1
|
Fourie KR, Jeffery A, Chand D, Choudhary P, Ng SH, Liu H, Magloire D, Khatooni Z, Berberov E, Wilson HL. Vaccination with a Lawsonia intracellularis subunit water in oil emulsion vaccine mitigated some disease parameters but failed to affect shedding. Vaccine 2024; 42:126254. [PMID: 39213981 DOI: 10.1016/j.vaccine.2024.126254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Lawsonia intracellularis is the causative agent of ileitis in swine that manifests as slower weight gain, mild or hemorrhagic diarrhea and/or death in severe cases. As an economically important swine pathogen, development of effective vaccines is important to the swine industry. In developing a subunit vaccine with three recombinant antigens - FliC, GroEL and YopN - we wanted to identify a formulation that would produce robust immune responses that reduce disease parameters associated with Lawsonia intracellularis infection. We formulated these three antigens with four adjuvants: Montanide ISA 660 VG, Montanide Gel 02 PR, Montanide IMS 1313 VG NST, and Montanide ISA 61 VG in an immunogenicity study. Groups vaccinated with formulations including Montanide ISA 660 VG or Montanide ISA 61 VG had significantly more robust immune responses than groups vaccinated with formulations including Montanide Gel 02 PR or Montanide IMS 1313 VG NST. In the challenge study, animals vaccinated with these antigens and Montanide ISA 61 VG had reduced lesion scores, reduced lesion lengths, and increased average daily gain, but no reduction in shedding relative to the control animals. This work shows that this vaccine formulation should be considered for future study in a field and performance trial.
Collapse
Affiliation(s)
- Kezia R Fourie
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Alison Jeffery
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada; Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Dylan Chand
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Pooja Choudhary
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Siew Hon Ng
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Haoming Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Donaldson Magloire
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Zahed Khatooni
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Emil Berberov
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
2
|
Tian T, Zhu Y, Shi J, Shang K, Yin Z, Shi H, He Y, Ding J, Zhang F. The development of a human Brucella mucosal vaccine: What should be considered? Life Sci 2024; 355:122986. [PMID: 39151885 DOI: 10.1016/j.lfs.2024.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Brucellosis is a chronic infectious disease that is zoonotic in nature. Brucella can infect humans through interactions with livestock, primarily via the digestive tract, respiratory tract, and oral cavity. This bacterium has the potential to be utilized as a biological weapon and is classified as a Category B pathogen by the Centers for Disease Control and Prevention. Currently, there is no approved vaccine for humans against Brucella, highlighting an urgent need for the development of a vaccine to mitigate the risks posed by this pathogen. Brucella primarily infects its host by adhering to and penetrating mucosal surfaces. Mucosal immunity plays a vital role in preventing local infections, clearing microorganisms from mucosal surfaces, and inhibiting the spread of pathogens. As mucosal vaccine strategies continue to evolve, the development of a safe and effective mucosal vaccine against Brucella appears promising.This paper reviews the immune mechanism of mucosal vaccines, the infection mechanism of Brucella, successful Brucella mucosal vaccines in animals, and mucosal adjuvants. Additionally, it elucidates targeting and optimization strategies for mucosal vaccines to facilitate the development of human vaccines against Brucella.
Collapse
Affiliation(s)
- Tingting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yuejie Zhu
- Reproductive Fertility Assistance Center, First Afffliated Hospital of Xinjiang Medical University, China
| | - Juan Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Kaiyu Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Zhengwei Yin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Huidong Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yueyue He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Jianbing Ding
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China; Department of Clinical laboratory, The First Affiliated hospital of Xinjiang Medical University, China.
| |
Collapse
|
3
|
Huang Y, Sun J, Cui X, Li X, Hu Z, Ji Q, Bao G, Liu Y. Enhancing protective immunity against bacterial infection via coating nano-Rehmannia glutinosa polysaccharide with outer membrane vesicles. J Extracell Vesicles 2024; 13:e12514. [PMID: 39315589 PMCID: PMC11420661 DOI: 10.1002/jev2.12514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
With the coming of the post-antibiotic era, there is an increasingly urgent need for safe and efficient antibacterial vaccines. Bacterial outer membrane vesicles (OMVs) have received increased attention recently as a potential subunit vaccine. OMVs are non-replicative and contain the principle immunogenic bacterial antigen, which circumvents the safety concerns of live-attenuated vaccines. Here, we developed a novel nano-vaccine by coating OMVs onto PEGylated nano-Rehmannia glutinosa polysaccharide (pRL) in a structure consisting of concentric circles, resulting in a more stable vaccine with improved immunogenicity. The immunological function of the pRL-OMV formulation was evaluated in vivo and in vitro, and the underlying mechanism was studied though transcriptomic analysis. The pRL-OMV formulation significantly increased dendritic cell (DC) proliferation and cytokine secretion. Efficient phagocytosis of the formulation by DCs was accompanied by DC maturation. Further, the formulation demonstrated superior lymph node targeting, contributing to a potent mixed cellular response and bacterial-specific antibody response against Bordetella bronchiseptica infection. Specifically, transcriptomic analysis revealed that the immune protection function correlated with T-cell receptor signalling and Th1/Th2/Th17 differentiation, among other markers of enhanced immunological activity. These findings have implications for the future application of OMV-coated nano-carriers in antimicrobial immunotherapy.
