1
|
Abolhasani FS, Moein M, Rezaie N, Sheikhimehrabadi P, Shafiei M, Afkhami H, Modaresi M. Occurrence of COVID-19 in cystic fibrosis patients: a review. Front Microbiol 2024; 15:1356926. [PMID: 38694803 PMCID: PMC11061495 DOI: 10.3389/fmicb.2024.1356926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/11/2024] [Indexed: 05/04/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic ailment caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. This autosomal recessive disorder is characterized by diverse pathobiological abnormalities, such as the disorder of CFTR channels in mucosal surfaces, caused by inadequate clearance of mucus and sputum, in addition to the malfunctioning of mucous organs. However, the primary motive of mortality in CF patients is pulmonary failure, which is attributed to the colonization of opportunistic microorganisms, formation of resistant biofilms, and a subsequent decline in lung characteristics. In December 2019, the World Health Organization (WHO) declared the outbreak of the radical coronavirus disease 2019 (COVID-19) as a worldwide public health crisis, which unexpectedly spread not only within China but also globally. Given that the respiration system is the primary target of the COVID-19 virus, it is crucial to investigate the impact of COVID-19 on the pathogenesis and mortality of CF patients, mainly in the context of acute respiratory distress syndrome (ARDS). Therefore, the goal of this review is to comprehensively review the present literature on the relationship between cystic fibrosis, COVID-19 contamination, and development of ARDS. Several investigations performed during the early stages of the virus outbreak have discovered unexpected findings regarding the occurrence and effectiveness of COVID-19 in individuals with CF. Contrary to initial expectancies, the rate of infection and the effectiveness of the virus in CF patients are lower than those in the overall population. This finding may be attributed to different factors, including the presence of thick mucus, social avoidance, using remedies that include azithromycin, the fairly younger age of CF patients, decreased presence of ACE-2 receptors, and the effect of CFTR channel disorder on the replication cycle and infectivity of the virus. However, it is important to notice that certain situations, which include undergoing a transplant, can also doubtlessly boost the susceptibility of CF patients to COVID-19. Furthermore, with an increase in age in CF patients, it is vital to take into account the prevalence of the SARS-CoV-2 virus in this population. Therefore, ordinary surveillance of CF patients is vital to evaluate and save the population from the capability of transmission of the virus given the various factors that contribute to the spread of the SARS-CoV-2 outbreak in this precise organization.
Collapse
Affiliation(s)
- Fatemeh Sadat Abolhasani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Moein
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Rezaie
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, School of Medicine, Shahed University, Tehran, Iran
| | - Mohammadreza Modaresi
- Pediatric Pulmonary Disease and Sleep Medicine Research Center, Pediatric Center of Excellence, Children's Medical Center, Tehran, Iran
- Cystic Fibrosis Research Center, Iran CF Foundation (ICFF), Tehran, Iran
| |
Collapse
|
2
|
Thornton CS, Caverly LJ, Kalikin LM, Carmody LA, McClellan S, LeBar W, Sanders DB, West NE, Goss CH, Flume PA, Heltshe SL, VanDevanter DR, LiPuma JJ. Prevalence and Clinical Impact of Respiratory Viral Infections from the STOP2 Study of Cystic Fibrosis Pulmonary Exacerbations. Ann Am Thorac Soc 2024; 21:595-603. [PMID: 37963297 PMCID: PMC10995546 DOI: 10.1513/annalsats.202306-576oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023] Open
Abstract
Rationale: Rates of viral respiratory infection (VRI) are similar in people with cystic fibrosis (CF) and the general population; however, the associations between VRI and CF pulmonary exacerbations (PEx) require further elucidation.Objectives: To determine VRI prevalence during CF PEx and evaluate associations between VRI, clinical presentation, and treatment response.Methods: The STOP2 (Standardized Treatment of Pulmonary Exacerbations II) study was a multicenter randomized trial to evaluate different durations of intravenous antibiotic therapy for PEx. In this ancillary study, participant sputum samples from up to three study visits were tested for respiratory viruses using multiplex polymerase chain reactions. Baselines and treatment-associated changes in mean lung function (percent predicted forced expiratory volume in 1 s), respiratory symptoms (Chronic Respiratory Infection Symptom Score), weight, and C-reactive protein were compared as a function of virus detection. Odds of PEx retreatment within 30 days and future PEx hazard were modeled by logistic and Cox proportional hazards regression, respectively.Results: A total of 1,254 sputum samples from 621 study participants were analyzed. One or more respiratory viruses were detected in sputum samples from 245 participants (39.5%). Virus-positive participants were more likely to be receiving CF transmembrane conductance regulator modulator therapy (45% vs. 34%) and/or chronic azithromycin therapy (54% vs. 44%) and more likely to have received treatment for nontuberculous Mycobacterium infection in the preceding 2 years (7% vs. 3%). At study visit 1, virus-positive participants were more symptomatic (mean Chronic Respiratory Infection Symptom Score, 53.8 vs. 51.1), had evidence of greater systemic inflammation (log10 C-reactive protein concentration, 1.32 log10 mg/L vs. 1.23 log10 mg/L), and had a greater drop in percent predicted forced expiratory volume in 1 second from the prior 6-month baseline (5.8 vs. 3.6). Virus positivity was associated with reduced risk of future PEx (hazard ratio, 0.82; 95% confidence interval, 0.69-0.99; P = 0.034) and longer median time to next PEx (255 d vs. 172 d; P = 0.021) compared with virus negativity.Conclusions: More than one-third of STOP2 participants treated for a PEx had a positive test result for a respiratory virus with more symptomatic initial presentation compared with virus-negative participants, but favorable long-term outcomes. More refined phenotyping of PEx, taking VRIs into account, may aid in optimizing personalized management of PEx.Clinical trial registered with www.clinicaltrials.gov (NCT02781610).
Collapse
Affiliation(s)
| | | | | | | | - Scott McClellan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - William LeBar
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Don B. Sanders
- Department of Pediatrics, Indiana University, Indianapolis, Indiana
| | - Natalie E. West
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Christopher H. Goss
- Department of Medicine and
- Department of Pediatrics, University of Washington, Seattle, Washington
- CF Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington
| | - Patrick A. Flume
- Department of Medicine and
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina; and
| | - Sonya L. Heltshe
- Department of Pediatrics, University of Washington, Seattle, Washington
- CF Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington
| | - Donald R. VanDevanter
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | |
Collapse
|
3
|
Belza C, Pullenayegum E, Nelson KE, Aoyama K, Fu L, Buchanan F, Diaz S, Goldberg O, Guttmann A, Hepburn CM, Mahant S, Martens R, Nathwani A, Saunders NR, Cohen E. Severe Respiratory Disease Among Children With and Without Medical Complexity During the COVID-19 Pandemic. JAMA Netw Open 2023; 6:e2343318. [PMID: 37962886 PMCID: PMC10646732 DOI: 10.1001/jamanetworkopen.2023.43318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
Importance Severe respiratory disease declined during the COVID-19 pandemic, partially due to decreased circulation of respiratory pathogens. However, the outcomes of children with higher risk have not been described using population-based data. Objective To compare respiratory-related hospitalizations, intensive care unit (ICU) admissions, and mortality during the pandemic vs prepandemic, among children with medical complexity (CMC) and without medical complexity (non-CMC). Design, Setting, and Participants This population-based repeated cross-sectional study used Canadian health administrative data of children aged younger than 18 years in community and pediatric hospitals during a pandemic period (April 1, 2020, to February 28, 2022) compared with a 3-year prepandemic period (April 1, 2017, to March 31, 2020). The pandemic period was analyzed separately for year 1 (April 1, 2020, to March 31, 2021) and year 2 (April 1, 2021, to February 28, 2022). Statistical analysis was performed from October 2022 to April 2023. Main Outcomes and Measures Respiratory-related hospitalizations, ICU admissions, and mortality before and during the pandemic among CMC and non-CMC. Results A total of 139 078 respiratory hospitalizations (29 461 respiratory hospitalizations for CMC and 109 617 for non-CMC) occurred during the study period. Among CMC, there were fewer respiratory hospitalizations in both 2020 (rate ratio [RR], 0.44 [95% CI, 0.42-0.46]) and 2021 (RR, 0.55 [95% CI, 0.51-0.62]) compared with the prepandemic period. Among non-CMC, there was an even larger relative reduction in respiratory hospitalizations in 2020 (RR, 0.18 [95% CI, 0.17-0.19]) and a similar reduction in 2021 (RR, 0.55 [95% CI, 0.54-0.56]), compared with the prepandemic period. Reductions in ICU admissions for respiratory illness followed a similar pattern for CMC (2020: RR, 0.56 [95% CI, 0.53-0.59]; 2021: RR, 0.66 [95% CI, 0.63-0.70]) and non-CMC (2020: RR, 0.22 [95% CI, 0.20-0.24]; RR, 0.65 [95% CI, 0.61-0.69]). In-hospital mortality for these conditions decreased among CMC in both 2020 (RR, 0.63 [95% CI, 0.51-0.77]) and 2021 (RR, 0.72 [95% CI, 0.59-0.87]). Conclusions and Relevance This cross-sectional study found a substantial decrease in severe respiratory disease resulting in hospitalizations, ICU admissions, and mortality during the first 2 years of the pandemic compared with the 3 prepandemic years. These findings suggest that future evaluations of the effect of public health interventions aimed at reducing circulating respiratory pathogens during nonpandemic periods of increased respiratory illness may be warranted.
Collapse
Affiliation(s)
- Christina Belza
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Edwin S.H. Leong Centre for Healthy Children, University of Toronto, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eleanor Pullenayegum
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, The University of Toronto, Toronto, Ontario, Canada
| | - Katherine E. Nelson
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Health, Policy, Management and Evaluation, The University of Toronto, Toronto, Ontario, Canada
| | - Kazuyoshi Aoyama
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine. The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, The University of Toronto, Toronto, Ontario, Canada
| | | | | | - Sanober Diaz
- Provincial Council for Maternal and Child Health
| | - Ori Goldberg
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Pulmonology Institute, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Astrid Guttmann
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Edwin S.H. Leong Centre for Healthy Children, University of Toronto, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Health, Policy, Management and Evaluation, The University of Toronto, Toronto, Ontario, Canada
| | - Charlotte Moore Hepburn
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sanjay Mahant
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Health, Policy, Management and Evaluation, The University of Toronto, Toronto, Ontario, Canada
| | | | - Apsara Nathwani
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Natasha R. Saunders
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Edwin S.H. Leong Centre for Healthy Children, University of Toronto, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Health, Policy, Management and Evaluation, The University of Toronto, Toronto, Ontario, Canada
| | - Eyal Cohen
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Edwin S.H. Leong Centre for Healthy Children, University of Toronto, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Health, Policy, Management and Evaluation, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Thornton CS, Acosta N, Surette MG, Parkins MD. Exploring the Cystic Fibrosis Lung Microbiome: Making the Most of a Sticky Situation. J Pediatric Infect Dis Soc 2022; 11:S13-S22. [PMID: 36069903 PMCID: PMC9451016 DOI: 10.1093/jpids/piac036] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 01/02/2023]
Abstract
Chronic lower respiratory tract infections are a leading contributor to morbidity and mortality in persons with cystic fibrosis (pwCF). Traditional respiratory tract surveillance culturing has focused on a limited range of classic pathogens; however, comprehensive culture and culture-independent molecular approaches have demonstrated complex communities highly unique to each individual. Microbial community structure evolves through the lifetime of pwCF and is associated with baseline disease state and rates of disease progression including occurrence of pulmonary exacerbations. While molecular analysis of the airway microbiome has provided insight into these dynamics, challenges remain including discerning not only "who is there" but "what they are doing" in relation to disease progression. Moreover, the microbiome can be leveraged as a multi-modal biomarker for both disease activity and prognostication. In this article, we review our evolving understanding of the role these communities play in pwCF and identify challenges in translating microbiome data to clinical practice.
