1
|
Zhang S, Wang G, Yu W, Wei L, Gao C, Li D, Guo L, Yang J, Jian S, Liu N. Multi-omics analyses reveal the mechanisms underlying the responses of Casuarina equisetifolia ssp. incana to seawater atomization and encroachment stress. BMC PLANT BIOLOGY 2024; 24:854. [PMID: 39266948 PMCID: PMC11391710 DOI: 10.1186/s12870-024-05561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Casuarina equisetifolia trees are used as windbreaks in subtropical and tropical coastal zones, while C. equisetifolia windbreak forests can be degraded by seawater atomization (SA) and seawater encroachment (SE). To investigate the mechanisms underlying the response of C. equisetifolia to SA and SE stress, the transcriptome and metabolome of C. equisetifolia seedlings treated with control, SA, and SE treatments were analyzed. We identified 737, 3232, 3138, and 3899 differentially expressed genes (SA and SE for 2 and 24 h), and 46, 66, 62, and 65 differentially accumulated metabolites (SA and SE for 12 and 24 h). The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that SA and SE stress significantly altered the expression of genes related to plant hormone signal transduction, plant-pathogen interaction, and starch and sucrose metabolism pathways. The accumulation of metabolites associated with the biosynthetic pathways of phenylpropanoid and amino acids, as well as starch and sucrose metabolism, and glycolysis/gluconeogenesis were significantly altered in C. equisetifolia subjected to SA and SE stress. In conclusion, C. equisetifolia responds to SA and SE stress by regulating plant hormone signal transduction, plant-pathogen interaction, biosynthesis of phenylpropanoid and amino acids, starch and sucrose metabolism, and glycolysis/gluconeogenesis pathways. Compared with SA stress, C. equisetifolia had a stronger perception and response to SE stress, which required more genes and metabolites to be regulated. This study enhances our understandings of how C. equisetifolia responds to two types of seawater stresses at transcriptional and metabolic levels. It also offers a theoretical framework for effective coastal vegetation management in tropical and subtropical regions.
Collapse
Affiliation(s)
- Shike Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Guobing Wang
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Weiwei Yu
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Long Wei
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Coastal Shelterbelt Ecosystem National Observation and Research Station, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Chao Gao
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Di Li
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Lili Guo
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Jianbo Yang
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Shuguang Jian
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Nan Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
2
|
de Almeida CP, Barbosa RR, Ferraz CG, de Castro RD, Ribeiro PR. Genome-wide identification of the GDSL-type esterase/lipase protein (GELP) gene family in Ricinus communis and its transcriptional regulation during germination and seedling establishment under different abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108939. [PMID: 39029309 DOI: 10.1016/j.plaphy.2024.108939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
GDSL-type esterase/lipase protein (GELP) genes are crucial in the specialized lipid metabolism, in the responses to abiotic stresses, and in the regulation of plant homeostasis. R. communis is an important oilseed crop species that can sustain growth and productivity when exposed to harsh environmental conditions. Herein, we raised the question of whether the GELP gene family could be involved in the acquisition of R. communis tolerance to abiotic stresses during seed germination and seedling establishment. Thus, we used bioinformatics and transcriptomics to characterize the R. communis GELP gene family. R. communis genome possesses 96 GELP genes that were characterized by extensive bioinformatics, including phylogenetic analysis, subcellular localization, exon-intron distribution, the analysis of regulatory cis-elements, tandem duplication, and physicochemical properties. Transcriptomics indicated that numerous RcGELP genes are readily responsive to high-temperature and salt stresses and might be potential candidates for genome editing techniques to develop abiotic stress-tolerant crops.
Collapse
Affiliation(s)
- Catherine P de Almeida
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil; Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil
| | - Rhaissa R Barbosa
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil; Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil
| | - Caline G Ferraz
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil; Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil
| | - Renato D de Castro
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil
| | - Paulo R Ribeiro
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil; Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil.