Collapse
Affiliation(s)
- Yee Huang
- Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouZhejiangChina
| | - Jiaying Sun
- Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouZhejiangChina
- College of Life SciencesChina Jiliang UniversityHangzhouZhejiangChina
| | - Xuemei Cui
- Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouZhejiangChina
| | - Xuefeng Li
- Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouZhejiangChina
| | - Zizhe Hu
- Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouZhejiangChina
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouZhejiangChina
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouZhejiangChina
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouZhejiangChina
| |
Collapse
|
4
|
Maurya R, Ramteke S, Jain NK. Quality by design (QbD) approach-based development of optimized nanocarrier to achieve quality target product profile (QTPP)-targeted lymphatic delivery. NANOTECHNOLOGY 2024; 35:265101. [PMID: 38502955 DOI: 10.1088/1361-6528/ad355b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Background.Insulin, commonly used for diabetes treatment, needs better ways to improve its effectiveness and safety due to its challenges with poor permeability and stability. Various system has been developed for oral peptide delivery. The non-targeted system can prevent gastric and enzymatic degradation of peptides but cannot increase the bulk transport of peptides across the membrane. However, the non-selectivity is the limitation of the existing system. Numerous carbohydrate-binding receptors overexpressed on intestinal macrophage cells (M-cells) of gut-associated lymphoid tissue. It is the most desirable site for receptor-mediated endocytosis and lymphatic drug delivery of peptides.Objective. The prime objective of the study was to fabricate mannose ligand conjugated nanoparticles (MNPs) employing a quality-by-design approach to address permeability challenges after oral administration. Herein, the study's secondary objective of this study is to identify the influencing factor for producing quality products. Considering this objective, the Lymphatic uptake of NPs was selected as a quality target product profile (QTPP), and a systematic study was conducted to identify the critical formulation attributes (CFAs) and critical process parameters (CPP) influencing critical quality attributes (CQAs). Mannosylated Chitosan concentrations (MCs) and TPP concentrations were identified as CFAs, and stirring speed was identified as CPP.Methods. MNPs were prepared by the inotropic gelation method and filled into the enteric-coated capsule to protect from acidic environments. The effect of CFAs and CPP on responses like particle size (X) and entrapment (Y) was observed by Box-Behnken design (BBD). ANOVA statistically evaluated the result to confirm a significant level (p< 0.05). The optimal conditions of NPs were obtained by constructing an overlay plot and determining the desirability value. HPLC and zeta-seizer analysis characterized the lyophilized NPs. Cell-line studies were performed to confirm the safety and M-cell targeting of NPs to enhance Insulin oral bioavailability.Results. The morphology of NPs was revealed by SEM. The developed NPs showed a nearly oval shape with the average size, surface potential, and % drug entrapment were 245.52 ± 3.37 nm, 22.12 ± 2.13 mV, and 76.15 ± 1.3%, respectively. MTT assay result exhibited that MNPs safe and Confocal imaging inference that NPs selectively uptake by the M-cell.Conclusion. BBD experimental design enables the effective formulation of optimized NPs. The statistical analysis estimated a clear assessment of the significance of the process and formulation variable. Cell line study confirms that NPs are safe and effectively uptake by the cell.
Collapse
Affiliation(s)
- Rahul Maurya
- School of Pharmaceutical Sciences, RGPV, Bhopal, MP, 462033, India
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Cheruthuruthy, Thrissur, Kerala, 679 531, India
| | - Suman Ramteke
- School of Pharmaceutical Sciences, RGPV, Bhopal, MP, 462033, India
| | | |
Collapse
|
5
|
Goudarzi T, Abkar M, Zamanzadeh Z, Fasihi-Ramandi M. Immunization of mice with chimeric protein-loaded aluminum hydroxide and selenium nanoparticles induces reduction of Brucella melitensis infection in mice. Clin Exp Vaccine Res 2023; 12:304-312. [PMID: 38025913 PMCID: PMC10655149 DOI: 10.7774/cevr.2023.12.4.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Due to the many problems with commercially available vaccines, the production of effective vaccines against brucellosis is a necessity. The aim of this study was to evaluate the immune responses caused by the chimeric protein consisting of trigger factor, Bp26, and Omp31 (TBO) along with aluminum hydroxide (AH/TBO) and selenium (Se/TBO) nanoparticles (NPs) as adjuvants in mouse model. Materials and Methods Recombinant antigen expression was induced in Escherichia coli BL21 (DE3) bacteria using IPTG (isopropyl-d-1-thiogalactopyranoside). Purification and characterization of recombinant protein was conducted through NiFe3O4 NPs, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Western blot. NP characteristics, including morphology and particle size, were measured in vitro. The recombinant TBO was loaded on to AH and Se NPs and were administered subcutaneously. After mice immunization, measurement of antibody titter and protection assay was performed. Results The average sizes of AH and Se NPs were about 60 nm and 150 nm, respectively. The enzyme-linked immunosorbent assay results showed that the serum of mice immunized by subcutaneous injection with both nanovaccines produced significant immunoglobulin G (IgG) responses against the chimeric antigen. The results of TBO-specific IgG isotype (IgG2a/IgG1) analysis showed that both AH and Se NPs induced a type to T-helper immune response. In addition, the results of the challenge with the pathogenic strain of Brucella melitensis 16M showed that vaccinated mice with AH/TBO NPs indicated a higher reduction of bacterial culture than immunized mice with Se/TBO NPs and TBO alone. Conclusion The results showed that AH NPs carrying chimeric antigen can be a promising vaccine candidate against brucellosis by producing protective immunity.