Collapse
Affiliation(s)
- Christina S Thornton
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael D Parkins
- Corresponding Author: Michael D. Parkins, MD, MSc, FRCPC, Associate Professor, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada. E-mail:
| |
Collapse
|
5
|
Sala MA, Markov NS, Politanska Y, Abdala-Valencia H, Misharin AV, Jain M. Expression of ACE2-a Key SARS-CoV-2 Entry Factor-Is Not Increased in the Nasal Mucosa of People with Cystic Fibrosis. Am J Respir Cell Mol Biol 2022; 67:132-137. [PMID: 35363994 PMCID: PMC9273230 DOI: 10.1165/rcmb.2021-0341le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
| | | | | | | | | | - Manu Jain
- Northwestern UniversityChicago, Illinois,Lurie Children’s HospitalChicago, Illinois,Corresponding author (e-mail: )
| |
Collapse
|
6
|
Yang CH, Hwang CF, Chuang JH, Lian WS, Wang FS, Yang MY. Systemic toll-like receptor 9 agonist CpG oligodeoxynucleotides exacerbates aminoglycoside ototoxicity. Hear Res 2021; 411:108368. [PMID: 34678647 DOI: 10.1016/j.heares.2021.108368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023]
Abstract
The Toll-like receptor (TLR) signaling pathway is the key regulator of the innate immune system in response to systemic infection. Several studies have reported that the systemic TLR4 agonist lipopolysaccharide exacerbates aminoglycoside ototoxicity, but the influence of virus-associated TLR7 and TLR9 signaling cascades on the cochlea is unclear. The present study aimed to investigate the auditory effects of systemic TLR7 and TLR9 agonists during chronic kanamycin treatment. CBA/CaJ mice received the TLR7 agonist gardiquimod or TLR9 agonist CpG oligodeoxynucleotides (ODN) one day before kanamycin injection and on the 5th and 10th days during a 14-day course of kanamycin treatment. We observed that systemic gardiquimod or CpG ODN alone did not affect the baseline auditory brainstem response (ABR) threshold. Three weeks after kanamycin treatment, gardiquimod did not significantly change ABR threshold shifts, whereas CpG ODN significantly increased kanamycin-induced ABR threshold shifts. Furthermore, outer hair cell (OHC) evaluation revealed that CpG ODN reduced distortion product otoacoustic emission amplitudes and increased kanamycin-induced OHC loss. CpG ODN significantly elevated cochlear Irf-7, Tnf-α, Il-1, and Il-6 transcript levels. In addition, an increased number of Iba-1+ cells, which represented activated macrophages, was observed in the cochlea treated with CpG ODN. Our results indicated that systemic CpG ODN exacerbated kanamycin-induced ototoxicity and increased cochlear inflammation. This study implies that patients with underlying virus infection may experience more severe aminoglycoside-induced hearing loss if it occurs.
Collapse
Affiliation(s)
- Chao-Hui Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chung-Feng Hwang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jiin-Haur Chuang
- Division of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Wei-Shiung Lian
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Ming-Yu Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan.
| |
Collapse
|
7
|
Khanal S, Webster M, Niu N, Zielonka J, Nunez M, Chupp G, Slade MD, Cohn L, Sauler M, Gomez JL, Tarran R, Sharma L, Dela Cruz CS, Egan M, Laguna T, Britto CJ. SPLUNC1: a novel marker of cystic fibrosis exacerbations. Eur Respir J 2021; 58:13993003.00507-2020. [PMID: 33958427 DOI: 10.1183/13993003.00507-2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/29/2021] [Indexed: 11/05/2022]
Abstract
Acute pulmonary Exacerbations (AE) are episodes of clinical worsening in cystic fibrosis (CF), often precipitated by infection. Timely detection is critical to minimise morbidity and lung function declines associated with acute inflammation during AE. Based on our previous observations that airway protein Short Palate Lung Nasal epithelium Clone 1 (SPLUNC1) is regulated by inflammatory signals, we investigated the use of SPLUNC1 fluctuations to diagnose and predict AE in CF.We enrolled CF participants from two independent cohorts to measure AE markers of inflammation in sputum and recorded clinical outcomes for a 1-year follow-up period.SPLUNC1 levels were high in healthy controls (n=9, 10.7 μg mL-1), and significantly decreased in CF participants without AE (n=30, 5.7 μg mL-1, p=0.016). SPLUNC1 levels were 71.9% lower during AE (n=14, 1.6 μg mL-1, p=0.0034) regardless of age, sex, CF-causing mutation, or microbiology findings. Cytokines Il-1β and TNFα were also increased in AE, whereas lung function did not consistently decrease. Stable CF participants with lower SPLUNC1 levels were much more likely to have an AE at 60 days (HR: 11.49, Standard Error: 0.83, p=0.0033). Low-SPLUNC1 stable participants remained at higher AE risk even one year after sputum collection (HR: 3.21, Standard Error: 0.47, p=0.0125). SPLUNC1 was downregulated by inflammatory cytokines and proteases increased in sputum during AE.In acute CF care, low SPLUNC1 levels could support a decision to increase airway clearance or to initiate pharmacological interventions. In asymptomatic, stable patients, low SPLUNC1 levels could inform changes in clinical management to improve long-term disease control and clinical outcomes in CF.
Collapse
Affiliation(s)
- Sara Khanal
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Megan Webster
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Naiqian Niu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jana Zielonka
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Myra Nunez
- Division of Pediatric Respiratory Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Geoffrey Chupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Martin D Slade
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lauren Cohn
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maor Sauler
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jose L Gomez
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marie Egan
- Division of Pediatric Pulmonology, Allergy, Immunology, and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Theresa Laguna
- Division of Pediatric Respiratory Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clemente J Britto
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Therapeutic Potential of Antimicrobial Peptides in Polymicrobial Biofilm-Associated Infections. Int J Mol Sci 2021; 22:ijms22020482. [PMID: 33418930 PMCID: PMC7825036 DOI: 10.3390/ijms22020482] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 01/10/2023] Open
Abstract
It is widely recognized that many chronic infections of the human body have a polymicrobial etiology. These include diabetic foot ulcer infections, lung infections in cystic fibrosis patients, periodontitis, otitis, urinary tract infections and even a proportion of systemic infections. The treatment of mixed infections poses serious challenges in the clinic. First, polymicrobial communities of microorganisms often organize themselves as biofilms that are notoriously recalcitrant to antimicrobial therapy and clearance by the host immune system. Secondly, a plethora of interactions among community members may affect the expression of virulence factors and the susceptibility to antimicrobials of individual species in the community. Therefore, new strategies able to target multiple pathogens in mixed populations need to be urgently developed and evaluated. In this regard, antimicrobial or host defense peptides (AMPs) deserve particular attention as they are endowed with many favorable features that may serve to this end. The aim of the present review is to offer a comprehensive and updated overview of studies addressing the therapeutic potential of AMPs in mixed infections, highlighting the opportunities offered by this class of antimicrobials in the fight against polymicrobial infections, but also the limits that may arise in their use for this type of application.
Collapse
|
9
|
Stanford GE, Dave K, Simmonds NJ. Pulmonary Exacerbations in Adults With Cystic Fibrosis: A Grown-up Issue in a Changing Cystic Fibrosis Landscape. Chest 2021; 159:93-102. [PMID: 32966813 PMCID: PMC7502225 DOI: 10.1016/j.chest.2020.09.084] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022] Open
Abstract
Pulmonary exacerbations (PExs) are significant life events in people with cystic fibrosis (CF), associated with declining lung function, reduced quality of life, hospitalizations, and decreased survival. The adult CF population is increasing worldwide, with many patients surviving prolonged periods with severe multimorbid disease. In many countries, the number of adults with CF exceeds the number of children, and PExs are particularly burdensome for adults as they tend to require longer courses and more IV treatment than children. The approach to managing PExs is multifactorial and needs to evolve to reflect this changing adult population. This review discusses PEx definitions, precipitants, treatments, and the wider implications to health-care resources. It reviews current management strategies, their relevance in particular to adults with CF, and highlights some of the gaps in our knowledge. A number of studies are underway to try to answer some of the unmet needs, such as the optimal length of treatment and the use of nonantimicrobial agents alongside antibiotics. An overview of these issues is provided, concluding that with the changing landscape of adult CF care, the definitions and management of PExs may need to evolve to enable continued improvements in outcomes across the age spectrum of CF.
