1
|
Titkare N, Chaturvedi S, Borah S, Sharma N. Advances in mass spectrometry for metabolomics: Strategies, challenges, and innovations in disease biomarker discovery. Biomed Chromatogr 2024:e6019. [PMID: 39370857 DOI: 10.1002/bmc.6019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
Mass spectrometry (MS) plays a crucial role in metabolomics, especially in the discovery of disease biomarkers. This review outlines strategies for identifying metabolites, emphasizing precise and detailed use of MS techniques. It explores various methods for quantification, discusses challenges encountered, and examines recent breakthroughs in biomarker discovery. In the field of diagnostics, MS has revolutionized approaches by enabling a deeper understanding of tissue-specific metabolic changes associated with disease. The reliability of results is ensured through robust experimental design and stringent system suitability criteria. In the past, data quality, standardization, and reproducibility were often overlooked despite their significant impact on MS-based metabolomics. Progress in this field heavily depends on continuous training and education. The review also highlights the emergence of innovative MS technologies and methodologies. MS has the potential to transform our understanding of metabolic landscapes, which is crucial for disease biomarker discovery. This article serves as an invaluable resource for researchers in metabolomics, presenting fresh perspectives and advancements that propels the field forward.
Collapse
Affiliation(s)
- Nikhil Titkare
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Sachin Chaturvedi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Sapan Borah
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
2
|
Roesch EA, Rahmaoui A, Lazarus RA, Konstan MW. The continuing need for dornase alfa for extracellular airway DNA hydrolysis in the era of CFTR modulators. Expert Rev Respir Med 2024; 18:677-691. [PMID: 39176450 DOI: 10.1080/17476348.2024.2394694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION The availability of cystic fibrosis transmembrane conductance regulator (CFTR) modulators opens the possibility of discontinuing some chronic pulmonary therapies to decrease cystic fibrosis (CF) treatment burden. However, CFTR modulators may not adequately address neutrophilic inflammation, which contributes to a self-perpetual cycle of viscous CF sputum, airway obstruction, inflammation, and lung function decline. AREAS COVERED This review discusses the emerging role of neutrophil extracellular traps in CF and its role in CF sputum viscosity, airway obstruction, and inflammation, based on a literature search of PubMed (1990-present). We summarize clinical trials and real-world studies that support the efficacy of dornase alfa (Pulmozyme) in improving lung function and reducing pulmonary exacerbation in people with CF (PwCF), and we discuss the potential role of dornase alfa in reducing airway inflammation. We also examine the findings of short-term trials evaluating the discontinuation of mucoactive therapy in PwCF receiving CFTR modulators. EXPERT OPINION Long-term studies are needed to assess the impact of discontinuing mucoactive therapy in PwCF who are clinically stable while receiving CFTR modulatory therapy. Treatment decisions should take into account the severity of underlying lung disease. People with advanced CF will likely require ongoing mucoactive therapy.
Collapse
Affiliation(s)
- Erica A Roesch
- Department of Pediatrics, Rainbow Babies and Children's Hospital and Case Western Reserve University, Cleveland, OH, USA
| | | | - Robert A Lazarus
- Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Michael W Konstan
- Department of Pediatrics, Rainbow Babies and Children's Hospital and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Xuan N, Zhao J, Kang Z, Cui W, Tian BP. Neutrophil extracellular traps and their implications in airway inflammatory diseases. Front Med (Lausanne) 2024; 10:1331000. [PMID: 38283037 PMCID: PMC10811107 DOI: 10.3389/fmed.2023.1331000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are essential for immune defense and have been increasingly recognized for their role in infection and inflammation. In the context of airway inflammatory diseases, there is growing evidence suggesting the involvement and significance of NETs. This review aims to provide an overview of the formation mechanisms and components of NETs and their impact on various airway inflammatory diseases, including acute lung injury/ARDS, asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis. By understanding the role of NETs in airway inflammation, we can gain valuable insights into the underlying pathogenesis of these diseases and identify potential targets for future therapeutic strategies that either target NETs formation or modulate their harmful effects. Further research is warranted to elucidate the complex interactions between NETs and airway inflammation and to develop targeted therapies that can effectively mitigate their detrimental effects while preserving their beneficial functions in host defense.
Collapse
Affiliation(s)
- Nanxia Xuan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zhiying Kang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Cui
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bao-ping Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Nimer RM, Abdel Rahman AM. Recent advances in proteomic-based diagnostics of cystic fibrosis. Expert Rev Proteomics 2023; 20:151-169. [PMID: 37766616 DOI: 10.1080/14789450.2023.2258282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/06/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic disease characterized by thick and sticky mucus accumulation, which may harm numerous internal organs. Various variables such as gene modifiers, environmental factors, age of diagnosis, and CF transmembrane conductance regulator (CFTR) gene mutations influence phenotypic disease diversity. Biomarkers that are based on genomic information may not accurately represent the underlying mechanism of the disease as well as its lethal complications. Therefore, recent advancements in mass spectrometry (MS)-based proteomics may provide deep insights into CF mechanisms and cellular functions by examining alterations in the protein expression patterns from various samples of individuals with CF. AREAS COVERED We present current developments in MS-based proteomics, its application, and findings in CF. In addition, the future roles of proteomics in finding diagnostic and prognostic novel biomarkers. EXPERT OPINION Despite significant advances in MS-based proteomics, extensive research in a large cohort for identifying and validating diagnostic, prognostic, predictive, and therapeutic biomarkers for CF disease is highly needed.