| |
Collapse
|
3
|
Wen S, Ying J, Ye Y, Cai Y, Qian R. Comprehensive transcriptome analysis of Asparagus officinalis in response to varying levels of salt stress. BMC PLANT BIOLOGY 2024; 24:819. [PMID: 39215284 PMCID: PMC11363576 DOI: 10.1186/s12870-024-05540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Salt stress is a major abiotic factor that affects the distribution and growth of plants. Asparagus officinalis is primarily resistant to salt stress and is suitable for cultivation in saline-alkali soil. RESULTS The study integrated the morphology, physiological indexes, and transcriptome of A. officinalis exposed to different levels of NaCl, with the aim of understanding its biological processes under salt stress. The findings indicated that exposure to salt stress led to decreases in the height and weight of A. officinalis plants. Additionally, the levels of POD and SOD, as well as the amounts of MDA, proline, and soluble sugars, showed an increase, whereas the chlorophyll content decreased. Analysis of the transcriptome revealed that 6,203 genes that showed differential expression at different salt-stress levels. Various TFs, including FAR1, MYB, NAC, and bHLH, exhibited differential expression under salt stress. KEGG analysis showed that the DEGs were primarily associated with the plant hormone signal transduction and lignin biosynthesis pathways. CONCLUSION These discoveries provide a solid foundation for an in-depth exploration of the pivotal genes, including Aux/IAA, TCH4, COMT, and POD, among others, as well as the pathways involved in asparagus's salt stress responses. Consequently, they have significant implications for the future analysis of the molecular mechanisms underlying asparagus's response to salt stress.
Collapse
Affiliation(s)
- Shuangshuang Wen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, Zhejiang, 325005, China
| | - Jiali Ying
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, Zhejiang, 325005, China
| | - Youju Ye
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, Zhejiang, 325005, China
| | - Yunfei Cai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, Zhejiang, 325005, China
| | - Renjuan Qian
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, Zhejiang, 325005, China.
| |
Collapse
|
4
|
Lei P, Jiang Y, Zhao Y, Jiang M, Ji X, Ma L, Jin G, Li J, Zhang S, Kong D, Zhao X, Meng F. Functions of Basic Helix-Loop-Helix (bHLH) Proteins in the Regulation of Plant Responses to Cold, Drought, Salt, and Iron Deficiency: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10692-10709. [PMID: 38712500 DOI: 10.1021/acs.jafc.3c09665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Abiotic stresses including cold, drought, salt, and iron deficiency severely impair plant development, crop productivity, and geographic distribution. Several bodies of research have shed light on the pleiotropic functions of BASIC HELIX-LOOP-HELIX (bHLH) proteins in plant responses to these abiotic stresses. In this review, we mention the regulatory roles of bHLH TFs in response to stresses such as cold, drought, salt resistance, and iron deficiency, as well as in enhancing grain yield in plants, especially crops. The bHLH proteins bind to E/G-box motifs in the target promoter and interact with various other factors to form a complex regulatory network. Through this network, they cooperatively activate or repress the transcription of downstream genes, thereby regulating various stress responses. Finally, we present some perspectives for future research focusing on the molecular mechanisms that integrate and coordinate these abiotic stresses. Understanding these molecular mechanisms is crucial for the development of stress-tolerant crops.
Collapse
Affiliation(s)
- Pei Lei
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Yaxuan Jiang
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Yong Zhao
- College of Life Sciences, Baicheng Normal University, Baicheng 137099, China
| | - Mingquan Jiang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130022, China
| | - Ximei Ji
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Le Ma
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Guangze Jin
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Jianxin Li
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Subin Zhang
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Dexin Kong
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Fanjuan Meng
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KHM, Singh RK, Zhuang W, Varshney RK. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol 2023; 43:1035-1062. [PMID: 35968922 DOI: 10.1080/07388551.2022.2093695] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/08/2022] [Indexed: 01/19/2023]
Abstract
Climate change gives rise to numerous environmental stresses, including soil salinity. Salinity/salt stress is the second biggest abiotic factor affecting agricultural productivity worldwide by damaging numerous physiological, biochemical, and molecular processes. In particular, salinity affects plant growth, development, and productivity. Salinity responses include modulation of ion homeostasis, antioxidant defense system induction, and biosynthesis of numerous phytohormones and osmoprotectants to protect plants from osmotic stress by decreasing ion toxicity and augmented reactive oxygen species scavenging. As most crop plants are sensitive to salinity, improving salt tolerance is crucial in sustaining global agricultural productivity. In response to salinity, plants trigger stress-related genes, proteins, and the accumulation of metabolites to cope with the adverse consequence of salinity. Therefore, this review presents an overview of salinity stress in crop plants. We highlight advances in modern biotechnological tools, such as omics (genomics, transcriptomics, proteomics, and metabolomics) approaches and different genome editing tools (ZFN, TALEN, and CRISPR/Cas system) for improving salinity tolerance in plants and accomplish the goal of "zero hunger," a worldwide sustainable development goal proposed by the FAO.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - Ali Zeeshan Fakhar