Collapse
Affiliation(s)
- Tahereh Goudarzi
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Morteza Abkar
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Zahra Zamanzadeh
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Li X, Pan C, Li C, Wang K, Ye J, Sun P, Guo Y, Wu J, Wang H, Zhu L. Self-Assembled Proteinaceous Nanoparticles for Co-Delivery of Antigens and Cytosine Phosphoguanine (CpG) Adjuvants: Implications for Nanovaccines. ACS APPLIED NANO MATERIALS 2023; 6:7637-7648. [PMID: 37207131 PMCID: PMC10178782 DOI: 10.1021/acsanm.3c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Nanotechnology has developed rapidly, giving rise to "nanovaccinology". In particular, protein-based nanocarriers have gained widespread attention because of their excellent biocompatibility. As the development of flexible and rapid vaccines is challenging, modular extensible nanoparticles are urgently needed. In this study, a multifunctional nanocarrier capable of delivering various biomolecules (including polysaccharides, proteins, and nucleic acids) was designed by fusing the cholera toxin B subunit with streptavidin. Then, the nanocarrier was used to prepare a bioconjugate nanovaccine against S. flexneri by co-delivery of antigens and CpG adjuvants. Subsequent experimental results indicated that the nanovaccine with multiple components could stimulate both adaptive and innate immunity. Moreover, combining nanocarriers and CpG adjuvants with glycan antigens could improve the survival of vaccinated mice during the interval of two vaccination injections. The multifunctional nanocarrier and the design strategy demonstrated in this study could be utilized in the development of many other nanovaccines against infectious diseases.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Chao Pan
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Caixia Li
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Kangfeng Wang
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Jingqin Ye
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Peng Sun
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Yan Guo
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Jun Wu
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Hengliang Wang
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Li Zhu
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| |
Collapse
|
7
|
Sadeghi Z, Fasihi-Ramandi M, Davoudi Z, Bouzari S. Multi-Epitope Vaccine Candidates Associated with Mannosylated Chitosan and LPS Conjugated Chitosan Nanoparticles Against Brucella Infection. J Pharm Sci 2023; 112:991-999. [PMID: 36623693 DOI: 10.1016/j.xphs.2022.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 01/09/2023]
Abstract
One promising approach to increase protection against infectious diseases is to use adjuvants that can selectively stimulate the immune responses. In this study, multi-epitope antigens associated with LPS loaded chitosan (LLC) as toll-like receptor agonist or mannosylated chitosan nanoparticle (MCN) as vaccine delivery system were evaluated for their ability to stimulate immune responses to Brucella infection in mice model. Our results indicated that the addition of MCN to our vaccine formulations significantly elicited IFN-γ and IL-2 cytokines and antibody titers, in comparison with the non-adjuvanted vaccine candidates. The present results indicated that multi-epitopes and their administration with LLC or MCN induced Th1 immune response. In addition, vaccine candidates containing MCN provided high percentage of protection against B. melitensis and B. abortus infection. Our results provided support to previous reports indicating that MCNs are attractive adjuvants and addition of this adjuvant to multi-epitopes antigens play an important role in the development of vaccine against Brucella.
Collapse
Affiliation(s)
- Zohre Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Davoudi
- Department of Medical Biotechnology, Zanjan University of Medical Science, Zanjan, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Chen S, Chen Y, Jiao Z, Wang C, Zhao D, Liu Y, Zhang W, Zhao S, Yang B, Zhao Q, Fu S, He X, Chen Q, Man C, Liu G, Wei X, Du L, Wang F. Clearance of bacteria from lymph nodes in sheep immunized with Brucella suis S2 vaccine is associated with M1 macrophage activation. Vet Res 2023; 54:20. [PMID: 36918910 PMCID: PMC10013293 DOI: 10.1186/s13567-023-01147-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/15/2022] [Indexed: 03/16/2023] Open
Abstract
Ovine brucellosis is a global zoonotic disease of sheep caused by Brucella melitensis, which inflicts a significant burden on human and animal health. Brucella suis strain S2 (B. suis S2) is a smooth live attenuated vaccine for the prevention of ovine brucellosis in China. However, no previous studies have assessed the immunogenicity of B. suis S2 vaccine after oral immunization in sheep. Here, we attempted to evaluate the ovine immune response over the course of B. suis S2 immunization and to identify in vivo predictors for vaccine development. Body temperature, serum Brucella antibodies, serum cytokines (IL-12p70 and interferon [IFN]-γ), and bacterial load in the mandibular lymph nodes (LN), superficial cervical LN, superficial inguinal LN, and spleen were investigated to determine the safety and efficacy of the vaccine. The abnormal body temperature of sheep occurred within 8 days post-infection (dpi). Brucella suis S2 persisted for a short time (< 21 dpi) in the mandibular LN. The highest level of IL-12p70 was observed at 9 dpi, whereas serum IFN-γ levels peaked at 12 dpi. Transcriptome analysis and quantitative reverse transcription PCR were performed to determine gene expression profiles in the mandibular LN of sheep. Antigen processing and presentation pathway was the dominant pathway related to the dataset. Our studies suggest that the immune response in ovine LN resembled type 1 immunity with the secretion of IL-12p70 and IFN-γ after B.suis S2 immunization and the vaccine may eliminate Brucella via stimulation of M1 macrophages through the course of Th cells.