Collapse
Affiliation(s)
- Refat M Nimer
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev 2022; 31:31/163/210241. [PMID: 35197267 PMCID: PMC9488971 DOI: 10.1183/16000617.0241-2021] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophilic inflammation has a key role in the pathophysiology of multiple chronic lung diseases. The formation of neutrophil extracellular traps (NETs) has emerged as a key mechanism of disease in neutrophilic lung diseases including asthma, COPD, cystic fibrosis and, most recently, bronchiectasis. NETs are large, web-like structures composed of DNA and anti-microbial proteins that are able to bind pathogens, prevent microbial dissemination and degrade bacterial virulence factors. The release of excess concentrations of proteases, antimicrobial proteins, DNA and histones, however, also leads to tissue damage, impaired mucociliary clearance, impaired bacterial killing and increased inflammation. A number of studies have linked airway NET formation with greater disease severity, increased exacerbations and overall worse disease outcomes across the spectrum of airway diseases. Treating neutrophilic inflammation has been challenging in chronic lung disease because of the delicate balance between reducing inflammation and increasing the risk of infections through immunosuppression. Novel approaches to suppressing NET formation or the associated inflammation are in development and represent an important therapeutic target. This review will discuss the relationship between NETs and the pathophysiology of cystic fibrosis, asthma, COPD and bronchiectasis, and explore the current and future development of NET-targeting therapies. NETs contribute to the pathophysiology of chronic lung disease. Immunomodulating therapies that may reduce inflammatory mediators and NET formation, without compromising bacterial clearance, offer a new treatment path for patients. https://bit.ly/3fyJC6I
Collapse
Affiliation(s)
- Holly R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
6
|
Calprotectin-Mediated Zinc Chelation Inhibits Pseudomonas aeruginosa Protease Activity in Cystic Fibrosis Sputum. J Bacteriol 2021; 203:e0010021. [PMID: 33927050 DOI: 10.1128/jb.00100-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa induces pathways indicative of low zinc availability in the cystic fibrosis (CF) lung environment. To learn more about P. aeruginosa zinc access in CF, we grew P. aeruginosa strain PAO1 directly in expectorated CF sputum. The P. aeruginosa Zur transcriptional repressor controls the response to low intracellular zinc, and we used the NanoString methodology to monitor levels of Zur-regulated transcripts, including those encoding a zincophore system, a zinc importer, and paralogs of zinc containing proteins that do not require zinc for activity. Zur-controlled transcripts were induced in sputum-grown P. aeruginosa compared to those grown in control cultures but not if the sputum was amended with zinc. Amendment of sputum with ferrous iron did not reduce expression of Zur-regulated genes. A reporter fusion to a Zur-regulated promoter had variable activity in P. aeruginosa grown in sputum from different donors, and this variation inversely correlated with sputum zinc concentrations. Recombinant human calprotectin (CP), a divalent-metal binding protein released by neutrophils, was sufficient to induce a zinc starvation response in P. aeruginosa grown in laboratory medium or zinc-amended CF sputum, indicating that CP is functional in the sputum environment. Zinc metalloproteases comprise a large fraction of secreted zinc-binding P. aeruginosa proteins. Here, we show that recombinant CP inhibited both LasB-mediated casein degradation and LasA-mediated lysis of Staphylococcus aureus, which was reversible with added zinc. These studies reveal the potential for CP-mediated zinc chelation to posttranslationally inhibit zinc metalloprotease activity and thereby affect the protease-dependent physiology and/or virulence of P. aeruginosa in the CF lung environment. IMPORTANCE The factors that contribute to worse outcomes in individuals with cystic fibrosis (CF) with chronic Pseudomonas aeruginosa infections are not well understood. Therefore, there is a need to understand environmental factors within the CF airway that contribute to P. aeruginosa colonization and infection. We demonstrate that growing bacteria in CF sputum induces a zinc starvation response that inversely correlates with sputum zinc levels. Additionally, both calprotectin and a chemical zinc chelator inhibit the proteolytic activities of LasA and LasB proteases, suggesting that extracellular zinc chelators can influence proteolytic activity and thus P. aeruginosa virulence and nutrient acquisition in vivo.
Collapse
|
7
|
Gillan JL, Davidson DJ, Gray RD. Targeting cystic fibrosis inflammation in the age of CFTR modulators: focus on macrophages. Eur Respir J 2020; 57:13993003.03502-2020. [PMID: 33303535 DOI: 10.1183/13993003.03502-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 11/05/2022]
Abstract
Cystic fibrosis (CF) is a life-shortening, multi-organ, autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most prominent clinical manifestation in CF is the development of progressive lung disease characterised by an intense, chronic inflammatory airway response that culminates in respiratory failure and, ultimately, death. In recent years, a new class of therapeutics that have the potential to correct the underlying defect in CF, known as CFTR modulators, have revolutionised the field. Despite the exciting success of these drugs, their impact on airway inflammation, and its long-term consequences, remains undetermined. In addition, studies querying the absolute requirement for infection as a driver of CF inflammation have challenged the traditional consensus on CF pathogenesis, and also emphasise the need to prioritise complementary anti-inflammatory treatments in CF. Macrophages, often overlooked in CF research despite their integral role in other chronic inflammatory pathologies, have increasingly become recognised as key players in the initiation, perpetuation and resolution of CF lung inflammation, perhaps as a direct result of CFTR dysfunction. These findings suggest that macrophages may be an important target for novel anti-inflammatory interventional strategies to effectively treat CF lung function decline. This review will consider evidence for the efficacy of anti-inflammatory drugs in the treatment of CF, the potential role of macrophages, and the significance of targeting these pathways at a time when rectifying the basic defect in CF, through use of novel CFTR modulator therapies, is becoming increasingly viable.
Collapse
Affiliation(s)
- Jonathan L Gillan
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Donald J Davidson
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Robert D Gray
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
8
|
Houston CJ, Taggart CC, Downey DG. The role of inflammation in cystic fibrosis pulmonary exacerbations. Expert Rev Respir Med 2020; 14:889-903. [PMID: 32544353 DOI: 10.1080/17476348.2020.1778469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Cystic Fibrosis pulmonary exacerbations are critical events in the lives of people with CF that have deleterious effects on lung function, quality of life, and life expectancy. There are significant unmet needs in the management of exacerbations. We review here the associated inflammatory changes that underlie these events and are of interest for the development of biomarkers of exacerbation. AREAS COVERED Inflammatory responses in CF are abnormal and contribute to a sustained proinflammatory lung microenvironment, abundant in proinflammatory mediators and deficient in counter-regulatory mediators that terminate and resolve inflammation. There is increasing interest in these inflammatory pathways to discover novel biomarkers for pulmonary exacerbation management. In this review, we explore the inflammatory changes occurring during intravenous antibiotic therapy for exacerbation and how they may be applied as biomarkers to guide exacerbation therapy. A literature search was conducted using the PubMed database in February 2020. EXPERT OPINION Heterogeneity in inflammatory responses to treatment of a pulmonary exacerbation, a disease process with complex pathophysiology, limits the clinical utility of individual biomarkers. Biomarker panels may be a more successful strategy to capture informative changes within the CF population to improve pulmonary exacerbation management and outcomes.
Collapse
Affiliation(s)
- Claire J Houston
- Airway Innate Immunity Group (Aiir), Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast , Northern Ireland
| | - Clifford C Taggart
- Airway Innate Immunity Group (Aiir), Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast , Northern Ireland
| | - Damian G Downey
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast , Northern Ireland.,Northern Ireland Regional Adult CF Centre, Belfast Health and Social Care Trust , Belfast, UK
| |
Collapse
|
9
|
Touzelet O, Broadbent L, Armstrong SD, Aljabr W, Cloutman-Green E, Power UF, Hiscox JA. The Secretome Profiling of a Pediatric Airway Epithelium Infected with hRSV Identified Aberrant Apical/Basolateral Trafficking and Novel Immune Modulating (CXCL6, CXCL16, CSF3) and Antiviral (CEACAM1) Proteins. Mol Cell Proteomics 2020; 19:793-807. [PMID: 32075873 PMCID: PMC7196588 DOI: 10.1074/mcp.ra119.001546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 02/13/2020] [Indexed: 11/19/2022] Open
Abstract
The respiratory epithelium comprises polarized cells at the interface between the environment and airway tissues. Polarized apical and basolateral protein secretions are a feature of airway epithelium homeostasis. Human respiratory syncytial virus (hRSV) is a major human pathogen that primarily targets the respiratory epithelium. However, the consequences of hRSV infection on epithelium secretome polarity and content remain poorly understood. To investigate the hRSV-associated apical and basolateral secretomes, a proteomics approach was combined with an ex vivo pediatric human airway epithelial (HAE) model of hRSV infection (data are available via ProteomeXchange and can be accessed at https://www.ebi.ac.uk/pride/ with identifier PXD013661). Following infection, a skewing of apical/basolateral abundance ratios was identified for several individual proteins. Novel modulators of neutrophil and lymphocyte activation (CXCL6, CSF3, SECTM1 or CXCL16), and antiviral proteins (BST2 or CEACAM1) were detected in infected, but not in uninfected cultures. Importantly, CXCL6, CXCL16, CSF3 were also detected in nasopharyngeal aspirates (NPA) from hRSV-infected infants but not healthy controls. Furthermore, the antiviral activity of CEACAM1 against RSV was confirmed in vitro using BEAS-2B cells. hRSV infection disrupted the polarity of the pediatric respiratory epithelial secretome and was associated with immune modulating proteins (CXCL6, CXCL16, CSF3) never linked with this virus before. In addition, the antiviral activity of CEACAM1 against hRSV had also never been previously characterized. This study, therefore, provides novel insights into RSV pathogenesis and endogenous antiviral responses in pediatric airway epithelium.
