kumar
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Navrangapura, Ahmedabad 380009, India
| | - Srabani Kar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
5
|
Velmurugan R, Incharoensakdi A. Metabolic transformation of cyanobacteria for biofuel production. CHEMOSPHERE 2022; 299:134342. [PMID: 35307390 DOI: 10.1016/j.chemosphere.2022.134342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
World-wide, an emerging demand is moving towards the biofuels to replace the fossil fuels. In alternative biofuel production strategies, cyanobacteria have unique characteristic of accumulating glycogen, lipid, and fuel molecules through natural mechanisms. Moreover, the cyanobacteria can be easily engineered to synthesis a plenty of fuel molecules from CO2. To obtain the fuel molecule from cyanobacteria, various techniques were invented in which the metabolic engineering is found to be a prerequisite to develop an economically feasible process. The expression of indigenous or heterologous pathways plays an important role in developing successful production process. In addition, the engineering of photosynthetic apparatus, destruction of competitive pathways and improvement of tolerance were also proven to improve the product specific synthesis. Although various metabolic engineering approaches have been developed, there are certain obstacles when it comes to implementation for the production. In this review, the important biosynthetic pathways for biofuels, alteration of other genes to improve the actual pathway and possibilities of developing cyanobacterial fuel production have been elaborated.
Collapse
Affiliation(s)
- Rajendran Velmurugan
- Cyanobacterial Biotechnology Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aran Incharoensakdi
- Cyanobacterial Biotechnology Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand.
| |
Collapse
|
6
|
Santos Correa S, Schultz J, Lauersen KJ, Soares Rosado A. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J Adv Res 2022; 47:75-92. [PMID: 35918056 PMCID: PMC10173188 DOI: 10.1016/j.jare.2022.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Autotrophic carbon fixation is the primary route through which organic carbon enters the biosphere, and it is a key step in the biogeochemical carbon cycle. The Calvin-Benson-Bassham pathway, which is predominantly found in plants, algae, and some bacteria (mainly cyanobacteria), was previously considered to be the sole carbon-fixation pathway. However, the discovery of a new carbon-fixation pathway in sulfurous green bacteria almost two decades ago encouraged further research on previously overlooked ancient carbon-fixation pathways in taxonomically and phylogenetically distinct microorganisms. AIM OF REVIEW In this review, we summarize the six known natural carbon-fixation pathways and outline the newly proposed additions to this list. We also discuss the recent achievements in synthetic carbon fixation and the importance of the metabolism of thermophilic microorganisms in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Currently, at least six carbon-fixation routes have been confirmed in Bacteria and Archaea. Other possible candidate routes have also been suggested on the basis of emerging "omics" data analyses, expanding our knowledge and stimulating discussions on the importance of these pathways in the way organisms acquire carbon. Notably, the currently known natural fixation routes cannot balance the excessive anthropogenic carbon emissions in a highly unbalanced global carbon cycle. Therefore, significant efforts have also been made to improve the existing carbon-fixation pathways and/or design new efficient in vitro and in vivo synthetic pathways.
Collapse
Affiliation(s)
- Sulamita Santos Correa
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Junia Schultz
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alexandre Soares Rosado
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
7
|
Maheshwari N, Thakur IS, Srivastava S. Role of carbon-dioxide sequestering bacteria for clean air environment and prospective production of biomaterials: a sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38950-38971. [PMID: 35304714 DOI: 10.1007/s11356-022-19393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
The increase in demand of fossil fuel uses for developmental activity and manufacturing of goods have resulted a huge emission of global warming gases (GWGs) in the atmosphere. Among all GWGs, CO2 is the major contributor that inevitably causes global warming and climate change. Mitigation strategies like biological CO2 capture through sequestration and their storage into biological organic form are used to minimize the concentration of atmospheric CO2 with the goal to control climate change. Since increasing atmospheric CO2 level supports microbial growth and productivity thus microbial-based CO2 sequestration has remarkable advantages as compared to plant-based sequestration. This review focuses on CO2 sequestration mechanism in bacteria through different carbon fixation pathways, involved enzymes, their role in calcite, and other environmentally friendly biomaterials such as biofuel, bioplastic, and biosurfactant.
Collapse
Affiliation(s)
- Neha Maheshwari
- Amity School of Earth and Environmental Science, Amity University, Gurugram, Haryana, India
| | - Indu Shekhar Thakur
- Amity School of Earth and Environmental Science, Amity University, Gurugram, Haryana, India
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shaili Srivastava
- Amity School of Earth and Environmental Science, Amity University, Gurugram, Haryana, India.
| |
Collapse
|
8
|
Sadvakasova AK, Kossalbayev BD, Zayadan BK, Kirbayeva DK, Alwasel S, Allakhverdiev SI. Potential of cyanobacteria in the conversion of wastewater to biofuels. World J Microbiol Biotechnol 2021; 37:140. [PMID: 34278541 DOI: 10.1007/s11274-021-03107-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022]
Abstract
Environmental and energy security has now become a serious global problem, requiring a lot of research to find and implement its cost-effective and environmentally friendly alternatives. The development and use of renewable energy sources is necessary and important in order to avoid the emergence of a global economic crisis. One of the solution to prevent a future crisis caused by energy shortages is to introduce biofuels into the fuel market. Despite the fact that various forms of renewable energy are currently used, the prospects for the production of biofuels from cyanobacteria are quite high due to their unique properties, such as a high lipid content and a suitable fatty acid (FA) composition for the production of biofuels, their suitability for growing open water and the ability to grow on wastewater. The purpose of this article is to provide a comprehensive overview of the potential of cyanobacteria in the conversion of wastewater into biofuels. The article covers comparative data on the accumulation of lipids and the content of fatty acids in various representatives of cyanobacteria and their possibilities in the remediation of wastewater. Various approaches to the extraction of lipids from phototrophic microorganisms that are currently available, their advantages and disadvantages, and the results of the monitoring of the main key points of the development of the technology for converting cyanobacterial biomass into biofuels, with an emphasis on the existing barriers, effects and solutions, are also considered. Further research in this field is required for the successful implementation of this technology on an industrial scale.
Collapse
Affiliation(s)
- Asemgul K Sadvakasova
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050038, Almaty, Kazakhstan.
| | - Bekzhan D Kossalbayev
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050038, Almaty, Kazakhstan
| | - Bolatkhan K Zayadan
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050038, Almaty, Kazakhstan
| | - Dariga K Kirbayeva
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050038, Almaty, Kazakhstan
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Suleyman I Allakhverdiev
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050038, Almaty, Kazakhstan. .,Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276. .,Zoology Department, College of Science, King Saud University, Riyadh, 12372, Saudi Arabia.
| |
Collapse
|
9
|
Hong K, Beld J, Davis TD, Burkart MD, Palenik B. Screening and characterization of polyhydroxyalkanoate granules, and phylogenetic analysis of polyhydroxyalkanoate synthase gene PhaC in cyanobacteria. JOURNAL OF PHYCOLOGY 2021; 57:754-765. [PMID: 33350471 DOI: 10.1111/jpy.13123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/06/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Using Nile Red and BODIPY 493/503 dye-staining and fluorescence microscopy, twenty cyanobacterial strains, including ten commercially available strains and ten environmental isolates from estuaries, freshwater ponds, and lagoons, were screened for the accumulation of ecologically important and potentially biotechnologically significant carbon storage granules such as polyhydroxyalkanoates (PHA). Dye-staining granules were observed in six strains. Three Synechocystis, spp. strains WHSYN, LSNM, and CGF-1, and a Phormidium-like sp. CGFILA were isolated from environmental sources and found to produce granules of polyhydroxyalkanoate (PHA) according to PHA synthase gene (phaC) PCR screening and 1 H NMR analyses. The environmental isolate, Nodularia sp. Las Olas and commercially available Phormidium cf. iriguum CCALA 759 displayed granules but screened negative for PHA according to phaC PCR and 1 H NMR analyses. Partial polyhydroxyalkanoate synthase subunit C (phaC) and 16S rRNA gene sequences obtained from the PHA-accumulating strains and analyzed alongside publicly available phaC, phaE, 16S rRNA, and 23S rRNA data help in understanding the distribution and evolutionary history of PHA biosynthesis within the phylum Cyanobacteria. The data show that the presence of phaC is highly conserved within the genus Synechocystis, and present in at least one isolate of Phormidium. Maximum likelihood analyses and cophylogenetic modeling of PHA synthase gene sequences provide evidence of a recent horizontal gene transfer event between distant genera of cyanobacteria related to Pleurocapsa sp. PCC 7327 and Phormidium-like sp. CGFILA. These findings will help guide additional screening for PHA producers, and may explain why some Phormidium species produce PHAs, while others do not.
