1
|
Chen R, Wang S, Sun Y, Li H, Wan S, Lin F, Xu H. Comparison of Glyphosate-Degradation Ability of Aldo-Keto Reductase (AKR4) Proteins in Maize, Soybean and Rice. Int J Mol Sci 2023; 24:ijms24043421. [PMID: 36834831 PMCID: PMC9966811 DOI: 10.3390/ijms24043421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Genes that participate in the degradation or isolation of glyphosate in plants are promising, for they endow crops with herbicide tolerance with a low glyphosate residue. Recently, the aldo-keto reductase (AKR4) gene in Echinochloa colona (EcAKR4) was identified as a naturally evolved glyphosate-metabolism enzyme. Here, we compared the glyphosate-degradation ability of theAKR4 proteins from maize, soybean and rice, which belong to a clade containing EcAKR4 in the phylogenetic tree, by incubation of glyphosate with AKR proteins both in vivo and in vitro. The results indicated that, except for OsALR1, the other proteins were characterized as glyphosate-metabolism enzymes, with ZmAKR4 ranked the highest activity, and OsAKR4-1 and OsAKR4-2 exhibiting the highest activity among the AKR4 family in rice. Moreover, OsAKR4-1 was confirmed to endow glyphosate-tolerance at the plant level. Our study provides information on the mechanism underlying the glyphosate-degradation ability of AKR proteins in crops, which enables the development of glyphosate-resistant crops with a low glyphosate residue, mediated by AKRs.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Lin
- Correspondence: (F.L.); (H.X.); Tel.: +86-20-85285127 (H.X.)
| | - Hanhong Xu
- Correspondence: (F.L.); (H.X.); Tel.: +86-20-85285127 (H.X.)
| |
Collapse
|
2
|
Hongjuan H, Fujian Z, Guohua L, Quanhong Y, Qiaoquan L. Functional characterization of glycine oxidase from Bacillus licheniformis in Escherichia coli and transgenic plants. Biotechnol Lett 2023; 45:299-307. [PMID: 36592259 DOI: 10.1007/s10529-022-03340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To find glycine oxidase genes that can be applied to the breeding of glyphosate resistant crops. RESULTS The glycine oxidase (GO, EC 1.4.3.19) gene (GenBank No: KC831746) from Bacillus licheniformis (B. licheniformis) was chemically synthesized and transformed into glyphosate-sensitive Escherichia coli (E. coli). The GO gene was transformed into Arabidopsis and rice through Agrobacterium-mediated transformation. The test results confirmed that transgenic plants containing GO genes are more resistant to glyphosate than wild-type plants. On solid Murashige and Skoog (MS) (Murashige and Skoog1962 ) medium containing 200 µM glyphosate, transgenic Arabidopsis thaliana grew normally, while wild-type plants were stunted and root growth was restricted. In a solution containing 500 µM glyphosate, wild-type rice showed severe yellowing, while transgenic rice grew normally. In addition, when sprayed with 10 mM glyphosate solution, wild-type rice withered and died, while transgenic rice grew well. The function of GO gene in glyphosate resistance and the application value of GO gene in the cultivation of glyphosate-resistant crops is proved. CONCLUSIONS The glycine oxidase gene from B. licheniformis enhances the resistance of E. coli, Arabidopsis and rice to glyphosate.
