1
|
Testa C, Oliveto S, Jacchetti E, Donnaloja F, Martinelli C, Pinoli P, Osellame R, Cerullo G, Ceri S, Biffo S, Raimondi MT. Whole transcriptomic analysis of mesenchymal stem cells cultured in Nichoid micro-scaffolds. Front Bioeng Biotechnol 2023; 10:945474. [PMID: 36686258 PMCID: PMC9852851 DOI: 10.3389/fbioe.2022.945474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are known to be ideal candidates for clinical applications where not only regenerative potential but also immunomodulation ability is fundamental. Over the last years, increasing efforts have been put into the design and fabrication of 3D synthetic niches, conceived to emulate the native tissue microenvironment and aiming at efficiently controlling the MSC phenotype in vitro. In this panorama, our group patented an engineered microstructured scaffold, called Nichoid. It is fabricated through two-photon polymerization, a technique enabling the creation of 3D structures with control of scaffold geometry at the cell level and spatial resolution beyond the diffraction limit, down to 100 nm. The Nichoid's capacity to maintain higher levels of stemness as compared to 2D substrates, with no need for adding exogenous soluble factors, has already been demonstrated in MSCs, neural precursors, and murine embryonic stem cells. In this work, we evaluated how three-dimensionality can influence the whole gene expression profile in rat MSCs. Our results show that at only 4 days from cell seeding, gene activation is affected in a significant way, since 654 genes appear to be differentially expressed (392 upregulated and 262 downregulated) between cells cultured in 3D Nichoids and in 2D controls. The functional enrichment analysis shows that differentially expressed genes are mainly enriched in pathways related to the actin cytoskeleton, extracellular matrix (ECM), and, in particular, cell adhesion molecules (CAMs), thus confirming the important role of cell morphology and adhesions in determining the MSC phenotype. In conclusion, our results suggest that the Nichoid, thanks to its exclusive architecture and 3D cell adhesion properties, is not only a useful tool for governing cell stemness but could also be a means for controlling immune-related MSC features specifically involved in cell migration.
Collapse
Affiliation(s)
- Carolina Testa
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Stefania Oliveto
- Department of Bioscience (DBS), University of Milan, Milano, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Pietro Pinoli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Roberto Osellame
- Institute of Photonics and Nanotechnology (IFN)-CNR and Department of Physics, Politecnico di Milano, Milano, Italy
| | - Giulio Cerullo
- Institute of Photonics and Nanotechnology (IFN)-CNR and Department of Physics, Politecnico di Milano, Milano, Italy
| | - Stefano Ceri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Stefano Biffo
- Department of Bioscience (DBS), University of Milan, Milano, Italy
| | - Manuela T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| |
Collapse
|
2
|
Induced pluripotency in the context of stem cell expansion bioprocess development, optimization, and manufacturing: a roadmap to the clinic. NPJ Regen Med 2021; 6:72. [PMID: 34725374 PMCID: PMC8560749 DOI: 10.1038/s41536-021-00183-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
The translation of laboratory-scale bioprocess protocols and technologies to industrial scales and the application of human induced pluripotent stem cell (hiPSC) derivatives in clinical trials globally presents optimism for the future of stem-cell products to impact healthcare. However, while many promising therapeutic approaches are being tested in pre-clinical studies, hiPSC-derived products currently account for a small fraction of active clinical trials. The complexity and volatility of hiPSCs present several bioprocessing challenges, where the goal is to generate a sufficiently large, high-quality, homogeneous population for downstream differentiation-the derivatives of which must retain functional efficacy and meet regulatory safety criteria in application. It is argued herein that one of the major challenges currently faced in improving the robustness of routine stem-cell biomanufacturing is in utilizing continuous, meaningful assessments of molecular and cellular characteristics from process to application. This includes integrating process data with biological characteristic and functional assessment data to model the interplay between variables in the search for global optimization strategies. Coupling complete datasets with relevant computational methods will contribute significantly to model development and automation in achieving process robustness. This overarching approach is thus crucially important in realizing the potential of hiPSC biomanufacturing for transformation of regenerative medicine and the healthcare industry.
Collapse
|
3
|
Abstract
Choosing the material with the best regeneration potential and properties closest to that of the extracellular matrix is one of the main challenges in tissue engineering and regenerative medicine. Natural polymers, such as collagen, elastin, and cellulose, are widely used for this purpose in tissue engineering. Cellulose derived from bacteria has excellent mechanical properties, high hydrophilicity, crystallinity, and a high degree of polymerization and, therefore, can be used as scaffold/membrane for tissue engineering. In the current study, we reviewed the latest trends in the application of bacterial cellulose (BC) polymers as a scaffold in different types of tissue, including bone, vascular, skin, and cartilage. Also, we mentioned the biological and mechanical advantages and disadvantages of BC polymers. Given the data presented in this study, BC polymer could be suggested as a favorable natural polymer in the design of tissue scaffolds. Implementing novel composites that combine this polymer with other materials through modern or rapid prototyping methods can open up a great prospect in the future of tissue engineering and regenerative medicine.
