1
|
Dartois V, Dick T. Toward better cures for Mycobacterium abscessus lung disease. Clin Microbiol Rev 2024; 37:e0008023. [PMID: 39360834 PMCID: PMC11629636 DOI: 10.1128/cmr.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
SUMMARYThe opportunistic pathogen Mycobacterium abscessus (Mab) causes fatal lung infections that bear similarities-and notable differences-with tuberculosis (TB) pulmonary disease. In contrast to TB, no antibiotic is formally approved to treat Mab disease, there is no reliable cure, and the discovery and development pipeline is incredibly thin. Here, we discuss the factors behind the unsatisfactory cure rates of Mab disease, namely intrinsic resistance and persistence of the pathogen, and the use of underperforming, often parenteral and toxic, repurposed drugs. We propose preclinical strategies to build injectable-free sterilizing and safe regimens: (i) prioritize oral bactericidal antibiotic classes, with an initial focus on approved agents or advanced clinical candidates to provide immediate options for desperate patients, (ii) test drug combinations early, (iii) optimize novel leads specifically for M. abscessus, and (iv) consider pharmacokinetic-pharmacodynamic targets at the site of disease, the lung lesions in which drug tolerant bacterial populations reside. Knowledge and tool gaps in the preclinical drug discovery process are identified, including validated mouse models and computational platforms to enable in vitro mouse-human translation. We briefly discuss recent advances in clinical development, the need for readouts and biomarkers that correlate with cure, and clinical trial concepts adapted to the uniqueness of Mab patient populations for new regimen development. In an era when most pharmaceutical firms have withdrawn from antimicrobial drug discovery, the breakthroughs needed to fill the regimen development pipeline will likely come from partnerships between academia, biotech, pharma, non-profit organizations, and governments, with incentives that reward cooperation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
2
|
Al-Asadi SA, Abdul Wahhab BH, Bootwala J, Alwatar WMA, Al-Kahachi RES. Unraveling antibiotic resistance in Achromobacter mucicolens IA strain: genomic insights, structural analysis, and prospects for targeted therapeutics. Microbiol Spectr 2024; 12:e0392623. [PMID: 39472000 PMCID: PMC11619425 DOI: 10.1128/spectrum.03926-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 09/18/2024] [Indexed: 12/08/2024] Open
Abstract
The mortality rate of infectious diseases caused by Achromobacter mucicolens is increasing. The enhanced antibiotic resistance among bacterial species through genetic transfer and mutations in the efflux mediating genes has made the treatment quite challenging. A. mucicolens is an aerobic, gram-negative, and non-fermenting opportunistic pathogen found in immunocompromised patients. A. mucicolens shows resistance against beta-lactams and other antibiotics through intrinsic resistance mechanisms, including multi-drug efflux pumps and beta-lactamases. In this study, the clinical isolate whole genome sequencing of A. mucicolens data was analyzed to identify the genes and mutations responsible for antimicrobial resistance. The identified genes and their mutants were then subjected to structural analysis to better understand the impact of mutations on the protein structure, and domain analysis was performed to investigate the role of domains in antibiotic resistance. A total of 4 genes, acrR, macB, msbA, and tolC, were identified with significant mutations, whereas macB was shortlisted for further analysis based on the conserved regions, sequence alignment, and the maximum number of mutations. All the mutants of the macB gene contain the two common domains, the ABC transporter-like ATP-binding domain and the AAA + ATPase domain. These domains are crucial in efflux mediating drug transport and can be targeted to design novel drugs for treating infections caused by A. mucicolens.IMPORTANCEAchromobacter species represent a significant threat as opportunistic pathogens, particularly in healthcare settings. Their resilience to antibiotics, demonstrated by strains like A. mucicolens, poses a serious challenge in treating infections, especially in immunocompromised patients. This study emphasizes the critical need for heightened vigilance among healthcare professionals regarding Achromobacter infections. By analyzing the whole genome sequencing data of A. mucicolens, the study sheds light on the genetic basis of antimicrobial resistance, aiding in more targeted treatment strategies. Furthermore, structural and domain analyses offer insights into how mutations impact protein structure and function, crucial for developing effective interventions. Ultimately, implementing rigorous sanitation measures and antibiotic stewardship protocols is needed to mitigate the spread of Achromobacter and safeguard vulnerable patient populations.
Collapse
Affiliation(s)
- Sura Ali Al-Asadi
- Department of Molecular and Medical Techniques, Biotechnology Research Centre, Al Nahrain University, Baghdad, Iraq
| | | | | | - Wifaq M. Ali Alwatar
- Unit of Clinical and Communicable diseases, College of medicine, Baghdad University, Baghdad, Iraq
| | - Rusul Emaduldeen S. Al-Kahachi
- Department of scholarships and cultural relationship, Republic of Iraq Ministry of Higher Education and Scientific Research, Baghdad, Iraq
| |
Collapse
|
3
|
Cobe BL, Dey S, Minasov G, Inniss N, Satchell KJF, Cianciotto NP. Bactericidal effectors of the Stenotrophomonas maltophilia type IV secretion system: functional definition of the nuclease TfdA and structural determination of TfcB. mBio 2024; 15:e0119824. [PMID: 38832773 PMCID: PMC11253643 DOI: 10.1128/mbio.01198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
Stenotrophomonas maltophilia expresses a type IV protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria and does so partly by secreting the effector TfcB. Here, we report the structure of TfcB, comprising an N-terminal domain similar to the catalytic domain of glycosyl hydrolase (GH-19) chitinases and a C-terminal domain for recognition and translocation by the T4SS. Utilizing a two-hybrid assay to measure effector interactions with the T4SS coupling protein VirD4, we documented the existence of five more T4SS substrates. One of these was protein 20845, an annotated nuclease. A S. maltophilia mutant lacking the gene for 20845 was impaired for killing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Moreover, the cloned 20845 gene conferred robust toxicity, with the recombinant E. coli being rescued when 20845 was co-expressed with its cognate immunity protein. The 20845 effector was an 899 amino-acid protein, comprised of a GHH-nuclease domain in its N-terminus, a large central region of indeterminant function, and a C-terminus for secretion. Engineered variants of the 20845 gene that had mutations in the predicted catalytic site did not impede E. coli, indicating that the antibacterial effect of 20845 involves its nuclease activity. Using flow cytometry with DNA staining, we determined that 20845, but not its mutant variants, confers a loss in DNA content of target bacteria. Database searches revealed that uncharacterized homologs of 20845 occur within a range of bacteria. These data indicate that the S. maltophilia T4SS promotes interbacterial competition through the action of multiple toxic effectors, including a potent, novel DNase.IMPORTANCEStenotrophomonas maltophilia is a multi-drug-resistant, Gram-negative bacterium that is an emerging pathogen of humans. Patients with cystic fibrosis are particularly susceptible to S. maltophilia infection. In hospital water systems and various types of infections, S. maltophilia co-exists with other bacteria, including other pathogens such as Pseudomonas aeruginosa. We previously demonstrated that S. maltophilia has a functional VirB/D4 type VI protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria. Since most work on antibacterial systems involves the type VI secretion system, this observation remains noteworthy. Moreover, S. maltophilia currently stands alone as a model for a human pathogen expressing an antibacterial T4SS. Using biochemical, genetic, and cell biological approaches, we now report both the discovery of a novel antibacterial nuclease (TfdA) and the first structural determination of a bactericidal T4SS effector (TfcB).