Collapse
Affiliation(s)
- Han Hongjuan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
| | - Zhang Fujian
- Chongming District Agro-Technology Popularization Center, Shanghai, 202150, People's Republic of China
| | - Liang Guohua
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yao Quanhong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
| | - Liu Qiaoquan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
3
|
Vennapusa AR, Agarwal S, Rao Hm H, Aarthy T, Babitha KC, Thulasiram HV, Kulkarni MJ, Melmaiee K, Sudhakar C, Udayakumar M, S Vemanna R. Stacking herbicide detoxification and resistant genes improves glyphosate tolerance and reduces phytotoxicity in tobacco (Nicotiana tabacum L.) and rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:126-138. [PMID: 36084528 DOI: 10.1016/j.plaphy.2022.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate residues retained in the growing meristematic tissues or in grains of glyphosate-resistant crops affect the plants physiological functions and crop yield. Removing glyphosate residues in the plants is desirable with no penalty on crop yield and quality. We report a new combination of scientific strategy to detoxify glyphosate that reduces the residual levels and improve crop resistance. The glyphosate detoxifying enzymes Aldo-keto reductase (AKR1) and mutated glycine oxidase (mGO) with different modes of action were co-expressed with modified EPSPS, which is insensitive to glyphosate in tobacco (Nicotiana tabacum L.) and rice (Oryza sativa L.). The transgenic tobacco plants expressing individual PsAKR1, mGO, CP4-EPSPS, combinations of PsAKR1:CP4EPSPS, PsAKR1:mGO, and multigene with PsAKR1: mGO: CP4EPSPS genes were developed. The bio-efficacy studies of in-vitro leaf regeneration on different concentrations of glyphosate, seedling bioassay, and spray on transgenic tobacco plants demonstrate that glyphosate detoxification with enhanced resistance. Comparative analysis of the transgenic tobacco plants reveals that double and multigene expressing transgenics had reduced accumulation of shikimic acid, glyphosate, and its primary residue AMPA, and increased levels of sarcosine were observed in all PsAKR1 expressing transgenics. The multigene expressing rice transgenics showed improved glyphosate resistance with yield maintenance. In summary, results suggest that stacking genes with two different detoxification mechanisms and insensitive EPSPS is a potential approach for developing glyphosate-resistant plants with less residual content.
Collapse
Affiliation(s)
- Amaranatha Reddy Vennapusa
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India; Department of Botany, Sri Krishnadevaraya University, Anantapur, 515001, India; Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, 19901, USA.
| | - Subham Agarwal
- Laboratory of Plant Functional Genomics, Regional Center for Biotechnology, Faridabad, 121001, India
| | - Hanumanth Rao Hm
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | | | - K C Babitha
- Laboratory of Plant Functional Genomics, Regional Center for Biotechnology, Faridabad, 121001, India
| | | | | | - Kalpalatha Melmaiee
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, 19901, USA
| | - Chinta Sudhakar
- Department of Botany, Sri Krishnadevaraya University, Anantapur, 515001, India
| | - M Udayakumar
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | - Ramu S Vemanna
- Laboratory of Plant Functional Genomics, Regional Center for Biotechnology, Faridabad, 121001, India.
| |
Collapse
|
4
|
Mou Z, Zhao D. Gene rational design: the dawn of crop breeding. TRENDS IN PLANT SCIENCE 2022; 27:633-636. [PMID: 35382978 DOI: 10.1016/j.tplants.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Limited natural genetic diversity restricts the creation of excellent crops. Modeling-guided rational design represents a promising protein engineering technology to optimize existing genes for desired agronomic traits. Rational design coupled with other engineering approaches could also be applied in artificial gene improvement for the creation of economically valuable crops.
Collapse
Affiliation(s)
- Zongmin Mou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming 650504, China
| | - Dake Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming 650504, China.