Collapse
Affiliation(s)
- Karl Hong
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, 92093-0202, USA
| | - Joris Beld
- Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093-0202, USA
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Tony D Davis
- Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093-0202, USA
| | - Michael D Burkart
- Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093-0202, USA
| | - Brian Palenik
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, 92093-0202, USA
| |
Collapse
|
10
|
Brandenburg F, Theodosiou E, Bertelmann C, Grund M, Klähn S, Schmid A, Krömer JO. Trans-4-hydroxy-L-proline production by the cyanobacterium Synechocystis sp. PCC 6803. Metab Eng Commun 2020; 12:e00155. [PMID: 33511031 PMCID: PMC7815826 DOI: 10.1016/j.mec.2020.e00155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 01/21/2023] Open
Abstract
Cyanobacteria play an important role in photobiotechnology. Yet, one of their key central metabolic pathways, the tricarboxylic acid (TCA) cycle, has a unique architecture compared to most heterotrophs and still remains largely unexploited. The conversion of 2-oxoglutarate to succinate via succinyl-CoA is absent but is by-passed by several other reactions. Overall, fluxes under photoautotrophic growth conditions through the TCA cycle are low, which has implications for the production of chemicals. In this study, we investigate the capacity of the TCA cycle of Synechocystis sp PCC 6803 for the production of trans-4-hydroxy-L-proline (Hyp), a valuable chiral building block for the pharmaceutical and cosmetic industries. For the first time, photoautotrophic Hyp production was achieved in a cyanobacterium expressing the gene for the L-proline-4-hydroxylase (P4H) from Dactylosporangium sp. strain RH1. Interestingly, while elevated intracellular Hyp concentrations could be detected in the recombinant Synechocystis strains under all tested conditions, detectable Hyp secretion into the medium was only observed when the pH of the medium exceeded 9.5 and mostly in the late phases of the cultivation. We compared the rates obtained for autotrophic Hyp production with published sugar-based production rates in E. coli. The land-use efficiency (space-time yield) of the phototrophic process is already in the same order of magnitude as the heterotrophic process considering sugar farming as well. But, the remarkable plasticity of the cyanobacterial TCA cycle promises the potential for a 23–55 fold increase in space-time yield when using Synechocystis. Altogether, these findings contribute to a better understanding of bioproduction from the TCA cycle in photoautotrophs and broaden the spectrum of chemicals produced in metabolically engineered cyanobacteria. Phototrophic production of trans-4-hydroxy-L-prolin. pH dependency of product accumulation in Synechocystis PCC6803. Comparative analysis of land use efficiency in phototrophs & heterotrophs.
Collapse
|
11
|
Brandenburg F, Klähn S. Small but Smart: On the Diverse Role of Small Proteins in the Regulation of Cyanobacterial Metabolism. Life (Basel) 2020; 10:E322. [PMID: 33271798 PMCID: PMC7760959 DOI: 10.3390/life10120322] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
Over the past few decades, bioengineered cyanobacteria have become a major focus of research for the production of energy carriers and high value chemical compounds. Besides improvements in cultivation routines and reactor technology, the integral understanding of the regulation of metabolic fluxes is the key to designing production strains that are able to compete with established industrial processes. In cyanobacteria, many enzymes and metabolic pathways are regulated differently compared to other bacteria. For instance, while glutamine synthetase in proteobacteria is mainly regulated by covalent enzyme modifications, the same enzyme in cyanobacteria is controlled by the interaction with unique small proteins. Other prominent examples, such as the small protein CP12 which controls the Calvin-Benson cycle, indicate that the regulation of enzymes and/or pathways via the attachment of small proteins might be a widespread mechanism in cyanobacteria. Accordingly, this review highlights the diverse role of small proteins in the control of cyanobacterial metabolism, focusing on well-studied examples as well as those most recently described. Moreover, it will discuss their potential to implement metabolic engineering strategies in order to make cyanobacteria more definable for biotechnological applications.
Collapse
Affiliation(s)
| | - Stephan Klähn
- Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany;
| |
Collapse
|
12
|
Yan H, Cheng Y, Wang L, Chen W. Function analysis of RNase E in the filamentous cyanobacterium Anabaena sp. PCC 7120. Res Microbiol 2020; 171:194-202. [PMID: 32590060 DOI: 10.1016/j.resmic.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
RNase E is an endoribonuclease and plays a central role in RNA metabolism. Cyanobacteria, as ancient oxygen-producing photosynthetic bacteria, also contain RNase E homologues. Here, we introduced mutations into the S1 subdomain (F53A), the 5'-sensor subdomain (R160A), and the DNase I subdomain (D296A) according to the key activity sites of Escherichia coli RNase E. The results of degradation assays demonstrated that Asp296 is important to RNase E activity in Anabaena sp. PCC 7120 (hereafter PCC 7120). The docking model of RNase E in PCC 7120 (AnaRne) and RNA suggested a possible recognition mechanism of AnaRne to RNA. Moreover, overexpression of AnaRne and its N-terminal catalytic domain (AnaRneN) in vivo led to the abnormal cell division and inhibited the growth of PCC 7120. The quantitative analysis showed a significant decrease of ftsZ transcription in the case of overexpression of AnaRne or AnaRneN and ftsZ mRNA could be directly degraded by AnaRne through degradation assays in vitro, indicating that AnaRne was related to the expression of ftsZ and eventually affected cell division. In essence, our studies expand the understanding of the structural and functional evolutionary basis of RNase E and lay a foundation for further analysis of RNA metabolism in cyanobacteria.
Collapse
Affiliation(s)
- Huaduo Yan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yarui Cheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Li Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
14
|
Production of polymers by cyanobacteria grown in wastewater: Current status, challenges and future perspectives. N Biotechnol 2020; 55:46-57. [DOI: 10.1016/j.nbt.2019.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 11/20/2022]
|
15
|
Malek Shahkouhi A, Motamedian E. Reconstruction of a regulated two-cell metabolic model to study biohydrogen production in a diazotrophic cyanobacterium Anabaena variabilis ATCC 29413. PLoS One 2020; 15:e0227977. [PMID: 31978122 PMCID: PMC6980584 DOI: 10.1371/journal.pone.0227977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022] Open
Abstract
Anabaena variabilis is a diazotrophic filamentous cyanobacterium that differentiates to heterocysts and produces hydrogen as a byproduct. Study on metabolic interactions of the two differentiated cells provides a better understanding of its metabolism especially for improving hydrogen production. To this end, a genome-scale metabolic model for Anabaena variabilis ATCC 29413, iAM957, was reconstructed and evaluated in this research. Then, the model and transcriptomic data of the vegetative and heterocyst cells were applied to construct a regulated two-cell metabolic model. The regulated model improved prediction for biomass in high radiation levels. The regulated model predicts that heterocysts provide an oxygen-free environment and then, this model was used to find strategies for improving hydrogen production in heterocysts. The predictions indicate that the removal of uptake hydrogenase improves hydrogen production which is consistent with previous empirical research. Furthermore, the regulated model proposed activation of some reactions to provide redox cofactors which are required for improving hydrogen production up to 60% by bidirectional hydrogenase.
Collapse
Affiliation(s)
- Ali Malek Shahkouhi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
Durall C, Lindberg P, Yu J, Lindblad P. Increased ethylene production by overexpressing phosphoenolpyruvate carboxylase in the cyanobacterium Synechocystis PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:16. [PMID: 32010220 PMCID: PMC6988332 DOI: 10.1186/s13068-020-1653-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/09/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cyanobacteria can be metabolically engineered to convert CO2 to fuels and chemicals such as ethylene. A major challenge in such efforts is to optimize carbon fixation and partition towards target molecules. RESULTS The efe gene encoding an ethylene-forming enzyme was introduced into a strain of the cyanobacterium Synechocystis PCC 6803 with increased phosphoenolpyruvate carboxylase (PEPc) levels. The resulting engineered strain (CD-P) showed significantly increased ethylene production (10.5 ± 3.1 µg mL-1 OD-1 day-1) compared to the control strain (6.4 ± 1.4 µg mL-1 OD-1 day-1). Interestingly, extra copies of the native pepc or the heterologous expression of PEPc from the cyanobacterium Synechococcus PCC 7002 (Synechococcus) in the CD-P, increased ethylene production (19.2 ± 1.3 and 18.3 ± 3.3 µg mL-1 OD-1 day-1, respectively) when the cells were treated with the acetyl-CoA carboxylase inhibitor, cycloxydim. A heterologous expression of phosphoenolpyruvate synthase (PPSA) from Synechococcus in the CD-P also increased ethylene production (16.77 ± 4.48 µg mL-1 OD-1 day-1) showing differences in the regulation of the native and the PPSA from Synechococcus in Synechocystis. CONCLUSIONS This work demonstrates that genetic rewiring of cyanobacterial central carbon metabolism can enhance carbon supply to the TCA cycle and thereby further increase ethylene production.