Collapse
Affiliation(s)
- Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Yuanyuan Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Zizhuo Jiao
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Chengqiang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Dantong Zhao
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, Inner Mongolia, China
| | - Yongbin Liu
- Inner Mongolia University, College Road No. 235, Hohhot, Inner Mongolia, China
| | - Wenguang Zhang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Shihua Zhao
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Bin Yang
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Qinan Zhao
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Shaoyin Fu
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Xiaolong He
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Guoying Liu
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, Inner Mongolia, China
| | - Xuefeng Wei
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, Inner Mongolia, China
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
9
|
Ali A, Waris A, Khan MA, Asim M, Khan AU, Khan S, Zeb J. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci 2023; 314:121332. [PMID: 36584914 DOI: 10.1016/j.lfs.2022.121332] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Emerging and re-emerging bacterial infections are a serious threat to human and animal health. Extracellular bacteria are free-living, while facultative intracellular bacteria replicate inside eukaryotic host cells. Many serious human illnesses are now known to be caused by intracellular bacteria such as Salmonella enterica, Escherichia coli, Staphylococcus aureus, Rickettsia massiliae, Chlamydia species, Brucella abortus, Mycobacterium tuberculosis and Listeria monocytogenes, which result in substantial morbidity and mortality. Pathogens like Mycobacterium, Brucella, MRSA, Shigella, Listeria, and Salmonella can infiltrate and persist in mammalian host cells, particularly macrophages, where they proliferate and establish a repository, resulting in chronic and recurrent infections. The current treatment for these bacteria involves the application of narrow-spectrum antibiotics. FDA-approved vaccines against obligate intracellular bacterial infections are lacking. The development of vaccines against intracellular pathogenic bacteria are more difficult because host defense against these bacteria requires the activation of the cell-mediated pathway of the immune system, such as CD8+ T and CD4+ T. However, different types of vaccines, including live, attenuated, subunit, killed whole cell, nano-based and DNA vaccines are currently in clinical trials. Substantial development has been made in various vaccine strategies against intracellular pathogenic bacteria. This review focuses on the mechanism of intracellular bacterial infection, host immune response, and recent advancements in vaccine development strategies against various obligate intracellular bacterial infections.
Collapse
Affiliation(s)
- Asmat Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong.
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research and State Key Laboratory of Molecular Neurosciences, The Hong Kong University of Science and Technology, Hong Kong
| | - Muhammad Asim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China
| | - Sahrish Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
10
|
Files MA, Kristjansson KM, Rudra JS, Endsley JJ. Nanomaterials-based vaccines to target intracellular bacterial pathogens. Front Microbiol 2022; 13:1040105. [PMID: 36466676 PMCID: PMC9715960 DOI: 10.3389/fmicb.2022.1040105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Development of novel immunization approaches to combat a growing list of emerging and ancient infectious agents is a global health priority. Intensive efforts over the last several decades have identified alternative approaches to improve upon traditional vaccines that are based on live, attenuated agents, or formulations of inactivated agents with adjuvants. Rapid advances in RNA-based and other delivery systems for immunization have recently revolutionized the potential to protect populations from viral pathogens, such as SARS-CoV-2. Similar efforts to combat bacterial pathogens, especially species with an intracellular niche, have lagged significantly. In the past decade, advances in nanotechnology have yielded a variety of new antigen/adjuvant carrier systems for use in vaccine development against infectious viruses and bacteria. The tunable properties of nanomaterial-based vaccines allow for balancing immunogenicity and safety which is a key hurdle in traditional antigen and adjuvant formulations. In this review, we discuss several novel nanoparticle-based vaccine platforms that show promise for use against intracellular bacteria as demonstrated by the feasibility of construction, enhanced antigen presentation, induction of cell mediated and humoral immune responses, and improved survival outcomes in in vivo models.