Collapse
|
4
|
Chen X, Li J, Huang Y, Liu P, Fan Y. Insoluble Microenvironment Facilitating the Generation and Maintenance of Pluripotency. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:267-278. [PMID: 29327674 DOI: 10.1089/ten.teb.2017.0415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induced pluripotent stem cells (iPSCs) hold enormous potential as a tool to generate cells for tissue engineering and regenerative medicine. Since the initial report of iPSCs in 2006, many different methods have been developed to enhance the safety and efficiency of this technology. Recent studies indicate that the extracellular signals can promote the production of iPSCs, and even replace the Yamanaka factors. Noticeably, abundant evidences suggest that the insoluble microenvironment, including the culture substrate and neighboring cells, directly regulates the expression of core pluripotency genes and the epigenetic modification of the chromatins, hence, impacts the reprogramming dynamics. These studies provide new strategies for developing safer and more efficient method for iPSC generation. In this review, we examine the publications addressing the insoluble extracellular microenvironment that boosts iPSC generation and self-renewal. We also discuss cell adhesion-mediated molecular mechanisms, through which the insoluble extracellular cues interplay with reprogramming.
Collapse
Affiliation(s)
- Xiaofang Chen
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
- 2 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University , Beijing, China
| | - Jiaqi Li
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
| | - Yan Huang
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
- 2 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University , Beijing, China
| | - Peng Liu
- 3 Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University , Beijing, China
| | - Yubo Fan
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
- 2 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University , Beijing, China
- 4 National Research Center for Rehabilitation Technical Aids , Beijing, China
| |
Collapse
|
5
|
Joddar B, Kumar SA, Kumar A. A Contact-Based Method for Differentiation of Human Mesenchymal Stem Cells into an Endothelial Cell-Phenotype. Cell Biochem Biophys 2018; 76:187-195. [PMID: 28942575 PMCID: PMC5866207 DOI: 10.1007/s12013-017-0828-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Adult stem cells such as mesenchymal stem cells (MSC) are known to possess the ability to augment neovascularization processes and are thus widely popular as an autologous source of progenitor cells. However there is a huge gap in our current knowledge of mechanisms involved in differentiating MSC into endothelial cells (EC), essential for lining engineered blood vessels. To fill up this gap, we attempted to differentiate human MSC into EC, by culturing the former onto chemically fixed layers of EC or its ECM, respectively. We expected direct contact of MSC when cultured atop fixed EC or its ECM, would coax the former to differentiate into EC. Results showed that human MSC cultured atop chemically fixed EC or its ECM using EC-medium showed enhanced expression of CD31, a marker for EC, compared to other cases. Further in all human MSC cultured using EC-medium, typically characteristic cobble stone shaped morphologies were noted in comparison to cells cultured using MSC medium, implying that the differentiated cells were sensitive to soluble VEGF supplementation present in the EC-medium. Results will enhance and affect therapies utilizing autologous MSC as a cell source for generating vascular cells to be used in a variety of tissue engineering applications.
Collapse
Affiliation(s)
- Binata Joddar
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, 500W University Avenue, El Paso, TX, 79968, USA.
| | - Shweta Anil Kumar
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Alok Kumar
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| |
Collapse
|
6
|
Tronser T, Laromaine A, Roig A, Levkin PA. Bacterial Cellulose Promotes Long-Term Stemness of mESC. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16260-16269. [PMID: 29676562 DOI: 10.1021/acsami.8b01992] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stem cells possess unique properties, such as the ability to self-renew and the potential to differentiate into an organism's various cell types. These make them highly valuable in regenerative medicine and tissue engineering. Their properties are precisely regulated in vivo through complex mechanisms that include multiple cues arising from the cell interaction with the surrounding extracellular matrix, neighboring cells, and soluble factors. Although much research effort has focused on developing systems and materials that mimic this complex microenvironment, the controlled regulation of differentiation and maintenance of stemness in vitro remains elusive. In this work, we demonstrate, for the first time, that the nanofibrous bacterial cellulose (BC) membrane derived from Komagataeibacter xylinus can inhibit the differentiation of mouse embryonic stem cells (mESC) under long-term conditions (17 days), improving their mouse embryonic fibroblast (MEF)-free cultivation in comparison to the MEF-supported conventional culture. The maintained cells' pluripotency was confirmed by the mESCs' ability to differentiate into the three germ layers (endo-, meso-, and ectoderm) after having been cultured on the BC membrane for 6 days. In addition, the culturing of mESCs on flexible, free-standing BC membranes enables the quick and facile manipulation and transfer of stem cells between culture dishes, both of which significantly facilitate the use of stem cells in routine culture and various applications. To investigate the influence of the structural and topographical properties of the cellulose on stem cell differentiation, we used the cellulose membranes differing in membrane thickness, porosity, and surface roughness. This work identifies bacterial cellulose as a novel convenient and flexible membrane material enabling long-term maintenance of mESCs' stemness and significantly facilitating the handling and culturing of stem cells.