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Luo Ju
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Perth, Australia
| | - Rakesh K Singh
- Crop Diversification and Genetics, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Rajeev K Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Murdoch's Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| |
Collapse
|
6
|
Gu R, Wan ZQ, Tang F, Liu XT, Yang YT, Shi FL. Physiological and transcriptomic analysis of salt tolerant Glaux maritima grown under high saline condition. FRONTIERS IN PLANT SCIENCE 2023; 14:1173191. [PMID: 37705703 PMCID: PMC10497109 DOI: 10.3389/fpls.2023.1173191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Land salinization considerably limits crop production. Biological improvement of saline and alkaline land is an important way to achieve efficient land use. It is crucial to study the salt tolerance of halophyte resources in order to explore and improve plant resources through biological improvement. Glaux maritima is a mesophyte halophyte with strong salt tolerance. In this study, we conducted research on the salt tolerance mechanism of G. maritima through phenotypic, physiological, and transcriptomic aspects. The results indicate that leaf cross-sections revealed that G. maritima has a salt gland tissue composed of stalk, collecting, and secretory cells, which are trapped in epidermal cells. At the physiological level, the maximum salt tolerance threshold of G. maritima leaves was 600 mM/L. At this concentration, proline content, relative conductivity, and superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) enzyme activities were maximum. At the transcriptional level, transcriptome data of three experimental groups (N0: 0 mM/L, N3: 600 mM/L, and N4: 800 mM/L) were analyzed, and six essential genes related to proline synthesis and five essential genes related to SOD and CAT enzyme activities were identified. Two genes involved in CAT enzyme activity were also found to play an important role in the MAPK signaling pathway. Trend analysis revealed that the MAPK signaling regulation (37 differentially expressed genes (DEGs)), phytohormone regulation (48 DEGs), glutathione metabolism (8 DEGs), flavonoid and flavonoid biosynthesis (2DEGs), and flavonoid biosynthesis (24 DEGs) pathways played important roles in regulating the salt tolerance of G. maritima. These findings provide valuable information for further studies on the functional characteristics of G. maritima in response to abiotic stress and may contribute to salt resistance breeding of fodder crops for cultivation in saline alkali land.
Collapse
Affiliation(s)
- Rui Gu
- Key Laboratory of Grassland Resources of Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhi Qiang Wan
- College of Geographical Science, Inner Mongolia Normal University, Hohhot, China
| | - Fang Tang
- Key Laboratory of Grassland Resources of Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xue Ting Liu
- Key Laboratory of Grassland Resources of Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yan ting Yang
- Key Laboratory of Grassland Resources of Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Feng ling Shi
- Key Laboratory of Grassland Resources of Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
7
|
Chen L, Meng Y, Bai Y, Yu H, Qian Y, Zhang D, Zhou Y. Starch and Sucrose Metabolism and Plant Hormone Signaling Pathways Play Crucial Roles in Aquilegia Salt Stress Adaption. Int J Mol Sci 2023; 24:ijms24043948. [PMID: 36835360 PMCID: PMC9966690 DOI: 10.3390/ijms24043948] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Salt stress is one of the main abiotic stresses that strongly affects plant growth. Clarifying the molecular regulatory mechanism in ornamental plants under salt stress is of great significance for the ecological development of saline soil areas. Aquilegia vulgaris is a perennial with a high ornamental and commercial value. To narrow down the key responsive pathways and regulatory genes, we analyzed the transcriptome of A. vulgaris under a 200 mM NaCl treatment. A total of 5600 differentially expressed genes were identified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis pointed out that starch and sucrose metabolism and plant hormone signal transduction were significantly improved. The above pathways played crucial roles when A. vulgaris was coping with salt stress, and their protein-protein interactions (PPIs) were predicted. This research provides new insights into the molecular regulatory mechanism, which could be the theoretical basis for screening candidate genes in Aquilegia.
Collapse
|
8
|
Ji XL, Zhang M, Wang D, Li Z, Lang S, Song XS. Genome-wide identification of WD40 superfamily in Cerasus humilis and functional characteristics of ChTTG1. Int J Biol Macromol 2023; 225:376-388. [PMID: 36402390 DOI: 10.1016/j.ijbiomac.2022.11.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
The WD40 superfamily plays an important role in a wide range of developmental and physiological processes. It is a large gene family in eukaryotes. Unfortunately, the research on the WD40 superfamily genes in Cerasus humilis has not been reported. 198 ChWD40s were identified and analyzed in the present study, along with evolutionary relationships, gene structure, chromosome distribution, and collinearity. Then, 5 pairs of tandem duplication and 17 pairs of segmental duplication were found. Based on RNA-Seq data analysis, we screened 31 candidate genes whose expression was up-regulated during the four developmental stages of fruit peel. In addition, we also demonstrated that ChWD40-140, namely ChTTG1, located in the nucleus, cytoplasm, and cytomembrane, has transcriptional activation activity and can form homodimers. ChTTG1 is involved in anthocyanin biosynthesis through heterologous overexpression in Arabidopsis. These research results provide a reference for a comprehensive analysis of the functions of WD40 in the future.