Collapse
Affiliation(s)
- Megan A. Files
- Department of Microbiology and Immunology, Galveston, TX, United States
- Institute of Translational Science, University of Texas Medical Branch, Galveston, TX, United States
- Department of Medicine, School of Medicine, Seattle, WA, United States
| | - Kadin M. Kristjansson
- Department of Chemistry, Smith College, Northampton MA, United States
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Jai S. Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Janice J. Endsley
- Department of Microbiology and Immunology, Galveston, TX, United States
| |
Collapse
|
11
|
Gong X, Gao Y, Shu J, Zhang C, Zhao K. Chitosan-Based Nanomaterial as Immune Adjuvant and Delivery Carrier for Vaccines. Vaccines (Basel) 2022; 10:1906. [PMID: 36423002 PMCID: PMC9696061 DOI: 10.3390/vaccines10111906] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 08/26/2023] Open
Abstract
With the support of modern biotechnology, vaccine technology continues to iterate. The safety and efficacy of vaccines are some of the most important areas of development in the field. As a natural substance, chitosan is widely used in numerous fields-such as immune stimulation, drug delivery, wound healing, and antibacterial procedures-due to its good biocompatibility, low toxicity, biodegradability, and adhesion. Chitosan-based nanoparticles (NPs) have attracted extensive attention with respect to vaccine adjuvants and delivery systems due to their excellent properties, which can effectively enhance immune responses. Here, we list the classifications and mechanisms of action of vaccine adjuvants. At the same time, the preparation methods of chitosan, its NPs, and their mechanism of action in the delivery system are introduced. The extensive applications of chitosan and its NPs in protein vaccines and nucleic acid vaccines are also introduced. This paper reviewed the latest research progress of chitosan-based NPs in vaccine adjuvant and drug delivery systems.
Collapse
Affiliation(s)
- Xiaochen Gong
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
- School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Yuan Gao
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jianhong Shu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Hom-Sun Biotechnology Co., Ltd., Shaoxing 312366, China
| | - Chunjing Zhang
- School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Hom-Sun Biotechnology Co., Ltd., Shaoxing 312366, China
| |
Collapse
|
12
|
Zhao Z, Jiang FY, Zhou GQ, Duan HX, Xia JY, Zhu B. Protective immunity against spring viremia of carp virus by mannose modified chitosan loaded DNA vaccine. Virus Res 2022; 320:198896. [PMID: 35977626 DOI: 10.1016/j.virusres.2022.198896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 11/25/2022]
Abstract
Spring viremia of carp virus (SVCV) usually be considered as one of the serious in viral diseases of aquaculture, and DNA vaccine with novel delivery mechanism or adjuvant has proven to be a promising and effective strategy to control aquatic animal diseases. In this study, the mannose-modified chitosan, a carrier system for vaccine delivery, were used to developed a chitosan-encapsulated DNA vaccine (CS-M-G) against SVCV, then investigated immune response induced by the vaccine. Our results showed that CS-M-G was confirmed the spherical or elliptical with even distribution and ranging from approximately 50 to 150 nm in size, the expression of the antigen gene could still be detected after 21 d post vaccination. The CS-M-G induces the highest antibody levels in the 20 μg dose group which is about 3 times than naked plasmid group at 21 d post vaccination, and still hold a higher level than control group at 28 d post vaccination. On the side, strongest protection with relative percent survival of 62.1% in the 20 μg CS-M-G group, which could produce significantly higher enzyme activities and up-regulated expression of immune-associated genes than control group. Thus, our results indicate that DNA vaccine loaded with mannose-modified chitosan induces strong immune response and provided an effective protection against SVCV infection, may be helpful and extended for developing more aquatic animal vaccines in the future.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Fu-Yi Jiang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Guo-Qing Zhou
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Hui-Xin Duan
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Jun-Yao Xia
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Heidary M, Dashtbin S, Ghanavati R, Mahdizade Ari M, Bostanghadiri N, Darbandi A, Navidifar T, Talebi M. Evaluation of Brucellosis Vaccines: A Comprehensive Review. Front Vet Sci 2022; 9:925773. [PMID: 35923818 PMCID: PMC9339783 DOI: 10.3389/fvets.2022.925773] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/03/2022] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a bacterial zoonosis caused by Brucella spp. which can lead to heavy economic losses and severe human diseases. Thus, controlling brucellosis is very important. Due to humans easily gaining brucellosis from animals, animal brucellosis control programs can help the eradication of human brucellosis. There are two popular vaccines against animal brucellosis. Live attenuated Brucella abortus strain 19 (S19 vaccine) is the first effective and most extensively used vaccine for the prevention of brucellosis in cattle. Live attenuated Brucella melitensis strain Rev.1 (Rev.1 vaccine) is the most effective vaccine against caprine and ovine brucellosis. Although these two vaccines provide good immunity for animals against brucellosis, the expense of persistent serological responses is one of the main problems of both vaccines. The advantages and limitations of Brucella vaccines, especially new vaccine candidates, have been less studied. In addition, there is an urgent need for new strategies to control and eradicate this disease. Therefore, this narrative review aims to present an updated overview of the available different types of brucellosis vaccines.