Collapse
Affiliation(s)
- Gemma E Stanford
- Adult Cystic Fibrosis Centre, Royal Brompton Hospital, London, England; National Heart and Lung Institute, Imperial College, London, England.
| | - Kavita Dave
- Adult Cystic Fibrosis Centre, Royal Brompton Hospital, London, England
| | - Nicholas J Simmonds
- Adult Cystic Fibrosis Centre, Royal Brompton Hospital, London, England; National Heart and Lung Institute, Imperial College, London, England
| |
Collapse
|
10
|
Corvol H, de Miranda S, Lemonnier L, Kemgang A, Reynaud Gaubert M, Chiron R, Dalphin ML, Durieu I, Dubus JC, Houdouin V, Prevotat A, Ramel S, Revillion M, Weiss L, Guillot L, Boelle PY, Burgel PR. First Wave of COVID-19 in French Patients with Cystic Fibrosis. J Clin Med 2020; 9:E3624. [PMID: 33182847 PMCID: PMC7697588 DOI: 10.3390/jcm9113624] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Viral infections are known to lead to serious respiratory complications in cystic fibrosis (CF) patients. Hypothesizing that CF patients were a population at high risk for severe respiratory complications from SARS-CoV-2 infection, we conducted a national study to describe the clinical expression of COVID-19 in French CF patients. This prospective observational study involves all 47 French CF centers caring for approximately 7500 CF patients. Between March 1st and June 30th 2020, 31 patients were diagnosed with COVID-19: 19 had positive SARS-CoV-2 RT-PCR in nasopharyngeal swabs; 1 had negative RT-PCR but typical COVID-19 signs on a CT scan; and 11 had positive SARS-CoV-2 serology. Fifteen were males, median (range) age was 31 (9-60) years, and 12 patients were living with a lung transplant. The majority of the patients had CF-related diabetes (n = 19, 61.3%), and a mild lung disease (n = 19, 65%, with percent-predicted forced expiratory volume in 1 s (ppFEV1) > 70). Three (10%) patients remained asymptomatic. For the 28 (90%) patients who displayed symptoms, most common symptoms at admission were fever (n = 22, 78.6%), fatigue (n = 14, 50%), and increased cough (n = 14, 50%). Nineteen were hospitalized (including 11 out of the 12 post-lung transplant patients), seven required oxygen therapy, and four (3 post-lung transplant patients) were admitted to an Intensive Care Unit (ICU). Ten developed complications (including acute respiratory distress syndrome in two post-lung transplant patients), but all recovered and were discharged home without noticeable short-term sequelae. Overall, French CF patients were rarely diagnosed with COVID-19. Further research should establish whether they were not infected or remained asymptomatic upon infection. In diagnosed cases, the short-term evolution was favorable with rare acute respiratory distress syndrome and no death. Post-lung transplant patients had more severe outcomes and should be monitored more closely.
Collapse
Affiliation(s)
- Harriet Corvol
- Pediatric Pulmonology Department and Pediatric CF Center, Assistance Publique Hôpitaux de Paris (APHP) Hôpital Trousseau, 75012 Paris, France
- Centre de Recherche Saint‑Antoine (CRSA), INSERM UMR_S938, Sorbonne Université, 75012 Paris, France; (A.K.); (L.G.)
| | - Sandra de Miranda
- Pulmonology Department and CF Center, Hôpital Foch, 92151 Suresnes, France;
| | | | - Astrid Kemgang
- Centre de Recherche Saint‑Antoine (CRSA), INSERM UMR_S938, Sorbonne Université, 75012 Paris, France; (A.K.); (L.G.)
| | - Martine Reynaud Gaubert
- Pulmonology Department and CF Adult Center, Hôpital Nord, Assistance Publique Hôpitaux de Marseille (APHM), 13915 Marseille, France;
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), IHU Méditerranée Infection, MEPHI, 13005 Marseille, France
| | - Raphael Chiron
- CF Center, Hôpital Arnaud de Villeneuve, CHU de Montpellier, 34295 Montpellier, France;
| | - Marie-Laure Dalphin
- Pediatric CF Center, Hôpital Jean-Minjoz, CHU de Besançon, 25030 Besançon, France;
| | - Isabelle Durieu
- Internal Medicine Department and Adult CF Center, Hospices Civils de Lyon, EA 7425 HESPER, Université de Lyon, 69495 Lyon, France;
| | - Jean-Christophe Dubus
- Pediatric Pulmonology Department and Pediatric CF Center, APHM, 13385 Marseille, France;
| | | | - Anne Prevotat
- Adult CF Center, Hôpital Calmette and University Lille, 59037 Lille, France;
| | - Sophie Ramel
- Pediatric and Adult CF Center, 29680 Roscoff, France;
| | - Marine Revillion
- Pediatric CF Center, Hôpital Jeanne de Flandres, CHU Lille, 59037 Lille, France;
| | - Laurence Weiss
- Pediatric CF Center, Hôpitaux Universitaires de Strasbourg, 67098 Strasbourg, France;
| | - Loic Guillot
- Centre de Recherche Saint‑Antoine (CRSA), INSERM UMR_S938, Sorbonne Université, 75012 Paris, France; (A.K.); (L.G.)
| | - Pierre-Yves Boelle
- Institut Pierre Louis d’Epidémiologie et de Santé Publique, INSERM, APHP, Sorbonne Université, 75012 Paris, France;
| | - Pierre-Régis Burgel
- Respiratory Medicine and National Reference CF Center, AP-HP Hôpital Cochin, 75014 Paris, France;
- Institut Cochin, Inserm U-1016, Université de Paris, 75014 Paris, France
| | | |
Collapse
|
11
|
Influenza B outbreak at an adult cystic fibrosis centre - Clinical impact and factors influencing spread. J Cyst Fibros 2020; 19:808-814. [DOI: 10.1016/j.jcf.2020.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/03/2020] [Accepted: 04/21/2020] [Indexed: 11/19/2022]
|
12
|
Hizal M, Yalcin E, Alp A, Ozden M, Karakaya J, Eryilmaz Polat S, Tugcu G, Dogru D, Ozcelik U, Kiper N. Respiratory viruses: What is their role in acute exacerbations in children with cystic fibrosis? Pediatr Pulmonol 2020; 55:1646-1652. [PMID: 32227679 DOI: 10.1002/ppul.24750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 02/02/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Respiratory viruses (RVs) are frequently present in the airways of patients with cystic fibrosis (CF) during pulmonary exacerbations (PEx). METHOD AND OBJECTIVES This prospective, longitudinal study was performed to examine the role of RVs in acute exacerbations in children with CF. Sputum samples or additional midturbinate swabs were tested from all children using a polymerase chain reaction panel. The primary aims of the study were to determine the prevalence and etiologic role of RVs in exacerbations of CF and to compare changes with RV-positive and RV-negative infections. The secondary aims were to determine the predictive factors for RV-related exacerbations. RESULTS From 50 patients with PEx, 23 (48.9%) sputum samples were virus-positive. With a combination of sputum and swab, viral positivity increased to 56%. The virus-positive group presented more frequently with hypoxia (oxygen saturation <93%) than the virus-negative group (P = .048). Virus-positive exacerbations were not associated with an increase in colonization rates or greater lung function decline over 12 months. CONCLUSIONS RVs frequently present during PEx of CF. However, predicting viral infections is difficult in this group. Only the presence of hypoxia may raise the suspicion of an accompanying viral agent. The combination of sputum and nasal swab samples increases the diagnostic yield in viral infections of CF. Despite their high frequency, the presence of RVs had no impact on clinical outcomes, such as a decline in lung function and increased colonization rates.
Collapse
Affiliation(s)
- Mina Hizal
- Department of Pediatrics, Division of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ebru Yalcin
- Department of Pediatrics, Division of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Alpaslan Alp
- Department of Microbiology, Hacettepe University, Ankara, Turkey
| | - Meltem Ozden
- Department of Microbiology, Hacettepe University, Ankara, Turkey
| | - Jale Karakaya
- Department of Biostatistics, Hacettepe University, Ankara, Turkey
| | - Sanem Eryilmaz Polat
- Department of Pediatrics, Division of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gokcen Tugcu
- Department of Pediatrics, Division of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Deniz Dogru
- Department of Pediatrics, Division of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ugur Ozcelik
- Department of Pediatrics, Division of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Nural Kiper
- Department of Pediatrics, Division of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Abstract
Cystic fibrosis (CF) is a genetic, multisystem disease due to defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an anion channel responsible for chloride and bicarbonate trafficking. Although this channel is expressed in many tissues, its impaired function in airway epithelial cells leads to hyperviscous mucous secretions impeding effective mucociliary clearance. Impaired clearance of inhaled microorganisms results in the establishment of chronic infection, triggering an overexaggerated inflammatory response. The resulting release of inflammatory cytokines and enzymes causes pulmonary damage in the form of bronchiectasis, further impairing mucociliary action, forming a vicious cycle. Subsequent respiratory failure remains the leading cause of death in individuals with CF.
Collapse
Affiliation(s)
- Stephanie Duggins Davis
- The University of North Carolina at Chapel Hill, Department of Pediatrics, UNC Children’s Hospital, Chapel Hill, NC USA
| | - Margaret Rosenfeld
- Department of Pediatrics, University of Washington School of Medicine, Division of Pulmonary and Sleep Medicine Seattle Children’s Hospital, Seattle, WA USA
| | - James Chmiel
- Department of Pediatrics, Indiana University School of Medicine, Division of Pediatric Pulmonology, Allergy and Sleep Medicine, Riley Hospital for Children at IU Health, Indianapolis, IN USA
| |
Collapse
|
14
|
Abstract
Although survival of individuals with cystic fibrosis (CF) has been continuously improving for the past 40 years, respiratory failure secondary to recurrent pulmonary infections remains the leading cause of mortality in this patient population. Certain pathogens such as Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and species of the Burkholderia cepacia complex continue to be associated with poorer clinical outcomes including accelerated lung function decline and increased mortality. In addition, other organisms such as anaerobes, viruses, and fungi are increasingly recognized as potential contributors to disease progression. Culture-independent molecular methods are also being used for diagnostic purposes and to examine the interaction of microorganisms in the CF airway. Given the importance of CF airway infections, ongoing initiatives to promote understanding of the epidemiology, clinical course, and treatment options for these infections are needed.
Collapse
Affiliation(s)
- Ana C Blanchard
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Valerie J Waters
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Kiedrowski MR, Bomberger JM. Viral-Bacterial Co-infections in the Cystic Fibrosis Respiratory Tract. Front Immunol 2018; 9:3067. [PMID: 30619379 PMCID: PMC6306490 DOI: 10.3389/fimmu.2018.03067] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
A majority of the morbidity and mortality associated with the genetic disease Cystic Fibrosis (CF) is due to lung disease resulting from chronic respiratory infections. The CF airways become chronically colonized with bacteria in childhood, and over time commensal lung microbes are displaced by bacterial pathogens, leading to a decrease in microbial diversity that correlates with declining patient health. Infection with the pathogen Pseudomonas aeruginosa is a major predictor of morbidity and mortality in CF, with CF individuals often becoming chronically colonized with P. aeruginosa in early adulthood and thereafter having an increased risk of hospitalization. Progression of CF respiratory disease is also influenced by infection with respiratory viruses. Children and adults with CF experience frequent respiratory viral infections with respiratory syncytial virus (RSV), rhinovirus, influenza, parainfluenza, and adenovirus, with RSV and influenza infection linked to the greatest decreases in lung function. Along with directly causing severe respiratory symptoms in CF populations, the impact of respiratory virus infections may be more far-reaching, indirectly promoting bacterial persistence and pathogenesis in the CF respiratory tract. Acquisition of P. aeruginosa in CF patients correlates with seasonal respiratory virus infections, and CF patients colonized with P. aeruginosa experience increased severe exacerbations and declines in lung function during respiratory viral co-infection. In light of such observations, efforts to better understand the impact of viral-bacterial co-infections in the CF airways have been a focus of clinical and basic research in recent years. This review summarizes what has been learned about the interactions between viruses and bacteria in the CF upper and lower respiratory tract and how co-infections impact the health of individuals with CF.