| |
Collapse
|
5
|
Wen L, Zhong J, Cui Y, Duan Z, Zhou F, Li C, Ma W, Yin C, Chen H, Lin Y. Coexpression of I. variabilis-EPSPS* and WBceGO-B3S1 Genes Contributes to High Glyphosate Tolerance and Low Glyphosate Residues in Transgenic Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7388-7398. [PMID: 33909432 DOI: 10.1021/acs.jafc.1c00880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Weeds are one of the main factors that affect the yield and quality of rice. The combination of glyphosate-resistant transgenic crops and glyphosate is regarded as an important strategy for weed management in modern agriculture. In this study, a codon-optimized glyphosate oxidase gene WBceGO-B3S1 from a variant BceGO-B3S1 and a glyphosate-tolerant gene I. variabilis-EPSPS* from the bacterium Isoptericola variabilis were transformed into an Oryza sativa subsp. geng rice variety Zhonghua11 by Agrobacterium-mediated genetic transformation. Molecular detection and field agronomic trait analysis contributed to the selection of three homozygous lines with stable expression of a single copy of the transferred genes integrated into the intergenic region. Under the treatment of glyphosate at a test amount in the field, transgenic lines exhibited no differences in agronomic traits. Under the treatment by 3600 g ha-1 glyphosate, the glyphosate residues in the aboveground tissues of the three candidate transgenic homozygous lines were significantly lower than those in the transgenic homozygous line with I. variabilis-EPSPS* alone at 1, 5, and 10 days. The transgenic line coexpressing I. variabilis-EPSPS* and WBceGO-B3S1 has great application value in breeding of transgenic rice varieties with high glyphosate resistance and low glyphosate residues. This study is a step forward in solving the problem of herbicide residues in food crops by taking advantage of genes that degrade glyphosate.
Collapse
Affiliation(s)
- Lixian Wen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jue Zhong
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ying Cui
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhenchun Duan
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - ChangYan Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Weihua Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Changxi Yin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
6
|
Hertel R, Gibhardt J, Martienssen M, Kuhn R, Commichau FM. Molecular mechanisms underlying glyphosate resistance in bacteria. Environ Microbiol 2021; 23:2891-2905. [PMID: 33876549 DOI: 10.1111/1462-2920.15534] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022]
Abstract
Glyphosate is a nonselective herbicide that kills weeds and other plants competing with crops. Glyphosate specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase, thereby depleting the cell of EPSP serving as a precursor for biosynthesis of aromatic amino acids. Glyphosate is considered to be toxicologically safe for animals and humans. Therefore, it became the most-important herbicide in agriculture. However, its intensive application in agriculture is a serious environmental issue because it may negatively affect the biodiversity. A few years after the discovery of the mode of action of glyphosate, it has been observed that bacteria evolve glyphosate resistance by acquiring mutations in the EPSP synthase gene, rendering the encoded enzyme less sensitive to the herbicide. The identification of glyphosate-resistant EPSP synthase variants paved the way for engineering crops tolerating increased amounts of the herbicide. This review intends to summarize the molecular mechanisms underlying glyphosate resistance in bacteria. Bacteria can evolve glyphosate resistance by (i) reducing glyphosate sensitivity or elevating production of the EPSP synthase, by (ii) degrading or (iii) detoxifying glyphosate and by (iv) decreasing the uptake or increasing the export of the herbicide. The variety of glyphosate resistance mechanisms illustrates the adaptability of bacteria to anthropogenic substances due to genomic alterations.
Collapse
Affiliation(s)
- Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Johannes Gibhardt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Marion Martienssen
- Institute of Environmental Technology, Chair of Biotechnology of Water Treatment, BTU Cottbus-Senftenberg, Cottbus, 03046, Germany
| | - Ramona Kuhn
- Institute of Environmental Technology, Chair of Biotechnology of Water Treatment, BTU Cottbus-Senftenberg, Cottbus, 03046, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| |
Collapse
|
7
|
Duke SO. Glyphosate: Uses Other Than in Glyphosate-Resistant Crops, Mode of Action, Degradation in Plants, and Effects on Non-target Plants and Agricultural Microbes. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 255:1-65. [PMID: 33895876 DOI: 10.1007/398_2020_53] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Glyphosate is the most used herbicide globally. It is a unique non-selective herbicide with a mode of action that is ideal for vegetation management in both agricultural and non-agricultural settings. Its use was more than doubled by the introduction of transgenic, glyphosate-resistant (GR) crops. All of its phytotoxic effects are the result of inhibition of only 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), but inhibition of this single enzyme of the shikimate pathway results in multiple phytotoxicity effects, both upstream and downstream from EPSPS, including loss of plant defenses against pathogens. Degradation of glyphosate in plants and microbes is predominantly by a glyphosate oxidoreductase to produce aminomethylphosphonic acid and glyoxylate and to a lesser extent by a C-P lyase to produce sarcosine and phosphate. Its effects on non-target plant species are generally less than that of many other herbicides, as it is not volatile and is generally sprayed in larger droplet sizes with a relatively low propensity to drift and is inactivated by tight binding to most soils. Some microbes, including fungal plant pathogens, have glyphosate-sensitive EPSPS. Thus, glyphosate can benefit GR crops by its activity on some plant pathogens. On the other hand, glyphosate can adversely affect some microbes that are beneficial to agriculture, such as Bradyrhizobium species, although GR crop yield data indicate that such an effect has been minor. Effects of glyphosate on microbes of agricultural soils are generally minor and transient, with other agricultural practices having much stronger effects.