Collapse
Affiliation(s)
- Xiao Long Ji
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Di Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhe Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shaoyu Lang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xing Shun Song
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
9
|
Shen L, Zhao E, Liu R, Yang X. Transcriptome Analysis of Eggplant under Salt Stress: AP2/ERF Transcription Factor SmERF1 Acts as a Positive Regulator of Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:2205. [PMID: 36079586 PMCID: PMC9460861 DOI: 10.3390/plants11172205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Salt stress, a type of abiotic stress, impedes plant growth and development and strongly reduces crop yield. The molecular mechanisms underlying plant responses to salt stress remain largely unclear. To characterize the enriched pathways and genes that were affected during salt treatment, we performed mRNA sequencing (mRNA-seq) in eggplant roots and identified 8509 differentially expressed genes (DEGs) between the mock and 24 h under salt stress. Among these DEGs, we found that the AP2/ERF transcription factor family member SmERF1 belongs to the plant-pathogen interaction pathway, which was significantly upregulated by salt stress. We found that SmERF1 localizes in the nuclei with transcriptional activity. The results of the virus-induced gene silencing assay showed that SmERF1 silencing markedly enhanced the susceptibility of plants to salt stress, significantly downregulated the transcript expression levels of salt stress defense-related marker genes (9-cis-epoxycarotenoid dioxygenase [SmNCED1, SmNCED2], Dehydrin [SmDHN1], and Dehydrin (SmDHNX1), and reduced the activity of superoxide dismutase and catalase. Silencing SmERF1 promoted the generation of H2O2 and proline. In addition, the transient overexpression of SmERF1 triggered intense cell death in eggplant leaves, as assessed by the darker diaminobenzidine and trypan blue staining. These findings suggest that SmERF1 acts as a positive regulator of eggplant response to salt stress. Hence, our results suggest that AP2/ERF transcription factors play a vital role in the response to salt stress.
Collapse
Affiliation(s)
- Lei Shen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Enpeng Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Ruie Liu
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201600, China
| | - Xu Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Tripathi DK, Punj V, Singh NK, Guerriero G, Deshmukh R, Sharma S. Recent biotechnological avenues in crop improvement and stress management. J Biotechnol 2022; 349:21-24. [DOI: 10.1016/j.jbiotec.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Liu X, Yang X, Zhang B. Transcriptome analysis and functional identification of GmMYB46 in soybean seedlings under salt stress. PeerJ 2021; 9:e12492. [PMID: 34824922 PMCID: PMC8590805 DOI: 10.7717/peerj.12492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/25/2021] [Indexed: 01/19/2023] Open
Abstract
Salinity is one of the major abiotic stress that limits crop growth and productivity. We investigated the transcriptomes of salt-treated soybean seedlings versus a control using RNA-seq to better understand the molecular mechanisms of the soybean (Glycine max L.) response to salt stress. Transcriptome analysis revealed 1,235 differentially expressed genes (DEGs) under salt stress. Several important pathways and key candidate genes were identified by KEGG enrichment. A total of 116 differentially expressed transcription factors (TFs) were identified, and 17 TFs were found to belong to MYB families. Phylogenetic analysis revealed that these TFs may be involved in salt stress adaptation. Further analysis revealed that GmMYB46 was up-regulated by salt and mannitol and was localized in the nucleus. The salt tolerance of transgenic Arabidopsis overexpressing GmMYB46 was significantly enhanced compared to wild-type (WT). GmMYB46 activates the expression of salt stress response genes (P5CS1, SOD, POD, NCED3) in Arabidopsis under salt stress, indicating that the GmMYB46 protein mediates the salt stress response through complex regulatory mechanisms. This study provides information with which to better understand the molecular mechanism of salt tolerance in soybeans and to genetically improve the crop.