Collapse
Affiliation(s)
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Ling KM, Garratt LW, Lassmann T, Stick SM, Kicic A. Elucidating the Interaction of CF Airway Epithelial Cells and Rhinovirus: Using the Host-Pathogen Relationship to Identify Future Therapeutic Strategies. Front Pharmacol 2018; 9:1270. [PMID: 30464745 PMCID: PMC6234657 DOI: 10.3389/fphar.2018.01270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/17/2018] [Indexed: 01/07/2023] Open
Abstract
Chronic lung disease remains the primary cause of mortality in cystic fibrosis (CF). Growing evidence suggests respiratory viral infections are often more severe in CF compared to healthy peers and contributes to pulmonary exacerbations (PEx) and deterioration of lung function. Rhinovirus is the most prevalent respiratory virus detected, particularly during exacerbations in children with CF <5 years old. However, even though rhinoviral infections are likely to be one of the factors initiating the onset of CF lung disease, there is no effective targeted treatment. A better understanding of the innate immune responses by CF airway epithelial cells, the primary site of infection for viruses, is needed to identify why viral infections are more severe in CF. The aim of this review is to present the clinical impact of virus infection in both young children and adults with CF, focusing on rhinovirus infection. Previous in vitro and in vivo investigations looking at the mechanisms behind virus infection will also be summarized. The review will finish on the potential of transcriptomics to elucidate the host-pathogen responses by CF airway cells to viral infection and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Kak-Ming Ling
- Paediatrics, Medical School, Faculty of Healthy and Medical Science, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Luke W Garratt
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Timo Lassmann
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Stephen M Stick
- Paediatrics, Medical School, Faculty of Healthy and Medical Science, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Paediatrics, Medical School, Faculty of Healthy and Medical Science, University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands, WA, Australia.,Occupation and Environment, School of Public Health, Curtin University, Bentley, WA, Australia
| | | | | | | |
Collapse
|
17
|
Staphylococcus aureus Biofilm Growth on Cystic Fibrosis Airway Epithelial Cells Is Enhanced during Respiratory Syncytial Virus Coinfection. mSphere 2018; 3:3/4/e00341-18. [PMID: 30111629 PMCID: PMC6094059 DOI: 10.1128/msphere.00341-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The airways of individuals with cystic fibrosis (CF) are commonly chronically infected, and Staphylococcus aureus is the dominant bacterial respiratory pathogen in CF children. CF patients also experience frequent respiratory virus infections, and it has been hypothesized that virus coinfection increases the severity of S. aureus lung infections in CF. We investigated the relationship between S. aureus and the CF airway epithelium and observed that coinfection with respiratory syncytial virus (RSV) enhances S. aureus biofilm growth. However, iron, which was previously found to be a significant factor influencing Pseudomonas aeruginosa biofilms during virus coinfection, plays a minor role in S. aureus coinfections. Transcriptomic analyses provided new insight into how bacterial and viral pathogens alter host defense and suggest potential pathways by which dampening of host responses to one pathogen may favor persistence of another in the CF airways, highlighting complex interactions occurring between bacteria, viruses, and the host during polymicrobial infections. Staphylococcus aureus is a major cause of chronic respiratory infection in patients with cystic fibrosis (CF). We recently showed that Pseudomonas aeruginosa exhibits enhanced biofilm formation during respiratory syncytial virus (RSV) coinfection on human CF airway epithelial cells (AECs). The impact of respiratory viruses on other bacterial pathogens during polymicrobial infections in CF remains largely unknown. To investigate if S. aureus biofilm growth in the CF airways is impacted by virus coinfection, we evaluated S. aureus growth on CF AECs. Initial studies showed an increase in S. aureus growth over 24 h, and microscopy revealed biofilm-like clusters of bacteria on CF AECs. Biofilm growth was enhanced when CF AECs were coinfected with RSV, and this observation was confirmed with S. aureus CF clinical isolates. Apical conditioned medium from RSV-infected cells promoted S. aureus biofilms in the absence of the host epithelium, suggesting that a secreted factor produced during virus infection benefits S. aureus biofilms. Exogenous iron addition did not significantly alter biofilm formation, suggesting that it is not likely the secreted factor. We further characterized S. aureus-RSV coinfection in our model using dual host-pathogen RNA sequencing, allowing us to observe specific contributions of S. aureus and RSV to the host response during coinfection. Using the dual host-pathogen RNA sequencing approach, we observed increased availability of nutrients from the host and upregulation of S. aureus genes involved in growth, protein translation and export, and amino acid metabolism during RSV coinfection. IMPORTANCE The airways of individuals with cystic fibrosis (CF) are commonly chronically infected, and Staphylococcus aureus is the dominant bacterial respiratory pathogen in CF children. CF patients also experience frequent respiratory virus infections, and it has been hypothesized that virus coinfection increases the severity of S. aureus lung infections in CF. We investigated the relationship between S. aureus and the CF airway epithelium and observed that coinfection with respiratory syncytial virus (RSV) enhances S. aureus biofilm growth. However, iron, which was previously found to be a significant factor influencing Pseudomonas aeruginosa biofilms during virus coinfection, plays a minor role in S. aureus coinfections. Transcriptomic analyses provided new insight into how bacterial and viral pathogens alter host defense and suggest potential pathways by which dampening of host responses to one pathogen may favor persistence of another in the CF airways, highlighting complex interactions occurring between bacteria, viruses, and the host during polymicrobial infections.
Collapse
|
18
|
Purcaro G, Rees CA, Melvin JA, Bomberger JM, Hill JE. Volatile fingerprinting of Pseudomonas aeruginosa and respiratory syncytial virus infection in an in vitro cystic fibrosis co-infection model. J Breath Res 2018; 12:046001. [PMID: 29735804 DOI: 10.1088/1752-7163/aac2f1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Volatile molecules in exhaled breath represent potential biomarkers in the setting of infectious diseases, particularly those affecting the respiratory tract. In particular, Pseudomonas aeruginosa is a critically important respiratory pathogen in specific subsets of the population, such as those with cystic fibrosis (CF). Infections caused by P. aeruginosa can be particularly problematic when co-infection with respiratory syncytial virus (RSV) occurs, as this is correlated with the establishment of chronic P. aeruginosa infection. In the present study, we evaluate the volatile metabolites produced by P. aeruginosa (PAO1)-infected, RSV-infected, co-infected, or uninfected CF bronchial epithelial (CFBE) cells, in vitro. We identified a volatile metabolic signature that could discriminate between P. aeruginosa-infected and non-P. aeruginosa-infected CFBE with an area under the receiver operating characteristic curve (AUROC) of 0.850, using the machine learning algorithm random forest (RF). Although we could not discriminate between RSV-infected and non-RSV-infected CFBE (AUROC = 0.431), we note that sample classification probabilities for RSV-infected cell, generated using RF, were between those of uninfected CFBE and P. aeruginosa-infected CFBE, suggesting that RSV infection may result in a volatile metabolic profile that shares attributes with both of these groups. To more precisely elucidate the biological origins of the volatile metabolites that were discriminatory between P. aeruginosa-infected and non-P. aeruginosa-infected CFBE, we measured the volatile metabolites produced by P. aeruginosa grown in the absence of CFBE. Our findings suggest that the discriminatory metabolites produced likely result from the interaction of P. aeruginosa with the CFBE cells, rather than the metabolism of media components by the bacterium. Taken together, our findings support the notion that P. aeruginosa interacting with CFBE yields a particular volatile metabolic signature. Such a signature may have clinical utility in the monitoring of individuals with CF.
Collapse
Affiliation(s)
- Giorgia Purcaro
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, United States of America
| | | | | | | | | |
Collapse
|
19
|
Tian B, Patrikeev I, Ochoa L, Vargas G, Belanger KK, Litvinov J, Boldogh I, Ameredes BT, Motamedi M, Brasier AR. NF-κB Mediates Mesenchymal Transition, Remodeling, and Pulmonary Fibrosis in Response to Chronic Inflammation by Viral RNA Patterns. Am J Respir Cell Mol Biol 2017; 56:506-520. [PMID: 27911568 DOI: 10.1165/rcmb.2016-0259oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Airway remodeling is resultant of a complex multicellular response associated with a progressive decline of pulmonary function in patients with chronic airway disease. Here, repeated infections with respiratory viruses are linked with airway remodeling through largely unknown mechanisms. Although acute activation of the Toll-like receptor (TLR) 3 pathway by extracellular polyinosinic:polycytidylic acid (poly[I:C]) induces innate signaling through the NF-κB transcription factor in normal human small airway epithelial cells, prolonged (repetitive or tonic) poly(I:C) stimulation produces chronic stress fiber formation, mesenchymal transition, and activation of a fibrotic program. Chronic poly(I:C) stimulation enhanced the expression of core mesenchymal regulators Snail family zinc finger 1, zinc finger E-box binding homeobox, mesenchymal intermediate filaments (vimentin), and extracellular matrix proteins (fibronectin-1), and collagen 1A. This mesenchymal transition was prevented by silencing expression of NF-κB/RelA or administration of a small-molecule inhibitor of the IκB kinase, BMS345541. Acute poly(I:C) exposure in vivo induced profound neutrophilic airway inflammation. When administered repetitively, poly(I:C) resulted in enhanced fibrosis observed by lung micro-computed tomography, second harmonic generation microscopy of optically cleared lung tissue, and by immunohistochemistry. Epithelial flattening, expansion of the epithelial mesenchymal trophic unit, and enhanced Snail family zinc finger 1 and fibronectin 1 expression in airway epithelium were also observed. Repetitive poly(I:C)-induced airway remodeling, fibrosis, and epithelial-mesenchymal transition was inhibited by BMS345541 administration. Based on this novel model of viral inflammation-induced remodeling, we conclude that NF-κB is a major controller of epithelial-mesenchymal transition and pulmonary fibrosis, a finding that has potentially important relevance to airway remodeling produced by repetitive viral infections.
