1
|
Carbone F, Liberale L, Libby P, Montecucco F. Vitamin D in atherosclerosis and cardiovascular events. Eur Heart J 2023; 44:2078-2094. [PMID: 36943351 PMCID: PMC10281557 DOI: 10.1093/eurheartj/ehad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/30/2023] [Accepted: 03/04/2023] [Indexed: 03/23/2023] Open
Abstract
Both experimental and clinical findings linking vitamin D to cardiovascular (CV) risk have prompted consideration of its supplementation to improve overall health. Yet several meta-analyses do not provide support for the clinical effectiveness of this strategy. Meanwhile, the understanding of the roles of vitamin D in the pathophysiology of CV diseases has evolved. Specifically, recent work has revealed some non-classical pleiotropic effects of vitamin D, increasing the complexity of vitamin D signalling. Within particular microenvironments (e.g. dysfunctional adipose tissue and atherosclerotic plaque), vitamin D can act locally at cellular level through intracrine/autocrine/paracrine feedforward and feedback circuits. Within atherosclerotic tissues, 'local' vitamin D levels may influence relevant systemic consequences independently of its circulating pool. Moreover, vitamin D links closely to other signalling pathways of CV relevance including those driving cellular senescence, ageing, and age-related diseases-among them CV conditions. This review updates knowledge on vitamin D biology aiming to clarify the widening gap between experimental and clinical evidence. It highlights the potential reverse causation confounding correlation between vitamin D status and CV health, and the need to consider novel pathophysiological concepts in the design of future clinical trials that explore the effects of vitamin D on atherosclerosis and risk of CV events.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa—Italian Cardiovascular Network, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa—Italian Cardiovascular Network, Genoa, Italy
| | - Peter Libby
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa—Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|
2
|
Alshaibi HF, Bakhashab S, Almuhammadi A, Althobaiti YS, Baghdadi MA, Alsolami K. Protective Effect of Vitamin D against Hepatic Molecular Apoptosis Caused by a High-Fat Diet in Rats. Curr Issues Mol Biol 2023; 45:479-489. [PMID: 36661517 PMCID: PMC9857557 DOI: 10.3390/cimb45010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
The protective effects of vitamin D (VitD) in different diseases were studied. The liver is of great interest, especially with the presence of VitD receptors. A high-fat diet (HFD) is associated with many diseases, including liver injury. Consumption of saturated fatty acids triggers hepatic apoptosis and is associated with increased inflammation. We aimed in this study to investigate the protective effects of VitD on hepatic molecular apoptotic changes in response to an HFD in rats. Forty male Wistar albino rats were used and divided into four groups: control, HFD, control + VitD, and VitD-supplemented HFD (HFD + VitD) groups. After six months, the rats were sacrificed, and the livers were removed. RNA was extracted from liver tissues and used for the quantitative real-time RT-PCR of different genes: B-cell lymphoma/leukemia-2 (BCL2), BCL-2-associated X protein (Bax), Fas cell surface death receptor (FAS), FAS ligand (FASL), and tumor necrosis factor α (TNF-α). The results showed that an HFD increased the expression of the pro-apoptotic genes Bax, FAS, and FASL, and reduced the expression of the anti-apoptotic gene BCL2. Interestingly, a VitD-supplemented HFD significantly increased the BCL2 expression and decreased the expression of all pro-apoptotic genes and TNFα. In conclusion, VitD has a protective role against hepatic molecular apoptotic changes in response to an HFD.