Collapse
Affiliation(s)
- Olivier Touzelet
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK; Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7BL, UK
| | - Lindsay Broadbent
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7BL, UK
| | - Stuart D Armstrong
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, L69 7BE, UK
| | - Waleed Aljabr
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK; Biomedical Research Administration, Research Centre, King Fahad Medical City, P.O. Box 59046 Riyadh 11252, Saudi Arabia
| | - Elaine Cloutman-Green
- Microbiology, Virology and Infection Control, Level 4 Camelia Botnar Laboratory, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Ultan F Power
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7BL, UK.
| | - Julian A Hiscox
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, L69 7BE, UK; Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore.
| |
Collapse
|
10
|
DeBoer EM, Wagner BD, Popler J, Harris JK, Zemanick ET, Accurso FJ, Sagel SD, Deterding RR. Novel Application of Aptamer Proteomic Analysis in Cystic Fibrosis Bronchoalveolar Lavage Fluid. Proteomics Clin Appl 2019; 13:e1800085. [PMID: 30431231 DOI: 10.1002/prca.201800085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/27/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Biomarkers are needed in cystic fibrosis (CF) to understand disease progression, assess response to therapy, and enrich enrollment for clinical trials. Aptamer-based proteomics have proven useful in blood samples. The aim is to evaluate proteins in bronchoalveolar lavage fluid (BALF) in CF children compared to controls and identify endotypes during CF exacerbations. EXPERIMENTAL DESIGN BALF is collected clinically from 50 patients with CF and nine disease controls, processed, and stored per protocol. BALF supernatants are analyzed for 1129 proteins by aptamer approach (SOMAscan proteomics platform). Proteins are compared across groups and used for pathway analysis. Endotypes are identified within the CF group. RESULTS CF BALF has increased concentrations of neutrophil elastase, myeloperoxidase, and decreased concentration of protein folding and host defense proteins. Pathways that distinguished CF subjects included interferon gamma signaling, membrane trafficking, and phospholipid metabolism. In the CF group, unbiased analysis of proteins identified two distinct endotypes that differed based on BALF white blood cell and neutrophil counts and detection of CF pathogens. CONCLUSIONS AND CLINICAL RELEVANCE Proteomic analysis of the CF airway demonstrates a complex environment of proteins and pathways. This work provides evidence that aptamer-based proteomics can differentiate between groups and can determine endotypes within CF.
Collapse
Affiliation(s)
- Emily M DeBoer
- Department of Pediatrics, Section of Pulmonary and Sleep Medicine, University of Colorado Denver, Children's Hospital Colorado Breathing Institute, 80045, Aurora, CO, USA
| | - Brandie D Wagner
- Department of Pediatrics, Section of Pulmonary and Sleep Medicine, University of Colorado Denver, Children's Hospital Colorado Breathing Institute, 80045, Aurora, CO, USA.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, 80045, Aurora, CO, USA
| | | | - Jonathan Kirk Harris
- Department of Pediatrics, Section of Pulmonary and Sleep Medicine, University of Colorado Denver, Children's Hospital Colorado Breathing Institute, 80045, Aurora, CO, USA
| | - Edith T Zemanick
- Department of Pediatrics, Section of Pulmonary and Sleep Medicine, University of Colorado Denver, Children's Hospital Colorado Breathing Institute, 80045, Aurora, CO, USA
| | - Frank J Accurso
- Department of Pediatrics, Section of Pulmonary and Sleep Medicine, University of Colorado Denver, Children's Hospital Colorado Breathing Institute, 80045, Aurora, CO, USA
| | - Scott D Sagel
- Department of Pediatrics, Section of Pulmonary and Sleep Medicine, University of Colorado Denver, Children's Hospital Colorado Breathing Institute, 80045, Aurora, CO, USA
| | - Robin R Deterding
- Department of Pediatrics, Section of Pulmonary and Sleep Medicine, University of Colorado Denver, Children's Hospital Colorado Breathing Institute, 80045, Aurora, CO, USA
| |
Collapse
|
11
|
Intergenic evolution during host adaptation increases expression of the metallophore pseudopaline in Pseudomonas aeruginosa. Microbiology (Reading) 2018; 164:1038-1047. [DOI: 10.1099/mic.0.000687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Mastropasqua MC, Lamont I, Martin LW, Reid DW, D'Orazio M, Battistoni A. Efficient zinc uptake is critical for the ability of Pseudomonas aeruginosa to express virulence traits and colonize the human lung. J Trace Elem Med Biol 2018; 48:74-80. [PMID: 29773197 DOI: 10.1016/j.jtemb.2018.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/31/2018] [Accepted: 03/08/2018] [Indexed: 02/03/2023]
Abstract
We have recently shown that Pseudomonas aeruginosa, an opportunistic pathogen that chronically infects the lungs of patients with cystic fibrosis (CF) and other forms of lung disease, is extremely efficient in recruiting zinc from the environment and that this capability is required for its ability to cause acute lung infections in mice. To verify that P. aeruginosa faces zinc shortage when colonizing the lungs of human patients, we analyzed the expression of three genes that are highly induced under conditions of zinc deficiency (zrmA, dksA2 and rpmE2), in bacteria in the sputum of patients with inflammatory lung disease. All three genes were expressed in all the analyzed sputum samples to a level much higher than that of bacteria grown in zinc-containing laboratory medium, supporting the hypothesis that P. aeruginosa is under zinc starvation during lung infections. We also found that the expression of several virulence traits that play a central role in the ability of P. aeruginosa to colonize the lung is affected by disruption of the most important zinc importing systems. Virulence features dependent on zinc intake include swarming and swimming motility and the ability to form biofilms. Furthermore, alterations in zinc assimilation interfere with the synthesis of the siderophore pyoverdine, suggesting that zinc recruitment could modulate iron uptake and affect siderophore-mediated cell signaling. Our results reveal that zinc uptake is likely to play a key role in the ability of P. aeruginosa to cause chronic lung infections and strongly modulates critical virulence traits of the pathogen. Taking into account the recent discovery that zinc uptake in P. aeruginosa is promoted by the release of a small molecular weight molecule showing high affinity for zinc, our data suggest novel and effective possibilities to control lung infections by these bacteria.