Collapse
Affiliation(s)
- Brandi L. Cobe
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Supratim Dey
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - George Minasov
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicole Inniss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Gutiérrez-Santana JC, Rosas-Espinosa V, Martinez E, Casiano-García E, Coria-Jiménez VR. Metal Nanoparticle-Based Biosensors for the Early Diagnosis of Infectious Diseases Caused by ESKAPE Pathogens in the Fight against the Antimicrobial-Resistance Crisis. BIOSENSORS 2024; 14:339. [PMID: 39056615 PMCID: PMC11274948 DOI: 10.3390/bios14070339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024]
Abstract
The species included in the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and the genus Enterobacter) have a high capacity to develop antimicrobial resistance (AMR), a health problem that is already among the leading causes of death and could kill 10 million people a year by 2050. The generation of new potentially therapeutic molecules has been insufficient to combat the AMR "crisis", and the World Health Organization (WHO) has stated that it will seek to promote the development of rapid diagnostic strategies. The physicochemical properties of metallic nanoparticles (MNPs) have made it possible to design biosensors capable of identifying low concentrations of ESKAPE bacteria in the short term; other systems identify antimicrobial susceptibility, and some have been designed with dual activity in situ (bacterial detection and antimicrobial activity), which suggests that, in the near future, multifunctional biosensors could exist based on MNPs capable of quickly identifying bacterial pathogens in clinical niches might become commercially available. This review focuses on the use of MNP-based systems for the rapid and accurate identification of clinically important bacterial pathogens, exhibiting the necessity for exhaustive research to achieve these objectives. This review focuses on the use of metal nanoparticle-based systems for the rapid and accurate identification of clinically important bacterial pathogens.
Collapse
Affiliation(s)
- Juan Carlos Gutiérrez-Santana
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán C.P. 04530, Mexico (V.R.C.-J.)
| | - Viridiana Rosas-Espinosa
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán C.P. 04530, Mexico (V.R.C.-J.)
| | - Evelin Martinez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacán C.P. 04960, Mexico;
| | - Esther Casiano-García
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacán C.P. 04960, Mexico;
| | - Victor Rafael Coria-Jiménez
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán C.P. 04530, Mexico (V.R.C.-J.)
| |
Collapse
|
5
|
Sheykhsaran E, Abbasi A, Memar MY, Ghotaslou R, Baghi HB, Mazraeh FN, Laghousi D, Sadeghi J. The role of Staphylococcus aureus in cystic fibrosis pathogenesis and clinico-microbiological interactions. Diagn Microbiol Infect Dis 2024; 109:116294. [PMID: 38678689 DOI: 10.1016/j.diagmicrobio.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/05/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Cystic fibrosis (CF) is a progressive and inherited disease that affects approximately 70000 individuals all over the world annually. A mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene serves as its defining feature. Bacterial infections have a significant impact on the occurrence and development of CF. In this manuscript, we discuss the role and virulence factors of Staphylococcus aureus as an important human pathogen with the ability to induce respiratory tract infections. Recent studies have reported S. aureus as the first isolated bacteria in CF patients. Methicillin-resistant Staphylococcus aureus (MRSA) pathogens are approximately resistant to all β-lactams. CF patients are colonized by MRSA expressing various virulence factors including toxins, and Staphylococcal Cassette Chromosome mec (SCCmec) types, and have the potential for biofilm formation. Therefore, variations in clinical outcomes will be manifested. SCCmec type II has been reported in CF patients more than in other SCCmec types from different countries. The small-colony variants (SCVs) as specific morphologic subtypes of S. aureus with slow growth and unusual properties can also contribute to persistent and difficult-to-treat infections in CF patients. The pathophysiology of SCVs is complicated and not fully understood. Patients with cystic fibrosis should be aware of the intrinsic risk factors for complex S. aureus infections, including recurring infections, physiological issues, or coinfection with P. aeruginosa.
Collapse
Affiliation(s)
- Elham Sheykhsaran
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Naeimi Mazraeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Delara Laghousi
- Social Determinants of Health Research Center, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadeghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
de Oliveira TJ, Altoé ID, Arpini LDSB, Liberato FMG, Melotti RDCNC, Wittmer VL, Duarte H, Barbalho-Moulim MC, Paro FM. Clinical and anthropometric evolution of individuals with cystic fibrosis during COVID-19 pandemic: A 24-month cohort study. Pediatr Pulmonol 2024; 59:1962-1969. [PMID: 38712790 DOI: 10.1002/ppul.27027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/05/2024] [Accepted: 04/14/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVES To analyze the evolution of clinical and anthropometric characteristics of children and adolescents with cystic fibrosis (CF) over 24 months, including the period of the COVID-19 pandemic. METHODS A longitudinal study with data collection from May 2018 to November 2020 in physical and electronic records from a pediatric reference center, including individuals with CF aged up to 18 years. RESULTS The sample encompassed 72 individuals. Weight (p < 0.01), height (p < 0.01), and body mass index (BMI) (p = 0.043) were higher in 2020 than in 2018. There were no significant changes in BMI-Z (p = 0.977) and in percentiles of weight (p = 0.540), height (p = 0.458), and BMI percentile (p = 0.454) between both periods. Pancreatic insufficiency was observed in 91.7% of patients in 2020, and there were twice as many confirmed cases of diabetes compared to 2018. There was a 9.7% increase in individuals colonized by the oxacillin-sensitive Staphylococcus aureus (OSSA) (p = 0.039) and an 11.1% reduction in non-colonized individuals (p = 0.008). CONCLUSION Although there was an increase in weight, height, and BMI from 2018 to 2020, there were no significant changes in BMI-Z and in percentiles of weight, height, and BMI percentile, suggesting that the anthropometric aspects of nutritional status did not change in this period of 2 years. Moreover, there was an increase in the prevalence of individuals colonized by OSSA and a reduction in the prevalence of individuals non-colonized with any bacteria.