Collapse
Affiliation(s)
- Huda F. Alshaibi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cell Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-504687127
| | - Sherin Bakhashab
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biology Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, Taif 21944, Saudi Arabia
| | - Mohammed A. Baghdadi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 21589, Saudi Arabia
| | - Khadeejah Alsolami
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
3
|
Kolieb E, Maher SA, Shalaby MN, Alsuhaibani AM, Alharthi A, Hassan WA, El-Sayed K. Vitamin D and Swimming Exercise Prevent Obesity in Rats under a High-Fat Diet via Targeting FATP4 and TLR4 in the Liver and Adipose Tissue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13740. [PMID: 36360622 PMCID: PMC9656563 DOI: 10.3390/ijerph192113740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
The prevalence of obesity has risen in the last decades, and it has caused massive health burdens on people's health, especially metabolic and cardiovascular issues. The risk of vitamin D insufficiency is increased by obesity, because adipose tissue alters both the requirements for and bioavailability of vitamin D. Exercise training is acknowledged as having a significant and long-term influence on body weight control; the favorable impact of exercise on obesity and obesity-related co-morbidities has been demonstrated via various mechanisms. The current work illustrated the effects of vitamin D supplementation and exercise on obesity induced by a high-fat diet (HFD) and hepatic steatosis in rats and explored how fatty acid transport protein-4 (FATP4) and Toll-like receptor-4 antibodies (TLR4) might be contributing factors to obesity and related hepatic steatosis. Thirty male albino rats were divided into five groups: group 1 was fed a normal-fat diet, group 2 was fed an HFD, group 3 was fed an HFD and given vitamin D supplementation, group 4 was fed an HFD and kept on exercise, and group 5 was fed an HFD, given vitamin D, and kept on exercise. The serum lipid profile adipokines, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were analyzed, and the pathological changes in adipose and liver tissues were examined. In addition, the messenger-ribonucleic acid (mRNA) expression of FATP4 and immunohistochemical expression of TLR4 in adipose and liver tissues were evaluated. Vitamin D supplementation and exercise improved HFD-induced weight gain and attenuated hepatic steatosis, along with improving the serum lipid profile, degree of inflammation, and serum adipokine levels. The expression of FATP4 and TLR4 in both adipose tissue and the liver was downregulated; it was noteworthy that the group that received vitamin D and was kept on exercise showed also improvement in the histopathological picture of this group. According to the findings of this research, the protective effect of vitamin D and exercise against obesity and HFD-induced hepatic steatosis is associated with the downregulation of FATP4 and TLR4, as well as a reduction in inflammation.
Collapse
Affiliation(s)
- Eman Kolieb
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Shymaa Ahmed Maher
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia 41522, Egypt
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wael A. Hassan
- Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Basic Sciences, College of Medicine, Sulaiman Alrajhi University, Al Bukayriyah 52726, Saudi Arabia
| | - Karima El-Sayed
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
4
|
Pedroza-Diaz J, Arroyave-Ospina JC, Serna Salas S, Moshage H. Modulation of Oxidative Stress-Induced Senescence during Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:antiox11050975. [PMID: 35624839 PMCID: PMC9137746 DOI: 10.3390/antiox11050975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 01/10/2023] Open
Abstract
Non-alcoholic fatty liver disease is characterized by disturbed lipid metabolism and increased oxidative stress. These conditions lead to the activation of different cellular response mechanisms, including senescence. Cellular senescence constitutes an important response to injury in the liver. Recent findings show that chronic oxidative stress can induce senescence, and this might be a driving mechanism for NAFLD progression, aggravating the disturbance of lipid metabolism, organelle dysfunction, pro-inflammatory response and hepatocellular damage. In this context, the modulation of cellular senescence can be beneficial to ameliorate oxidative stress-related damage during NAFLD progression. This review focuses on the role of oxidative stress and senescence in the mechanisms leading to NAFLD and discusses the possibilities to modulate senescence as a therapeutic strategy in the treatment of NAFLD.
Collapse
Affiliation(s)
- Johanna Pedroza-Diaz
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Grupo de Investigación e Innovación Biomédica GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050536, Colombia
| | - Johanna C. Arroyave-Ospina
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Correspondence:
| | - Sandra Serna Salas
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| | - Han Moshage
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| |
Collapse
|
5
|
Parameswaran M, Hasan HA, Sadeque J, Jhaveri S, Avanthika C, Arisoyin AE, Dhanani MB, Rath SM. Factors That Predict the Progression of Non-alcoholic Fatty Liver Disease (NAFLD). Cureus 2021; 13:e20776. [PMID: 35111461 PMCID: PMC8794413 DOI: 10.7759/cureus.20776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) refers to a spectrum of diseases involving the deposition of fat in the hepatocytes of people with little to no alcohol consumption. NAFLD is associated with hypertension, diabetes, obesity, etc. As their prevalence increases, the propensity and severity of NAFLD might increase. As per the recently developed multi-hit hypothesis, factors like oxidative stress, genetic predisposition, lipotoxicity, and insulin resistance have been found to play a key role in the development of NAFLD and its associated complications. This article focuses on NAFLD, its pathophysiology, risk factors, and the various genetic and epigenetic factors involved in its development along with possible treatment modalities. We conducted an all-language literature search on Medline, Cochrane, Embase, and Google Scholar until October 2021. The following search strings and Medical Subject Heading (MeSH) terms were used: “NAFLD,” “NASH,” “Fibrosis,” and “Insulin Resistance.” We explored the literature on NAFLD for its epidemiology, pathophysiology, the role of various genes, and how they influence the disease and associated complications about the disease and its hepatic and extrahepatic complications. With its rapidly increasing prevalence rates across the world and serious complications like NASH and hepatocellular carcinoma, NAFLD is becoming a major public health issue and more research is needed to formulate better screening tools and treatment protocols.