Collapse
Affiliation(s)
- Tina Tronser
- Institute of Toxicology and Genetics (ITG) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona , Consejo Superior de Investigaciones Científicas (ICMAB-CSIC) , Campus de la UAB , 08193 Bellaterra , Catalunya, Spain
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona , Consejo Superior de Investigaciones Científicas (ICMAB-CSIC) , Campus de la UAB , 08193 Bellaterra , Catalunya, Spain
| | - Pavel A Levkin
- Institute of Toxicology and Genetics (ITG) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| |
Collapse
|
7
|
Hira VVV, Wormer JR, Kakar H, Breznik B, van der Swaan B, Hulsbos R, Tigchelaar W, Tonar Z, Khurshed M, Molenaar RJ, Van Noorden CJF. Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins. J Histochem Cytochem 2018; 66:155-173. [PMID: 29297738 DOI: 10.1369/0022155417749174] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In glioblastoma, a fraction of malignant cells consists of therapy-resistant glioblastoma stem cells (GSCs) residing in protective niches that recapitulate hematopoietic stem cell (HSC) niches in bone marrow. We have previously shown that HSC niche proteins stromal cell-derived factor-1α (SDF-1α), C-X-C chemokine receptor type 4 (CXCR4), osteopontin (OPN), and cathepsin K (CatK) are expressed in hypoxic GSC niches around arterioles in five human glioblastoma samples. In HSC niches, HSCs are retained by binding of SDF-1α and OPN to their receptors CXCR4 and CD44, respectively. Protease CatK cleaves SDF-1α to release HSCs out of niches. The aim of the present study was to reproduce the immunohistochemical localization of these GSC markers in 16 human glioblastoma samples with the addition of three novel markers. Furthermore, we assessed the type of blood vessels associated with GSC niches. In total, we found seven GSC niches containing CD133-positive and nestin-positive GSCs as a single-cell layer exclusively around the tunica adventitia of 2% of the CD31-positive and SMA-positive arterioles and not around capillaries and venules. Niches expressed SDF-1α, CXCR4, CatK, OPN, CD44, hypoxia-inducible factor-1α, and vascular endothelial growth factor. In conclusion, we show that GSC niches are present around arterioles and express bone marrow HSC niche proteins.
Collapse
Affiliation(s)
- Vashendriya V V Hira
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Jill R Wormer
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Hala Kakar
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Britt van der Swaan
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Renske Hulsbos
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Wikky Tigchelaar
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Zbynek Tonar
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Mohammed Khurshed
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Remco J Molenaar
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Cornelis J F Van Noorden
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Hira VVV, Van Noorden CJF, Carraway HE, Maciejewski JP, Molenaar RJ. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches. Biochim Biophys Acta Rev Cancer 2017; 1868:183-198. [PMID: 28363872 DOI: 10.1016/j.bbcan.2017.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy.
Collapse
Affiliation(s)
- Vashendriya V V Hira
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; Division of Neurobiology, Barrow Brain Tumor Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| | - Cornelis J F Van Noorden
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | - Hetty E Carraway
- Department of Translational Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Leukemia Program, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Remco J Molenaar
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; Department of Translational Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
9
|
Biophysical regulation of mouse embryonic stem cell fate and genomic integrity by feeder derived matrices. Biomaterials 2017; 119:9-22. [DOI: 10.1016/j.biomaterials.2016.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023]
|
10
|
Scaling-Up Techniques for the Nanofabrication of Cell Culture Substrates via Two-Photon Polymerization for Industrial-Scale Expansion of Stem Cells. MATERIALS 2017; 10:ma10010066. [PMID: 28772424 PMCID: PMC5344595 DOI: 10.3390/ma10010066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 01/28/2023]
Abstract
Stem-cell-based therapies require a high number (106–109) of cells, therefore in vitro expansion is needed because of the initially low amount of stem cells obtainable from human tissues. Standard protocols for stem cell expansion are currently based on chemically-defined culture media and animal-derived feeder-cell layers, which expose cells to additives and to xenogeneic compounds, resulting in potential issues when used in clinics. The two-photon laser polymerization technique enables three-dimensional micro-structures to be fabricated, which we named synthetic nichoids. Here we review our activity on the technological improvements in manufacturing biomimetic synthetic nichoids and, in particular on the optimization of the laser-material interaction to increase the patterned area and the percentage of cell culture surface covered by such synthetic nichoids, from a low initial value of 10% up to 88% with an optimized micromachining time. These results establish two-photon laser polymerization as a promising tool to fabricate substrates for stem cell expansion, without any chemical supplement and in feeder-free conditions for potential therapeutic uses.