Collapse
Affiliation(s)
- Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA.
| |
Collapse
|
8
|
Green JM, Siehl DL. History and Outlook for Glyphosate-Resistant Crops. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 255:67-91. [PMID: 34109481 DOI: 10.1007/398_2020_54] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glyphosate-resistant (GR) crops, commercially referred to as glyphosate-tolerant (GT), started the revolution in crop biotechnology in 1996. Growers rapidly accepted GR crops whenever they became available and made them the most rapidly adopted technology in agriculture history. Adoption usually meant sole reliance on glyphosate [N-(phosphonomethyl)glycine, CAS No. 1071-83-6] for weed control. Not surprisingly, weeds eventually evolved resistance and are forcing growers to change their weed management practices. Today, the widespread dissemination of GR weeds that are also resistant to other herbicide modes-of-action (MoA) has greatly reduced the value of the GR crop weed management systems. However, growers continue to use the technology widely in six major crops throughout North and South America. Integrated chemistry and seed providers seek to sustain glyphosate efficacy by promoting glyphosate combinations with other herbicides and stacking the traits necessary to enable the use of partner herbicides. These include glufosinate {4-[hydroxy(methyl)phosphinoyl]-DL-homoalanine, CAS No. 51276-47-2}, dicamba (3,6-dichloro-2-methoxybenzoic acid, CAS No. 1918-00-9), 2,4-D [2-(2,4-dichlorophenoxy)acetic acid, CAS No. 94-75-7], 4-hydroxyphenyl pyruvate dioxygenase inhibitors, acetyl coenzyme A carboxylase (ACCase) inhibitors, and other herbicides. Unfortunately, herbicide companies have not commercialized a new MoA for over 30 years and have nearly exhausted the useful herbicide trait possibilities. Today, glyphosate-based crop systems are still mainstays of weed management, but they cannot keep up with the capacity of weeds to evolve resistance. Growers desperately need new technologies, but no technology with the impact of glyphosate and GR crops is on the horizon. Although the expansion of GR crop traits is possible into new geographic areas and crops such as wheat and sugarcane and could have high value, the Roundup Ready® revolution is over. Its future is at a nexus and dependent on a variety of issues.
Collapse
Affiliation(s)
| | - Daniel L Siehl
- Sr. Scientist (ret.), Corteva Agriscience, Wilmington, DE, USA
| |
Collapse
|
9
|
Seok J, Kim YJ, Kim IK, Kim KJ. Structural basis for stereospecificity to d-amino acid of glycine oxidase from Bacillus cereus ATCC 14579. Biochem Biophys Res Commun 2020; 533:824-830. [PMID: 32993959 DOI: 10.1016/j.bbrc.2020.09.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 11/20/2022]
Abstract
Glycine oxidase (GO) is an enzyme that catalyzes the oxidation of the primary and secondary amines of various chemicals, including glycine, and the enzyme has been applied in a variety of fields, such as biosensor and genetically modified glyphosate resistance plants. Here, we report that the gene product of BC0747 from Bacillus cereus (BcGO) shows oxidase activity for glycine and small d-amino acids, such as d-proline and d-alanine. We also determined the crystal structure of BcGO complexed with the FAD cofactor at a 2.36 Å resolution and revealed how the cofactor binds to the deep pocket of the enzyme. We performed the molecular docking calculation of the glycine substrate to the BcGO structure and identified how the carboxyl- and amine-groups of the d-amino acid are stabilized at the substrate binding site. Structural analysis of BcGO also provided information on the structural basis for the stereospecificity of the enzyme to d-amino acids. In addition, we placed the glyphosate molecule, a plant herbicide, at the substrate binding site, and explained how the mutation of Gly51 to arginine enhances enzyme activity.