Collapse
Affiliation(s)
- Claudia Durall
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Jianping Yu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| |
Collapse
|
17
|
Ren L, Wang P, Wang C, Paerl HW, Wang H. Effects of phosphorus availability and phosphorus utilization behavior of Microcystis aeruginosa on its adaptation capability to ultraviolet radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113441. [PMID: 31672370 DOI: 10.1016/j.envpol.2019.113441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/10/2019] [Accepted: 10/18/2019] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) plays a critical role in eutrophication and algal growth; therefore, improving our understanding of the impact of P is essential to control harmful algal blooms. In this study, Microcystis aeruginosa was treated with 5-h ambient irradiation in the medium with different dissolved inorganic P (DIP) concentrations, DIP-free, moderate-DIP, and high-DIP, to explore its growth and other physiological responses. Compared to photosynthetically active radiation (PAR), UV-A (320-400 nm) and UV-B (280-320 nm) radiation had inhibitive effects on the photosynthesis and growth of M. aeruginosa, while high P availability could alleviate or eliminate the negative effects of UV radiation. The photosynthetic parameters had a minimum reduction and quickly recovered after re-inoculation under high-DIP conditions. Confirmed by SEM, photosynthetic pigments, the generation of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and other methods, ambient UV radiation exerted oxidative stresses rather than direct lethal effects on M. aeruginosa. Photosynthetic parameters indicated that algal UV-adaptation processes could include decreasing photo-induced damages and increasing self-repair efficiency. The P acquired by M. aeruginosa cells can have two function, which included alleviating UV-induced negative effects and sustaining algal growth. Consequently, UV-adaptation processes of M. aeruginosa resulted in an elevated demand for DIP, which resulted to increased P uptake rates and cellular P quota under moderate and high-DIP conditions. Therefore, the production of carotenoid and phycocyanin, and SOD activity increased under UV stress, leading to a better adaptation capability of M. aeruginosa and decreased negative effects of UV radiation on its growth. Overall, our findings demonstrated the significant interactive effects of P enrichment and irradiation on typical cyanobacteria, and the strong adaptation capability of M. aeruginosa in the eutrophic UV-radiated waters.
Collapse
Affiliation(s)
- Lingxiao Ren
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China; College of Environmental Engineering, Nanjing Institute of Technology, 211167, Nanjing, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Hans W Paerl
- University of North Carolina at Chapel Hill, Institute of Marine Sciences, Morehead City, NC, USA
| | - Huiya Wang
- College of Environmental Engineering, Nanjing Institute of Technology, 211167, Nanjing, PR China
| |
Collapse
|
18
|
Horizontal acquisition of a patchwork Calvin cycle by symbiotic and free-living Campylobacterota (formerly Epsilonproteobacteria). ISME JOURNAL 2019; 14:104-122. [PMID: 31562384 PMCID: PMC6908604 DOI: 10.1038/s41396-019-0508-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 11/30/2022]
Abstract
Most autotrophs use the Calvin–Benson–Bassham (CBB) cycle for carbon fixation. In contrast, all currently described autotrophs from the Campylobacterota (previously Epsilonproteobacteria) use the reductive tricarboxylic acid cycle (rTCA) instead. We discovered campylobacterotal epibionts (“Candidatus Thiobarba”) of deep-sea mussels that have acquired a complete CBB cycle and may have lost most key genes of the rTCA cycle. Intriguingly, the phylogenies of campylobacterotal CBB cycle genes suggest they were acquired in multiple transfers from Gammaproteobacteria closely related to sulfur-oxidizing endosymbionts associated with the mussels, as well as from Betaproteobacteria. We hypothesize that “Ca. Thiobarba” switched from the rTCA cycle to a fully functional CBB cycle during its evolution, by acquiring genes from multiple sources, including co-occurring symbionts. We also found key CBB cycle genes in free-living Campylobacterota, suggesting that the CBB cycle may be more widespread in this phylum than previously known. Metatranscriptomics and metaproteomics confirmed high expression of CBB cycle genes in mussel-associated “Ca. Thiobarba”. Direct stable isotope fingerprinting showed that “Ca. Thiobarba” has typical CBB signatures, suggesting that it uses this cycle for carbon fixation. Our discovery calls into question current assumptions about the distribution of carbon fixation pathways in microbial lineages, and the interpretation of stable isotope measurements in the environment.
Collapse
|
19
|
iMet: A graphical user interface software tool to merge metabolic networks. Heliyon 2019; 5:e01766. [PMID: 31286073 PMCID: PMC6587100 DOI: 10.1016/j.heliyon.2019.e01766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/10/2019] [Accepted: 05/15/2019] [Indexed: 11/23/2022] Open
Abstract
Nowadays, studying microorganisms has become faster and deeper than the last decades, thanks to the modeling of genome-scale metabolic networks. Completed genome sequencing projects of microorganisms and annotating these sequences have provided a worthwhile platform for reconstructing and modeling genome-scale metabolic networks. The genome-scale metabolic network reconstruction is a laborious and time-consuming task which needs an extensive study and search in different types of databases. Furthermore, it also requires an iterative process of creating and curating the obtained network, particularly with experimental methods. Hence, different types of reconstructions and models of a targeted microorganism can be found with different qualities, as the goal and need of researchers differ. Due to these circumstances, scientists have to continue with only one of the reconstructed metabolic networks of each microorganism and ignore the rest in their in silico works. It is clear that having a tool which merges different metabolic networks of a single organism can be a useful and effective way to study them with minimal cost and time. To meet this need, we have developed iMet, the standalone graphical user interface (GUI) software tool to merge multiple reconstructed metabolic networks of microorganisms. As a case study, we merged three reconstructed metabolic networks of a cyanobacterium using iMet, and then all of them (including the new merged one) became modeled. The results of our evaluations including Flux Balance Analysis (FBA), revealed enhancing metabolic network coverage as well as increasing yield of desired products in the new obtained model.
Collapse
|
20
|
Farrokh P, Sheikhpour M, Kasaeian A, Asadi H, Bavandi R. Cyanobacteria as an eco-friendly resource for biofuel production: A critical review. Biotechnol Prog 2019; 35:e2835. [PMID: 31063628 DOI: 10.1002/btpr.2835] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/07/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022]
Abstract
Cyanobacteria are photosynthetic microorganisms which can be found in various environmental habitats. These photosynthetic bacteria are considered as promising feedstock for the production of the third- and the fourth-generation biofuels. The main subject of this review is highlighting the significant aspects of the biofuel production from cyanobacteria. The most recent investigations about the extraction or separation of the bio-oil from cyanobacteria are also adduced in the present review. Moreover, the genetic engineering of cyanobacteria for improving biofuel production and the impact of bioinformatics studies on the designing better-engineered strains are mentioned. The large-scale biofuel production is challenging, so the economic considerations to provide inexpensive biofuels are also cited. It seems that the future of biofuels is strongly dependent to the following items; understanding the metabolic pathways of the cyanobacterial species, progression in the construction of the engineered cyanobacteria, and inexpensive large-scale cultivation of them.
Collapse
Affiliation(s)
- Parisa Farrokh
- Department of cell and molecular biology, School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Alibakhsh Kasaeian
- Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Hassan Asadi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Roya Bavandi
- Branch-Marine Science and Technology Faculty, Islamic Azad University North Tehran, Tehran, Iran
| |
Collapse
|
21
|
Grund M, Jakob T, Wilhelm C, Bühler B, Schmid A. Electron balancing under different sink conditions reveals positive effects on photon efficiency and metabolic activity of Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:43. [PMID: 30858880 PMCID: PMC6391784 DOI: 10.1186/s13068-019-1378-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/14/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cyanobacteria are ideal model organisms to exploit photosynthetically derived electrons or fixed carbon for the biotechnological synthesis of high value compounds and energy carriers. Much effort is spent on the rational design of heterologous pathways to produce value-added chemicals. Much less focus is drawn on the basic physiological responses and potentials of phototrophs to deal with natural or artificial electron and carbon sinks. However, an understanding of how electron sinks influence or regulate cellular physiology is essential for the efficient application of phototrophic organisms in an industrial setting, i.e., to achieve high productivities and product yields. RESULTS The physiological responses of the cyanobacterium Synechocystis sp. PCC 6803 to electron sink variation were investigated in a systematic and quantitative manner. A variation in electron demand was achieved by providing two N sources with different degrees of reduction. By additionally varying light and CO2 availabilities, steady state conditions with strongly differing source-sink ratios were established. Balancing absorbed photons and electrons used for different metabolic processes revealed physiological responses to sink/source ratio variation. Surprisingly, an additional electron sink under light and thus energy limitation was found not to hamper growth, but was compensated by improved photosynthetic efficiency and activity. In the absence of carbon and light limitation, an increase in electron demand even stimulated carbon assimilation and growth. CONCLUSION The metabolism of Synechocystis sp. PCC 6803 is highly flexible regarding the compensation of additional electron demands. Under light limitation, photosynthesis obviously does not necessarily run at its maximal capacity, possibly for the sake of robustness. Increased electron demands can even boost photosynthetic activity and growth.