Collapse
|
11
|
Nava MM, Zandrini T, Cerullo G, Osellame R, Raimondi MT. 3D Stem Cell Niche Engineering via Two-Photon Laser Polymerization. Methods Mol Biol 2017. [PMID: 28634949 DOI: 10.1007/978-1-4939-7021-6_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A strategy to modulate the behavior of stem cells in culture is to mimic structural aspects of the native cell-extracellular matrix (ECM) interaction. An important example of such artificial microenvironments for stem cell culture is the so-called "synthetic niche." Synthetic niches can be defined as polymeric culture systems mimicking at least one aspect of the interactions between stem cells and the extracellular surroundings, including biochemical factors (e.g., the delivery of soluble factors) and/or biophysical factors (e.g., the microarchitecture of the ECM). Most of the currently available approaches for scaffold fabrication, based on self-assembly methods, do not allow for a submicrometer control of the geometrical structure of the substrate, which might play a crucial role in stem cell fate determination. A novel technology that overcomes these limitations is laser two-photon polymerization (2PP). Femtosecond laser 2PP is a mask-less direct laser writing technique that allows manufacturing three dimensional arbitrary microarchitectures using photosensitive materials. Here, we report on the development of an innovative culture substrate, called the "nichoid," microfabricated in a hybrid organic-inorganic photoresist called SZ2080, to study mesenchymal stem cell mechanobiology.
Collapse
Affiliation(s)
- Michele M Nava
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 32 piazza Leonardo da Vinci, Milano, Italy.
| | - Tommaso Zandrini
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR and Department of Physics, Politecnico di Milano, 32 piazza Leonardo da Vinci, Milano, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR and Department of Physics, Politecnico di Milano, 32 piazza Leonardo da Vinci, Milano, Italy
| | - Roberto Osellame
- Istituto di Fotonica e Nanotecnologie (IFN)-CNR and Department of Physics, Politecnico di Milano, 32 piazza Leonardo da Vinci, Milano, Italy
| | - Manuela T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 32 piazza Leonardo da Vinci, Milano, Italy
| |
Collapse
|
12
|
Cathepsin K cleavage of SDF-1α inhibits its chemotactic activity towards glioblastoma stem-like cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:594-603. [PMID: 28040478 DOI: 10.1016/j.bbamcr.2016.12.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor with poor patient survival that is at least partly caused by malignant and therapy-resistant glioma stem-like cells (GSLCs) that are protected in GSLC niches. Previously, we have shown that the chemo-attractant stromal-derived factor-1α (SDF-1α), its C-X-C receptor type 4 (CXCR4) and the cysteine protease cathepsin K (CatK) are localized in GSLC niches in glioblastoma. Here, we investigated whether SDF-1α is a niche factor that through its interactions with CXCR4 and/or its second receptor CXCR7 on GSLCs facilitates their homing to niches. Furthermore, we aimed to prove that SDF-1α cleavage by CatK inactivates SDF-1α and inhibits the invasion of GSLCs. We performed mass spectrometric analysis of cleavage products of SDF-1α after proteolysis by CatK. We demonstrated that CatK cleaves SDF-1α at 3 sites in the N-terminus, which is the region of SDF-1α that binds to its receptors. Confocal imaging of human GBM tissue sections confirmed co-localization of SDF-1α and CatK in GSLC niches. In accordance, 2D and 3D invasion experiments using CXCR4/CXCR7-expressing GSLCs and GBM cells showed that SDF-1α had chemotactic activity whereas CatK cleavage products of SDF-1α did not. Besides, CXCR4 inhibitor plerixafor inhibited invasion of CXCR4/CXCR7-expressing GSLCs. In conclusion, CatK can cleave and inactivate SDF-1α. This implies that CatK activity facilitates migration of GSLCs out of niches. We propose that activation of CatK may be a promising strategy to prevent homing of GSLCs in niches and thus render these cells sensitive to chemotherapy and radiation.