Collapse
Affiliation(s)
- Jihye Seok
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea
| | - Yeo-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea
| | - Il-Kwon Kim
- KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea.
| |
Collapse
|
10
|
Achary VMM, Sheri V, Manna M, Panditi V, Borphukan B, Ram B, Agarwal A, Fartyal D, Teotia D, Masakapalli SK, Agrawal PK, Reddy MK. Overexpression of improved EPSPS gene results in field level glyphosate tolerance and higher grain yield in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2504-2519. [PMID: 32516520 PMCID: PMC7680544 DOI: 10.1111/pbi.13428] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/29/2020] [Accepted: 04/18/2020] [Indexed: 05/15/2023]
Abstract
Glyphosate is a popular, systemic, broad-spectrum herbicide used in modern agriculture. Being a structural analog of phosphoenolpyruvate (PEP), it inhibits 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) which is responsible for the biosynthesis of aromatic amino acids and various aromatic secondary metabolites. Taking a lead from glyphosate-resistant weeds, two mutant variants of the rice EPSPS gene were developed by amino acid substitution (T173I + P177S; TIPS-OsEPSPS and G172A + T173I + P177S; GATIPS-OsEPSPS). These mutated EPSPS genes were overexpressed in rice under the control of either native EPSPS or constitutive promoters (maize ubiquitin [ZmUbi] promoter). The overexpression of TIPS-OsEPSPS under the control of the ZmUbi promoter resulted in higher tolerance to glyphosate (up to threefold of the recommended dose) without affecting the fitness and related agronomic traits of plants in both controlled and field conditions. Furthermore, such rice lines produced 17%-19% more grains compared to the wild type (WT) in the absence of glyphosate application and the phenylalanine and tryptophan contents in the transgenic seeds were found to be significantly higher in comparison with WT seeds. Our results also revealed that the native promoter guided expression of modified EPSPS genes did not significantly improve the glyphosate tolerance. The present study describing the introduction of a crop-specific TIPS mutation in class I aroA gene of rice and its overexpression have potential to substantially improve the yield and field level glyphosate tolerance in rice. This is the first report to observe that the EPSPS has role to play in improving grain yield of rice.
Collapse
Affiliation(s)
- V. Mohan Murali Achary
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Vijay Sheri
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Mrinalini Manna
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Varakumar Panditi
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Bhabesh Borphukan
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Babu Ram
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Aakrati Agarwal
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Dhirendra Fartyal
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Deepa Teotia
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | | | | | - Malireddy K. Reddy
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| |
Collapse
|
11
|
Wicke D, Schulz LM, Lentes S, Scholz P, Poehlein A, Gibhardt J, Daniel R, Ischebeck T, Commichau FM. Identification of the first glyphosate transporter by genomic adaptation. Environ Microbiol 2019; 21:1287-1305. [PMID: 30666812 DOI: 10.1111/1462-2920.14534] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/12/2023]
Abstract
The soil bacterium Bacillus subtilis can get into contact with growth-inhibiting substances, which may be of anthropogenic origin. Glyphosate is such a substance serving as a nonselective herbicide. Glyphosate specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase, which generates an essential precursor for de novo synthesis of aromatic amino acids in plants, fungi, bacteria and archaea. Inhibition of the EPSP synthase by glyphosate results in depletion of the cellular levels of aromatic amino acids unless the environment provides them. Here, we have assessed the potential of B. subtilis to adapt to glyphosate at the genome level. In contrast to Escherichia coli, which evolves glyphosate resistance by elevating the production and decreasing the glyphosate sensitivity of the EPSP synthase, B. subtilis primarily inactivates the gltT gene encoding the high-affinity glutamate/aspartate symporter GltT. Further adaptation of the gltT mutants to glyphosate led to the inactivation of the gltP gene encoding the glutamate transporter GltP. Metabolome analyses confirmed that GltT is the major entryway of glyphosate into B. subtilis. GltP, the GltT homologue of E. coli also transports glyphosate into B. subtilis. Finally, we found that GltT is involved in uptake of the herbicide glufosinate, which inhibits the glutamine synthetase.