Collapse
Affiliation(s)
- Taynara Júlia de Oliveira
- Department of Integrated Education on Health, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Izabela Dondoni Altoé
- Department of Integrated Education on Health, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | | | | | - Veronica Lourenço Wittmer
- Department of Integrated Education on Health, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Halina Duarte
- Department of Integrated Education on Health, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Flavia Marini Paro
- Department of Integrated Education on Health, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
7
|
Dwivedi GR, Pathak N, Tiwari N, Negi AS, Kumar A, Pal A, Sharma A, Darokar MP. Synergistic Antibacterial Activity of Gallic Acid Based Chalcone Indl 2 by Inhibiting Efflux Pump Transporters. Chem Biodivers 2024; 21:e202301820. [PMID: 38372508 DOI: 10.1002/cbdv.202301820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/20/2024]
Abstract
As a part of novel discovery of drugs from natural resources, present study was undertaken to explore the antibacterial potential of chalcone Indl-2 in combination with different group of antibiotics. MIC of antibiotics was reduced up to eight folds against the different cultures of E. coli by both chalcones. Among the two compounds, the i. e. 1-(3', 4,'5'-trimethoxyphenyl)-3-(3-Indyl)-prop-2-enone (6, Indl-2), a chalcone derivative of gallic acid (Indl-2) was better along with tetracycline (TET) worked synergistically and was found to inhibit efflux transporters as obvious by ethidium bromide efflux confirmed by ATPase assays and docking studies. In combination, Indl-2 kills the MDREC-KG4 cells, post-antibiotic effect (PAE) of TET was prolonged and mutant prevention concentration (MPC) of TET was also decreased. In-vivo studies revealed that Indl-2 reduces the concentration of TNF-α. In acute oral toxicity study, Indl-2 was non-toxic and well tolerated up-to dose of 2000 mg/kg. Perhaps, the study is going to report gallic acid derived chalcone as synergistic agent acting via inhibiting the primary efflux pumps.
Collapse
Affiliation(s)
- Gaurav Raj Dwivedi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Microbiology Department, ICMR-Regional Medical Research Centre, Gorakhpur, 273013, U.P., India
| | - Nandini Pathak
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Nimisha Tiwari
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
| | - Arvind Singh Negi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Akhil Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
| | - Anirban Pal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Mahendra P Darokar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| |
Collapse
|
8
|
Hintzen KFH, Blanchet L, Smolinska A, Boumans ML, Stobberingh EE, Dallinga JW, Lubbers T, van Schooten FJ, Boots AW. Volatile organic compounds in headspace characterize isolated bacterial strains independent of growth medium or antibiotic sensitivity. PLoS One 2024; 19:e0297086. [PMID: 38277384 PMCID: PMC10817157 DOI: 10.1371/journal.pone.0297086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/23/2023] [Indexed: 01/28/2024] Open
Abstract
INTRODUCTION Early and reliable determination of bacterial strain specificity and antibiotic resistance is critical to improve sepsis treatment. Previous research demonstrated the potential of headspace analysis of volatile organic compounds (VOCs) to differentiate between various microorganisms associated with pulmonary infections in vitro. This study evaluates whether VOC analysis can also discriminate antibiotic sensitive from resistant bacterial strains when cultured on varying growth media. METHODS Both antibiotic-sensitive and -resistant strains of Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumonia were cultured on 4 different growth media, i.e. Brain Heart Infusion, Marine Broth, Müller-Hinton and Trypticase Soy Agar. After overnight incubation at 37°C, the headspace air of the cultures was collected on stainless steel desorption tubes and analyzed by gas chromatography time-of-flight mass spectrometry (GC-tof-MS). Statistical analysis was performed using regularized multivariate analysis of variance and cross validation. RESULTS The three bacterial species could be correctly recognized based on the differential presence of 14 VOCs (p<0.001). This discrimination was not influenced by the different growth media. Interestingly, a clear discrimination could be made between the antibiotic-resistant and -sensitive variant of Pseudomonas aeruginosa (p<0.001) based on their species-specific VOC signature. CONCLUSION This study demonstrates that isolated microorganisms, including antibiotic-sensitive and -resistant strains of Pseudomonas aeruginosa, could be identified based on their excreted VOCs independent of the applied growth media. These findings suggest that the discriminating volatiles are associated with the microorganisms themselves rather than with their growth medium. This study exemplifies the potential of VOC analysis as diagnostic tool in medical microbiology. However, validation of our results in appropriate in vivo models is critical to improve translation of breath analysis to clinical applications.