Collapse
|
13
|
Wrona EA, Peng R, Amin MR, Branski RC, Freytes DO. Extracellular Matrix for Vocal Fold Lamina Propria Replacement: A Review. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:421-429. [PMID: 27316784 DOI: 10.1089/ten.teb.2016.0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vocal folds (VFs) are exposed to a number of injurious stimuli that frequently lead to aberrant structural alterations and altered biomechanical properties that clinically manifest as voice disorders. Therapies to restore both structure and function of this delicate tissue are ideal. However, such methods have not been adequately developed. Our group and others hypothesize that tissue engineering and regenerative medicine approaches, previously described for other tissue systems, hold significant promise for the VFs. In this review, we explore the concept of tissue engineering as it relates to the VFs, as well as recent studies employing both naturally and synthetically derived biomaterials, including those from laryngeal and nonlaryngeal sources, in combination with stem cells for a tissue-engineered approach to VF repair.
Collapse
Affiliation(s)
- Emily A Wrona
- 1 UNC-Chapel Hill/NCSU Joint Department of Biomedical Engineering, North Carolina State University , Raleigh, North Carolina.,2 The New York Stem Cell Foundation Research Institute , New York, New York
| | - Robert Peng
- 3 Department of Otolaryngology-Head and Neck Surgery, NYU Voice Center, New York University School of Medicine , New York, New York
| | - Milan R Amin
- 3 Department of Otolaryngology-Head and Neck Surgery, NYU Voice Center, New York University School of Medicine , New York, New York
| | - Ryan C Branski
- 3 Department of Otolaryngology-Head and Neck Surgery, NYU Voice Center, New York University School of Medicine , New York, New York
| | - Donald O Freytes
- 1 UNC-Chapel Hill/NCSU Joint Department of Biomedical Engineering, North Carolina State University , Raleigh, North Carolina.,2 The New York Stem Cell Foundation Research Institute , New York, New York
| |
Collapse
|
14
|
Sahni G, Yuan J, Toh YC. Stencil Micropatterning of Human Pluripotent Stem Cells for Probing Spatial Organization of Differentiation Fates. J Vis Exp 2016. [PMID: 27340925 DOI: 10.3791/54097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human pluripotent stem cells (hPSCs), including embryonic stem cells and induced pluripotent stem cells, have the intrinsic ability to differentiate into all three germ layers. This makes them an attractive cell source for regenerative medicine and experimental modeling of normal and diseased organogenesis. However, the differentiation of hPSCs in vitro is heterogeneous and spatially disordered. Cell micropatterning technologies potentially offer the means to spatially control stem cell microenvironments and organize the resultant differentiation fates. Micropatterning hPSCs needs to take into account the stringent requirements for hPSC survival and maintenance. Here, we describe stencil micropatterning as a method that is highly compatible with hPSCs. hPSC micropatterns are specified by the geometries of the cell stencil through-holes, which physically confine the locations where hPSCs can access and attach to the underlying extracellular matrix-coated substrate. Due to this mode of operation, there is greater flexibility to use substrates that can adequately support hPSCs as compared to other cell micropatterning methods. We also highlight critical steps for the successful generation of hPSC micropatterns. As an example, we demonstrate that stencil micropatterning of hPSCs can be used to modulate spatial polarization of cell-cell and cell-matrix adhesions, which in turn determines mesoendoderm differentiation patterns. This simple and robust method to micropattern hPSCs widens the prospects of establishing experimental models to investigate tissue organization and patterning during early embryonic development.
Collapse
Affiliation(s)
- Geetika Sahni
- Department of Biomedical Engineering, National University of Singapore
| | - Jun Yuan
- Department of Biomedical Engineering, National University of Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore; Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore;
| |
Collapse
|
15
|
Nava MM, Di Maggio N, Zandrini T, Cerullo G, Osellame R, Martin I, Raimondi MT. Synthetic niche substrates engineered via two-photon laser polymerization for the expansion of human mesenchymal stromal cells. J Tissue Eng Regen Med 2016; 11:2836-2845. [PMID: 27296669 PMCID: PMC5697673 DOI: 10.1002/term.2187] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 12/12/2022]
Abstract
The present study reports on the development of an innovative culture substrate, micro-fabricated by two-photon laser polymerization (2PP) in a hybrid organic-inorganic photoresin. It was previously demonstrated that this substrate is able to guide spontaneous homing and colonization of mesenchymal stromal cells by the presence of synthetic microniches. Here, the number of niches covering the culture substrate was increased up to 10% of the total surface. Human bone marrow-derived mesenchymal stromal cells were expanded for 3 weeks and then their proliferation, clonogenic capacity and bilineage differentiation potential towards the osteogenic and adipogenic lineage were evaluated, both by colorimetric assays and by real-time polymerase chain reaction. Compared with cells cultured on glass substrates, cells expanded on 2PP substrates showed a greater colony diameter, which is an index of clonogenic potential. Following medium conditioning on 2PP-cultured cells, the expression of RUNX2 and BSP genes, as well as PPAR-gamma, was significantly greater than that measured on glass controls. Thus, human cells expanded on the synthetic niche substrate maintained their proliferative potential, clonogenic capacity and bilineage differentiation potential more effectively than cells expanded on glass substrates and in some aspects were comparable to non-expanded cells. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Michele M Nava