Collapse
Affiliation(s)
- Bing Tian
- Departments of 1 Internal Medicine.,2 Sealy Center for Molecular Medicine
| | | | | | | | - KarryAnne K Belanger
- Departments of 1 Internal Medicine.,4 Department of Biochemistry and Molecular Biology, and
| | - Julia Litvinov
- Departments of 1 Internal Medicine.,5 Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Istvan Boldogh
- 2 Sealy Center for Molecular Medicine.,6 Institute for Translational Sciences.,5 Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Bill T Ameredes
- Departments of 1 Internal Medicine.,2 Sealy Center for Molecular Medicine.,6 Institute for Translational Sciences
| | | | - Allan R Brasier
- Departments of 1 Internal Medicine.,2 Sealy Center for Molecular Medicine.,6 Institute for Translational Sciences
| |
Collapse
|
20
|
Respiratory Syncytial Virus Infection-associated Hospitalization Rates in Infants and Children With Cystic Fibrosis. Pediatr Infect Dis J 2017; 36:545-548. [PMID: 28005688 DOI: 10.1097/inf.0000000000001501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Infections with respiratory syncytial virus (RSV) are the leading cause for hospital admissions in infants and young children. The incidence of RSV-related hospitalizations in patients with cystic fibrosis (CF) is unclear. To date, no effective treatment for RSV infections is available. Thus, prophylaxis with the monoclonal antibody palivizumab is an important option. METHODS In a retrospective, single-center study at the Department of Pediatrics and Adolescent Medicine of the Medical University Graz, Austria, we analyzed all CF patients born between 1995 and 2012, who were admitted for respiratory problems between 1995 and 2014. We also defined a group of hypothetical RSV infections with the following criteria: admission caused by a respiratory infection during the first RSV season of life when no test for RSV was performed. Furthermore, we assessed the effectiveness of palivizumab as a prevention of RSV-related hospitalizations. RESULTS A total of 51 patients with CF were identified. The RSV-related hospitalization rate for the first RSV season was 0. Two patients (3.9%) were hospitalized 3 and 4 times, respectively, caused by RSV infections. The mean age at the time of admission was 12.4 ± 2.5 years. One case (1.9%) met our criteria for hypothetical RSV infections. There was no difference in RSV-related hospitalization rates between patients who received palivizumab and those who did not. CONCLUSIONS We found a low rate of RSV-related hospitalizations and could not demonstrate a benefit of palivizumab prophylaxis regarding a decrease of RSV-related hospital admissions. The role of RSV reinfections in CF patients beyond infancy appears to be underestimated.
Collapse
|
21
|
Kua KP, Lee SWH. Systematic Review of the Safety and Efficacy of Palivizumab among Infants and Young Children with Cystic Fibrosis. Pharmacotherapy 2017; 37:755-769. [PMID: 28423192 DOI: 10.1002/phar.1936] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a common pathogen in infants with cystic fibrosis (CF). The use of palivizumab prophylaxis for RSV infection as the standard of care for infants with CF remains controversial. OBJECTIVE To evaluate the efficacy of palivizumab in reducing the incidence of RSV hospitalization in children with CF who are younger than 2 years. METHODS Four electronic databases (PubMed, Embase, CINAHL, and CENTRAL) were searched from inception until January 31, 2017, for clinical studies investigating the use of palivizumab in infants with CF aged less than 2 years. The primary outcome was hospitalization rate due to RSV infection. Secondary outcomes included hospitalization for respiratory illness, length of hospital stay, safety (adverse effects), and cost-effectiveness of palivizumab prophylaxis. RESULTS The review included a total of 10 studies (six cohort studies, two before-and-after studies, one cross-sectional study, and one randomized controlled trial) involving 3891 patients with CF. Seven studies reported that palivizumab prophylaxis had a positive impact on the rate of RSV hospitalization. Five studies (n=3404) reported that palivizumab prophylaxis significantly reduced the rate of hospitalization due to RSV infection compared to no prophylaxis. One study (n=5) demonstrated patients with CF who received palivizumab had no RSV hospitalization. Another study showed infants with CF receiving palivizumab (n=117) had a lower risk of hospitalization for RSV infection compared with premature infants (gestational age < 35 completed weeks) who received palivizumab (n=4880). CONCLUSIONS Evidence from the literature suggests that palivizumab may have a potential role in reducing RSV hospitalization in children aged less than 2 years with CF. Given the lack of overall data, additional research is warranted to better understand the efficacy and safety of prophylactic palivizumab in infants with CF.
Collapse
Affiliation(s)
- Kok Pim Kua
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Department of Pharmacy, Petaling District Health Office (Ministry of Health Malaysia), Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Shaun Wen Huey Lee
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
22
|
Maciejewski BA, Jamieson KC, Arnason JW, Kooi C, Wiehler S, Traves SL, Leigh R, Proud D. Rhinovirus-bacteria coexposure synergistically induces CCL20 production from human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2017; 312:L731-L740. [PMID: 28283475 DOI: 10.1152/ajplung.00362.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 01/23/2023] Open
Abstract
Exacerbations of chronic obstructive pulmonary disease are triggered by viral or bacterial pathogens, with human rhinovirus (HRV) and nontypeable Hemophilus influenzae (NTHI) among the most commonly detected pathogens. Patients who suffer from concomitant viral and bacterial infection have more severe exacerbations. The airway epithelial cell is the initial site of viral and bacterial interactions, and CCL20 is an epithelial chemokine that attracts immature dendritic cells to the airways and can act as an antimicrobial. As such, it contributes to innate and adaptive immune responses to infection. We used primary cultures of human bronchial epithelial cells and the BEAS-2B cell line to examine the effects of bacterial-viral coexposure, as well as each stimulus alone, on epithelial expression of CXCL8 and, in particular, CCL20. HRV-bacterial coexposure induced synergistic production of CXCL8 and CCL20 compared with the sum of each stimulus alone. Synergistic induction of CCL20 did not require viral replication and occurred with two different HRV serotypes that use different viral receptors. Synergy was also seen with either NTHI or Pseudomonas aeruginosa Synergistic induction of CCL20 was transcriptionally regulated. Although NF-κB was required for transcription, it did not regulate synergy, but NF-IL-6 did appear to contribute. Among MAPK inhibitors studied, neither SB203580 nor PD98059 had any effect on synergy, whereas U0126 prevented synergistic induction of CCL20 by HRV and bacteria, apparently via "off-target" effects. Thus bacterial-viral coexposure synergistically increases innate immune responses compared with individual infections. We speculate that this increased inflammatory response leads to worse clinical outcomes.
Collapse
Affiliation(s)
- Barbara A Maciejewski
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| | - Kyla C Jamieson
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| | - Jason W Arnason
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| | - Cora Kooi
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| | - Shahina Wiehler
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| | - Suzanne L Traves
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| | - Richard Leigh
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David Proud
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| |
Collapse
|
23
|
Zang X, Monge ME, McCarty NA, Stecenko AA, Fernández FM. Feasibility of Early Detection of Cystic Fibrosis Acute Pulmonary Exacerbations by Exhaled Breath Condensate Metabolomics: A Pilot Study. J Proteome Res 2016; 16:550-558. [DOI: 10.1021/acs.jproteome.6b00675] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaoling Zang
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - María Eugenia Monge
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
| | - Nael A. McCarty
- Emory+Children’s
Center for Cystic Fibrosis and Airways Disease Research and Department
of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Arlene A. Stecenko
- Emory+Children’s
Center for Cystic Fibrosis and Airways Disease Research and Department
of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Facundo M. Fernández
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Sharma A, Xu Y, Sung B, Vincent CT, Worgall T, Worgall S. Regulation of the Coxsackie and adenovirus receptor expression is dependent on cystic fibrosis transmembrane regulator in airway epithelial cells. Cell Microbiol 2016; 19. [PMID: 27527752 DOI: 10.1111/cmi.12654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022]
Abstract
The coxsackievirus and adenovirus receptor (CAR), in addition to serving as viral receptor, is a component of tight junctions and plays an important role in tissue homeostasis. Defects in the cystic fibrosis transmembrane regulator (CFTR) in lung epithelial cells are linked to inflammation and susceptibility for respiratory tract infections. Here, we demonstrate that CAR expression and infectivity with adenovirus (Ad) are increased in cystic fibrosis airway epithelial cells. Inhibition of CFTR or histone deacetylase (HDAC) enhanced CAR expression while CFTR overexpression or restoration of the diminished HDAC activity in cystic fibrosis cells reduced CAR expression. This connects the CFTR to CAR expression and infectivity with adenovirus through HDAC.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Yaqin Xu
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Biin Sung
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - C Theresa Vincent
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA.,Department of Pharmacology and Physiology, Karolinska Institute, Stockholm, Sweden
| | - Tilla Worgall
- Department of Pathology, Columbia University, New York, New York, USA
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA.,Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
25
|
Abstract
Pulmonary exacerbations treated with intravenous antibiotics have significant, well-characterized negative consequences on clinical outcomes in cystic fibrosis (CF). The impact of milder exacerbations in children with CF, commonly treated with oral antibiotics, are less well defined. Pulmonary exacerbations have multiple triggers, but viral infections are particularly common in children. Children with CF and healthy control subjects have similar frequencies of viral respiratory infections, but there is evidence of greater virus-related morbidity in patients with CF, likely due to a combination of increased viral load, more pronounced inflammatory response, and more pronounced impairment in mucociliary clearance. In recent clinical trials in children, definitions have been used that are more symptom based rather than intervention based. These studies have demonstrated differences in the spectrum of symptoms between children and older patients but have also shown that, despite low threshold definitions, a considerable number of patients receive treatment for events not fulfilling the pulmonary exacerbation criteria. Additional research is needed to determine the impact of these milder exacerbations on lung function recovery and time to subsequent exacerbation as well as long-term outcomes such as mortality.
Collapse
|
26
|
Abstract
Abstract
Cystic fibrosis (CF) lung disease is characterized by chronic infection and inflammation. Among inflammatory cells, neutrophils represent the major cell population accumulating in the airways of CF patients. While neutrophils provide the first defensive cellular shield against bacterial and fungal pathogens, in chronic disease conditions such as CF these short-lived immune cells release their toxic granule contents that cause tissue remodeling and irreversible structural damage to the host. A variety of human and murine studies have analyzed neutrophils and their products in the context of CF, yet their precise functional role and therapeutic potential remain controversial and incompletely understood. Here, we summarize the current evidence in this field to shed light on the complex and multi-faceted role of neutrophils in CF lung disease.
Collapse
|
27
|
Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection. mSphere 2016; 1:mSphere00083-16. [PMID: 27303744 PMCID: PMC4888888 DOI: 10.1128/msphere.00083-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/15/2016] [Indexed: 01/13/2023] Open
Abstract
Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms formed by the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen Pseudomonas aeruginosa during coinfection with respiratory syncytial virus. We also observed antiviral activity, indicating the ability of engineered antimicrobial peptides to act as cross-kingdom single-molecule combination therapies. Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms formed by the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen Pseudomonas aeruginosa during coinfection with respiratory syncytial virus. We also observed antiviral activity, indicating the ability of engineered antimicrobial peptides to act as cross-kingdom single-molecule combination therapies.