Collapse
Affiliation(s)
- Marcel Grund
- Department of Solar Materials, Helmholtz Center for Environmental Research GmbH–UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Torsten Jakob
- Plant Physiology Group, Institute for Biology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Christian Wilhelm
- Plant Physiology Group, Institute for Biology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Center for Environmental Research GmbH–UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Center for Environmental Research GmbH–UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
22
|
Noreña-Caro D, Benton MG. Cyanobacteria as photoautotrophic biofactories of high-value chemicals. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Du Y, Wang J, Li H, Mao S, Wang D, Xiang Z, Guo R, Chen J. The dual function of the algal treatment: Antibiotic elimination combined with CO 2 fixation. CHEMOSPHERE 2018; 211:192-201. [PMID: 30075376 DOI: 10.1016/j.chemosphere.2018.07.163] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/21/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
The study provided an algal treatment to achieve dual function with antibiotic elimination and CO2 fixation simultaneously. Two widely used antibiotics, cefradine and amoxicillin were selected as the target compounds. First of all, we assessed the influence of light intensity on algal growth and antibiotic removal efficiency to obtain the optimal light intensity. Secondly, after the algal antibiotic treatment, the CO2 capture capacities at varied CO2 volume concentrations were assessed and compared. Significant improvement in the removal efficiency of cefradine occurred when CO2 was added into the treatment. Change in the content of photosynthetic pigments and the activities of RuBisCO and carbonic anhydrase occurred as the algal responses to the treatment condition. Our results showed that Chlorella pyrenoidosa performed better than Microcystis aeruginosa in both the antibiotic removal efficiency and the CO2 capture capacity. In the integrated algal treatment, the remove rate of antibiotic has been improved by 30.16% and at the same time, the CO2 absorption rate has been promoted by 10.94%. Metabolite analyses also revealed the mechanism involved, which proved the crucial role of the algae in the biodegradation of the target antibiotic.
Collapse
Affiliation(s)
- Yingxiang Du
- China Pharmaceutical University, Nanjing 210009, China
| | - Jing Wang
- China Pharmaceutical University, Nanjing 210009, China; Nanjing Normal University, Nanjing 210046, China
| | - Haitao Li
- Research Institute of Nanjing Chemical Industry Group, Nanjing 210048, China
| | - Songbai Mao
- Research Institute of Nanjing Chemical Industry Group, Nanjing 210048, China
| | - Dong Wang
- Research Institute of Nanjing Chemical Industry Group, Nanjing 210048, China
| | | | - Ruixin Guo
- China Pharmaceutical University, Nanjing 210009, China.
| | - Jianqiu Chen
- China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
24
|
Dai W, Chen M, Myers C, Ludtke SJ, Pettitt BM, King JA, Schmid MF, Chiu W. Visualizing Individual RuBisCO and Its Assembly into Carboxysomes in Marine Cyanobacteria by Cryo-Electron Tomography. J Mol Biol 2018; 430:4156-4167. [PMID: 30138616 DOI: 10.1016/j.jmb.2018.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/29/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022]
Abstract
Cyanobacteria are photosynthetic organisms responsible for ~25% of the organic carbon fixation on earth. A key step in carbon fixation is catalyzed by ribulose bisphosphate carboxylase/oxygenase (RuBisCO), the most abundant enzyme in the biosphere. Applying Zernike phase-contrast electron cryo-tomography and automated annotation, we identified individual RuBisCO molecules and their assembly intermediates leading to the formation of carboxysomes inside Syn5 cyanophage infected cyanobacteria Synechococcus sp. WH8109 cells. Surprisingly, more RuBisCO molecules were found to be present as cytosolic free-standing complexes or clusters than as packaged assemblies inside carboxysomes. Cytosolic RuBisCO clusters and partially assembled carboxysomes identified in the cell tomograms support a concurrent assembly model involving both the protein shell and the enclosed RuBisCO. In mature carboxysomes, RuBisCO is neither randomly nor strictly icosahedrally packed within protein shells of variable sizes. A time-averaged molecular dynamics simulation showed a semi-liquid probability distribution of the RuBisCO in carboxysomes and correlated well with carboxysome subtomogram averages. Our structural observations reveal the various stages of RuBisCO assemblies, which could be important for understanding cellular function.
Collapse
Affiliation(s)
- Wei Dai
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA.
| | - Muyuan Chen
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher Myers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Steven J Ludtke
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - B Montgomery Pettitt
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jonathan A King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael F Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Wah Chiu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA; Departments of Bioengineering and of Microbiology and Immunoplogy, James H. Clark Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Saini DK, Pabbi S, Shukla P. Cyanobacterial pigments: Perspectives and biotechnological approaches. Food Chem Toxicol 2018; 120:616-624. [PMID: 30077705 DOI: 10.1016/j.fct.2018.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/26/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Cyanobacteria are the oxygenic photosynthesis performing prokaryotes and show a connecting link between plastids of eukaryotic autotrophs and prokaryotes. A variety of pigments, like chlorophyll, carotenoids and phycobiliproteins which exhibit different colors are present in cyanobacteria. Increasing consciousness about the harmful effects of synthetic or chemical dyes encouraged people to give more preference towards the usage of natural products, such as plant or microbial-derived colors in food and cosmetics. That is why cyanobacteria are exploited as a source of natural colors and have high commercial value in many industries. This review mainly focuses on different cyanobacterial pigments, their applications and modern biotechnological approaches such as genetic engineering, systems biology to enhance the production of biopigments for their potential use in pharmaceuticals, food, research, and cosmetics industries.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
26
|
Kreula SM, Kaewphan S, Ginter F, Jones PR. Finding novel relationships with integrated gene-gene association network analysis of Synechocystis sp. PCC 6803 using species-independent text-mining. PeerJ 2018; 6:e4806. [PMID: 29844966 PMCID: PMC5970561 DOI: 10.7717/peerj.4806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/30/2018] [Indexed: 01/17/2023] Open
Abstract
The increasing move towards open access full-text scientific literature enhances our ability to utilize advanced text-mining methods to construct information-rich networks that no human will be able to grasp simply from ‘reading the literature’. The utility of text-mining for well-studied species is obvious though the utility for less studied species, or those with no prior track-record at all, is not clear. Here we present a concept for how advanced text-mining can be used to create information-rich networks even for less well studied species and apply it to generate an open-access gene-gene association network resource for Synechocystis sp. PCC 6803, a representative model organism for cyanobacteria and first case-study for the methodology. By merging the text-mining network with networks generated from species-specific experimental data, network integration was used to enhance the accuracy of predicting novel interactions that are biologically relevant. A rule-based algorithm (filter) was constructed in order to automate the search for novel candidate genes with a high degree of likely association to known target genes by (1) ignoring established relationships from the existing literature, as they are already ‘known’, and (2) demanding multiple independent evidences for every novel and potentially relevant relationship. Using selected case studies, we demonstrate the utility of the network resource and filter to (i) discover novel candidate associations between different genes or proteins in the network, and (ii) rapidly evaluate the potential role of any one particular gene or protein. The full network is provided as an open-source resource.