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milano, Italy
| | - Nunzia Di Maggio
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | - Tommaso Zandrini
- Istituto di Fotonica e Nanotecnologie - CNR and Department of Physics, Politecnico di Milano, Milano, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie - CNR and Department of Physics, Politecnico di Milano, Milano, Italy
| | - Roberto Osellame
- Istituto di Fotonica e Nanotecnologie - CNR and Department of Physics, Politecnico di Milano, Milano, Italy
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | - Manuela T Raimondi
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milano, Italy
| |
Collapse
|
16
|
Stencil Micropatterning for Spatial Control of Human Pluripotent Stem Cell Fate Heterogeneity. Methods Mol Biol 2016; 1516:171-181. [PMID: 27032943 DOI: 10.1007/7651_2016_325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human pluripotent stem cells (hPSCs) have the intrinsic ability to differentiate and self-organize into distinct tissue patterns, although this requires the presentation of spatial environmental cues, i.e., biochemical and mechanical gradients. Cell micropatterning technologies potentially offer the means to spatially control stem cell microenvironments and organize the resultant differentiation fates. Here, we describe stencil micropatterning as a simple and robust method to generate hPSC micropatterns for controlling hPSC differentiation patterns. hPSC micropatterns are specified by the geometries of the cell stencil through-holes, which physically confine the locations where the underlying extracellular matrix and hPSCs can access and attach to the substrate. This confers the unique capability of stencil micropatterning to work with a variety of culture substrates and extracellular matrices for optimal hPSC culture. We present the detailed steps of stencil micropatterning to successfully generate hPSC micropatterns, which can be used to investigate how spatial polarization of cell adhesion results in cell fate heterogeneity.
Collapse
|
17
|
Syva SH, Ampon K, Lasimbang H, Fatimah SS. Microenvironmental factors involved in human amnion mesenchymal stem cells fate decisions. J Tissue Eng Regen Med 2015; 11:311-320. [PMID: 26073746 DOI: 10.1002/term.2043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 04/12/2015] [Accepted: 04/29/2015] [Indexed: 12/28/2022]
Abstract
Human amnion mesenchymal stem cells (HAMCs) show great differentiation and proliferation potential and also other remarkable features that could serve as an outstanding alternative source of stem cells in regenerative medicine. Recent reports have demonstrated various kinds of effective artificial niche that mimic the microenvironment of different types of stem cell to maintain and control their fate and function. The components of the stem cell microenvironment consist mainly of soluble and insoluble factors responsible for regulating stem cell differentiation and self-renewal. Extensive studies have been made on regulating HAMCs differentiation into specific phenotypes; however, the understanding of relevant factors in directing stem cell fate decisions in HAMCs remain underexplored. In this review, we have therefore identified soluble and insoluble factors, including mechanical stimuli and cues from the other supporting cells that are involved in directing HAMCs fate decisions. In order to strengthen the significance of understanding on the relevant factors involved in stem cell fate decisions, recent technologies developed to specifically mimic the microenvironments of specific cell lineages are also reviewed. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Kamaruzaman Ampon
- Biotechnology Research Institute, Universiti Malaysia Sabah, Malaysia
| | - Helen Lasimbang
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Malaysia
| | | |
Collapse
|
18
|
Zhou Y, Mao H, Joddar B, Umeki N, Sako Y, Wada KI, Nishioka C, Takahashi E, Wang Y, Ito Y. The significance of membrane fluidity of feeder cell-derived substrates for maintenance of iPS cell stemness. Sci Rep 2015; 5:11386. [PMID: 26065582 PMCID: PMC4464345 DOI: 10.1038/srep11386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/22/2015] [Indexed: 11/09/2022] Open
Abstract
The biological activity of cell-derived substrates to maintain undifferentiated murine-induced pluripotent stem (iPS) cells was correlated to membrane fluidity as a new parameter of cell culture substrates. Murine embryonic fibroblasts (MEFs) were employed as feeder cells and their membrane fluidity was tuned by chemical fixation using formaldehyde (FA). Membrane fluidity was evaluated by real-time single-molecule observations of green fluorescent protein-labeled epidermal growth factor receptors on chemically fixed MEFs. Biological activity was monitored by colony formation of iPS cells. Treatment with a low concentration of FA sustained the membrane fluidity and biological activity, which were comparable to those of mitomycin C-treated MEFs. The biological activity was further confirmed by sustained expression of alkaline phosphatase, SSEA-1, and other pluripotency markers in iPS cells after 3-5 days of culture on FA-fixed MEFs. Chemical fixation of feeder cells has several advantages such as providing ready-to-use culture substrates without contamination by proliferating feeder cells. Therefore, our results provide an important basis for the development of chemically fixed culture substrates for pluripotent stem cell culture as an alternative to conventional treatment by mitomycin C or x-ray irradiation.