Collapse
Affiliation(s)
| | - Iain Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Lois W Martin
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - David W Reid
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Melania D'Orazio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
13
|
Mastropasqua MC, D'Orazio M, Cerasi M, Pacello F, Gismondi A, Canini A, Canuti L, Consalvo A, Ciavardelli D, Chirullo B, Pasquali P, Battistoni A. Growth of Pseudomonas aeruginosa
in zinc poor environments is promoted by a nicotianamine-related metallophore. Mol Microbiol 2017; 106:543-561. [DOI: 10.1111/mmi.13834] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 11/29/2022]
Affiliation(s)
| | - Melania D'Orazio
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | - Mauro Cerasi
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | | | - Angelo Gismondi
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | - Antonella Canini
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | - Lorena Canuti
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | - Ada Consalvo
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale - CeSI-MeT; Chieti Italy
- Department of Medical, Oral and Biotechnological Sciences; “G. d'Annunzio” University of Chieti-Pescara; Chieti Italy
| | - Domenico Ciavardelli
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale - CeSI-MeT; Chieti Italy
- School of Human and Social Science; “Kore” University of Enna; Enna Italy
| | - Barbara Chirullo
- Department of Food Safety and Veterinary Public Health; Istituto Superiore di Sanità; Rome Italy
| | - Paolo Pasquali
- Department of Food Safety and Veterinary Public Health; Istituto Superiore di Sanità; Rome Italy
| | | |
Collapse
|
14
|
Pattison SH, Gibson DS, Johnston E, Peacock S, Rivera K, Tunney MM, Pappin DJ, Elborn JS. Proteomic profile of cystic fibrosis sputum cells in adults chronically infected with Pseudomonas aeruginosa. Eur Respir J 2017; 50:50/1/1601569. [DOI: 10.1183/13993003.01569-2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/29/2017] [Indexed: 12/11/2022]
Abstract
Lung disease is the main cause of morbidity and mortality in cystic fibrosis (CF), and involves chronic infection and perturbed immune responses. Tissue damage is mediated mostly by extracellular proteases, but other cellular proteins may also contribute to damage through their effect on cell activities and/or release into sputum fluid by means of active secretion or cell death.We employed MudPIT (multidimensional protein identification technology) to identify sputum cellular proteins with consistently altered abundance in adults with CF, chronically infected with Pseudomonas aeruginosa, compared with healthy controls. Ingenuity Pathway Analysis, Gene Ontology, protein abundance and correlation with lung function were used to infer their potential clinical significance.Differentially abundant proteins relate to Rho family small GTPase activity, immune cell movement/activation, generation of reactive oxygen species, and dysregulation of cell death and proliferation. Compositional breakdown identified high abundance of proteins previously associated with neutrophil extracellular traps. Furthermore, negative correlations with lung function were detected for 17 proteins, many of which have previously been associated with lung injury.These findings expand our current understanding of the mechanisms driving CF lung disease and identify sputum cellular proteins with potential for use as indicators of disease status/prognosis, stratification determinants for treatment prescription or therapeutic targets.
Collapse
|
15
|
D'Orazio M, Mastropasqua MC, Cerasi M, Pacello F, Consalvo A, Chirullo B, Mortensen B, Skaar EP, Ciavardelli D, Pasquali P, Battistoni A. The capability of Pseudomonas aeruginosa to recruit zinc under conditions of limited metal availability is affected by inactivation of the ZnuABC transporter. Metallomics 2016; 7:1023-35. [PMID: 25751674 DOI: 10.1039/c5mt00017c] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of a large number of bacterial pathogens to multiply in the infected host and cause disease is dependent on their ability to express high affinity zinc importers. In many bacteria, ZnuABC, a transporter of the ABC family, plays a central role in the process of zinc uptake in zinc poor environments, including the tissues of the infected host. To initiate an investigation into the relevance of the zinc uptake apparatus for Pseudomonas aeruginosa pathogenicity, we have generated a znuA mutant in the PA14 strain. We have found that this mutant strain displays a limited growth defect in zinc depleted media. The znuA mutant strain is more sensitive than the wild type strain to calprotectin-mediated growth inhibition, but both the strains are highly resistant to this zinc sequestering antimicrobial protein. Moreover, intracellular zinc content is not evidently affected by inactivation of the ZnuABC transporter. These findings suggest that P. aeruginosa is equipped with redundant mechanisms for the acquisition of zinc that might favor P. aeruginosa colonization of environments containing low levels of this metal. Nonetheless, deletion of znuA affects alginate production, reduces the activity of extracellular zinc-containing proteases, including LasA, LasB and protease IV, and decreases the ability of P. aeruginosa to disseminate during systemic infections. These results indicate that efficient zinc acquisition is critical for the expression of various virulence features typical of P. aeruginosa and that ZnuABC also plays an important role in zinc homeostasis in this microorganism.
Collapse
Affiliation(s)
- Melania D'Orazio
- Department of Biology, University of Rome Tor Vergata, 00133 Roma, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pereira-Fantini PM, Tingay DG. The proteomics of lung injury in childhood: challenges and opportunities. Clin Proteomics 2016; 13:5. [PMID: 26933399 PMCID: PMC4772280 DOI: 10.1186/s12014-016-9106-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/15/2016] [Indexed: 12/02/2022] Open
Abstract
Proteomics, the large-scale study of the structure and function of proteins of a cell or organism, is a rapidly developing area of biomedical research which is perfectly suited to the study of pediatric lung injury, where a variety of samples are easily, and repeatedly, accessible including plasma (reflecting a whole body response) and broncheoalveolar lung fluid (reflecting the lungs response). When applied to pediatric lung injury, proteomics could be used to develop much needed early biomarkers of lung injury, elucidate pathological pathways and determine protein alterations associated with specific disease processes. However despite the obvious benefits and need, proteomics is rarely utilized in studies of pediatric injury. This review primarily reports on the last decade of pediatric research into proteomes associated with specific respiratory diseases including bronchopulmonary dysplasia, respiratory infection, cystic fibrosis and asthma whilst also reflecting on the challenges unique to proteomic studies of the pediatric respiratory disease population. We conclude that the number of key pathological differences between the pediatric and adult study populations inhibit inference of results from adult studies onto a pediatric population and necessitate studies of the pediatric proteome. Furthermore the disparity amongst pediatric lung disease in terms of age at onset and underlying pathological mechanism (genetic, immunological, intervention-based, developmental arrest, inhaled toxin) will require proteomic studies which are well designed, with large disease specific patient sets to ensure adequate power as well as matched controls. Regardless of causative agent, pulmonary biomarkers are needed to predict the clinical course of pediatric lung disease, status, progression and response to treatment. Identification of early biomarkers is particularly pertinent in order to understand the natural history of disease and monitor progression so prevention of ongoing lung injury and impact on childhood can targeted.