Collapse
Affiliation(s)
- Sanna M Kreula
- Department of Biochemistry, University of Turku, Turku, Finland.,University of Turku Graduate School, University of Turku, Turku, Finland
| | - Suwisa Kaewphan
- University of Turku Graduate School, University of Turku, Turku, Finland.,Turku Centre for Computer Science (TUCS), Turku, Finland.,Department of Future Technologies, University of Turku, Turku, Finland
| | - Filip Ginter
- Department of Future Technologies, University of Turku, Turku, Finland
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Johnson TJ, Katuwal S, Anderson GA, Gu L, Zhou R, Gibbons WR. Photobioreactor cultivation strategies for microalgae and cyanobacteria. Biotechnol Prog 2018. [DOI: 10.1002/btpr.2628] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tylor J. Johnson
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
- Dept. of MicrobiologyThe University of TennesseeKnoxville TN37996
| | - Sarmila Katuwal
- Agricultural and Biosystems Engineering Dept.South Dakota State UniversityBrookings SD57007
| | - Gary A. Anderson
- Agricultural and Biosystems Engineering Dept.South Dakota State UniversityBrookings SD57007
| | - Liping Gu
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - Ruanbao Zhou
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
- BioSNTR, South Dakota State UniversityBrookings SD57007
| | - William R. Gibbons
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| |
Collapse
|
28
|
De Porcellinis AJ, Nørgaard H, Brey LMF, Erstad SM, Jones PR, Heazlewood JL, Sakuragi Y. Overexpression of bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002. Metab Eng 2018; 47:170-183. [PMID: 29510212 DOI: 10.1016/j.ymben.2018.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/02/2018] [Accepted: 03/01/2018] [Indexed: 12/25/2022]
Abstract
Cyanobacteria fix atmospheric CO2 to biomass and through metabolic engineering can also act as photosynthetic factories for sustainable productions of fuels and chemicals. The Calvin Benson cycle is the primary pathway for CO2 fixation in cyanobacteria, algae and C3 plants. Previous studies have overexpressed the Calvin Benson cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and bifunctional sedoheptulose-1,7-bisphosphatase/fructose-1,6-bisphosphatase (hereafter BiBPase), in both plants and algae, although their impacts on cyanobacteria have not yet been rigorously studied. Here, we show that overexpression of BiBPase and RuBisCO have distinct impacts on carbon metabolism in the cyanobacterium Synechococcus sp. PCC 7002 through physiological, biochemical, and proteomic analyses. The former enhanced growth, cell size, and photosynthetic O2 evolution, and coordinately upregulated enzymes in the Calvin Benson cycle including RuBisCO and fructose-1,6-bisphosphate aldolase. At the same time it downregulated enzymes in respiratory carbon metabolism (glycolysis and the oxidative pentose phosphate pathway) including glucose-6-phosphate dehydrogenase (G6PDH). The content of glycogen was also significantly reduced while the soluble carbohydrate content increased. These results indicate that overexpression of BiBPase leads to global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002, promoting photosynthetic carbon fixation and carbon partitioning towards non-storage carbohydrates. In contrast, whilst overexpression of RuBisCO had no measurable impact on growth and photosynthetic O2 evolution, it led to coordinated increase in the abundance of proteins involved in pyruvate metabolism and fatty acid biosynthesis. Our results underpin that singular genetic modifications in the Calvin Benson cycle can have far broader cellular impact than previously expected. These features could be exploited to more efficiently direct carbons towards desired bioproducts.
Collapse
Affiliation(s)
- Alice Jara De Porcellinis
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Carlsberg Research Laboratory, 100 Ny Carlsberg Vej, 1799 Copenhagen V, Denmark
| | - Hanne Nørgaard
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Novo Nordisk, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Laura Maria Furelos Brey
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark
| | - Simon Matthé Erstad
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark
| | - Patrik R Jones
- Department Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Joshua L Heazlewood
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark.
| |
Collapse
|
29
|
Moraes LE, Blow MJ, Hawley ER, Piao H, Kuo R, Chiniquy J, Shapiro N, Woyke T, Fadel JG, Hess M. Resequencing and annotation of the Nostoc punctiforme ATTC 29133 genome: facilitating biofuel and high-value chemical production. AMB Express 2017; 7:42. [PMID: 28211005 PMCID: PMC5313495 DOI: 10.1186/s13568-017-0338-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/03/2017] [Indexed: 01/13/2023] Open
Abstract
Cyanobacteria have the potential to produce bulk and fine chemicals and members belonging to Nostoc sp. have received particular attention due to their relatively fast growth rate and the relative ease with which they can be harvested. Nostoc punctiforme is an aerobic, motile, Gram-negative, filamentous cyanobacterium that has been studied intensively to enhance our understanding of microbial carbon and nitrogen fixation. The genome of the type strain N. punctiforme ATCC 29133 was sequenced in 2001 and the scientific community has used these genome data extensively since then. Advances in bioinformatics tools for sequence annotation and the importance of this organism prompted us to resequence and reanalyze its genome and to make both, the initial and improved annotation, available to the scientific community. The new draft genome has a total size of 9.1 Mbp and consists of 65 contiguous pieces of DNA with a GC content of 41.38% and 7664 protein-coding genes. Furthermore, the resequenced genome is slightly (5152 bp) larger and contains 987 more genes with functional prediction when compared to the previously published version. We deposited the annotation of both genomes in the Department of Energy's IMG database to facilitate easy genome exploration by the scientific community without the need of in-depth bioinformatics skills. We expect that an facilitated access and ability to search the N. punctiforme ATCC 29133 for genes of interest will significantly facilitate metabolic engineering and genome prospecting efforts and ultimately the synthesis of biofuels and natural products from this keystone organism and closely related cyanobacteria.
Collapse
Affiliation(s)
- Luis E. Moraes
- Department of Animal Science, University of California, Davis, 2251 Meyer Hall, Davis, CA 95616 USA
| | - Matthew J. Blow
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598 USA
| | | | - Hailan Piao
- Washington State University, Richland, WA 99354 USA
| | - Rita Kuo
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Jennifer Chiniquy
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Nicole Shapiro
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - James G. Fadel
- Department of Animal Science, University of California, Davis, 2251 Meyer Hall, Davis, CA 95616 USA
| | - Matthias Hess
- Department of Animal Science, University of California, Davis, 2251 Meyer Hall, Davis, CA 95616 USA
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598 USA
| |
Collapse
|
30
|
Nangle SN, Sakimoto KK, Silver PA, Nocera DG. Biological-inorganic hybrid systems as a generalized platform for chemical production. Curr Opin Chem Biol 2017; 41:107-113. [DOI: 10.1016/j.cbpa.2017.10.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022]
|
31
|
Bernal OI, Bharti B, Flickinger MC, Velev OD. Fabrication of Photoreactive Biocomposite Coatings via Electric Field-Assisted Assembly of Cyanobacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5304-5313. [PMID: 28481540 DOI: 10.1021/acs.langmuir.7b00335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report how dielectrophoresis (DEP) can be used as a tool for the fabrication of biocomposite coatings of photoreactive cyanobacteria (Synechococcus PCC7002) on flexible polyester sheets (PEs). The PE substrates were precoated by a layer-by-layer assembled film of charged polyelectrolytes. In excellent agreement between experimental data and numerical simulations, the directed assembly process driven by external electric field results in the formation of 1D chains and 2D sheets by the cells. The preassembled cyanobacteria chains and arrays became deposited on the substrate and remained in place after the electric field was turned off due to the electrostatic attraction between the negatively charged cell surfaces and the positively charged polyelectrolyte-coated PE. The DEP-assisted packing of cyanobacteria is close to the maximal surface coverage of ∼70% estimated from convectively assembled monolayers. Confocal laser scanning microscopy and spectrophotometry confirm that the photosynthetic pigment integrity of the Synechococcus cells is preserved after DEP immobilization. The significant decrease of the light scattering and the enhanced transmittance of these field-assembled cyanobacteria coatings demonstrate reduced self-shading compared to suspension cultures. Thus, we achieved the assembly of structured cyanobacteria coatings that optimize cell surface coverage and preserve cell viability after immobilization. This is a step toward the development of flexible multilayered cell-based photoabsorbing biomaterials that can serve as components of "biomimetic leaves" for utilizing solar energy to recycle CO2 into fuels or chemicals.
Collapse
Affiliation(s)
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | | | | |
Collapse
|
32
|
Choix FJ, Snell-Castro R, Arreola-Vargas J, Carbajal-López A, Méndez-Acosta HO. CO 2 Removal from Biogas by Cyanobacterium Leptolyngbya sp. CChF1 Isolated from the Lake Chapala, Mexico: Optimization of the Temperature and Light Intensity. Appl Biochem Biotechnol 2017; 183:1304-1322. [PMID: 28488119 DOI: 10.1007/s12010-017-2499-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/26/2017] [Indexed: 11/30/2022]
Abstract
In the present study, the capacity of the cyanobacterium Leptolyngbya sp. CChF1 to remove CO2 from real and synthetic biogas was evaluated. The identification of the cyanobacterium, isolated from the lake Chapala, was carried out by means of morphological and molecular analyses, while its potential for CO2 removal from biogas streams was evaluated by kinetic experiments and optimized by a central composite design coupled to a response surface methodology. Results demonstrated that Leptolyngbya sp. CChF1 is able to remove CO2 and grow indistinctly in real or synthetic biogas streams, showing tolerance to high concentrations of CO2 and CH4, 25 and 75%, respectively. The characterization of the biomass composition at the end of the kinetic assays revealed that the main accumulated by-products under both biogas streams were lipids, followed by proteins and carbohydrates. Regarding the optimization experiments, light intensity and temperature were the studied variables, while synthetic biogas was the carbon source. Results showed that light intensity was significant for CO2 capture efficiency (p = 0.0290), while temperature was significant for biomass production (p = 0.0024). The predicted CO2 capture efficiency under optimal conditions (27.1 °C and 920 lx) was 93.48%. Overall, the results of the present study suggest that Leptolyngbya sp. CChF1 is a suitable candidate for biogas upgrading.