Collapse
Affiliation(s)
- Mohsen Heidary
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghanavati
- School of Paramedical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- *Correspondence: Malihe Talebi
| |
Collapse
|
14
|
Coloma-Rivero RF, Flores-Concha M, Molina RE, Soto-Shara R, Cartes Á, Oñate ÁA. Brucella and Its Hidden Flagellar System. Microorganisms 2021; 10:83. [PMID: 35056531 PMCID: PMC8781033 DOI: 10.3390/microorganisms10010083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella, a Gram-negative bacterium with a high infective capacity and a wide spectrum of hosts in the animal world, is found in terrestrial and marine mammals, as well as amphibians. This broad spectrum of hosts is closely related to the non-classical virulence factors that allow this pathogen to establish its replicative niche, colonizing epithelial and immune system cells, evading the host's defenses and defensive response. While motility is the primary role of the flagellum in most bacteria, in Brucella, the flagellum is involved in virulence, infectivity, cell growth, and biofilm formation, all of which are very important facts in a bacterium that to date has been described as a non-motile organism. Evidence of the expression of these flagellar proteins that are present in Brucella makes it possible to hypothesize certain evolutionary aspects as to where a free-living bacterium eventually acquired genetic material from environmental microorganisms, including flagellar genes, conferring on it the ability to reach other hosts (mammals), and, under selective pressure from the environment, can express these genes, helping it to evade the immune response. This review summarizes relevant aspects of the presence of flagellar proteins and puts into context their relevance in certain functions associated with the infective process. The study of these flagellar genes gives the genus Brucella a very high infectious versatility, placing it among the main organisms in urgent need of study, as it is linked to human health by direct contact with farm animals and by eventual transmission to the general population, where flagellar genes and proteins are of great relevance.
Collapse
Affiliation(s)
| | | | | | | | | | - Ángel A. Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4030000, Chile; (R.F.C.-R.); (M.F.-C.); (R.E.M.); (R.S.-S.); (Á.C.)
| |
Collapse
|
15
|
Gao X, Liu N, Wang Z, Gao J, Zhang H, Li M, Du Y, Gao X, Zheng A. Development and Optimization of Chitosan Nanoparticle-Based Intranasal Vaccine Carrier. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010204. [PMID: 35011436 PMCID: PMC8746444 DOI: 10.3390/molecules27010204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Abstract
Chitosan is a natural polysaccharide, mainly derived from the shell of marine organisms. At present, chitosan has been widely used in the field of biomedicine due to its special characteristics of low toxicity, biocompatibility, biodegradation and low immunogenicity. Chitosan nanoparticles can be easily prepared. Chitosan nanoparticles with positive charge can enhance the adhesion of antigens in nasal mucosa and promote its absorption, which is expected to be used for intranasal vaccine delivery. In this study, we prepared chitosan nanoparticles by a gelation method, and modified the chitosan nanoparticles with mannose by hybridization. Bovine serum albumin (BSA) was used as the model antigen for development of an intranasal vaccine. The preparation technology of the chitosan nanoparticle-based intranasal vaccine delivery system was optimized by design of experiment (DoE). The DoE results showed that mannose-modified chitosan nanoparticles (Man-BSA-CS-NPs) had high modification tolerance and the mean particle size and the surface charge with optimized Man-BSA-CS-NPs were 156 nm and +33.5 mV. FTIR and DSC results confirmed the presence of Man in Man-BSA-CS-NPs. The BSA released from Man-BSA-CS-NPs had no irreversible aggregation or degradation. In addition, the analysis of fluorescence spectroscopy of BSA confirmed an appropriate binding constant between CS and BSA in this study, which could improve the stability of BSA. The cell study in vitro demonstrated the low toxicity and biocompatibility of Man-BSA-CS-NPs. Confocal results showed that the Man-modified BSA-FITC-CS-NPs promote the endocytosis and internalization of BSA-FITC in DC2.4 cells. In vivo studies of mice, Man-BSA-CS-NPs intranasally immunized showed a significantly improvement of BSA-specific serum IgG response and the highest level of BSA-specific IgA expression in nasal lavage fluid. Overall, our study provides a promising method to modify BSA-loaded CS-NPs with mannose, which is worthy of further study.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yimeng Du
- Correspondence: (Y.D.); (X.G.); (A.Z.); Tel.: +86-010-6693-1694 or +86-135-2046-7936 (A.Z.)
| | - Xiang Gao
- Correspondence: (Y.D.); (X.G.); (A.Z.); Tel.: +86-010-6693-1694 or +86-135-2046-7936 (A.Z.)
| | - Aiping Zheng
- Correspondence: (Y.D.); (X.G.); (A.Z.); Tel.: +86-010-6693-1694 or +86-135-2046-7936 (A.Z.)