Collapse
Affiliation(s)
- Prue M Pereira-Fantini
- Neonatal Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052 Australia ; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - David G Tingay
- Neonatal Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052 Australia ; Department of Paediatrics, University of Melbourne, Parkville, Australia ; Department of Neonatology, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|
17
|
Faro A, Wood RE, Schechter MS, Leong AB, Wittkugel E, Abode K, Chmiel JF, Daines C, Davis S, Eber E, Huddleston C, Kilbaugh T, Kurland G, Midulla F, Molter D, Montgomery GS, Retsch-Bogart G, Rutter MJ, Visner G, Walczak SA, Ferkol TW, Michelson PH. Official American Thoracic Society Technical Standards: Flexible Airway Endoscopy in Children. Am J Respir Crit Care Med 2015; 191:1066-80. [DOI: 10.1164/rccm.201503-0474st] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
18
|
Reid PA, McAllister DA, Boyd AC, Innes JA, Porteous D, Greening AP, Gray RD. Measurement of serum calprotectin in stable patients predicts exacerbation and lung function decline in cystic fibrosis. Am J Respir Crit Care Med 2015; 191:233-6. [PMID: 25590159 DOI: 10.1164/rccm.201407-1365le] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Terracciano R, Pelaia G, Preianò M, Savino R. Asthma and COPD proteomics: current approaches and future directions. Proteomics Clin Appl 2015; 9:203-20. [PMID: 25504544 DOI: 10.1002/prca.201400099] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/26/2014] [Accepted: 12/08/2014] [Indexed: 12/25/2022]
Abstract
Although asthma and chronic obstructive pulmonary disease COPD represent the two most common chronic respiratory diseases worldwide, the mechanisms underlying their pathobiology need to be further elucidated. Presently, differentiation of asthma and COPD are largely based on clinical and lung function parameters. However, the complexity of these multifactorial diseases may lead to misclassification and to inappropriate management strategies. Recently, tremendous progress in MS has extended the sensitivity, accuracy, and speed of analysis, enabling the identification of thousands of proteins per experiment. Beyond identification, MS has also greatly implemented quantitation issues allowing to assess qualitative-quantitative differences in protein profiles of different samples, in particular diseased versus normal. Herein, we provide a summary of recent proteomics-based investigations in the field of asthma/COPD, highlighting major issues related to sampling and processing procedures for proteomic analyses of specific airway and parenchymal specimens (induced sputum, exhaled breath condensate, epithelial lining fluid, bronchoalveolar and nasal lavage fluid), as well as blood-derived specimen (plasma and serum). Within such a context, together with current difficulties and limitations mainly due to lack of general standardization in preanalytical sampling procedure, our discussion will focus on the challenges and possible benefits of proteomic studies in phenotypic stratification of asthma and COPD.
Collapse
Affiliation(s)
- Rosa Terracciano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | | | | | | |
Collapse
|
20
|
Radhakrishnan D, Yamashita C, Gillio-Meina C, Fraser DD. Translational research in pediatrics III: bronchoalveolar lavage. Pediatrics 2014; 134:135-54. [PMID: 24982109 DOI: 10.1542/peds.2013-1911] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The role of flexible bronchoscopy and bronchoalveolar lavage (BAL) for the care of children with airway and pulmonary diseases is well established, with collected BAL fluid most often used clinically for microbiologic pathogen identification and cellular analyses. More recently, powerful analytic research methods have been used to investigate BAL samples to better understand the pathophysiological basis of pediatric respiratory disease. Investigations have focused on the cellular components contained in BAL fluid, such as macrophages, lymphocytes, neutrophils, eosinophils, and mast cells, as well as the noncellular components such as serum molecules, inflammatory proteins, and surfactant. Molecular techniques are frequently used to investigate BAL fluid for the presence of infectious pathologies and for cellular gene expression. Recent advances in proteomics allow identification of multiple protein expression patterns linked to specific respiratory diseases, whereas newer analytic techniques allow for investigations on surfactant quantification and function. These translational research studies on BAL fluid have aided our understanding of pulmonary inflammation and the injury/repair responses in children. We review the ethics and practices for the execution of BAL in children for translational research purposes, with an emphasis on the optimal handling and processing of BAL samples.
Collapse
Affiliation(s)
- Dhenuka Radhakrishnan
- Departments of Pediatrics,Children's Health Research Institute, London, Ontario, Canada
| | - Cory Yamashita
- Medicine,Centre for Critical Illness Research, Western University, London, Ontario, Canada; andPhysiology and Pharmacology, and
| | | | - Douglas D Fraser
- Departments of Pediatrics,Children's Health Research Institute, London, Ontario, Canada;Centre for Critical Illness Research, Western University, London, Ontario, Canada; andPhysiology and Pharmacology, andClinical Neurologic Sciences, Western University, London, Ontario, Canada;Translational Research Centre, London, Ontario, Canada
| |
Collapse
|
21
|
Yu L, Shen J, Mannoor K, Guarnera M, Jiang F. Identification of ENO1 as a potential sputum biomarker for early-stage lung cancer by shotgun proteomics. Clin Lung Cancer 2014; 15:372-378.e1. [PMID: 24984566 DOI: 10.1016/j.cllc.2014.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND Lung cancer is the leading cancer killer. Early detection will reduce the related deaths. The objective of this study was to identify potential biomarkers for early-stage lung cancer in sputum supernatant. MATERIALS AND METHODS Using shotgun proteomics, we detected changes in protein profiles that were associated with lung cancer by analyzing sputum supernatants from 6 patients with early-stage lung cancer and 5 cancer-free controls. Using western blotting, we validated the proteomic results in 22 lung cancer cases and 22 controls. Using enzyme-linked immunosorbent assay (ELISA), we evaluated the diagnostic performance of the biomarker candidates in an independent set of 35 cases and 36 controls. RESULTS Proteomics identified 8 biomarker candidates for lung cancer. Western blotting validation of the candidates showed that enolase 1 (ENO1) displayed a higher expression level in patients with cancer than in cancer-free individuals (P = .015). ELISA revealed that the assessment of ENO1 expression in sputum supernatant had 58.33% sensitivity and 80.00% specificity in distinguishing patients with stage I lung cancer from cancer-free individuals. CONCLUSION The analysis of protein biomarkers in sputum may provide a potential approach for the early detection of lung cancer. Future validation of all the candidates defined by shotgun proteomics in a large cohort study may help develop additional biomarkers that can be added to ENO1 to provide more diagnostic efficacy for lung cancer.
Collapse
Affiliation(s)
- Lei Yu
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Jun Shen
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Kaiissar Mannoor
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Maria Guarnera
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Feng Jiang
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
22
|
Pompilio A, Ciavardelli D, Crocetta V, Consalvo A, Zappacosta R, Di Ilio C, Di Bonaventura G. Stenotrophomonas maltophilia virulence and specific variations in trace elements during acute lung infection: implications in cystic fibrosis. PLoS One 2014; 9:e88769. [PMID: 24586389 PMCID: PMC3938418 DOI: 10.1371/journal.pone.0088769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/15/2014] [Indexed: 01/04/2023] Open
Abstract
Metal ions are necessary for the proper functioning of the immune system, and, therefore, they might have a significant influence on the interaction between bacteria and host. Ionic dyshomeostasis has been recently observed also in cystic fibrosis (CF) patients, whose respiratory tract is frequently colonized by Stenotrophomonas maltophilia. For the first time, here we used an inductively mass spectrometry method to perform a spatial and temporal analysis of the pattern of changes in a broad range of major trace elements in response to pulmonary infection by S. maltophilia. To this, DBA/2 mouse lungs were comparatively infected by a CF strain and by an environmental one. Our results showed that pulmonary ionomic profile was significantly affected during infection. Infected mice showed increased lung levels of Mg, P, S, K, Zn, Se, and Rb. To the contrary, Mn, Fe, Co, and Cu levels resulted significantly decreased. Changes of element concentrations were correlated with pulmonary bacterial load and markers of inflammation, and occurred mostly on day 3 post-exposure, when severity of infection culminated. Interestingly, CF strain – significantly more virulent than the environmental one in our murine model - provoked a more significant impact in perturbing pulmonary metal homeostasis. Particularly, exposure to CF strain exclusively increased P and K levels, while decreased Fe and Mn ones. Overall, our data clearly indicate that S. maltophilia modulates pulmonary metal balance in a concerted and virulence-dependent manner highlighting the potential role of the element dyshomeostasis during the progression of S. maltophilia infection, probably exacerbating the harmful effects of the loss of CF transmembrane conductance regulator function. Further investigations are required to understand the biological significance of these alterations and to confirm they are specifically caused by S. maltophilia.