Collapse
Affiliation(s)
- Francisco J Choix
- Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Blvd. M. García Barragán 1421, 44430, Guadalajara, JAL, Mexico
- CONACYT Research Fellow, CUCEI-Universidad de Guadalajara, Blvd. M. García Barragán 1421, 44430, Guadalajara, JAL, Mexico
| | - Raúl Snell-Castro
- Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Blvd. M. García Barragán 1421, 44430, Guadalajara, JAL, Mexico
| | - Jorge Arreola-Vargas
- Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Blvd. M. García Barragán 1421, 44430, Guadalajara, JAL, Mexico
- División de Procesos Industriales, Universidad Tecnológica de Jalisco, Luis J. Jiménez 577-1 de Mayo, 44979, Guadalajara, JAL, Mexico
| | - Alberto Carbajal-López
- Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Blvd. M. García Barragán 1421, 44430, Guadalajara, JAL, Mexico
| | - Hugo O Méndez-Acosta
- Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Blvd. M. García Barragán 1421, 44430, Guadalajara, JAL, Mexico.
| |
Collapse
|
33
|
Hays SG, Yan LLW, Silver PA, Ducat DC. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. J Biol Eng 2017; 11:4. [PMID: 28127397 PMCID: PMC5259876 DOI: 10.1186/s13036-017-0048-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/05/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Microbial consortia composed of autotrophic and heterotrophic species abound in nature, yet examples of synthetic communities with mixed metabolism are limited in the laboratory. We previously engineered a model cyanobacterium, Synechococcus elongatus PCC 7942, to secrete the bulk of the carbon it fixes as sucrose, a carbohydrate that can be utilized by many other microbes. Here, we tested the capability of sucrose-secreting cyanobacteria to act as a flexible platform for the construction of synthetic, light-driven consortia by pairing them with three disparate heterotrophs: Bacillus subtilis, Escherichia coli, or Saccharomyces cerevisiae. The comparison of these different co-culture dyads reveals general design principles for the construction of robust autotroph/heterotroph consortia. RESULTS We observed heterotrophic growth dependent upon cyanobacterial photosynthate in each co-culture pair. Furthermore, these synthetic consortia could be stabilized over the long-term (weeks to months) and both species could persist when challenged with specific perturbations. Stability and productivity of autotroph/heterotroph co-cultures was dependent on heterotroph sucrose utilization, as well as other species-independent interactions that we observed across all dyads. One destabilizing interaction we observed was that non-sucrose byproducts of oxygenic photosynthesis negatively impacted heterotroph growth. Conversely, inoculation of each heterotrophic species enhanced cyanobacterial growth in comparison to axenic cultures. Finally, these consortia can be flexibly programmed for photoproduction of target compounds and proteins; by changing the heterotroph in co-culture to specialized strains of B. subtilis or E. coli we demonstrate production of alpha-amylase and polyhydroxybutyrate, respectively. CONCLUSIONS Enabled by the unprecedented flexibility of this consortia design, we uncover species-independent design principles that influence cyanobacteria/heterotroph consortia robustness. The modular nature of these communities and their unusual robustness exhibits promise as a platform for highly-versatile photoproduction strategies that capitalize on multi-species interactions and could be utilized as a tool for the study of nascent symbioses. Further consortia improvements via engineered interventions beyond those we show here (i.e., increased efficiency growing on sucrose) could improve these communities as production platforms.
Collapse
Affiliation(s)
- Stephanie G Hays
- Department of Systems Biology, Harvard Medical School, Boston, MA USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
| | - Leo L W Yan
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI USA.,Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
| | - Daniel C Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI USA.,Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI USA
| |
Collapse
|
34
|
Kopka J, Schmidt S, Dethloff F, Pade N, Berendt S, Schottkowski M, Martin N, Dühring U, Kuchmina E, Enke H, Kramer D, Wilde A, Hagemann M, Friedrich A. Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:56. [PMID: 28286551 PMCID: PMC5340023 DOI: 10.1186/s13068-017-0741-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/23/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Future sustainable energy production can be achieved using mass cultures of photoautotrophic microorganisms, which are engineered to synthesize valuable products directly from CO2 and sunlight. As cyanobacteria can be cultivated in large scale on non-arable land, these phototrophic bacteria have become attractive organisms for production of biofuels. Synechococcus sp. PCC 7002, one of the cyanobacterial model organisms, provides many attractive properties for biofuel production such as tolerance of seawater and high light intensities. RESULTS Here, we performed a systems analysis of an engineered ethanol-producing strain of the cyanobacterium Synechococcus sp. PCC 7002, which was grown in artificial seawater medium over 30 days applying a 12:12 h day-night cycle. Biosynthesis of ethanol resulted in a final accumulation of 0.25% (v/v) ethanol, including ethanol lost due to evaporation. The cultivation experiment revealed three production phases. The highest production rate was observed in the initial phase when cells were actively growing. In phase II growth of the producer strain stopped, but ethanol production rate was still high. Phase III was characterized by a decrease of both ethanol production and optical density of the culture. Metabolomics revealed that the carbon drain due to ethanol diffusion from the cell resulted in the expected reduction of pyruvate-based intermediates. Carbon-saving strategies successfully compensated the decrease of central intermediates of carbon metabolism during the first phase of fermentation. However, during long-term ethanol production the producer strain showed clear indications of intracellular carbon limitation. Despite the decreased levels of glycolytic and tricarboxylic acid cycle intermediates, soluble sugars and even glycogen accumulated in the producer strain. The changes in carbon assimilation patterns are partly supported by proteome analysis, which detected decreased levels of many enzymes and also revealed the stress phenotype of ethanol-producing cells. Strategies towards improved ethanol production are discussed. CONCLUSIONS Systems analysis of ethanol production in Synechococcus sp. PCC 7002 revealed initial compensation followed by increasing metabolic limitation due to excessive carbon drain from primary metabolism.
Collapse
Affiliation(s)
- Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Stefanie Schmidt
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Frederik Dethloff
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Max-Planck-Institute of Psychiatry, Kraepelinstraße 2-10, 80804 Munich, Germany
| | - Nadin Pade
- Institute of Biological Sciences, Plant Physiology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Susanne Berendt
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | | | - Nico Martin
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Ulf Dühring
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Ekaterina Kuchmina
- Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Heike Enke
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
- Cyano Biotech GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Dan Kramer
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
- Cyano Biotech GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Martin Hagemann
- Institute of Biological Sciences, Plant Physiology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | | |
Collapse
|
35
|
Schwander T, Schada von Borzyskowski L, Burgener S, Cortina NS, Erb TJ. A synthetic pathway for the fixation of carbon dioxide in vitro. Science 2016; 354:900-904. [PMID: 27856910 PMCID: PMC5892708 DOI: 10.1126/science.aah5237] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/05/2016] [Indexed: 01/20/2023]
Abstract
Carbon dioxide (CO2) is an important carbon feedstock for a future green economy. This requires the development of efficient strategies for its conversion into multicarbon compounds. We describe a synthetic cycle for the continuous fixation of CO2 in vitro. The crotonyl-coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle is a reaction network of 17 enzymes that converts CO2 into organic molecules at a rate of 5 nanomoles of CO2 per minute per milligram of protein. The CETCH cycle was drafted by metabolic retrosynthesis, established with enzymes originating from nine different organisms of all three domains of life, and optimized in several rounds by enzyme engineering and metabolic proofreading. The CETCH cycle adds a seventh, synthetic alternative to the six naturally evolved CO2 fixation pathways, thereby opening the way for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Thomas Schwander
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology Marburg, D-35043 Marburg, Germany
| | - Lennart Schada von Borzyskowski
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology Marburg, D-35043 Marburg, Germany
- Institute for Microbiology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Simon Burgener
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology Marburg, D-35043 Marburg, Germany
- Institute for Microbiology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Niña Socorro Cortina
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology Marburg, D-35043 Marburg, Germany
| | - Tobias J Erb
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology Marburg, D-35043 Marburg, Germany.