| |
Collapse
|
16
|
Mukhtar M, Fényes E, Bartos C, Zeeshan M, Ambrus R. Chitosan biopolymer, its derivatives and potential applications in nano-therapeutics: A comprehensive review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Sadeghi Z, Fasihi-Ramandi M, Bouzari S. Brucella antigens (BhuA, 7α-HSDH, FliC) in poly I:C adjuvant as potential vaccine candidates against brucellosis. J Immunol Methods 2021; 500:113172. [PMID: 34673003 DOI: 10.1016/j.jim.2021.113172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/11/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
A promising strategy for controlling animal brucellosis is vaccination with commercial vaccine strains (Brucella melitensis Rev.1 and Brucella abortus RB51). Owing to safety concerns associated with these vaccines, developing a more effective and safe vaccine is essential. In this study, we examined the capacity of BhuA, 7α-HSDH or FliC antigens in the presence or absence of adjuvant in eliciting immune responses against brucellosis. After cloning, expression and purification, these proteins were used to examine immunologic responses. All immunized mice induced a vigorous IgG, with a predominant IgG2a response. Moreover, splenocytes of immunized mice proliferated and produced IL-2 and IFN-γ, suggesting the induction of cellular immunity. The high IgG2a/IgG1 ratio and IL-2 and IFN-γ indicated a Th1-oriented immune response in test groups. BhuA-, 7α-HSDH- or FliC- poly I:C formulations were the most effective at inducing Th1 immune response compared to groups immunized with naked proteins. Immunization with proteins protected mice against B. melitensis 16M and B. abortus 544. The proteins in adjuvant induced higher levels of protection than proteins only and exhibited similar degree of protection to live attenuated vaccines. Our results, for first time, introduced five potential candidates for subunit vaccine development against B. melitensis and B. abortus infection.
Collapse
Affiliation(s)
- Zohre Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
18
|
Pan C, Yue H, Zhu L, Ma GH, Wang HL. Prophylactic vaccine delivery systems against epidemic infectious diseases. Adv Drug Deliv Rev 2021; 176:113867. [PMID: 34280513 PMCID: PMC8285224 DOI: 10.1016/j.addr.2021.113867] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 07/11/2021] [Indexed: 01/04/2023]
Abstract
Prophylactic vaccines have evolved from traditional whole-cell vaccines to safer subunit vaccines. However, subunit vaccines still face problems, such as poor immunogenicity and low efficiency, while traditional adjuvants are usually unable to meet specific response needs. Advanced delivery vectors are important to overcome these barriers; they have favorable safety and effectiveness, tunable properties, precise location, and immunomodulatory capabilities. Nevertheless, there has been no systematic summary of the delivery systems to cover a wide range of infectious pathogens. We herein summarized and compared the delivery systems for major or epidemic infectious diseases caused by bacteria, viruses, fungi, and parasites. We also included the newly licensed vaccines (e.g., COVID-19 vaccines) and those close to licensure. Furthermore, we highlighted advanced delivery systems with high efficiency, cross-protection, or long-term protection against epidemic pathogens, and we put forward prospects and thoughts on the development of future prophylactic vaccines.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China
| | - Guang-Hui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Heng-Liang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China.
| |
Collapse
|
19
|
Khurana SK, Sehrawat A, Tiwari R, Prasad M, Gulati B, Shabbir MZ, Chhabra R, Karthik K, Patel SK, Pathak M, Iqbal Yatoo M, Gupta VK, Dhama K, Sah R, Chaicumpa W. Bovine brucellosis - a comprehensive review. Vet Q 2021; 41:61-88. [PMID: 33353489 PMCID: PMC7833053 DOI: 10.1080/01652176.2020.1868616] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brucellosis is a zoonotic disease of great animal welfare and economic implications worldwide known since ancient times. The emergence of brucellosis in new areas as well as transmission of brucellosis from wild and domestic animals is of great significance in terms of new epidemiological dimensions. Brucellosis poses a major public health threat by the consumption of non-pasteurized milk and milk products produced by unhygienic dairy farms in endemic areas. Regular and meticulous surveillance is essentially required to determine the true picture of brucellosis especially in areas with continuous high prevalence. Additionally, international migration of humans, animals and trade of animal products has created a challenge for disease spread and diagnosis in non-endemic areas. Isolation and identification remain the gold standard test, which requires expertise. The advancement in diagnostic strategies coupled with screening of newly introduced animals is warranted to control the disease. Of note, the diagnostic value of miRNAs for appropriate detection of B. abortus infection has been shown. The most widely used vaccine strains to protect against Brucella infection and related abortions in cattle are strain 19 and RB51. Moreover, it is very important to note that no vaccine, which is highly protective, safe and effective is available either for bovines or human beings. Research results encourage the use of bacteriophage lysates in treatment of bovine brucellosis. One Health approach can aid in control of this disease, both in animals and man.