Collapse
Affiliation(s)
- Arianna Pompilio
- Clinical Microbiology Unit, Center of Excellence on Aging, “G. d'Annunzio” University Foundation, Chieti, Italy
- Department of Experimental and Clinical Sciences, School of Medicine, “G. d'Annunzio” University, Chieti, Italy
| | - Domenico Ciavardelli
- Clinical Microbiology Unit, Center of Excellence on Aging, “G. d'Annunzio” University Foundation, Chieti, Italy
- School of Engineering, Architecture and Motor Science, “Kore” University, Enna, Italy
| | - Valentina Crocetta
- Clinical Microbiology Unit, Center of Excellence on Aging, “G. d'Annunzio” University Foundation, Chieti, Italy
- Department of Experimental and Clinical Sciences, School of Medicine, “G. d'Annunzio” University, Chieti, Italy
| | - Ada Consalvo
- Clinical Microbiology Unit, Center of Excellence on Aging, “G. d'Annunzio” University Foundation, Chieti, Italy
| | - Roberta Zappacosta
- Department of Experimental and Clinical Sciences, School of Medicine, “G. d'Annunzio” University, Chieti, Italy
| | - Carmine Di Ilio
- Clinical Microbiology Unit, Center of Excellence on Aging, “G. d'Annunzio” University Foundation, Chieti, Italy
- Department of Experimental and Clinical Sciences, School of Medicine, “G. d'Annunzio” University, Chieti, Italy
| | - Giovanni Di Bonaventura
- Clinical Microbiology Unit, Center of Excellence on Aging, “G. d'Annunzio” University Foundation, Chieti, Italy
- Department of Experimental and Clinical Sciences, School of Medicine, “G. d'Annunzio” University, Chieti, Italy
- * E-mail:
| |
Collapse
|
23
|
Development of a nano-electrospray MSn method for the analysis of serotonin and related compounds in urine using a LTQ-orbitrap mass spectrometer. Talanta 2012; 90:1-11. [DOI: 10.1016/j.talanta.2011.11.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/21/2011] [Accepted: 11/27/2011] [Indexed: 11/19/2022]
|
24
|
Conese M, Ascenzioni F, Boyd AC, Coutelle C, De Fino I, De Smedt S, Rejman J, Rosenecker J, Schindelhauer D, Scholte BJ. Gene and cell therapy for cystic fibrosis: from bench to bedside. J Cyst Fibros 2011; 10 Suppl 2:S114-28. [PMID: 21658631 DOI: 10.1016/s1569-1993(11)60017-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Clinical trials in cystic fibrosis (CF) patients established proof-of-principle for transfer of the wild-type cystic fibrosis transmembrane conductance regulator (CFTR) gene to airway epithelial cells. However, the limited efficacy of gene transfer vectors as well as extra- and intracellular barriers have prevented the development of a gene therapy-based treatment for CF. Here, we review the use of new viral and nonviral gene therapy vectors, as well as human artificial chromosomes, to overcome barriers to successful CFTR expression. Pre-clinical studies will surely benefit from novel animal models, such as CF pigs and ferrets. Prenatal gene therapy is a potential alternative to gene transfer to fully developed lungs. However, unresolved issues, including the possibility of adverse effects on pre- and postnatal development, the risk of initiating oncogenic or degenerative processes and germ line transmission require further investigation. Finally, we discuss the therapeutic potential of stem cells for CF lung disease.
Collapse
Affiliation(s)
- Massimo Conese
- Institute for the Experimental Treatment of Cystic Fibrosis, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rogers GB, Hoffman LR, Johnson MW, Mayer-Hamblett N, Schwarze J, Carroll MP, Bruce KD. Using bacterial biomarkers to identify early indicators of cystic fibrosis pulmonary exacerbation onset. Expert Rev Mol Diagn 2011; 11:197-206. [PMID: 21405970 DOI: 10.1586/erm.10.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acute periods of pulmonary exacerbation are the single most important cause of morbidity in cystic fibrosis patients, and may be associated with a loss of lung function. Intervening prior to the onset of a substantially increased inflammatory response may limit the associated damage to the airways. While a number of biomarker assays based on inflammatory markers have been developed, providing useful and important measures of disease during these periods, such factors are typically only elevated once the process of exacerbation has been initiated. Identifying biomarkers that can predict the onset of pulmonary exacerbation at an early stage would provide an opportunity to intervene before the establishment of a substantial immune response, with major implications for the advancement of cystic fibrosis care. The precise triggers of pulmonary exacerbation remain to be determined; however, the majority of models relate to the activity of microbes present in the patient's lower airways of cystic fibrosis. Advances in diagnostic microbiology now allow for the examination of these complex systems at a level likely to identify factors on which biomarker assays can be based. In this article, we discuss key considerations in the design and testing of assays that could predict pulmonary exacerbations.
Collapse
Affiliation(s)
- Geraint B Rogers
- Molecular Microbiology Research Laboratory, Pharmaceutical Science Division, 150 Stamford Street, Franklin-Wilkins Building, King's College London, London, SE1 9NH, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Diao L, Clarke CH, Coombes KR, Hamilton SR, Roth J, Mao L, Czerniak B, Baggerly KA, Morris JS, Fung ET, Bast RC. Reproducibility of SELDI Spectra Across Time and Laboratories. Cancer Inform 2011; 10:45-64. [PMID: 21552492 PMCID: PMC3085423 DOI: 10.4137/cin.s6438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited. The reproducibility of mass spectrometry (MS) data collected using surface enhanced laser desorption/ionization-time of flight (SELDI-TOF) has been questioned. This investigation was designed to test the reproducibility of SELDI data collected over time by multiple users and instruments. Five laboratories prepared arrays once every week for six weeks. Spectra were collected on separate instruments in the individual laboratories. Additionally, all of the arrays produced each week were rescanned on a single instrument in one laboratory. Lab-to-lab and array-to-array variability in alignment parameters were larger than the variability attributable to running samples during different weeks. The coefficient of variance (CV) in spectrum intensity ranged from 25% at baseline, to 80% in the matrix noise region, to about 50% during the exponential drop from the maximum matrix noise. Before normalization, the median CV of the peak heights was 72% and reduced to about 20% after normalization. Additionally, for the spectra from a common instrument, the CV ranged from 5% at baseline, to 50% in the matrix noise region, to 20% during the drop from the maximum matrix noise. Normalization reduced the variability in peak heights to about 18%. With proper processing methods, SELDI instruments produce spectra containing large numbers of reproducibly located peaks, with consistent heights.