Collapse
Affiliation(s)
- Kim F. H. Hintzen
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Lionel Blanchet
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Agnieszka Smolinska
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Marie-Louise Boumans
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of Medical Microbiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ellen E. Stobberingh
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of Medical Microbiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan W. Dallinga
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Tim Lubbers
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Agnes W. Boots
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
9
|
Long DR, Holmes EA, Goss CH, Singh PK, Waalkes A, Salipante SJ. Cell-Free DNA Detects Pseudomonas aeruginosa Lung Infection in Modulator-treated People with Cystic Fibrosis. Am J Respir Crit Care Med 2023; 208:944-947. [PMID: 37540570 PMCID: PMC10870864 DOI: 10.1164/rccm.202305-0844le] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 08/06/2023] Open
Affiliation(s)
- Dustin R Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine
| | | | - Christopher H Goss
- Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Pradeep K Singh
- Department of Microbiology, and
- Department of Medicine, University of Washington, Seattle, Washington; and
| | | | | |
Collapse
|
10
|
Somayaji R, Quon BS. Breath of fresh insight: unraveling the evolution of our understanding of cystic fibrosis pulmonary exacerbations. Curr Opin Pulm Med 2023; 29:587-594. [PMID: 37642491 DOI: 10.1097/mcp.0000000000001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Pulmonary exacerbations are critical events with significant negative impacts in persons with cystic fibrosis, but their diagnosis and management are highly variable. Highly effective modulator therapies have greatly improved health and reduced exacerbation events, but have also reshaped how they present. This review discusses the complexities of the diagnosis and management of pulmonary exacerbations as well as the emerging work and evidence in this area. RECENT FINDINGS The shifting epidemiology and our understanding of risk factors for pulmonary exacerbations are discussed. As symptoms may be more subtle in the modulator context, novel technologies including studies of remote monitoring are presented. The continued relevance of pulmonary exacerbations, the heterogeneity in their management, as well as current and forthcoming clinical trials to optimize treatment approaches are detailed. SUMMARY In spite of the dramatic reductions in pulmonary exacerbations, airway infections persist, a proportion of persons with cystic fibrosis either on or off modulator therapies continue to experience exacerbation events, and long-term data is lacking. Innovative approaches and studies will be crucial to enable standardized and generalizable strategies to improve outcomes in persons with cystic fibrosis.
Collapse
Affiliation(s)
- Ranjani Somayaji
- Department of Medicine, Cumming School of Medicine
- Department of Microbiology, Immunology and Infectious Disease
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Bradley S Quon
- Department of Medicine, Faculty of Medicine, University of British Columbia
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| |
Collapse
|
11
|
Sahl C, Baumgarten M, Shannon O, Påhlman LI. Exoproducts of the Most Common Achromobacter Species in Cystic Fibrosis Evoke Similar Inflammatory Responses In Vitro. Microbiol Spectr 2023; 11:e0019523. [PMID: 37284754 PMCID: PMC10434066 DOI: 10.1128/spectrum.00195-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Achromobacter is a genus of Gram-negative rods, which can cause persistent airway infections in people with cystic fibrosis (CF). The knowledge about virulence and clinical implications of Achromobacter is still limited, and it is not fully established whether Achromobacter infections contribute to disease progression or if it is a marker of poor lung function. The most commonly reported Achromobacter species in CF is A. xylosoxidans. While other Achromobacter spp. are also identified in CF airways, the currently used Matrix-Assisted Laser Desorption/Ionization Time Of Flight Mass Spectrometry (MALDI-TOF MS) method in routine diagnostics cannot distinguish between species. Differences in virulence between Achromobacter species have consequently not been well studied. In this study, we compare phenotypes and proinflammatory properties of A. xylosoxidans, A. dolens, A. insuavis, and A. ruhlandii using in vitro models. Bacterial supernatants were used to stimulate CF bronchial epithelial cells and whole blood from healthy individuals. Supernatants from the well-characterized CF-pathogen Pseudomonas aeruginosa were included for comparison. Inflammatory mediators were analyzed with ELISA and leukocyte activation was assessed using flow cytometry. The four Achromobacter species differed in morphology seen in scanning electron microscopy (SEM), but there were no observed differences in swimming motility or biofilm formation. Exoproducts from all Achromobacter species except A. insuavis caused significant IL-6 and IL-8 secretion from CF lung epithelium. The cytokine release was equivalent or stronger than the response induced by P. aeruginosa. All Achromobacter species activated neutrophils and monocytes ex vivo in a lipopolysaccharide (LPS)-independent manner. Our results indicate that exoproducts of the four included Achromobacter species do not differ consistently in causing inflammatory responses, but they are equally or even more capable of inducing inflammation compared with the classical CF pathogen P. aeruginosa. IMPORTANCE Achromobacter xylosoxidans is an emerging pathogen among people with cystic fibrosis (CF). Current routine diagnostic methods are often unable to distinguish A. xylosoxidans from other Achromobacter species, and the clinical relevance of different species is still unknown. In this work, we show that four different Achromobacter species relevant to CF evoke similar inflammatory responses from airway epithelium and leukocytes in vitro, but they are all equally or even more proinflammatory compared to the classic CF-pathogen Pseudomonas aeruginosa. The results suggest that Achromobacter species are important airway pathogens in CF, and that all Achromobacter species are relevant to treat.
Collapse
Affiliation(s)
- Cecilia Sahl
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Maria Baumgarten
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Lisa I. Påhlman
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Division of Infectious Diseases, Skåne University Hospital Lund, Lund, Sweden
| |
Collapse
|
12
|
Olbrecht M, Echahidi F, Piérard D, Peeters C, Vandamme P, Wybo I, Demuyser T. In Vitro Susceptibility of Achromobacter Species Isolated from Cystic Fibrosis Patients: a 6-Year Survey. Antimicrob Agents Chemother 2023; 67:e0037923. [PMID: 37310234 PMCID: PMC10353363 DOI: 10.1128/aac.00379-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/17/2023] [Indexed: 06/14/2023] Open
Abstract
We conducted in vitro antimicrobial susceptibility testing of 267 Achromobacter isolates for 16 antibiotics from 2017 to 2022. The highest susceptibility was found for piperacillin-tazobactam (70%) and ceftazidime-avibactam (62%). Between 30% and 49% of strains were susceptible to tigecycline, ceftazidime, and meropenem. We applied species-specific Achromobacter xylosoxidans breakpoints for piperacillin-tazobactam, meropenem, and trimethoprim-sulfamethoxazole and EUCAST pharmacokinetic/pharmacodynamic (PK/PD) breakpoints for the others. A. xylosoxidans was the most frequently isolated species, followed by Achromobacter insuavis and Achromobacter ruhlandii.