Collapse
Affiliation(s)
- Xun Liu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China.,College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinxia Yang
- Department of Logistics, Hunan University of Science and Engineering, Yongzhou, China
| | - Bin Zhang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| |
Collapse
|
12
|
Zhang YP, Zhang YY, Thakur K, Zhang F, Hu F, Zhang JG, Wei PC, Wei ZJ. Integration of miRNAs, Degradome, and Transcriptome Omics Uncovers a Complex Regulatory Network and Provides Insights Into Lipid and Fatty Acid Synthesis During Sesame Seed Development. FRONTIERS IN PLANT SCIENCE 2021; 12:709197. [PMID: 34394165 PMCID: PMC8358462 DOI: 10.3389/fpls.2021.709197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/30/2021] [Indexed: 05/05/2023]
Abstract
Sesame (Sesamum indicum L.) has always been known as a health-promoting oilseed crop because of its nutrient-rich oil. In recent years, studies have focused on lipid and fatty acid (FA) biosynthesis in various plants by high-throughput sequencing. Here, we integrated transcriptomics, small RNAs, and the degradome to establish a comprehensive reserve intensive on key regulatory micro RNA (miRNA)-targeting circuits to better understand the transcriptional and translational regulation of the oil biosynthesis mechanism in sesame seed development. Deep sequencing was performed to differentially express 220 miRNAs, including 65 novel miRNAs, in different developmental periods of seeds. GO and integrated KEGG analysis revealed 32 pairs of miRNA targets with negatively correlated expression profiles, of which 12 miRNA-target pairs were further confirmed by RT-PCR. In addition, a regulatory co-expression network was constructed based on the differentially expressed gene (DEG) profiles. The FAD2, LOC10515945, LOC105161564, and LOC105162196 genes were clustered into groups that regulate the accumulation of unsaturated fatty acid (UFA) biosynthesis. The results provide a unique advanced molecular platform for the study of lipid and FA biosynthesis, and this study may serve as a new theoretical reference to obtain increased levels of UFA from higher-quality sesame seed cultivars and other plants.
Collapse
Affiliation(s)
- Yin-Ping Zhang
- Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei, China
| | - Yuan-Yuan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Fan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peng-Cheng Wei
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
- *Correspondence: Peng-Cheng Wei,
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Zhao-Jun Wei,
| |
Collapse
|
13
|
Peng Z, Wang Y, Geng G, Yang R, Yang Z, Yang C, Xu R, Zhang Q, Kakar KU, Li Z, Zhang S. Comparative Analysis of Physiological, Enzymatic, and Transcriptomic Responses Revealed Mechanisms of Salt Tolerance and Recovery in Tritipyrum. FRONTIERS IN PLANT SCIENCE 2021; 12:800081. [PMID: 35069658 PMCID: PMC8766340 DOI: 10.3389/fpls.2021.800081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/30/2021] [Indexed: 05/03/2023]
Abstract
Salt stress results in the severe decline of yield and quality in wheat. In the present study, salt-tolerant Tritipyrum ("Y1805") and salt-sensitive wheat "Chinese Spring" ("CS") were selected from 121 wheat germplasms to test their physiological, antioxidant enzyme, and transcriptomic responses and mechanisms against salt stress and recovery. 56 chromosomes were identified in "Y1805" that comprised A, B, and D chromosomes from wheat parent and E chromosomes from Thinopyrum elongatum, adding to salt-tolerant trait. Salt stress had a greater inhibitory effect on roots than on shoots, and "Y1805" demonstrated stronger salt tolerance than "CS." Compared with "CS," the activities of superoxide dismutase and catalase in "Y1805" significantly increased under salt stress. "Y1805" could synthesize more proline and soluble sugars than "CS." Both the net photosynthetic rate and chlorophyll a/b were affected by salt stress, though the level of damage in "Y1805" was significantly less than in "CS." Transcriptome analysis showed that the differences in the transcriptional regulatory networks of "Y1805" were not only in response to salt stress but also in recovery. The functions of many salt-responsive differentially expressed genes were correlated closely with the pathways "peroxisome," "arginine and proline metabolism," "starch and sucrose metabolism," "chlorophyll and porphyrin metabolism," and "photosynthesis."
Collapse
Affiliation(s)
- Ze Peng
- College of Agriculture, Guizhou University, Guiyang, China
- Research Institute of Pepper, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yiqin Wang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Guangdong Geng
- College of Agriculture, Guizhou University, Guiyang, China
| | - Rui Yang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Zhifen Yang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Chunmiao Yang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Ruhong Xu
- College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
| | - Qingqin Zhang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Kaleem U. Kakar
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Zhenhua Li
- College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
- *Correspondence: Zhenhua Li,
| | - Suqin Zhang
- College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
- Suqin Zhang,
| |
Collapse
|