Collapse
|
28
|
Frequency and Duration of Rhinovirus Infections in Children With Cystic Fibrosis and Healthy Controls: A Longitudinal Cohort Study. Pediatr Infect Dis J 2016; 35:379-83. [PMID: 26658528 DOI: 10.1097/inf.0000000000001014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Respiratory viral infections are an important cause of morbidity in patients with chronic respiratory diseases, such as cystic fibrosis (CF). We hypothesized that patients with CF are more susceptible to human rhinovirus (HRV) infections than healthy controls. METHODS In a 6-month winter period, 20 young children with CF (0-7 years) and 18 age-matched healthy controls were sampled biweekly for HRV-polymerase chain reaction using nasopharyngeal swabs, irrespective of respiratory symptoms. Respiratory symptoms were scored twice a week. If any symptom was present, an additional sample was obtained. All HRV-positive samples were genotyped to distinguish HRV subtypes. RESULTS We analyzed 645 samples, with comparable total numbers of samples in both groups. HRV was detected in 40.8% of all analyzed samples. Children with CF had significantly more HRV-positive samples compared with healthy controls, with a mean number (± standard deviation) of 8.1 ± 2.3 versus 5.7 ± 2.9 positive samples per individual (P < 0.01). Prolonged detection (>2 weeks) with the same HRV subtype occurred more frequently in the CF patients (P < 0.01). The genetic distribution and pattern of phylogenetic diversity of the different HRV subtypes were similar in both groups. CONCLUSIONS This is the first in vivo longitudinal study showing that HRV is detected more frequently and persists for longer periods in CF patients compared with healthy controls. This might indicate increased viral replication and/or decreased antiviral defense in patients with CF.
Collapse
|
29
|
Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity. Proc Natl Acad Sci U S A 2016; 113:1642-7. [PMID: 26729873 DOI: 10.1073/pnas.1516979113] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Clinical observations link respiratory virus infection and Pseudomonas aeruginosa colonization in chronic lung disease, including cystic fibrosis (CF) and chronic obstructive pulmonary disease. The development of P. aeruginosa into highly antibiotic-resistant biofilm communities promotes airway colonization and accounts for disease progression in patients. Although clinical studies show a strong correlation between CF patients' acquisition of chronic P. aeruginosa infections and respiratory virus infection, little is known about the mechanism by which chronic P. aeruginosa infections are initiated in the host. Using a coculture model to study the formation of bacterial biofilm formation associated with the airway epithelium, we show that respiratory viral infections and the induction of antiviral interferons promote robust secondary P. aeruginosa biofilm formation. We report that the induction of antiviral IFN signaling in response to respiratory syncytial virus (RSV) infection induces bacterial biofilm formation through a mechanism of dysregulated iron homeostasis of the airway epithelium. Moreover, increased apical release of the host iron-binding protein transferrin during RSV infection promotes P. aeruginosa biofilm development in vitro and in vivo. Thus, nutritional immunity pathways that are disrupted during respiratory viral infection create an environment that favors secondary bacterial infection and may provide previously unidentified targets to combat bacterial biofilm formation.
Collapse
|
30
|
Goetz DM, Singh S, Sheehan D. Effect of enterovirus D68 on Lung Clearance Index in patients with cystic fibrosis: A case report. Respir Med Case Rep 2015; 16:125-7. [PMID: 26744677 PMCID: PMC4681970 DOI: 10.1016/j.rmcr.2015.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 01/13/2023] Open
Abstract
Cystic fibrosis (CF) causes airways obstruction and a decline in percent predicted forced expiratory volume in 1 s (FEV1%). FEV1% is an objective measure of a pulmonary exacerbation of CF; improvement in FEV1% is the endpoint used often to determine success of treatment of these acute declines in pulmonary health. Lung Clearance Index (LCI), derived from multiple breath inert gas washout (MBW) test, measures ventilation inhomogeneity and small airways dysfunction. In the United States in 2014–2015, enterovirus D68 (EV-D68), a novel virus, led to hospitalizations in children because of respiratory distress. This report describes 2 patients with CF admitted for pulmonary exacerbations who were enrolled in an inpatient study to assess patient satisfaction and utility of MBW to measure LCI. Diagnostic testing indicated that these patients were infected with EV-D68. Although their FEV1% improved to their previous baseline following treatment for pulmonary exacerbation, it was discordant with LCI. We discuss LCI as a novel measure of pulmonary function and hypothesize that, based on these cases, it may be a more sensitive indicator of ongoing post-viral airways dysfunction as compared to FEV1%.
Collapse
Affiliation(s)
- Danielle M. Goetz
- Corresponding author. Pediatric Pulmonology, Women and Children's Hospital of Buffalo, 219 Bryant Street, Buffalo, NY 14222, USA.Pediatric PulmonologyWomen and Children's Hospital of Buffalo219 Bryant StreetBuffaloNY14222USA
| | | | | |
Collapse
|
31
|
Dauletbaev N, Cammisano M, Herscovitch K, Lands LC. Stimulation of the RIG-I/MAVS Pathway by Polyinosinic:Polycytidylic Acid Upregulates IFN-β in Airway Epithelial Cells with Minimal Costimulation of IL-8. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:2829-41. [PMID: 26283481 DOI: 10.4049/jimmunol.1400840] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/22/2015] [Indexed: 12/24/2022]
Abstract
Pharmacological stimulation of the antiviral cytokine IFN-β in the airways may help to counter deleterious virus-induced exacerbations in chronic inflammatory lung diseases (asthma, chronic obstructive pulmonary disease, or cystic fibrosis). Polyinosinic-polycytidylic acid [poly(I:C)] is a known inducer of IFN-β but also costimulates an inflammatory response. The latter response is undesirable given the pre-existing airway inflammation in these diseases. The objective of our study was to identify conditions for poly(I:C) to selectively upregulate IFN-β in airway epithelial cells without a concomitant inflammatory response. The inflammatory response was gauged by production of the chemokine IL-8. Using cell lines and primary airway epithelial cells (both submerged and well-differentiated), we observed that pure poly(I:C) stimulated IFN-β mainly through the TLR3/TRIF pathway and IL-8 through an unidentified pathway. The magnitude of the IL-8 response stimulated by pure poly(I:C) matched or even exceeded that of IFN-β. Furthermore, this IL-8 response could not be pharmacologically downregulated without affecting IFN-β. In contrast, we show that stimulation of the RIG-I/MAVS pathway, such as when poly(I:C) is delivered intracellularly in a complex with liposomes or via nucleofection, selectively stimulates IFN-β with low IL-8 costimulation. The magnitude of IFN-β stimulation by liposome-encapsulated poly(I:C) is markedly diminished in well-differentiated cells. In conclusion, it is feasible to augment IFN-β production in airway epithelial cells without excessive costimulation of IL-8 if the RIG-I/MAVS pathway is stimulated, such as via liposomal delivery of poly(I:C). Better cytoplasmic delivery vehicles are needed to efficiently stimulate this pathway in well-differentiated cells.
Collapse
Affiliation(s)
- Nurlan Dauletbaev
- The Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Maria Cammisano
- The Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Kassey Herscovitch
- The Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Larry C Lands
- Respiratory Medicine, Montreal Children's Hospital, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
32
|
Leigh R, Proud D. Virus-induced modulation of lower airway diseases: pathogenesis and pharmacologic approaches to treatment. Pharmacol Ther 2014; 148:185-98. [PMID: 25550230 PMCID: PMC7173263 DOI: 10.1016/j.pharmthera.2014.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 02/08/2023]
Abstract
Uncomplicated upper respiratory viral infections are the most common cause of days lost from work and school and exert a major economic burden. In susceptible individuals, however, common respiratory viruses, particularly human rhinoviruses, also can have a major impact on diseases that involve the lower airways, including asthma, chronic obstructive pulmonary diseases (COPD) and cystic fibrosis (CF). Respiratory virus-induced wheezing illnesses in early life are a significant risk factor for the subsequent development of asthma, and virus infections may also play a role in the development and progression of airway remodeling in asthma. It is clear that upper respiratory tract virus infections can spread to the lower airway and trigger acute attacks of asthma, COPD or CF. These exacerbations can be life-threatening, and exert an enormous burden on health care systems. In recent years we have gained new insights into the mechanisms by which respiratory viruses may induce acute exacerbations of lower airway diseases, as well as into host defense pathways that may regulate the outcomes to viral infections. In the current article we review the role of viruses in lower airway diseases, including our current understanding on pathways by which they may cause remodeling and trigger acute exacerbations. We also review the efficacy of current and emerging therapies used to treat these lower airway diseases on the outcomes due to viral infection, and discuss alternative therapeutic approaches for the management of virus-induced airway inflammation.
Collapse
Affiliation(s)
- Richard Leigh
- Airway Inflammation Research Group, Snyder Institute for Chronic Diseases and Department of Medicine, University of Calgary Faculty of Medicine, Calgary, Canada; Airway Inflammation Research Group, Snyder Institute for Chronic Diseases and Department of Physiology & Pharmacology, University of Calgary Faculty of Medicine, Calgary, Canada
| | - David Proud
- Airway Inflammation Research Group, Snyder Institute for Chronic Diseases and Department of Physiology & Pharmacology, University of Calgary Faculty of Medicine, Calgary, Canada.
| |
Collapse
|
33
|
Esther CR, Lin FC, Kerr A, Miller MB, Gilligan PH. Respiratory viruses are associated with common respiratory pathogens in cystic fibrosis. Pediatr Pulmonol 2014; 49:926-31. [PMID: 24167159 DOI: 10.1002/ppul.22917] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/17/2013] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Test the hypothesis that the link between respiratory viruses and pulmonary exacerbation in cystic fibrosis (CF) reflects increased frequency or severity of lower airways infection. STUDY DESIGN Molecular respiratory viral panels (RVPs), cell counts, and quantitative bacterial cultures were assessed in 235 bronchoalveolar lavage fluid (BALF) samples from 138 children with CF. Relationships among the data were analyzed using multivariate methods. RESULTS RVPs were positive in 67 (28.5%) BALF samples from 52 (37.7%) patients, with rhinovirus/enterovirus most common (82.4% of RVP+). RVP+ patients were younger (5.4 years, IQR 3.0-9.7 vs. 8.0 years, IQR 3.5-12.9; P < 0.01), more likely to have respiratory symptoms (74.6% vs. 55.2%, P < 0.01), and had higher BALF percent neutrophils (70.5%, IQR 46-85% vs. 59.3%, IQR 34-77%; P < 0.05). Percent predicted FEV1 at bronchoscopy was diminished from baseline in both groups, but recovered in the RVP- (90.2 ± 22.2% vs. 89.6 ± 19.7%, P = 0.62) but not the RVP+ subjects (95.7 ± 21.1% vs. 89.1 ± 18.0%, P < 0.05). RVP status did not alter recovery rates of typical CF respiratory pathogens including Staphylococcus aureus (44.8% vs. 42.9%) and Pseudomonas aeruginosa (25.4% vs. 25.6%). However, common respiratory pathogens (Haemophilus species, Moraxella species, and Streptococcus pneumoniae) were recovered more frequently from RVP+ samples independent of age (OR 3.6, 95% CI 1.8-7.5, P < 0.001). CONCLUSIONS Respiratory viruses were frequently detected in BALF from CF patients and associated with markers of disease severity. Respiratory viruses did not impact frequency or severity of infection with typical CF pathogens, but rates of infection with common respiratory pathogens were increased. This finding may have treatment implications.