- Institute for Microbiology, ETH Zürich, CH-8093 Zürich, Switzerland
- LOEWE Center for Synthetic Microbiology, Universität Marburg, D-35037 Marburg, Germany
| |
Collapse
|
36
|
Rasmussen RE, Erstad SM, Ramos-Martinez EM, Fimognari L, De Porcellinis AJ, Sakuragi Y. An easy and efficient permeabilization protocol for in vivo enzyme activity assays in cyanobacteria. Microb Cell Fact 2016; 15:186. [PMID: 27825349 PMCID: PMC5101802 DOI: 10.1186/s12934-016-0587-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyanobacteria are photosynthetic bacteria that thrive in diverse ecosystems and play major roles in the global carbon cycle. The abilities of cyanobacteria to fix atmospheric CO2 and to allocate the fixed carbons to chemicals and biofuels have attracted growing attentions as sustainable microbial cell factories. Better understanding of the activities of enzymes involved in the central carbon metabolism would lead to increasing product yields. Currently cell-free lysates are the most widely used method for determination of intracellular enzyme activities. However, due to thick cell walls, lysis of cyanobacterial cells is inefficient and often laborious. In some cases radioisotope-labeled substrates can be fed directly to intact cells; however, label-free assays are often favored due to safety and practical reasons. RESULTS Here we show an easy and highly efficient method for permeabilization of the cyanobacteria Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803, and determination of two intracellular enzymes, ribulose-1,5-bisphosphate carboxylase/decarboxylase (Rubisco) and glucose-6-phosphate dehydrogenase (G6PDH), that play pivotal roles in the central carbon metabolism in cyanobacteria. Incubation of the cyanobacterial cells in the commercially available B-PER reagent for 10 min permeabilized the cells, as confirmed by the SYTOX Green staining. There was no significant change in the cell shape and no major loss of intracellular proteins was observed during the treatment. When used directly in the assays, the permeabilized cells exhibited the enzyme activities that are comparable or even higher than those detected for cell-free lysates. Moreover, the permeabilized cells could be stored at -20 °C without losing the enzyme activities. The permeabilization process and subsequent activity assays were successfully adapted to the 96-well plate system. CONCLUSIONS An easy, efficient and scalable permeabilization protocol was established for cyanobacteria. The permeabilized cells can be directly applied for measurement of G6PDH and Rubisco activities without using radioisotopes and the protocol may be readily adapted to studies of other cyanobacterial species and other intracellular enzymes. The permeabilization and enzyme assays can be performed in 96-well plates in a high-throughput manner.
Collapse
Affiliation(s)
- Randi Engelberth Rasmussen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Simon Matthé Erstad
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Erick Miguel Ramos-Martinez
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Lorenzo Fimognari
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Alice Jara De Porcellinis
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
37
|
|
38
|
Yenkie KM, Wu W, Clark RL, Pfleger BF, Root TW, Maravelias CT. A roadmap for the synthesis of separation networks for the recovery of bio-based chemicals: Matching biological and process feasibility. Biotechnol Adv 2016; 34:1362-1383. [PMID: 27756578 DOI: 10.1016/j.biotechadv.2016.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/20/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
Microbial conversion of renewable feedstocks to high-value chemicals is an attractive alternative to current petrochemical processes because it offers the potential to reduce net CO2 emissions and integrate with bioremediation objectives. Microbes have been genetically engineered to produce a growing number of high-value chemicals in sufficient titer, rate, and yield from renewable feedstocks. However, high-yield bioconversion is only one aspect of an economically viable process. Separation of biologically synthesized chemicals from process streams is a major challenge that can contribute to >70% of the total production costs. Thus, process feasibility is dependent upon the efficient selection of separation technologies. This selection is dependent on upstream processing or biological parameters, such as microbial species, product titer and yield, and localization. Our goal is to present a roadmap for selection of appropriate technologies and generation of separation schemes for efficient recovery of bio-based chemicals by utilizing information from upstream processing, separation science and commercial requirements. To achieve this, we use a separation system comprising of three stages: (I) cell and product isolation, (II) product concentration, and (III) product purification and refinement. In each stage, we review the technology alternatives available for different tasks in terms of separation principles, important operating conditions, performance parameters, advantages and disadvantages. We generate separation schemes based on product localization and its solubility in water, the two most distinguishing properties. Subsequently, we present ideas for simplification of these schemes based on additional properties, such as physical state, density, volatility, and intended use. This simplification selectively narrows down the technology options and can be used for systematic process synthesis and optimal recovery of bio-based chemicals.
Collapse
Affiliation(s)
- Kirti M Yenkie
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - WenZhao Wu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Ryan L Clark
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Thatcher W Root
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Christos T Maravelias
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
39
|
de Porcellinis AJ, Klähn S, Rosgaard L, Kirsch R, Gutekunst K, Georg J, Hess WR, Sakuragi Y. The Non-Coding RNA Ncr0700/PmgR1 is Required for Photomixotrophic Growth and the Regulation of Glycogen Accumulation in the Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2016; 57:2091-2103. [PMID: 27440548 DOI: 10.1093/pcp/pcw128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
Carbohydrate metabolism is a tightly regulated process in photosynthetic organisms. In the cyanobacterium Synechocystis sp. PCC 6803, the photomixotrophic growth protein A (PmgA) is involved in the regulation of glucose and storage carbohydrate (i.e. glycogen) metabolism, while its biochemical activity and possible factors acting downstream of PmgA are unknown. Here, a genome-wide microarray analysis of a ΔpmgA strain identified the expression of 36 protein-coding genes and 42 non-coding transcripts as significantly altered. From these, the non-coding RNA Ncr0700 was identified as the transcript most strongly reduced in abundance. Ncr0700 is widely conserved among cyanobacteria. In Synechocystis its expression is inversely correlated with light intensity. Similarly to a ΔpmgA mutant, a Δncr0700 deletion strain showed an approximately 2-fold increase in glycogen content under photoautotrophic conditions and wild-type-like growth. Moreover, its growth was arrested by 38 h after a shift to photomixotrophic conditions. Ectopic expression of Ncr0700 in Δncr0700 and ΔpmgA restored the glycogen content and photomixotrophic growth to wild-type levels. These results indicate that Ncr0700 is required for photomixotrophic growth and the regulation of glycogen accumulation, and acts downstream of PmgA. Hence Ncr0700 is renamed here as PmgR1 for photomixotrophic growth RNA 1.
Collapse
Affiliation(s)
- Alice J de Porcellinis
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
- These authors contributed equally to this work
| | - Stephan Klähn
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
- These authors contributed equally to this work
| | - Lisa Rosgaard
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
- Present address: R&D Renescience Thermal Power, DONG Energy, Skærbæk-7000 Fredericia, Denmark
| | - Rebekka Kirsch
- Botanical Institute, Christian-Albrechts-University, Am Botanischen Garten 5, Kiel, D-24118, Germany
| | - Kirstin Gutekunst
- Botanical Institute, Christian-Albrechts-University, Am Botanischen Garten 5, Kiel, D-24118, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Yumiko Sakuragi
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, DK-1871, Denmark
| |
Collapse
|
40
|
Johnson TJ, Gibbons JL, Gu L, Zhou R, Gibbons WR. Molecular genetic improvements of cyanobacteria to enhance the industrial potential of the microbe: A review. Biotechnol Prog 2016; 32:1357-1371. [DOI: 10.1002/btpr.2358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/30/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Tylor J. Johnson
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
- Dept. of MicrobiologyThe University of TennesseeKnoxville TN37996
| | - Jaimie L. Gibbons
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - Liping Gu
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - Ruanbao Zhou
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - William R. Gibbons
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| |
Collapse
|
41
|
Andemichael H, Lee JW. Toxicological study of biofuel ethanol with blue green alga Spirulina platensis. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Gomaa M, Al-Haj L, Abed R. Metabolic engineering of Cyanobacteria and microalgae for enhanced production of biofuels and high-value products. J Appl Microbiol 2016; 121:919-31. [DOI: 10.1111/jam.13232] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/25/2016] [Accepted: 07/07/2016] [Indexed: 01/26/2023]
Affiliation(s)
- M.A. Gomaa
- Biology Department; College of Science; Sultan Qaboos University; Al Khoud Sultanate of Oman
| | - L. Al-Haj
- Biology Department; College of Science; Sultan Qaboos University; Al Khoud Sultanate of Oman
| | - R.M.M. Abed
- Biology Department; College of Science; Sultan Qaboos University; Al Khoud Sultanate of Oman
| |
Collapse
|
43
|
Nielsen AZ, Mellor SB, Vavitsas K, Wlodarczyk AJ, Gnanasekaran T, Perestrello Ramos H de Jesus M, King BC, Bakowski K, Jensen PE. Extending the biosynthetic repertoires of cyanobacteria and chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:87-102. [PMID: 27005523 DOI: 10.1111/tpj.13173] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 05/20/2023]
Abstract
Chloroplasts in plants and algae and photosynthetic microorganisms such as cyanobacteria are emerging hosts for sustainable production of valuable biochemicals, using only inorganic nutrients, water, CO2 and light as inputs. In the past decade, many bioengineering efforts have focused on metabolic engineering and synthetic biology in the chloroplast or in cyanobacteria for the production of fuels, chemicals and complex, high-value bioactive molecules. Biosynthesis of all these compounds can be performed in photosynthetic organelles/organisms by heterologous expression of the appropriate pathways, but this requires optimization of carbon flux and reducing power, and a thorough understanding of regulatory pathways. Secretion or storage of the compounds produced can be exploited for the isolation or confinement of the desired compounds. In this review, we explore the use of chloroplasts and cyanobacteria as biosynthetic compartments and hosts, and we estimate the levels of production to be expected from photosynthetic hosts in light of the fraction of electrons and carbon that can potentially be diverted from photosynthesis. The supply of reducing power, in the form of electrons derived from the photosynthetic light reactions, appears to be non-limiting, but redirection of the fixed carbon via precursor molecules presents a challenge. We also discuss the available synthetic biology tools and the need to expand the molecular toolbox to facilitate cellular reprogramming for increased production yields in both cyanobacteria and chloroplasts.