Collapse
Affiliation(s)
- Margo Olbrecht
- Department Microbiology and Infection Control, National Reference Center for Burkholderia Cepacia Complex and other Gram negative non fermenters (NRC), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Fedoua Echahidi
- Department Microbiology and Infection Control, National Reference Center for Burkholderia Cepacia Complex and other Gram negative non fermenters (NRC), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Denis Piérard
- Department Microbiology and Infection Control, National Reference Center for Burkholderia Cepacia Complex and other Gram negative non fermenters (NRC), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Ingrid Wybo
- Department Microbiology and Infection Control, National Reference Center for Burkholderia Cepacia Complex and other Gram negative non fermenters (NRC), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Thomas Demuyser
- Department Microbiology and Infection Control, National Reference Center for Burkholderia Cepacia Complex and other Gram negative non fermenters (NRC), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- AIMS lab, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
13
|
Li L, Maboni G, Lack A, Gomez DE. Nontuberculous Mycobacteria in Horses: A Narrative Review. Vet Sci 2023; 10:442. [PMID: 37505847 PMCID: PMC10384023 DOI: 10.3390/vetsci10070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) infections are increasing in human and veterinary medicine. Although horses were initially thought to be resistant to NTM infection, reports of horses suffering from gastrointestinal, respiratory, and reproductive diseases associated with NTM have increased in the last few decades. The aim of this literature review is to summarize the mycobacteria species found in horses, describe clinical manifestations, diagnostic and treatment approaches, and public health concerns of NTM infection in horses. Clinical manifestations of NTM in horses include pulmonary disease, lymphadenitis, soft tissue, bone infections, and disseminated disease. NTM are also linked to granulomatous enteritis, placentitis, and abortions. Currently, diagnostic methods for NTM are limited and include acid-fast microscopy, bacterial cultures, species-specific PCR assays, and gene sequencing. In humans, NTM treatment guidelines are available, but their application appears inadequate and inconsistent. In horses, treatment guidelines for NTM infections are not available. NTM are a serious public health threat as 70% of people with untreated acquired immunodeficiency syndrome (AIDS) have a chronic pulmonary disease caused by NTM. Thus, it is essential that we gain a better understanding of NTM infections in horses and their zoonotic potential.
Collapse
Affiliation(s)
- Lynna Li
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Grazieli Maboni
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Amy Lack
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Diego E Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
14
|
Bakalović G, Bokonjić D, Mihajlović D, Čolić M, Mališ V, Drakul M, Tomić S, Jojić I, Rakočević S, Popović D, Kozić L, Vasiljević M, Bekić M, Mašić S, Ljuboja O. Dysfunctions of Neutrophils in the Peripheral Blood of Children with Cystic Fibrosis. Biomedicines 2023; 11:1725. [PMID: 37371820 DOI: 10.3390/biomedicines11061725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Dysfunction of neutrophils in patients with cystic fibrosis (CF) is best characterized in bronchoalveolar lavage (BAL), whereas peripheral blood neutrophils are less examined, and the results are contradictory, especially in younger populations. Therefore, this work aimed to study functional and phenotypic changes in circulating neutrophils in children with CF. The study included 19 CF children (5-17 years) and 14 corresponding age-matched healthy children. Isolated neutrophils were cultured either alone or with different stimuli. Several functions were studied: apoptosis, NET-osis, phagocytosis, and production of reactive oxygen species (ROS), neutrophil elastase (NE), and 11 cytokines. In addition, the expression of 20 molecules involved in different functions of neutrophils was evaluated by using flow cytometry. CF neutrophils showed reduced apoptosis and lower production of NE and IL-18 compared to the healthy controls, whereas IL-8 was augmented. All of these functions were further potentiated after neutrophil stimulation, which included higher ROS production and the up-regulation of CD11b and IL-10 expression. NET-osis was higher only when neutrophils from moderate-severe CF were treated with Pseudomonas aeruginosa, and the process correlated with forced expiratory volume in the first second (FEV1). Phagocytosis was not significantly changed. In conclusion, circulating neutrophils from children with CF showed fewer impaired changes in phenotype than in function. Functional abnormalities, which were already present at the baseline levels in neutrophils, depended on the type of stimuli that mimicked different activation states of these cells at the site of infection.
Collapse
Affiliation(s)
- Ganimeta Bakalović
- Pediatric Clinic, Clinical Center of the University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Dejan Bokonjić
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
- Department of Pediatrics, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Dušan Mihajlović
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Miodrag Čolić
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Vanja Mališ
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Marija Drakul
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia
| | - Ivan Jojić
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Sara Rakočević
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Darinka Popović
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Ljiljana Kozić
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Miloš Vasiljević
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia
| | - Srđan Mašić
- Center for Biomedical Sciences, Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina
| | - Olivera Ljuboja
- Clinic for Children's Diseases, University Clinical Center of Banja Luka, 51000 Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
15
|
Jaworska J, Buda N, Kwaśniewicz P, Komorowska-Piotrowska A, Sands D. Lung Ultrasound in the Evaluation of Lung Disease Severity in Children with Clinically Stable Cystic Fibrosis: A Prospective Cross-Sectional Study. J Clin Med 2023; 12:jcm12093086. [PMID: 37176526 PMCID: PMC10179222 DOI: 10.3390/jcm12093086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
With the increasing longevity of cystic fibrosis (CF), there is a growing need to minimise exposure to ionising radiation in patients who undergo regular imaging tests while monitoring the course of the lung disease. This study aimed to define the role of lung ultrasounds (LUS) in the evaluation of lung disease severity in children with clinically stable CF. LUS was performed on 131 patients aged 5 weeks to 18 years (study group) and in 32 healthy children of an equivalent age range (control group). Additionally, an interobserver study was performed on 38 patients from the study group. In CF patients, the following ultrasound signs were identified: I-lines; Z-lines; single, numerous and confluent B-lines; Am-lines; small and major consolidations; pleural line abnormalities and small amounts of pleural fluid. The obtained results were evaluated against an original ultrasound score. LUS results were correlated with the results of chest X-ray (CXR) [very high], pulmonary function tests (PFTs) [high] and microbiological status [significant]. The interobserver study showed very good agreement between investigators. We conclude that LUS is a useful test in the evaluation of CF lung disease severity compared to routinely used methods. With appropriate standardisation, LUS is highly reproducible.