Collapse
Affiliation(s)
- Charles R Esther
- Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | |
Collapse
|
34
|
Ramirez IA, Caverly LL, Kalikin LM, Goldsmith AM, Lewis TC, Burke DT, LiPuma JJ, Sajjan US, Hershenson MB. Differential responses to rhinovirus- and influenza-associated pulmonary exacerbations in patients with cystic fibrosis. Ann Am Thorac Soc 2014; 11:554-61. [PMID: 24641803 PMCID: PMC4225796 DOI: 10.1513/annalsats.201310-346oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/26/2014] [Indexed: 12/25/2022] Open
Abstract
RATIONALE The mechanism by which viruses cause exacerbations of chronic airway disease and the capacity of patients with cystic fibrosis (CF) to respond to viral infection are not precisely known. OBJECTIVES To determine the antiviral response to infection in patients with CF. METHODS Sputum was collected from patients with CF with respiratory exacerbation. Viruses were detected in multiplex polymerase chain reaction (PCR)-based assays. Gene expression of 84 antiviral response genes was measured, using a focused quantitative PCR gene array. MEASUREMENTS AND MAIN RESULTS We examined 36 samples from 23 patients with respiratory exacerbation. Fourteen samples tested virus-positive and 22 virus-negative. When we compared exacerbations associated with rhinovirus (RV, n = 9) and influenza (n = 5) with virus-negative specimens, we found distinct patterns of antiviral gene expression. RV was associated with greater than twofold induction of five genes, including those encoding the monocyte-attracting chemokines CXCL10, CXCL11, and CXCL9. Influenza was associated with overexpression of 20 genes, including those encoding the cytokines tumor necrosis factor and IL-12; the kinases MEK, TBK-1, and STAT-1; the apoptosis proteins caspase-8 and caspase-10; the influenza double-stranded RNA receptor RIG-I and its downstream effector MAVS; and pyrin, an IFN-stimulated protein involved in influenza resistance. CONCLUSIONS We conclude that virus-induced exacerbations of CF are associated with immune responses tailored to specific infections. Influenza induced a more potent response consisting of inflammation, whereas RV infection had a pronounced effect on chemokine expression. As far as we are aware, this study is the first to compare specific responses to different viruses in live patients with chronic airway disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marc B. Hershenson
- Department of Pediatrics and Communicable Diseases
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
35
|
Renk H, Regamey N, Hartl D. Influenza A(H1N1)pdm09 and cystic fibrosis lung disease: a systematic meta-analysis. PLoS One 2014; 9:e78583. [PMID: 24427261 PMCID: PMC3888399 DOI: 10.1371/journal.pone.0078583] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/27/2013] [Indexed: 01/01/2023] Open
Abstract
Background To systematically assess the literature published on the clinical impact of Influenza A(H1N1)pdm09 on cystic fibrosis (CF) patients. Methods An online search in PUBMED database was conducted. Original articles on CF patients with Influenza A(H1N1)pdm09 infection were included. We analyzed incidence, symptoms, clinical course and treatment. Results Four surveys with a total of 202 CF patients infected by Influenza A(H1N1)pdm09 were included. The meta-analysis showed that hospitalisation rates were higher in CF patients compared to the general population. While general disease symptoms were comparable, the clinical course was more severe and case fatality rate (CFR) was higher in CF patients compared to asthmatics and the general population. Conclusions Evidence so far suggests that CF patients infected with Influenza A(H1N1)pdm09 show increased morbidity and a higher CFR compared to patients with other chronic respiratory diseases and healthy controls. Particularly, CF patients with advanced stage disease seem to be more susceptible to severe lung disease. Accordingly, early antiviral and antibiotic treatment strategies are essential in CF patients. Preventive measures, including vaccination as well as hygiene measures during the influenza season, should be reinforced and improved in CF patients.
Collapse
Affiliation(s)
- Hanna Renk
- University Children's Hospital, Eberhard-Karls-University, Tuebingen, Germany
| | - Nicolas Regamey
- Department of Paediatrics, Inselspital and University of Bern, Bern, Switzerland
| | - Dominik Hartl
- University Children's Hospital, Eberhard-Karls-University, Tuebingen, Germany
| |
Collapse
|
36
|
Winterstein AG, Eworuke E, Xu D, Schuler P. Palivizumab immunoprophylaxis effectiveness in children with cystic fibrosis. Pediatr Pulmonol 2013; 48:874-84. [PMID: 23139089 PMCID: PMC7167886 DOI: 10.1002/ppul.22711] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/27/2012] [Indexed: 11/11/2022]
Abstract
BACKGROUND Evidence on the effectiveness of respiratory syncytial virus (RSV) immunoprophylaxis with palivizumab in children with cystic fibrosis (CF) is lacking. METHODS We utilized Medicaid Extract files from 27 states from 1999 to 2006 linked to the National Cystic Fibrosis Registry to establish a cohort of children 0-2 years with CF diagnosis. Eligible children entered the cohort after CF diagnosis and after RSV season onset, and were followed until season end, second birthday, death, or hospitalizations for reasons other then the study outcome. Two outcomes were examined: hospitalization for RSV infections (RSV-ha), or hospitalization for acute respiratory infections (ARI-ha). Palivizumab exposure was defined based on pharmacy or procedure claims as current (claim date plus 30 days), former (day 31-60 after a claim), and no exposure (days before the first or >60 days after any claim). Both outcomes were examined in a Cox regression model, adjusting for RSV risk factors and CF severity via exposure propensity score. RESULTS The matched cohort included 1,974 infants (2,875 infant seasons), who experienced 32 RSV-ha and 212 ARI-ha (3.9 and 26.2/1,000 season months, respectively). Compared to periods of no use, the adjusted hazard ratio for current use was 0.57 (95% confidence interval [CI]: 0.20-1.60) for RSV-related hospitalization and 0.85 (95% CI: 0.59-1.21) for ARI-related hospitalization. Each month of increasing age reduced the ARI-ha by 5.8%. CONCLUSION RSV hospitalization incidence was low suggesting either little contribution of the virus to respiratory infections in patients with CF or lack of RSV testing. Unadjusted and adjusted RSV-hospitalization incidence rates suggested potentially positive effects of palivizumab, but results were inconclusive due to small event rates. Hospitalizations for acute respiratory illness with possible RSV contribution showed no association with palivizumab use, suggesting limited overall effect of palivizumab. Younger age greatly increased infection risk.
Collapse
Affiliation(s)
- Almut G Winterstein
- Department of Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Florida, Gainesville, Florida 32610-0494, USA.
| | | | | | | |
Collapse
|
37
|
The role of respiratory viruses in adult patients with cystic fibrosis receiving intravenous antibiotics for a pulmonary exacerbation. J Cyst Fibros 2013; 13:49-55. [PMID: 23891398 DOI: 10.1016/j.jcf.2013.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/19/2013] [Accepted: 06/17/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Respiratory viruses have become increasingly recognised as important agents in pulmonary exacerbations in infants and children with CF. The aim of this study was to determine the prevalence of respiratory viruses during acute pulmonary exacerbations in adults and compare the severity of these exacerbations with non-viral associated exacerbations. METHODS This was a retrospective case control study. Viral throat swabs were taken from all patients presenting with an acute pulmonary exacerbation requiring intravenous antibiotic treatment over a 12 month period. RESULTS There were 432 pulmonary exacerbations in 180 adults. A positive viral PCR in 42 exacerbations indicated a prevalence of 9.7%. The commonest virus isolated was rhinovirus (n = 29, 69%) with influenza A/H1N1 in seven patients (16.7%). Exacerbations associated with a positive viral PCR had a greater fall in lung function at presentation with higher levels of inflammatory markers. They received more days of intravenous antibiotics, showed less response to treatment and had a shorter time to next pulmonary exacerbation compared to matched controls. CONCLUSION Viral associated pulmonary exacerbations in adults with CF are associated with more severe pulmonary involvement and respond less well to standard treatment.
Collapse
|
38
|
Affiliation(s)
- Felix Ratjen
- Division of Respiratory Medicine, Department of Pediatrics, and Program in Physiology and Experimental Medicine, SickKids Research Institute, The Hospital for Sick Children, and University of Toronto, Toronto, Canada
| |
Collapse
|
39
|
Hoek RAS, Paats MS, Pas SD, Bakker M, Hoogsteden HC, Boucher CAB, van der Eerden MM. Incidence of viral respiratory pathogens causing exacerbations in adult cystic fibrosis patients. ACTA ACUST UNITED AC 2012; 45:65-9. [DOI: 10.3109/00365548.2012.708942] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Frickmann H, Jungblut S, Hirche TO, Groß U, Kuhns M, Zautner AE. Spectrum of viral infections in patients with cystic fibrosis. Eur J Microbiol Immunol (Bp) 2012; 2:161-75. [PMID: 24688762 DOI: 10.1556/eujmi.2.2012.3.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 01/05/2023] Open
Abstract
This review explores the extensive influence of viral infections leading to chronic deterioration of lung function in patients with cystic fibrosis (CF). The mechanisms how viral agents affect the pathogenesis as well as the inflammatory and immune response of CF are discussed. Viral infections of the upper and lower respiratory tract due to viruses in CF patients and methods for diagnosis of respiratory viruses are described in detail. The importance of respiratory and non-respiratory viral agents for the pathogenesis, especially for the exacerbation of bacterial lower respiratory tract infections and course of CF, is stressed, especially emphasizing respiratory syncytial virus, influenza virus, rhinovirus, and human herpes viruses. Possible harmful effects of further viruses like adenovirus, bocavirus, coronavirus, metapneumovirus, parainfluenzavirus on the lung function of CF patients are discussed. The potential use of adenovirus-based vectors for somatic gene therapy is mentioned.