Collapse
Affiliation(s)
- Yue Zhou
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- School of Nursing, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu Province 210023, China
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, No.1266 Fujin Road, Changchun 130021, China
| | - Hongli Mao
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Binata Joddar
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nobuhisa Umeki
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ken-Ichi Wada
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chieko Nishioka
- Support Unit for Animal Experiment, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Eiki Takahashi
- Support Unit for Animal Experiment, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, No.1266 Fujin Road, Changchun 130021, China
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
19
|
Mashinchian O, Turner LA, Dalby MJ, Laurent S, Shokrgozar MA, Bonakdar S, Imani M, Mahmoudi M. Regulation of stem cell fate by nanomaterial substrates. Nanomedicine (Lond) 2015; 10:829-47. [DOI: 10.2217/nnm.14.225] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stem cells are increasingly studied because of their potential to underpin a range of novel therapies, including regenerative strategies, cell type-specific therapy and tissue repair, among others. Bionanomaterials can mimic the stem cell environment and modulate stem cell differentiation and proliferation. New advances in these fields are presented in this review. This work highlights the importance of topography and elasticity of the nano-/micro-environment, or niche, for the initiation and induction of stem cell differentiation and proliferation.
Collapse
Affiliation(s)
- Omid Mashinchian
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, PO Box 14177–55469, Tehran, Iran
| | - Lesley-Anne Turner
- Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Matthew J Dalby
- Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Sophie Laurent
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, B-7000 Mons, Belgium
- CMMI – Center for Microscopy & Molecular Imaging, Rue Adrienne Bolland, 8, B-6041 Gosselies, Belgium
| | | | - Shahin Bonakdar
- National Cell Bank, Pasteur Institute of Iran, PO Box 13169–43551, Tehran, Iran
| | - Mohammad Imani
- Novel Drug Delivery Systems Department, Iran Polymer & Petrochemical Institute (IPPI), PO Box 14965/115, Tehran, Iran
| | - Morteza Mahmoudi
- Department of Nanotechnology & Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, PO Box 14155–6451, Tehran, Iran
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305–5101, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305–5101, USA
| |
Collapse
|
20
|
Nava MM, Raimondi MT, Credi C, De Marco C, Turri S, Cerullo G, Osellame R. Interactions between structural and chemical biomimetism in synthetic stem cell niches. ACTA ACUST UNITED AC 2015; 10:015012. [PMID: 25594262 DOI: 10.1088/1748-6041/10/1/015012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Advancements in understanding stem cell functions and differentiation are of key importance for the clinical success of stem-cell-based therapies. 3D structural niches fabricated by two-photon polymerization are a powerful platform for controlling stem cell growth and differentiation. In this paper, we investigate the possibility of further controlling stem cell fate by tuning the mechanical properties of such niches through coating with thin layers of biomimetic hyaluronan-based and gelatin-based hydrogels. We first assess the biocompatibility of chemical coatings and then study the interactions between structural and chemical biomimetism on the response of MSCs in terms of proliferation and differentiation. We observed a clear effect of the hydrogel coating on otherwise identical 3D scaffolds. In particular, in gelatin-coated niches we observed a stronger metabolic activity and commitment toward the osteo-chondral lineage with respect to hyaluronan-coated niches. Conversely, a reduction in the homing effect was observed in all the coated niches, especially in gelatin-coated niches. This study demonstrates the feasibility of controlling independently different mechanical cues, in bioengineered stem cell niches, i.e. the 3D scaffold geometry and the surface stiffness. This will allow, on the one hand, understanding their specific role in stem cell proliferation and differentiation and, on the other hand, finely tuning their synergistic effect.
Collapse
Affiliation(s)
- Michele M Nava
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, 32, piazza Leonardo da Vinci, 20133, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Joddar B, Nishioka C, Takahashi E, Ito Y. Chemically fixed autologous feeder cell-derived niche for human induced pluripotent stem cell culture. J Mater Chem B 2015; 3:2301-2307. [DOI: 10.1039/c4tb01635a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newer method of hiPS culture on feeder cell-derived niche is reported in this study.