Collapse
Affiliation(s)
| | | | - Jafor Sadeque
- Internal Medicine, Al Mostaqbal Hospital, Jeddah, SAU
| | - Sharan Jhaveri
- Internal Medicine, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Ahmedabad, IND
| | | | | | - Maulik B Dhanani
- Internal Medicine, Southwestern University School of Medicine, Cebu City, PHL
| | - Swaroopa M Rath
- Medicine, Srirama Chandra Bhanja Medical College and Hospital, Cuttack, IND
| |
Collapse
|
6
|
Bima A, Eldakhakhny B, Nuwaylati D, Alnami A, Ajabnoor M, Elsamanoudy A. The Interplay of Vitamin D Deficiency and Cellular Senescence in The Pathogenesis of Obesity-Related Co-Morbidities. Nutrients 2021; 13:nu13114127. [PMID: 34836382 PMCID: PMC8618094 DOI: 10.3390/nu13114127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023] Open
Abstract
This scoping review aims to clarify the interplay between obesity, vitamin D deficiency, cellular senescence, and obesity-related metabolic consequences, mainly subclinical atherosclerosis, and non-alcoholic fatty liver disease (NAFLD). Obesity is a significant global health problem that involves cellular, environmental, behavioral, and genetic elements. The fundamental cause of obesity throughout all life stages is an energy imbalance, and its consequences are countless and, foremost, very common. Obesity has been comprehensively studied in the literature given its association with low serum vitamin D, with many proposed mechanisms linking the two conditions. Moreover, markers of exaggerated cellular senescence have been proven to accumulate in obese individuals. Subclinical atherosclerosis initiates an early stage that ends in serious cardiac events, and obesity, low vitamin D, and senescent cells largely contribute to its associated chronic low-grade inflammation. Furthermore, NAFLD signifies the hepatic manifestation of metabolic syndrome, and studies have highlighted the important role of obesity, vitamin D deficiency, and cellular senescence in its development. Therefore, we outlined the most important mechanisms tying these conditions to one another.
Collapse
Affiliation(s)
- Abdulhadi Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King AbdulAziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.); (M.A.)
| | - Basmah Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King AbdulAziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.); (M.A.)
| | - Dina Nuwaylati
- Department of Clinical Biochemistry, Faculty of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Abrar Alnami
- Department of Clinical Biochemistry, Faculty of Medicine, King AbdulAziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.); (M.A.)
| | - Mohammed Ajabnoor
- Department of Clinical Biochemistry, Faculty of Medicine, King AbdulAziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.); (M.A.)
| | - Ayman Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King AbdulAziz University, Jeddah 21465, Saudi Arabia; (A.B.); (B.E.); (A.A.); (M.A.)
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +966-59-506-2375
| |
Collapse
|
7
|
Dabravolski SA, Bezsonov EE, Orekhov AN. The role of mitochondria dysfunction and hepatic senescence in NAFLD development and progression. Biomed Pharmacother 2021; 142:112041. [PMID: 34411916 DOI: 10.1016/j.biopha.2021.112041] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Senescence is a crucial player in several metabolic disorders and chronic inflammatory diseases. Recent data prove the involvement of hepatocyte senescence in the development of NAFLD (non-alcoholic fatty liver disease). As the main energy and ROS (reactive oxygen species) producing organelle, mitochondria play the central role in accelerated senescence and diseases development. In this review, we focus on the role of regulation of mitochondrial Ca2+ homeostasis, NAD+/NADH ratio, UPRmt (mitochondrial unfolded protein response), phospholipids and fatty acid oxidation in hepatic senescence, lifespan and NAFLD disease susceptibility. Additionally, the involvement of mitochondrial and nuclear mutations in lifespan-modulation and NAFLD development is discussed. While nuclear and mitochondria DNA mutations and SNPs (single nucleotide polymorphisms) can be used as effective diagnostic markers and targets for treatments, advanced age should be considered as an independent risk factor for NAFLD development.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora str., 210026 Vitebsk, Belarus.
| | - Evgeny E Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia.
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia.
| |
Collapse
|