Collapse
Affiliation(s)
- Dennis Wicke
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Lisa M Schulz
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Sabine Lentes
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Patricia Scholz
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Johannes Gibhardt
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Till Ischebeck
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| |
Collapse
|
12
|
Fartyal D, Agarwal A, James D, Borphukan B, Ram B, Sheri V, Yadav R, Manna M, Varakumar P, Achary VMM, Reddy MK. Co-expression of P173S Mutant Rice EPSPS and igrA Genes Results in Higher Glyphosate Tolerance in Transgenic Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:144. [PMID: 29487608 PMCID: PMC5816812 DOI: 10.3389/fpls.2018.00144] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 05/11/2023]
Abstract
Weeds and their devastating effects have been a great threat since the start of agriculture. They compete with crop plants in the field and negatively influence the crop yield quality and quantity along with survival of the plants. Glyphosate is an important broad-spectrum systemic herbicide which has been widely used to combat various weed problems since last two decades. It is very effective even at low concentrations, and possesses low environmental toxicity and soil residual activity. However, the residual concentration of glyphosate inside the plant has been of major concern as it severely affects the important metabolic pathways, and results in poor plant growth and grain yield. In this study, we compared the glyphosate tolerance efficiency of two different transgenic groups over expressing proline/173/serine (P173S) rice EPSPS glyphosate tolerant mutant gene (OsmEPSPS) alone and in combination with the glyphosate detoxifying encoding igrA gene, recently characterized from Pseudomonas. The molecular analysis of all transgenic plant lines showed a stable integration of transgenes and their active expression in foliar tissues. The physiological analysis of glyphosate treated transgenic lines at seed germination and vegetative stages showed a significant difference in glyphosate tolerance between the two transgenic groups. The transgenic plants with OsmEPSPS and igrA genes, representing dual glyphosate tolerance mechanisms, showed an improved root-shoot growth, physiology, overall phenotype and higher level of glyphosate tolerance compared to the OsmEPSPS transgenic plants. This study highlights the advantage of igrA led detoxification mechanism as a crucial component of glyphosate tolerance strategy in combination with glyphosate tolerant OsmEPSPS gene, which offered a better option to tackle in vivo glyphosate accumulation and imparted more robust glyphosate tolerance in rice transgenic plants.