Collapse
Affiliation(s)
- Joanna Jaworska
- Cystic Fibrosis Department, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Natalia Buda
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Piotr Kwaśniewicz
- Department of Diagnostic Imaging, Institute of Mother and Child, 01-211 Warsaw, Poland
| | | | - Dorota Sands
- Cystic Fibrosis Department, Institute of Mother and Child, 01-211 Warsaw, Poland
| |
Collapse
|
16
|
Thornton CS, Parkins MD. Microbial Epidemiology of the Cystic Fibrosis Airways: Past, Present, and Future. Semin Respir Crit Care Med 2023; 44:269-286. [PMID: 36623820 DOI: 10.1055/s-0042-1758732] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Progressive obstructive lung disease secondary to chronic airway infection, coupled with impaired host immunity, is the leading cause of morbidity and mortality in cystic fibrosis (CF). Classical pathogens found in the airways of persons with CF (pwCF) include Pseudomonas aeruginosa, Staphylococcus aureus, the Burkholderia cepacia complex, Achromobacter species, and Haemophilus influenzae. While traditional respiratory-tract surveillance culturing has focused on this limited range of pathogens, the use of both comprehensive culture and culture-independent molecular approaches have demonstrated complex highly personalized microbial communities. Loss of bacterial community diversity and richness, counteracted with relative increases in dominant taxa by traditional CF pathogens such as Burkholderia or Pseudomonas, have long been considered the hallmark of disease progression. Acquisition of these classic pathogens is viewed as a harbinger of advanced disease and postulated to be driven in part by recurrent and frequent antibiotic exposure driven by frequent acute pulmonary exacerbations. Recently, CF transmembrane conductance regulator (CFTR) modulators, small molecules designed to potentiate or restore diminished protein levels/function, have been successfully developed and have profoundly influenced disease course. Despite the multitude of clinical benefits, structural lung damage and consequent chronic airway infection persist in pwCF. In this article, we review the microbial epidemiology of pwCF, focus on our evolving understanding of these infections in the era of modulators, and identify future challenges in infection surveillance and clinical management.
Collapse
Affiliation(s)
- Christina S Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Michael D Parkins
- Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
17
|
Sarkar S, Routhray S, Ramadass B, Parida PK. A Review on the Nasal Microbiome and Various Disease Conditions for Newer Approaches to Treatments. Indian J Otolaryngol Head Neck Surg 2023; 75:755-763. [PMID: 37206729 PMCID: PMC10188862 DOI: 10.1007/s12070-022-03205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction: Commensal bacteria have always played a significant role in the maintenance of health and disease but are being unravelled only recently. Studies suggest that the nasal microbiome has a significant role in the development of various disease conditions. Search engines were used for searching articles having a nasal microbiome and disease correlation. In olfactory dysfunction, dysbiosis of the microbiome may have a significant role to play in the pathogenesis. The nasal microbiome influences the phenotype of CRS and is also capable of modulating the immune response and plays a role in polyp formation. Microbiome dysbiosis has a pivotal role in the development of Allergic Rhinitis; but, yet known how is this role played. The nasal microbiome has a close association with the severity and phenotype of asthma. They contribute significantly to the onset, severity, and development of asthma. The nasal microbiome has a significant impact on the immunity and protection of its host. The nasal microbiome has been a stimulus in the development of Otitis Media and its manifestations. Studies suggest that the resident nasal microbiome is responsible for the initiation of neurodegenerative diseases like Parkinson's Disease.Materials and Methods: Literature search from PubMed, Medline, and Google with the Mesh terms: nasal microbiome AND diseases. Conclusion: With increasing evidence on the role of the nasal microbiome on various diseases, it would be interesting to see how this microbiome can be modulated by pro/pre/post biotics to prevent a disease or the severity of illness.
Collapse
Affiliation(s)
- Saurav Sarkar
- Department of Otorhinolaryngology and Head Neck Surgery, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Samapika Routhray
- Department of Dentistry, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Balamurugan Ramadass
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Pradipta Kumar Parida
- Department of Otorhinolaryngology and Head Neck Surgery, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
18
|
Polymyxin Resistance and Heteroresistance Are Common in Clinical Isolates of Achromobacter Species and Correlate with Modifications of the Lipid A Moiety of Lipopolysaccharide. Microbiol Spectr 2023; 11:e0372922. [PMID: 36519943 PMCID: PMC9927164 DOI: 10.1128/spectrum.03729-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Achromobacter genus includes opportunistic pathogens that can cause chronic infections in immunocompromised patients, especially in people with cystic fibrosis (CF). Treatment of Achromobacter infections is complicated by antimicrobial resistance. In this study, a collection of Achromobacter clinical isolates, from CF and non-CF sources, was investigated for polymyxin B (PmB) resistance. Additionally, the effect of PmB challenge in a subset of isolates was examined and the presence of PmB-resistant subpopulations within the isolates was described. Further, chemical and mass spectrometry analyses of the lipid A of Achromobacter clinical isolates enabled the determination of the most common structures and showed that PmB challenge was associated with lipid A modifications that included the addition of glucosamine and palmitoylation and the concomitant loss of the free phosphate at the C-1 position. This study demonstrates that lipid A modifications associated with PmB resistance are prevalent in Achromobacter and that subresistant populations displaying the addition of positively charged residues and additional acyl chains to lipid A can be selected for and isolated from PmB-sensitive Achromobacter clinical isolates. IMPORTANCE Achromobacter species can cause chronic and potentially severe infections in immunocompromised patients, especially in those with cystic fibrosis. Bacteria cannot be eradicated due to Achromobacter's intrinsic multidrug resistance. We report that intrinsic resistance to polymyxin B (PmB), a last-resort antimicrobial peptide used to treat infections by multiresistant bacteria, is prevalent in Achromobacter clinical isolates; many isolates also display increased resistance upon PmB challenge. Analysis of the lipopolysaccharide lipid A moiety of several Achromobacter species reveals a penta-acylated lipid A, which in the PmB-resistant isolates was modified by the incorporation of glucosamine residues, an additional acyl chain, loss of phosphates, and hydroxylation of acyl chains, all of which can enhance PmB resistance in other bacteria. We conclude that PmB resistance, particularly in Achromobacter isolates from chronic respiratory infections, is a common phenomenon, and that Achromobacter lipid A displays modifications that may confer increased resistance to polymyxins and potentially other antimicrobial peptides.
Collapse
|
19
|
Sarkar PK, Akand N, Tahura S, Kamruzzaman M, Akter J, Zaman KA, Farhana T, Rima SS, Alam MJ, Hassan MK, Fardous J. Antimicrobial sensitivity pattern of children with cystic fibrosis in Bangladesh: a lesson from a specialized Sishu (Children) Hospital. EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE 2022. [DOI: 10.1186/s43054-022-00127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Infection control in cystic fibrosis (CF) patients plays a crucial role in improving the survival of patients with CF. Antimicrobial sensitivity patterns in these patient groups in our country are currently lacking. Therefore, the purpose of the study was to evaluate the microbiological cultures and antimicrobial susceptibility pattern of pediatric CF patients.