Collapse
Affiliation(s)
- Lixia Diao
- Departments of Bioinformatics and Computational Biology
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Balch WE, Yates JR. Application of mass spectrometry to study proteomics and interactomics in cystic fibrosis. Methods Mol Biol 2011; 742:227-247. [PMID: 21547736 DOI: 10.1007/978-1-61779-120-8_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) does not function in isolation, but rather in a complex network of protein-protein interactions that dictate the physiology of a healthy cell and tissue and, when defective, the pathophysiology characteristic of cystic fibrosis (CF) disease. To begin to address the organization and operation of the extensive cystic fibrosis protein network dictated by simultaneous and sequential interactions, it will be necessary to understand the global protein environment (the proteome) in which CFTR functions in the cell and the local network that dictates CFTR folding, trafficking, and function at the cell surface. Emerging mass spectrometry (MS) technologies and methodologies offer an unprecedented opportunity to fully characterize both the proteome and the protein interactions directing normal CFTR function and to define what goes wrong in disease. Below we provide the CF investigator with a general introduction to the capabilities of modern mass spectrometry technologies and methodologies with the goal of inspiring further application of these technologies for development of a basic understanding of the disease and for the identification of novel pathways that may be amenable to therapeutic intervention in the clinic.
Collapse
Affiliation(s)
- William E Balch
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
28
|
Abstract
Cystic fibrosis is one of the most common life-limiting inherited disorders. Its clinical impact manifests chiefly in the lung, pancreas, gastrointestinal tract and sweat glands, with lung disease typically being most detrimental to health. The median age for survival has increased dramatically over the past decades, largely thanks to advances in understanding of the mechanisms and consequences of disease, leading to the development of better therapies and treatment regimes. The discovery of dysregulated protein biomarkers linked to cystic fibrosis has contributed considerably to this end. This article outlines clinical trials targeting known protein biomarkers, and the current and future contributions of proteomic techniques to cystic fibrosis research. The treatments described range from those designed to provide functional copies of the mutant protein responsible for cystic fibrosis, to others addressing the associated symptoms of chronic inflammation. Preclinical research has employed proteomics to help elucidate pathways and processes implicated in disease that might present opportunities for therapy or prognosis. Global analyses of cystic fibrosis have detected the differential expression of proteins involved in inflammation, proteolytic activity and oxidative stress, which are recognized symptoms of the cystic fibrosis phenotype. The dysregulation of other processes, such as the complement and mitochondrial systems, has also been implicated. A number of studies have focused specifically on proteins that interact with the cystic fibrosis protein, with the goal of restoring its normal proteostasis. Consequently, proteins involved in synthesis, folding, degradation, translocation and localization of the protein have been identified as potential therapeutic targets. Cystic fibrosis patients are prone to lung infections that are thought to contribute to chronic inflammation, and thus proteomic studies have also searched for microbiological biomarkers to use in early infection diagnosis or as indicators of virulence. The review concludes by proposing a future role for proteomics in the high-throughput validation of protein biomarkers under consideration as outcome measures for use in clinical trials and routine disease monitoring.
Collapse
|
29
|
Charro N, Hood BL, Faria D, Pacheco P, Azevedo P, Lopes C, de Almeida AB, Couto FM, Conrads TP, Penque D. Serum proteomics signature of cystic fibrosis patients: a complementary 2-DE and LC-MS/MS approach. J Proteomics 2010; 74:110-26. [PMID: 20950718 DOI: 10.1016/j.jprot.2010.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/17/2010] [Accepted: 10/05/2010] [Indexed: 01/01/2023]
Abstract
Complementary 2D-PAGE and 'shotgun' LC-MS/MS approaches were combined to identify medium and low-abundant proteins in sera of Cystic Fibrosis (CF) patients (mild or severe pulmonary disease) in comparison with healthy CF-carrier and non-CF carrier individuals aiming to gain deeper insights into the pathogenesis of this multifactorial genetic disease. 78 differentially expressed spots were identified from 2D-PAGE proteome profiling yielding 28 identifications and postulating the existence of post-translation modifications (PTM). The 'shotgun' approach highlighted altered levels of proteins actively involved in CF: abnormal tissue/airway remodeling, protease/antiprotease imbalance, innate immune dysfunction, chronic inflammation, nutritional imbalance and Pseudomonas aeruginosa colonization. Members of the apolipoproteins family (VDBP, ApoA-I, and ApoB) presented gradually lower expression from non-CF to CF-carrier individuals and from those to CF patients, results validated by an independent assay. The multifunctional enzyme NDKB was identified only in the CF group and independently validated by WB. Its functions account for ion sensor in epithelial cells, pancreatic secretion, neutrophil-mediated inflammation and energy production, highlighting its physiological significance in the context of CF. Complementary proteomics-based approaches are reliable tools to reveal pathways and circulating proteins actively involved in a heterogeneous disease such as CF.
Collapse
Affiliation(s)
- Nuno Charro
- Laboratório de Proteómica, Departamento de Genética, INSA, I.P., Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gray R, Imrie M, Boyd A, Porteous D, Innes J, Greening A. Sputum and serum calprotectin are useful biomarkers during CF exacerbation. J Cyst Fibros 2010; 9:193-8. [DOI: 10.1016/j.jcf.2010.01.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/25/2009] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
|
31
|
Challenges for biomarker discovery in body fluids using SELDI-TOF-MS. J Biomed Biotechnol 2009; 2010:906082. [PMID: 20029632 PMCID: PMC2793423 DOI: 10.1155/2010/906082] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 09/01/2009] [Indexed: 01/17/2023] Open
Abstract
Protein profiling using SELDI-TOF-MS has gained over the past few years an increasing interest in the field of biomarker discovery. The technology presents great potential if some parameters, such as sample handling, SELDI settings, and data analysis, are strictly controlled. Practical considerations to set up a robust and sensitive strategy for biomarker discovery are presented. This paper also reviews biological fluids generally available including a description of their peculiar properties and the preanalytical challenges inherent to sample collection and storage. Finally, some new insights for biomarker identification and validation challenges are provided.
Collapse
|
32
|
Gomes-Alves P, Imrie M, Gray RD, Nogueira P, Ciordia S, Pacheco P, Azevedo P, Lopes C, de Almeida AB, Guardiano M, Porteous DJ, Albar JP, Boyd AC, Penque D. SELDI-TOF biomarker signatures for cystic fibrosis, asthma and chronic obstructive pulmonary disease. Clin Biochem 2009; 43:168-77. [PMID: 19850022 DOI: 10.1016/j.clinbiochem.2009.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 10/09/2009] [Accepted: 10/11/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this work was to establish protein profiles in serum and nasal epithelial cells of cystic fibrosis individuals in comparison with controls, asthma and chronic obstructive pulmonary disease patients for specific biomarker signatures identification. DESIGN AND METHODS Protein extracts were analyzed by Surface Enhanced Laser Desorption/Ionization Time-Of-Flight Mass-Spectrometry (SELDI-TOF-MS). RESULTS The mass spectra revealed a set of peaks with differential expression in serum and nasal cells among the different groups studied, resulting into peak signatures representative/specific of each pathology. Logistic regressions were applied to those peaks; sensitivity, specificity, Youden's indexes and area under the curve (AUC) of the respective receiver operating characteristic (ROC) curves were compared. DISCUSSION Multivariate analysis demonstrated that combination of peaks has a better predictive value than the individual ones. These protein signatures may serve as diagnostic/prognostic markers for the studied diseases with common clinical features, or as follow-up assessment markers of therapeutic interventions.