Collapse
Affiliation(s)
- Binata Joddar
- Nano Medical Engineering Laboratory
- RIKEN
- Wako
- Japan
- Department of Mechanical Engineering & Biomedical Engineering Program at The University of Texas at El Paso
| | - Chieko Nishioka
- Support Unit for Animal Experiment
- Research Resources Center
- RIKEN Brain Science Institute
- Wako
- Japan
| | - Eiki Takahashi
- Support Unit for Animal Experiment
- Research Resources Center
- RIKEN Brain Science Institute
- Wako
- Japan
| | | |
Collapse
|
22
|
Bai S, Zhang W, Lu Q, Ma Q, Kaplan DL, Zhu H. Silk Nanofiber Hydrogels with Tunable Modulus to Regulate Nerve Stem Cell Fate. J Mater Chem B 2014; 2:6590-6600. [PMID: 25530851 PMCID: PMC4269376 DOI: 10.1039/c4tb00878b] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Reconstruction of damaged nerves remains a significant unmet challenge in clinical medicine. To foster improvements, the control of neural stem cell (NSC) behaviors, including migration, proliferation and differentiation are critical factors to consider. Topographical and mechanical stimulation based on the control of biomaterial features is a promising approach, which are usually studied separately. The synergy between topography and mechanical rigidity could offer new insights into the control of neural cell fate if they could be utilized concurrently in studies. To achieve this need, silk fibroin self-assembled nanofibers with a beta-sheet-enriched structure are formed into hydrogels. Stiffness is tuned using different annealing processes to enable mechanical control without impacting the nanofiber topography. Compared with nonannealed nanofibers, NSCs on methanol annealed nanofibers with stiffness similar to nerve tissues differentiate into neurons with the restraint of glial differentiation, without the influence of specific differentiation biochemical factors. These results demonstrate that combining topographic and mechanical cues provides the control of nerve cell behaviors, with potential for neurogenerative repair strategies.
Collapse
Affiliation(s)
- ShuMeng Bai
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - WenMin Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, the Second Affiliated Hospital, Soochow University, Suzhou 215123, People’s Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
- Jiangsu Province Key Laboratory of Stem Cell Research, Medical College, Soochow University, Suzhou 215006, People’s Republic of China
| | - QuanHong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, the Second Affiliated Hospital, Soochow University, Suzhou 215123, People’s Republic of China
| | - David L. Kaplan
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - HeSun Zhu
- Research Center of Materials Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| |
Collapse
|
23
|
Marino A, Filippeschi C, Genchi GG, Mattoli V, Mazzolai B, Ciofani G. The Osteoprint: a bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation. Acta Biomater 2014; 10:4304-13. [PMID: 24907661 DOI: 10.1016/j.actbio.2014.05.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/06/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022]
Abstract
The need for a better understanding of cell behavior and for exploiting cell functions in various healthcare applications has driven biomedical research to develop increasingly complex fabrication strategies to reproduce the natural biological microenvironment in vitro. Different approaches have led to the development of refined examples of 2- and 3-D structures able to sustain cellular proliferation, differentiation and functionality very similar to those normally occurring in living organisms. One such approach is two-photon polymerization. In this paper, we present a trabecula-like structure (which we have named "Osteoprint") that resembles to the typical microenvironment of trabecular bone cells. Starting from microtomography images of the trabecular bone, we prepared several Osteoprints through two-photon polymerization and tested the behavior of SaOS-2 bone-like cells cultured on our structures. Interestingly, we found that Osteoprints deeply affect cellular behavior, determining an exit from the cell cycle and an enhancement of osteogenic differentiation. Indeed, we found an up-regulation of the genes involved in SaOS-2 cell maturation and an increase in hydroxyapatite production and accumulation upon SaOS-2 culture on the Osteoprints. The findings we obtained are extremely interesting, and open up new perspectives in "bioinspired" approaches for tissue engineering and regenerative medicine.
Collapse
|
24
|
Optimization of Femtosecond Laser Polymerized Structural Niches to Control Mesenchymal Stromal Cell Fate in Culture. MICROMACHINES 2014. [DOI: 10.3390/mi5020341] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Joddar B, Hoshiba T, Chen G, Ito Y. Stem cell culture using cell-derived substrates. Biomater Sci 2014; 2:1595-1603. [DOI: 10.1039/c4bm00126e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There have been great efforts to develop cell culture systems using chemically-fixed cells or decellularized matrices to regulate stem cell functions.
Collapse
Affiliation(s)
| | - Takashi Hoshiba
- Department of Biochemical Engineering
- Graduate School of Science and Engineering
- Yamagata University
- Yonezawa, Japan
- Tissue Regeneration Materials Unit
| | - Guoping Chen
- Tissue Regeneration Materials Unit
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory
- RIKEN
- Wako, Japan
- Emergent Bioengineering Materials Research Team
- RIKEN Center for Emergent Matter Science
| |
Collapse
|