Collapse
Affiliation(s)
- Agnieszka Zygadlo Nielsen
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Silas Busck Mellor
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Konstantinos Vavitsas
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Artur Jacek Wlodarczyk
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Thiyagarajan Gnanasekaran
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Maria Perestrello Ramos H de Jesus
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Brian Christopher King
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Kamil Bakowski
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Poul Erik Jensen
- Copenhagen Plant Science Center, VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
44
|
Enhanced growth at low light intensity in the cyanobacterium Synechocystis PCC 6803 by overexpressing phosphoenolpyruvate carboxylase. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Singh JS, Kumar A, Rai AN, Singh DP. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability. Front Microbiol 2016; 7:529. [PMID: 27148218 PMCID: PMC4838734 DOI: 10.3389/fmicb.2016.00529] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/31/2016] [Indexed: 12/29/2022] Open
Abstract
Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet.
Collapse
Affiliation(s)
- Jay Shankar Singh
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| | - Arun Kumar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| | - Amar N. Rai
- Department of Biochemistry, North-Eastern Hill UniversityShillong, India
| | - Devendra P. Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| |
Collapse
|
46
|
Pade N, Erdmann S, Enke H, Dethloff F, Dühring U, Georg J, Wambutt J, Kopka J, Hess WR, Zimmermann R, Kramer D, Hagemann M. Insights into isoprene production using the cyanobacterium Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:89. [PMID: 27096007 PMCID: PMC4836186 DOI: 10.1186/s13068-016-0503-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/01/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cyanobacteria are phototrophic prokaryotes that convert inorganic carbon as CO2 into organic compounds at the expense of light energy. They need only inorganic nutrients and can be cultivated to high densities using non-arable land and seawater. This has made cyanobacteria attractive organisms for the production of biofuels and chemical feedstock. Synechocystis sp. PCC 6803 is one of the most widely used cyanobacterial model strains. Based on its available genome sequence and genetic tools, Synechocystis has been genetically modified to produce different biotechnological products. Efficient isoprene production is an attractive goal because this compound is widely used as chemical feedstock. RESULTS Here, we report on our attempts to generate isoprene-producing strains of Synechocystis using a plasmid-based strategy. As previously reported, a codon-optimized plant isoprene synthase (IspS) was expressed under the control of different Synechocystis promoters that ensure strong constitutive or light-regulated ispS expression. The expression of the ispS gene was quantified by qPCR and Western blotting, while the amount of isoprene was quantified using GC-MS. In addition to isoprene measurements in the headspace of closed culture vessels, single photon ionization time-of-flight mass spectrometry (SPI-MS) was applied, which allowed online measurements of isoprene production in open-cultivation systems under various conditions. Under standard conditions, a good correlation existed between ispS expression and isoprene production rate. The cultivation of isoprene production strains under NaCl-supplemented conditions decreased isoprene production despite enhanced ispS mRNA levels. The characterization of the metabolome of isoprene-producing strains indicated that isoprene production might be limited by insufficient precursor levels. Transcriptomic analysis revealed the upregulation of mRNA and regulatory RNAs characteristic of acclimation to metabolic stress. CONCLUSIONS Our best production strains produced twofold higher isoprene amounts in the presence of low NaCl concentrations than previously reported strains. These results will guide future attempts to establish isoprene production in cyanobacterial hosts.
Collapse
Affiliation(s)
- Nadin Pade
- />Plant Physiology Department, Institute of Biological Science, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Sabrina Erdmann
- />Analytic Chemistry Department, University of Rostock, Dr.-Lorenz-Weg 1, 18059 Rostock, Germany
| | - Heike Enke
- />Algenol Biofuels Germany GmbH, Magnusstr. 11, 12489 Berlin, Germany
| | - Frederik Dethloff
- />Department of Molecular Physiology, Applied Metabolome Analysis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ulf Dühring
- />Algenol Biofuels Germany GmbH, Magnusstr. 11, 12489 Berlin, Germany
| | - Jens Georg
- />Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Juliane Wambutt
- />Algenol Biofuels Germany GmbH, Magnusstr. 11, 12489 Berlin, Germany
| | - Joachim Kopka
- />Department of Molecular Physiology, Applied Metabolome Analysis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Wolfgang R. Hess
- />Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Ralf Zimmermann
- />Analytic Chemistry Department, University of Rostock, Dr.-Lorenz-Weg 1, 18059 Rostock, Germany
| | - Dan Kramer
- />Algenol Biofuels Germany GmbH, Magnusstr. 11, 12489 Berlin, Germany
| | - Martin Hagemann
- />Plant Physiology Department, Institute of Biological Science, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| |
Collapse
|
47
|
Narainsamy K, Farci S, Braun E, Junot C, Cassier-Chauvat C, Chauvat F. Oxidative-stress detoxification and signalling in cyanobacteria: the crucial glutathione synthesis pathway supports the production of ergothioneine and ophthalmate. Mol Microbiol 2016; 100:15-24. [DOI: 10.1111/mmi.13296] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Kinsley Narainsamy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Sandrine Farci
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Emilie Braun
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Christophe Junot
- CEA, iBiTec-S, SPI, LEMM, Bat 136 CEA-Saclay; F-91191 Gif sur Yvette cedex France
| | - Corinne Cassier-Chauvat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Franck Chauvat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| |
Collapse
|
48
|
Xiong Q, Chen Z, Ge F. Proteomic analysis of post translational modifications in cyanobacteria. J Proteomics 2016; 134:57-64. [DOI: 10.1016/j.jprot.2015.07.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/28/2015] [Accepted: 07/30/2015] [Indexed: 01/16/2023]
|
49
|
Klanchui A, Raethong N, Prommeenate P, Vongsangnak W, Meechai A. Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 160:75-102. [PMID: 27783135 DOI: 10.1007/10_2016_42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyanobacteria, the phototrophic microorganisms, have attracted much attention recently as a promising source for environmentally sustainable biofuels production. However, barriers for commercial markets of cyanobacteria-based biofuels concern the economic feasibility. Miscellaneous strategies for improving the production performance of cyanobacteria have thus been developed. Among these, the simple ad hoc strategies resulting in failure to optimize fully cell growth coupled with desired product yield are explored. With the advancement of genomics and systems biology, a new paradigm toward systems metabolic engineering has been recognized. In particular, a genome-scale metabolic network reconstruction and modeling is a crucial systems-based tool for whole-cell-wide investigation and prediction. In this review, the cyanobacterial genome-scale metabolic models, which offer a system-level understanding of cyanobacterial metabolism, are described. The main process of metabolic network reconstruction and modeling of cyanobacteria are summarized. Strategies and developments on genome-scale network and modeling through the systems metabolic engineering approach are advanced and employed for efficient cyanobacterial-based biofuels production.
Collapse
Affiliation(s)
- Amornpan Klanchui
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Nachon Raethong
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Peerada Prommeenate
- Biochemical Engineering and Pilot Plant Research and Development (BEC) Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.,Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Asawin Meechai
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| |
Collapse
|
50
|
Mohammadi R, Fallah-Mehrabadi J, Bidkhori G, Zahiri J, Javad Niroomand M, Masoudi-Nejad A. A systems biology approach to reconcile metabolic network models with application to Synechocystis sp. PCC 6803 for biofuel production. MOLECULAR BIOSYSTEMS 2016; 12:2552-61. [DOI: 10.1039/c6mb00119j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metabolic network models can be optimized for the production of desired materials like biofuels.
Collapse
Affiliation(s)
- Reza Mohammadi
- Laboratory of Systems Biology and Bioinformatics (LBB)
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran
- Iran
| | | | | | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL)
- Department of Biophysics
- Faculty of Biological Sciences
- Tarbiat Modares University
- Tehran
| | - Mohammad Javad Niroomand
- Learning Intelligent Systems Lab
- School of Electrical and Computer Engineering
- University of Tehran
- Tehran
- Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB)
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran
- Iran
| |
Collapse
|