Collapse
Affiliation(s)
- Dhirendra Fartyal
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Uttarakhand Technical University, Dehradun, India
| | - Aakrati Agarwal
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Plant Molecular Biology Lab, Department of Botany, University of Delhi, New Delhi, India
| | - Donald James
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bhabesh Borphukan
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Babu Ram
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Uttarakhand Technical University, Dehradun, India
| | - Vijay Sheri
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Renu Yadav
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mrinalini Manna
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Panditi Varakumar
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - V. Mohan M. Achary
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Malireddy K. Reddy
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
13
|
Andreo-Vidal A, Mamounis KJ, Sehanobish E, Avalos D, Campillo-Brocal JC, Sanchez-Amat A, Yukl ET, Davidson VL. Structure and Enzymatic Properties of an Unusual Cysteine Tryptophylquinone-Dependent Glycine Oxidase from Pseudoalteromonas luteoviolacea. Biochemistry 2018; 57:1155-1165. [PMID: 29381339 DOI: 10.1021/acs.biochem.8b00009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycine oxidase from Pseudoalteromonas luteoviolacea (PlGoxA) is a cysteine tryptophylquinone (CTQ)-dependent enzyme. Sequence analysis and phylogenetic analysis place it in a newly designated subgroup (group IID) of a recently identified family of LodA-like proteins, which are predicted to possess CTQ. The crystal structure of PlGoxA reveals that it is a homotetramer. It possesses an N-terminal domain with no close structural homologues in the Protein Data Bank. The active site is quite small because of intersubunit interactions, which may account for the observed cooperativy toward glycine. Steady-state kinetic analysis yielded the following values: kcat = 6.0 ± 0.2 s-1, K0.5 = 187 ± 18 μM, and h = 1.77 ± 0.27. In contrast to other quinoprotein amine dehydrogenases and oxidases that exhibit anomalously large primary kinetic isotope effects on the rate of reduction of the quinone cofactor by the amine substrate, no significant primary kinetic isotope effect was observed for this reaction of PlGoxA. The absorbance spectrum of glycine-reduced PlGoxA exhibits features in the range of 400-650 nm that have not previously been seen in other quinoproteins. Thus, in addition to the unusual structural features of PlGoxA, the kinetic and chemical reaction mechanisms of the reductive half-reaction of PlGoxA appear to be distinct from those of other amine dehydrogenases and amine oxidases that use tryptophylquinone and tyrosylquinone cofactors.
Collapse
Affiliation(s)
- Andres Andreo-Vidal
- Department of Genetics and Microbiology, University of Murcia , Murcia 30100, Spain
| | - Kyle J Mamounis
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida 32827, United States
| | - Esha Sehanobish
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida 32827, United States
| | - Dante Avalos
- Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | | | - Antonio Sanchez-Amat
- Department of Genetics and Microbiology, University of Murcia , Murcia 30100, Spain
| | - Erik T Yukl
- Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida 32827, United States
| |
Collapse
|
14
|
Asn336 is involved in the substrate affinity of glycine oxidase from Bacillus cereus. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
15
|
Zhang K, Guo Y, Yao P, Lin Y, Kumar A, Liu Z, Wu G, Zhang L. Characterization and directed evolution of BliGO, a novel glycine oxidase from Bacillus licheniformis. Enzyme Microb Technol 2016; 85:12-8. [PMID: 26920475 DOI: 10.1016/j.enzmictec.2015.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022]
Abstract
Glycine oxidase (GO) has great potential for use in biosensors, industrial catalysis and agricultural biotechnology. In this study, a novel GO (BliGO) from a marine bacteria Bacillus licheniformis was cloned and characterized. BliGO showed 62% similarity to the well-studied GO from Bacillus subtilis. The optimal activity of BliGO was observed at pH 8.5 and 40°C. Interestingly, BliGO retained 60% of the maximum activity at 0°C, suggesting it is a cold-adapted enzyme. The kinetic parameters on glyphosate (Km, kcat and k(cat)/K(m)) of BliGO were 11.22 mM, 0.08 s(-1), and 0.01 mM(-1) s(-1), respectively. To improve the catalytic activity to glyphosate, the BliGO was engineered by directed evolution. With error-prone PCR and two rounds of DNA shuffling, the most evolved mutant SCF-4 was obtained from 45,000 colonies, which showed 7.1- and 8-fold increase of affinity (1.58 mM) and catalytic efficiency (0.08 mM(-1) s(-1)) to glyphosate, respectively. In contrast, its activity to glycine (the natural substrate of GO) decreased by 113-fold. Structure modeling and site-directed mutation study indicated that Ser51 in SCF-4 involved in the binding of enzyme with glyphosate and played a crucial role in the improvement of catalytic efficiency.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiming Guo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Pei Yao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongjun Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ashok Kumar
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziduo Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gaobing Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lili Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Crops, College of Life Science, Tarim University, Alar 843300, China.