Method
A total of 50 respiratory samples were prospectively collected from the period between February 2021 and October 2021. Sputum and oropharyngeal swabs were processed for culture and microbiological testing. Sample collection and evaluation were performed according to the Good Laboratory Practice guidelines (GLP). Informed written consent was ensured before participation. Statistical analysis was performed with SPSS v 26.
Result
The median age of the children was 30 months (6–120) months, with a male predominance (66% vs 34%). Single and two organisms were isolated in 72% (n = 36) and 12% (n = 6) of cases, respectively. During the study period, 36% of the patients harbored Pseudomonas aeruginosa, 18% harbored Klebsiella pneumoniae, and both Staphylococcus aureus and Escherichia coli were detected in 16% of cases. Levofloxacin was found to be the most active antibiotic agent with 100% susceptibility. In contrast, nearly all isolates were resistant to amoxicillin, erythromycin and rifampicin.
Conclusion
Levofloxacin is the most effective agent to treat CF patients. Active surveillance of the resistance pattern should always continue to be promoted.
Collapse
|
20
|
Impact of N-Acetylcysteine and Antibiotics Against Single and Dual Species Biofilms of Pseudomonas aeruginosa and Achromobacter xylosoxidans. Curr Microbiol 2022; 80:5. [PMID: 36434296 DOI: 10.1007/s00284-022-03122-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Lungs of cystic fibrosis patients are often colonized or infected with organisms, such as Pseudomonas aeruginosa and other emerging pathogenic bacteria such as Achromobacter xylosoxidans. Further, it is well established that infections of the cystic fibrosis lung airways are caused by polymicrobial infections, although its composition and diversity may change throughout the patient's life. In the present study, we investigated the effects of N-acetylcysteine (NAC) and amikacin, aztreonam, ciprofloxacin, and tobramycin alone and in combination against single- and dual-species biofilms of P. aeruginosa and A. xylosoxidans, in vitro and in the Caenorhabditis elegans infection model. Results showed that tobramycin and ciprofloxacin were the most effective antibiotics, while aztreonam was the least effective antibiotic against both single- and dual-species biofilms of P. aeruginosa and A. xylosoxidans. However, NAC showed little effect on both single- and dual-species, even with a combination of antibiotics. Increased survival was observed in C. elegans when treated with NAC in combination with tobramycin or ciprofloxacin, compared to no treatment or NAC alone. Tobramycin and ciprofloxacin were found effective in biofilms, but more research is needed to better understand the effects of NAC and antibiotics against single- and dual-species biofilms.
Collapse
|
21
|
Quinn AM, Bottery MJ, Thompson H, Friman VP. Resistance evolution can disrupt antibiotic exposure protection through competitive exclusion of the protective species. THE ISME JOURNAL 2022; 16:2433-2447. [PMID: 35859161 PMCID: PMC9477885 DOI: 10.1038/s41396-022-01285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/05/2022]
Abstract
Antibiotic degrading bacteria can reduce the efficacy of drug treatments by providing antibiotic exposure protection to pathogens. While this has been demonstrated at the ecological timescale, it is unclear how exposure protection might alter and be affected by pathogen antibiotic resistance evolution. Here, we utilised a two-species model cystic fibrosis (CF) community where we evolved the bacterial pathogen Pseudomonas aeruginosa in a range of imipenem concentrations in the absence or presence of Stenotrophomonas maltophilia, which can detoxify the environment by hydrolysing β-lactam antibiotics. We found that P. aeruginosa quickly evolved resistance to imipenem via parallel loss of function mutations in the oprD porin gene. While the level of resistance did not differ between mono- and co-culture treatments, the presence of S. maltophilia increased the rate of imipenem resistance evolution in the four μg/ml imipenem concentration. Unexpectedly, imipenem resistance evolution coincided with the extinction of S. maltophilia due to increased production of pyocyanin, which was cytotoxic to S. maltophilia. Together, our results show that pathogen resistance evolution can disrupt antibiotic exposure protection due to competitive exclusion of the protective species. Such eco-evolutionary feedbacks may help explain changes in the relative abundance of bacterial species within CF communities despite intrinsic resistance to anti-pseudomonal drugs.
Collapse
|
22
|
Achromobacter Species: An Emerging Cause of Community-Onset Bloodstream Infections. Microorganisms 2022; 10:microorganisms10071449. [PMID: 35889168 PMCID: PMC9323057 DOI: 10.3390/microorganisms10071449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Case reports and small series indicate that Achromobacter species bloodstream infection (BSI) is most commonly a complication of hospitalization among patients with chronic lung disease. The aim of the present study was to determine the incidence, risk factors, and outcomes of Achromobacter sp. BSI in an Australian population. Methods: Retrospective, laboratory-based surveillance was conducted in Queensland, Australia (population ≈ 5 million) during 2000–2019. Clinical and outcome data were obtained by linkage to state hospital admissions and vital statistics databases. BSI diagnosed within the community or within the first two calendar days of stay in hospital were classified as community-onset. Community-onset BSIs were grouped into community-associated and healthcare-associated. Results: During more than 86 million person-years of surveillance, 210 incidents of Achromobacter sp. BSI occurred among 195 individuals for an overall age-and sex-standardized annual incidence of 2.6 per million residents. Older individuals and males were at highest risk (2.9 vs. 2.0 per million, IRR for males 1.5; 95% CI, 1.1–1.9; p = 0.008). Most (153; 73%) cases were of community-onset of which 100 (48%) and 53 (25%) were healthcare- and community-associated, respectively. An increasing proportion of community-onset cases were observed during twenty years of surveillance. Underlying medical illnesses were common with median (interquartile range) Charlson Comorbidity Index (CCI) scores of 3 (1–5). CCI scores of 0, 1, 2, and 3+ were observed in 37 (18%), 27 (13%), 40 (19%), and 105 (50%) of cases, respectively. All but one of the cases were admitted to hospital for a median (interquartile range) length of stay of 12 (5–34) days. All-cause case–fatality rates in hospital by day 30 and by day 90 were 30 (14%), 28 (13%), and 42 (20%), respectively. The 90-day case–fatality rate increased with increasing comorbidity and was 3% (1/37), 11% (3/27), 25% (10/40), and 27% (28/105) among those with Charlson Comorbidity Indices of 0, 1, 2, and 3+, respectively (p = 0.004). Conclusions: Although comorbidity is an important determinant of risk, most Achromobacter sp. BSI are of community-onset and one-fifth of cases occur in patients without significant underlying chronic co-morbidities. This study highlights the value of population-based methodologies to define the epidemiology of an infectious disease.