Collapse
Affiliation(s)
| | - Anju Sehrawat
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadyaya Pashu Chikitsa Vigyan Vishwavidyalya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, India
| | - Baldev Gulati
- ICAR-National Research Centre on Equine, Hisar, India
| | - Muhammad Zubair Shabbir
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Rajesh Chhabra
- Department of Veterinary Microbiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamilnadu, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
20
|
Maina TW, Grego EA, Boggiatto PM, Sacco RE, Narasimhan B, McGill JL. Applications of Nanovaccines for Disease Prevention in Cattle. Front Bioeng Biotechnol 2020; 8:608050. [PMID: 33363134 PMCID: PMC7759628 DOI: 10.3389/fbioe.2020.608050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Vaccines are one of the most important tools available to prevent and reduce the incidence of infectious diseases in cattle. Despite their availability and widespread use to combat many important pathogens impacting cattle, several of these products demonstrate variable efficacy and safety in the field, require multiple doses, or are unstable under field conditions. Recently, nanoparticle-based vaccine platforms (nanovaccines) have emerged as promising alternatives to more traditional vaccine platforms. In particular, polymer-based nanovaccines provide sustained release of antigen payloads, stabilize such payloads, and induce enhanced antibod- and cell-mediated immune responses, both systemically and locally. To improve vaccine administrative strategies and efficacy, they can be formulated to contain multiple antigenic payloads and have the ability to protect fragile proteins from degradation. Nanovaccines are also stable at room temperature, minimizing the need for cold chain storage. Nanoparticle platforms can be synthesized for targeted delivery through intranasal, aerosol, or oral administration to induce desired mucosal immunity. In recent years, several nanovaccine platforms have emerged, based on biodegradable and biocompatible polymers, liposomes, and virus-like particles. While most nanovaccine candidates have not yet advanced beyond testing in rodent models, a growing number have shown promise for use against cattle infectious diseases. This review will highlight recent advancements in polymeric nanovaccine development and the mechanisms by which nanovaccines may interact with the bovine immune system. We will also discuss the positive implications of nanovaccines use for combating several important viral and bacterial disease syndromes and consider important future directions for nanovaccine development in beef and dairy cattle.
Collapse
Affiliation(s)
- Teresia W. Maina
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Elizabeth A. Grego
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
21
|
Huang Y, Nan L, Xiao C, Su F, Li K, Ji QA, Wei Q, Liu Y, Bao G. PEGylated nano-Rehmannia glutinosa polysaccharide induces potent adaptive immunity against Bordetella bronchiseptica. Int J Biol Macromol 2020; 168:507-517. [PMID: 33310103 DOI: 10.1016/j.ijbiomac.2020.12.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022]
Abstract
Vaccines, in many cases, stimulate only too weak immunogenicity to prevent infection. Therefore, adjuvants are required during their preparation to boost the immune response. We herein developed a PEGylated nano-adjuvant based on Rehmannia glutinosa polysaccharide (RGP). The addition of PEG layer exhibits enhanced immune performance of the nano-RGP. Stimulation of dendritic cells (DCs) with PEGylated nano-RGP (pRL) led to increased proliferation and cytokine production (IL-6, IL-12, IL-1β and TNF-α). The pRL was internalized into DCs via a rapid and efficient method. The mice immunized with pRL exhibited enhanced antigen-specific serum IgG and Th1-(IFN-γ), Th2-(IL-4), and Th17-(IL-17, IL-6) cytokine production, contributing to a good anti-infection performance. Furthermore, the pRL could effectively deliver the antigen to the lymph nodes (LNs), activate DC in the LN and produce enhanced CD4+and CD8+ T-cells-derived memory (CD44high CD62Lhigh), and effector (CD44high CD62Llow) as well as functional phenotypes. Our results revealed that pRL can act as a promising adjuvant with targeted delivery of antigen due to its effective activation and robust adaptive immunity induction of DCs.
Collapse
Affiliation(s)
- Yee Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, PR China
| | - Li Nan
- Zhejiang Normal University, Jinhua 321000, PR China
| | - Chenwen Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, PR China
| | - Fei Su
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, PR China
| | - Ke Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, PR China
| | - Quan-An Ji
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, PR China
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, PR China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, PR China
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, PR China.
| |
Collapse
|
22
|
Sadeghi Z, Fasihi-Ramandi M, Bouzari S. Nanoparticle-Based Vaccines for Brucellosis: Calcium Phosphate Nanoparticles-Adsorbed Antigens Induce Cross Protective Response in Mice. Int J Nanomedicine 2020; 15:3877-3886. [PMID: 32581535 PMCID: PMC7269176 DOI: 10.2147/ijn.s249942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction Vaccine formulation with appropriate adjuvants is an attractive approach to develop protective immunity against pathogens. Calcium phosphate nanoparticles (CaPNs) are considered as ideal adjuvants and delivery systems because of their great potential for enhancing immune responses. In the current study, we have designed nanoparticle-based vaccine candidates to induce immune responses and protection against B. melitensis and B. abortus. Materials and Methods For this purpose, we used three Brucella antigens (FliC, 7α-HSDH, BhuA) and two multi-epitopes (poly B and poly T) absorbed by CaPNs. The efficacy of each formulation was evaluated by measuring humoral, cellular and protective responses in immunized mice. Results The CaPNs showed an average size of about 90 nm with spherical shape and smooth surface. The CaPNs-adsorbed proteins displayed significant increase in cellular and humoral immune responses compared to the control groups. In addition, our results showed increased ratio of specific IgG2a (associated with Th1) to specific IgG1 (associated with Th2). Also, immunized mice with different vaccine candidate formulations were protected against B. melitensis 16M and B. abortus 544, and showed same levels of protection as commercial vaccines (B. melitensis Rev.1 and B. abortus RB51) except for BhuA-CaPNs. Discussion Our data support the hypothesis that these antigens absorbed with CaPNs could be effective vaccine candidates against B. melitensis and B. abortus.
Collapse
Affiliation(s)
- Zohre Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|