Collapse
|
41
|
Rosenfeld M, Ratjen F, Brumback L, Daniel S, Rowbotham R, McNamara S, Johnson R, Kronmal R, Davis SD. Inhaled hypertonic saline in infants and children younger than 6 years with cystic fibrosis: the ISIS randomized controlled trial. JAMA 2012; 307:2269-77. [PMID: 22610452 PMCID: PMC3586815 DOI: 10.1001/jama.2012.5214] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT Inhaled hypertonic saline is recommended as therapy for patients 6 years or older with cystic fibrosis (CF), but its efficacy has never been evaluated in patients younger than 6 years with CF. OBJECTIVE To determine if hypertonic saline reduces the rate of protocol-defined pulmonary exacerbations in patients younger than 6 years with CF. DESIGN, SETTING, AND PARTICIPANTS The Infant Study of Inhaled Saline in Cystic Fibrosis (ISIS), a multicenter, randomized, double-blind, placebo-controlled trial conducted from April 2009 to October 2011 at 30 CF care centers in the United States and Canada. Participants were aged 4 to 60 months and had an established diagnosis of CF. A total of 344 patients were assessed for eligibility; 321 participants were randomized; 29 (9%) withdrew prematurely. INTERVENTION The active treatment group (n = 158) received 7% hypertonic saline and the control group (n = 163) received 0.9% isotonic saline, nebulized twice daily for 48 weeks. Both groups received albuterol or levalbuterol prior to each study drug dose. MAIN OUTCOME MEASURES Rate during the 48-week treatment period of protocol-defined pulmonary exacerbations treated with oral, inhaled, or intravenous antibiotics. RESULTS The mean pulmonary exacerbation rate (events per person-year) was 2.3 (95% CI, 2.0-2.5) in the active treatment group and 2.3 (95% CI, 2.1-2.6) in the control group; the adjusted rate ratio was 0.98 (95% CI, 0.84-1.15). Among participants with pulmonary exacerbations, the mean number of total antibiotic treatment days for a pulmonary exacerbation was 60 (95% CI, 49-70) in the active treatment group and 52 (95% CI, 43-61) in the control group. There was no significant difference in secondary end points including height, weight, respiratory rate, oxygen saturation, cough, or respiratory symptom scores. Infant pulmonary function testing performed as an exploratory outcome in a subgroup (n = 73, with acceptable measurements at 2 visits in 45 participants) did not demonstrate significant differences between groups except for the mean change in forced expiratory volume in 0.5 seconds, which was 38 mL (95% CI, 1-76) greater in the active treatment group. Adherence determined by returned study drug ampoules was at least 75% in each group. Adverse event profiles were also similar, with the most common adverse event of moderate or severe severity in each group being cough (39% of active treatment group, 38% of control group). CONCLUSION Among infants and children younger than 6 years with cystic fibrosis, the use of inhaled hypertonic saline compared with isotonic saline did not reduce the rate of pulmonary exacerbations over the course of 48 weeks of treatment. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00709280.
Collapse
Affiliation(s)
- Margaret Rosenfeld
- Division of Pulmonary Medicine, Seattle Children's Hospital, Seattle, Washington 98105, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Asner S, Waters V, Solomon M, Yau Y, Richardson SE, Grasemann H, Gharabaghi F, Tran D. Role of respiratory viruses in pulmonary exacerbations in children with cystic fibrosis. J Cyst Fibros 2012; 11:433-9. [PMID: 22579414 PMCID: PMC7105203 DOI: 10.1016/j.jcf.2012.04.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/17/2012] [Accepted: 04/04/2012] [Indexed: 11/01/2022]
Abstract
BACKGROUND The role of respiratory viruses in cystic fibrosis (CF) exacerbations is incompletely understood. METHODS Cross-sectional study of CF children with a pulmonary exacerbation. Mid-turbinate swabs were tested by a direct immunofluorescent antibody assay and a multiplex PCR panel (ResPlex II v2.0, Qiagen). Resplex II was also applied to sputum or throat swab samples. Pulmonary function tests and quality of life and severity scores were recorded. Sputum cell counts, bacterial density and cytokines were measured. RESULTS 26/43 (60.5%) subjects tested positive for at least one respiratory virus by any diagnostic method applied to any sample type. Virus-positive patients were younger (p=0.047), more likely to be male (p=0.029), and had higher CF clinical severity (p=0.041) and lower quality of life (physical) scores (p=0.023) but similar IL-8, neutrophil percentage and elastase levels. CONCLUSIONS Compared to non-viral exacerbations, viral-related exacerbations were associated with worse severity and quality of life scores but similar pulmonary inflammation.
Collapse
Affiliation(s)
- Sandra Asner
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zacharasiewicz A, Berger A, Eber E, Frischer T, Kurz H, Resch B, Zach M. Kommentar zur Post-RSV-Atemwegserkrankung. Monatsschr Kinderheilkd 2011. [DOI: 10.1007/s00112-011-2590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
44
|
Rogers GB, Hoffman LR, Johnson MW, Mayer-Hamblett N, Schwarze J, Carroll MP, Bruce KD. Using bacterial biomarkers to identify early indicators of cystic fibrosis pulmonary exacerbation onset. Expert Rev Mol Diagn 2011; 11:197-206. [PMID: 21405970 DOI: 10.1586/erm.10.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acute periods of pulmonary exacerbation are the single most important cause of morbidity in cystic fibrosis patients, and may be associated with a loss of lung function. Intervening prior to the onset of a substantially increased inflammatory response may limit the associated damage to the airways. While a number of biomarker assays based on inflammatory markers have been developed, providing useful and important measures of disease during these periods, such factors are typically only elevated once the process of exacerbation has been initiated. Identifying biomarkers that can predict the onset of pulmonary exacerbation at an early stage would provide an opportunity to intervene before the establishment of a substantial immune response, with major implications for the advancement of cystic fibrosis care. The precise triggers of pulmonary exacerbation remain to be determined; however, the majority of models relate to the activity of microbes present in the patient's lower airways of cystic fibrosis. Advances in diagnostic microbiology now allow for the examination of these complex systems at a level likely to identify factors on which biomarker assays can be based. In this article, we discuss key considerations in the design and testing of assays that could predict pulmonary exacerbations.
Collapse
Affiliation(s)
- Geraint B Rogers
- Molecular Microbiology Research Laboratory, Pharmaceutical Science Division, 150 Stamford Street, Franklin-Wilkins Building, King's College London, London, SE1 9NH, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Stressmann FA, Rogers GB, Marsh P, Lilley AK, Daniels TWV, Carroll MP, Hoffman LR, Jones G, Allen CE, Patel N, Forbes B, Tuck A, Bruce KD. Does bacterial density in cystic fibrosis sputum increase prior to pulmonary exacerbation? J Cyst Fibros 2011; 10:357-65. [PMID: 21664196 DOI: 10.1016/j.jcf.2011.05.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 05/13/2011] [Accepted: 05/15/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cystic Fibrosis (CF) lung disease is characterised by an inexorable decline in lung function, punctuated by periods of symptomatic worsening known as pulmonary exacerbations (referred to here as CFPE). Despite their clinical significance, the cause of CFPE remains undetermined. It has been suggested that an increase in bacterial density may be a trigger, although this has not been shown empirically. METHODS Here, a previously validated quantitative PCR-based approach was used to assess numbers of Pseudomonas aeruginosa and of total bacteria in respiratory secretions from patients during the period leading up to CFPE. Sputum samples collected from 12 adult CF patients were selected retrospectively to fall approximately 21, 14, 7 and 0 days prior to CFPE diagnosis. In addition, the relationships between clinical parameters (FEV(1), temperature and patient reported outcome measures) and microbiological data were investigated. RESULTS No significant changes either in total bacterial or P. aeruginosa numbers were identified prior to CFPE. Of all the correlations tested, only temperature showed a significant correlation with total bacterial numbers in the period leading to CFPE. CONCLUSIONS These findings strongly suggest that CFPE do not generally result from increased bacterial density within the airways. Instead, data presented here are consistent with alternative models of pulmonary exacerbation.
Collapse
Affiliation(s)
- Franziska A Stressmann
- Molecular Microbiology Research Laboratory, Institute of Pharmaceutical Sciences, 150 Stamford Street, Franklin-Wilkins Building, King's College London, London, SE1 9NH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hauser AR, Jain M, Bar-Meir M, McColley SA. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbiol Rev 2011; 24:29-70. [PMID: 21233507 PMCID: PMC3021203 DOI: 10.1128/cmr.00036-10] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A select group of microorganisms inhabit the airways of individuals with cystic fibrosis. Once established within the pulmonary environment in these patients, many of these microbes adapt by altering aspects of their structure and physiology. Some of these microbes and adaptations are associated with more rapid deterioration in lung function and overall clinical status, whereas others appear to have little effect. Here we review current evidence supporting or refuting a role for the different microbes and their adaptations in contributing to poor clinical outcomes in cystic fibrosis.
Collapse
Affiliation(s)
- Alan R Hauser
- Department of Microbiology/Immunology, Northwestern University, 303 E. Chicago Ave., Searle 6-495, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
47
|
Herberhold S, Coch C, Zillinger T, Hommertgen B, Busch N, Schuberth C, Hartmann E, Wimmenauer V, Hagmann CA, Lüdenbach B, Schlee M, Bootz F, Hartmann G, Barchet W. Delivery with polycations extends the immunostimulant Ribomunyl® into a potent antiviral Toll-like receptor 7/8 agonist. Antivir Ther 2011; 16:751-8. [DOI: 10.3851/imp1822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
|
49
|
Abstract
Infection of the airways remains the primary cause of morbidity and mortality in persons with cystic fibrosis (CF). This review describes salient features of the epidemiologies of microbial species that are involved in respiratory tract infection in CF. The apparently expanding spectrum of species causing infection in CF and recent changes in the incidences and prevalences of infection due to specific bacterial, fungal, and viral species are described. The challenges inherent in tracking and interpreting rates of infection in this patient population are discussed.
Collapse
|
50
|
Association between respiratory and herpes viruses on pulmonary exacerbations in cystic fibrosis patients. J Cyst Fibros 2010; 9:234-6. [PMID: 20199892 PMCID: PMC7172122 DOI: 10.1016/j.jcf.2010.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/04/2010] [Accepted: 02/07/2010] [Indexed: 11/17/2022]
Abstract
Respiratory viruses discovered in the 21st century and human herpes viruses (N=13) were seldom (4/50) detected in our cystic fibrosis patients although exacerbation frequency (7.75+/-2.9/a versus 4.45+/-2.1/a; p=0.03) and colonization with Aspergillus fumigatus (RR: 2.6; CI95: 1.8-3.7), Pseudomonas aeruginosa (RR: 1.84; CI95: 1.4-2.4), and Staphylococcus aureus (RR: 1.5; CI95: 1.2-1.9) including MRSA (RR: 4.6; CI95: 1.3-16.6) were associated with virus positivity. Further studies should clarify whether this finding reflects non-specific colonization (human Bocavirus) or reactivation (Epstein-Barr virus) or rather an acceleration of lung tissue inflammation.
Collapse
|