Collapse
Affiliation(s)
- Patrícia Gomes-Alves
- Laboratório de Proteómica, Departamento de Genética, INSA-IP, Av Padre Cruz, 1649-016 Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gray RD, Duncan A, Noble D, Imrie M, O'Reilly DSJ, Innes JA, Porteous DJ, Greening AP, Boyd AC. Sputum trace metals are biomarkers of inflammatory and suppurative lung disease. Chest 2009; 137:635-41. [PMID: 19801580 DOI: 10.1378/chest.09-1047] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Induced sputum cytology and protein biomarkers can be used to assess airways inflammation. Increases in sputum iron have been described in inflammatory lung disease. We hypothesized that other sputum metals may be affected by airways inflammation and investigated their potential value as biomarkers. METHODS Sputum was obtained from 20 healthy control subjects and from patients with inflammatory pulmonary diseases (23 with cystic fibrosis [CF], 16 with bronchiectasis, 17 with asthma, and 23 with COPD), and iron, zinc, manganese, and copper were measured. Fourteen patients with CF were also studied through an exacerbation cycle. RESULTS Sputum zinc and iron were elevated in CF and non-CF bronchiectasis vs controls (P < .001, zinc; P < .01 iron). Manganese was elevated in asthma (P < .01) and bronchiectasis (P < .05) vs controls. Copper was elevated in CF vs controls (P < .05). Zinc decreased (P < .01) following treatment of CF exacerbation. In subjects with CF zinc levels correlated with other biomarkers. CONCLUSIONS These results suggest a relationship of high concentrations of total zinc and iron with airways inflammation in CF and non-CF bronchiectasis, with longitudinal changes being observed in CF. Further work is required to elucidate potential inflammatory mechanisms related to these observations.
Collapse
Affiliation(s)
- Robert D Gray
- School of Molecular and Clinical Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Current World Literature. Curr Opin Pulm Med 2009; 15:521-7. [DOI: 10.1097/mcp.0b013e3283304c7b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Huang YJ, Xuan C, Zhang BB, Liao M, Deng KF, He M, Zhao JM. SELDI-TOF MS profiling of serum for detection of nasopharyngeal carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:85. [PMID: 19534814 PMCID: PMC2706805 DOI: 10.1186/1756-9966-28-85] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 06/17/2009] [Indexed: 01/24/2023]
Abstract
Background No satisfactory biomarkers are currently available to screen for nasopharyngeal carcinoma (NPC). We have developed and evaluated surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) for detection and analysis of multiple proteins for distinguishing individuals with NPC from control individuals. Methods A preliminary learning set and a classification tree of spectra derived from 24 patients with NPC and a group of 24 noncancer controls were used to develop a proteomic model that discriminated cancer from noncancer effectively. Then, the validity of the classification tree was challenged with a blind test set, which included another 20 patients with NPC and 12 noncancer controls. Results A panel of 3 biomarkers ranging m/z 3–20 k was selected to establish Decision Tree model by BPS with sensitivity of 91.66% and specificity of 95.83%. The ability to detect NPC patients was evaluated, a sensitivity of 95.0% and specificity of 83.33% were validated in blind testing set. Conclusion This high-flux proteomic classification system will provide a highly accurate and innovative approach for the detection/diagnosis of NPC.
Collapse
Affiliation(s)
- Yuan-Jiao Huang
- Guangxi Medical Scientific Research Center, Guangxi Medical University, Nanning, PR China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Trzcinska-Daneluti AM, Ly D, Huynh L, Jiang C, Fladd C, Rotin D. High-content functional screen to identify proteins that correct F508del-CFTR function. Mol Cell Proteomics 2008; 8:780-90. [PMID: 19088066 DOI: 10.1074/mcp.m800268-mcp200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cystic Fibrosis is caused by mutations in CFTR, with a deletion of a phenylalanine at position 508 (F508del-CFTR) representing the most common mutation. The F508del-CFTR protein exhibits a trafficking defect and is retained in the endoplasmic reticulum. Here we describe the development of a high-content screen based on a functional assay to identify proteins that correct the F508del-CFTR defect. Using a HEK293 MSR GripTite cell line that stably expresses F508del-CFTR, we individually co-expressed approximately 450 unique proteins fused to the Cl(-)-sensitive YFP(H148Q/I152L) mutant. We then tested correction of F508del-CFTR function by the CI(-)/l(-) exchange method following stimulation with forskolin/IBMX/genistein, using quantitative recordings in multiple individual cells with a high-content (high-throughput) Cellomics KSR imaging system. Using this approach, we identified several known and novel proteins that corrected F508del-CFTR function, including STAT1, Endothelin 1, HspA4, SAPK substrate protein 1, AP2M1, LGALS3/galectin-3, Trk-fused gene, Caveolin 2, PAP/REG3alpha, and others. The ability of these correctors to rescue F508del-CFTR trafficking was then validated by demonstrating their enhancement of maturation (appearance of band C) and by cell surface expression of F508del-CFTR bearing HA tag at the ectodomain using confocal microscopy and flow cytometry. These data demonstrate the utility of high-content analyses for identifying proteins that correct mutant CFTR and discover new proteins that stimulate this correction. This assay can also be utilized for RNAi screens to identify inhibitory proteins that block correction of F508del-CFTR, small molecule, and peptide screens.
Collapse
Affiliation(s)
- Agata M Trzcinska-Daneluti
- Program in Cell Biology, The Hospital for Sick Children, and Biochemistry Department, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Gray RD, MacGregor G, Noble D, Imrie M, Dewar M, Boyd AC, Innes JA, Porteous DJ, Greening AP. Sputum proteomics in inflammatory and suppurative respiratory diseases. Am J Respir Crit Care Med 2008; 178:444-52. [PMID: 18565957 DOI: 10.1164/rccm.200703-409oc] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Markers of inflammatory activity are important for assessment and management of many respiratory diseases. Markers that are currently unrecognized may be more valuable than those presently believed to be useful. OBJECTIVES To identify potential biomarkers of suppurative and inflammatory lung disease in induced sputum samples. METHODS Induced sputum was collected from 20 healthy control subjects, 24 patients with asthma, 24 with chronic obstructive pulmonary disease, 28 with cystic fibrosis (CF), and 19 with bronchiectasis. Twelve patients with CF had sputum sampled before and after antibiotic therapy for an infective exacerbation. The fluid phase of induced sputum was analyzed by surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectroscopy on three protein array surfaces. Some protein markers were selected for identification, and relevant ELISA assays sought. For 12 patients with CF, both SELDI-TOF and ELISA monitored changes in inflammatory responses during infective exacerbations. MEASUREMENTS AND MAIN RESULTS SELDI-TOF identified potential biomarkers that differentiated each of the disease groups from healthy control subjects: at a significance of P < 0.01, there were 105 for asthma, 113 for chronic obstructive pulmonary disease, 381 for CF, and 377 for bronchiectasis. Peaks selected for protein identification yielded calgranulin A, calgranulin B, calgranulin C, Clara cell secretory protein, lysosyme c, proline rich salivary peptide, cystatin s, and hemoglobin alpha. On treatment of an infective CF exacerbation, SELDI-TOF determined falls in levels of calgranulin A and calgranulin B that were mirrored by ELISA-measured falls in calprotectin (heterodimer of calgranulins A and B). CONCLUSIONS Proteomic screening of sputum yields potential biomarkers of inflammation. The early development of a clinically relevant assay from such data is demonstrated.
Collapse
Affiliation(s)
- Robert D Gray
- School of Molecular and Clinical Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|