| |
Collapse
|
16
|
Campillo-Brocal JC, Lucas-Elío P, Sanchez-Amat A. Distribution in Different Organisms of Amino Acid Oxidases with FAD or a Quinone As Cofactor and Their Role as Antimicrobial Proteins in Marine Bacteria. Mar Drugs 2015; 13:7403-18. [PMID: 26694422 PMCID: PMC4699246 DOI: 10.3390/md13127073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/27/2015] [Accepted: 12/08/2015] [Indexed: 12/27/2022] Open
Abstract
Amino acid oxidases (AAOs) catalyze the oxidative deamination of amino acids releasing ammonium and hydrogen peroxide. Several kinds of these enzymes have been reported. Depending on the amino acid isomer used as a substrate, it is possible to differentiate between l-amino acid oxidases and d-amino acid oxidases. Both use FAD as cofactor and oxidize the amino acid in the alpha position releasing the corresponding keto acid. Recently, a novel class of AAOs has been described that does not contain FAD as cofactor, but a quinone generated by post-translational modification of residues in the same protein. These proteins are named as LodA-like proteins, after the first member of this group described, LodA, a lysine epsilon oxidase synthesized by the marine bacterium Marinomonas mediterranea. In this review, a phylogenetic analysis of all the enzymes described with AAO activity has been performed. It is shown that it is possible to recognize different groups of these enzymes and those containing the quinone cofactor are clearly differentiated. In marine bacteria, particularly in the genus Pseudoalteromonas, most of the proteins described as antimicrobial because of their capacity to generate hydrogen peroxide belong to the group of LodA-like proteins.
Collapse
Affiliation(s)
- Jonatan C Campillo-Brocal
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Patricia Lucas-Elío
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Antonio Sanchez-Amat
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
17
|
Han H, Zhu B, Fu X, You S, Wang B, Li Z, Zhao W, Peng R, Yao Q. Overexpression of D-amino acid oxidase from Bradyrhizobium japonicum, enhances resistance to glyphosate in Arabidopsis thaliana. PLANT CELL REPORTS 2015; 34:2043-51. [PMID: 26350405 DOI: 10.1007/s00299-015-1850-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE The glyphosate resistance in Escherichia coli and Arabidopsis was due to D-amino acid oxidase expression. Transgenic glyphosate-resistant crops have a high percentage in the total area devoted to transgenic crops worldwide. D-amino acid oxidase (DAAO) can metabolize glyphosate by oxidative cleavage of the carbon-nitrogen bond on the carboxyl side and yield aminomethyl phosphonic acid and glyoxylate, which are less toxic to plants than glyphosate. To date, reports on the use of DAAO to enhance glyphosate resistance in plants are lacking. In this paper, we report synthesis, and codon usage optimization for plant expression, of the DAAO gene by successive polymerase chain reaction from Bradyrhizobium japonicum. To confirm the glyphosate resistance of the DAAO gene, the recombinant plasmid pYPX251 (GenBank Accession No: AY178046) harboring the wild-type DAAO gene was transformed into DH5α. The positive transformants grew well both on solid and in liquid M9 medium containing 200 mM glyphosate. The optimized DAAO gene was transformed into Arabidopsis and 9 days after application of 10 mM glyphosate, the 4-week-old wild-type plants all died; by contrast, transgenic plants could grow normally. The proline content and peroxidase activity showed that glyphosate could induce proline accumulation and produce reactive oxygen species.
Collapse
Affiliation(s)
- Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
| | - Bo Zhu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
| | - Xiaoyan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
| | - Shuanghong You
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
- College of Horticulture Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
| | - Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
| | - Wei Zhao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, People's Republic of China.
- College of Horticulture Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|