Collapse
|
23
|
Le Goff M, Vastel M, Lebrun R, Mansuelle P, Diarra A, Grandjean T, Triponney P, Imbert G, Gosset P, Dessein R, Garnier F, Durand E. Characterization of the Achromobacter xylosoxidans Type VI Secretion System and Its Implication in Cystic Fibrosis. Front Cell Infect Microbiol 2022; 12:859181. [PMID: 35782124 PMCID: PMC9245596 DOI: 10.3389/fcimb.2022.859181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria of the genus Achromobacter are environmental germs, with an unknown reservoir. It can become opportunistic pathogens in immunocompromised patients, causing bacteremia, meningitis, pneumonia, or peritonitis. In recent years, Achromobacter xylosoxidans has emerged with increasing incidence in patients with cystic fibrosis (CF). Recent studies showed that A. xylosoxidans is involved in the degradation of the respiratory function of patients with CF. The respiratory ecosystem of patients with CF is colonized by bacterial species that constantly fight for space and access to nutrients. The type VI secretion system (T6SS) empowers this constant bacterial antagonism, and it is used as a virulence factor in several pathogenic bacteria. This study aimed to investigate the prevalence of the T6SS genes in A. xylosoxidans isolated in patients with CF. We also evaluated clinical and molecular characteristics of T6SS-positive A. xylosoxidans strains. We showed that A. xylosoxidans possesses a T6SS gene cluster and that some environmental and clinical isolates assemble a functional T6SS nanomachine. A. xylosoxidans T6SS is used to target competing bacteria, including other CF-specific pathogens. Finally, we demonstrated the importance of the T6SS in the internalization of A. xylosoxidans in lung epithelial cells and that the T6SS protein Hcp is detected in the sputum of patients with CF. Altogether, these results suggest for the first time a role of T6SS in CF-lung colonization by A. xylosoxidans and opens promising perspective to target this virulence determinant as innovative theranostic options for CF management.
Collapse
Affiliation(s)
- Mélanie Le Goff
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université - Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7255, Marseille, France
| | - Manon Vastel
- Université de Limoges, INSERM, Centre Hospitalier Universitaire (CHU) Limoges, Unité Mixte de Recherche (UMR) 1092, Limoges, France
| | - Régine Lebrun
- Plateforme Protéomique de l’Institut de Microbiologie de la Méditerranée, Marseille Protéomique, Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS) FR 3479, Marseille, France
| | - Pascal Mansuelle
- Plateforme Protéomique de l’Institut de Microbiologie de la Méditerranée, Marseille Protéomique, Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS) FR 3479, Marseille, France
| | - Ava Diarra
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| | - Teddy Grandjean
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| | - Pauline Triponney
- Centre National de Référence de la Résistance aux Antibiotiques , Centre Hospitalier Universitaire de Besançon, Besançon, France
| | | | - Philippe Gosset
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| | - Rodrigue Dessein
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| | - Fabien Garnier
- Université de Limoges, INSERM, Centre Hospitalier Universitaire (CHU) Limoges, Unité Mixte de Recherche (UMR) 1092, Limoges, France
- *Correspondence: Eric Durand, ; ; Fabien Garnier,
| | - Eric Durand
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université - Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7255, Marseille, France
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université - Unité Mixte de Recherche (UMR) 7255, INSERM, Marseille, France
- *Correspondence: Eric Durand, ; ; Fabien Garnier,
| |
Collapse
|
24
|
Thomas SE, McCarthy WJ, El Bakali J, Brown KP, Kim SY, Blaszczyk M, Mendes V, Abell C, Floto RA, Coyne AG, Blundell TL. Structural Characterization of Mycobacterium abscessus Phosphopantetheine Adenylyl Transferase Ligand Interactions: Implications for Fragment-Based Drug Design. Front Mol Biosci 2022; 9:880432. [PMID: 35712348 PMCID: PMC9197168 DOI: 10.3389/fmolb.2022.880432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/09/2022] [Indexed: 02/02/2023] Open
Abstract
Anti-microbial resistance is a rising global healthcare concern that needs urgent attention as growing number of infections become difficult to treat with the currently available antibiotics. This is particularly true for mycobacterial infections like tuberculosis and leprosy and those with emerging opportunistic pathogens such as Mycobacterium abscessus, where multi-drug resistance leads to increased healthcare cost and mortality. M. abscessus is a highly drug-resistant non-tuberculous mycobacterium which causes life-threatening infections in people with chronic lung conditions such as cystic fibrosis. In this study, we explore M. abscessus phosphopantetheine adenylyl transferase (PPAT), an enzyme involved in the biosynthesis of Coenzyme A, as a target for the development of new antibiotics. We provide structural insights into substrate and feedback inhibitor binding modes of M. abscessus PPAT, thereby setting the basis for further chemical exploration of the enzyme. We then utilize a multi-dimensional fragment screening approach involving biophysical and structural analysis, followed by evaluation of compounds from a previous fragment-based drug discovery campaign against M. tuberculosis PPAT ortholog. This allowed the identification of an early-stage lead molecule exhibiting low micro molar affinity against M. abscessus PPAT (Kd 3.2 ± 0.8 µM) and potential new ways to design inhibitors against this enzyme. The resulting crystal structures reveal striking conformational changes and closure of solvent channel of M. abscessus PPAT hexamer providing novel strategies of inhibition. The study thus validates the ligandability of M. abscessus PPAT as an antibiotic target and identifies crucial starting points for structure-guided drug discovery against this bacterium.
Collapse
Affiliation(s)
- Sherine E. Thomas
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - William J. McCarthy
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jamal El Bakali
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Karen P. Brown
- MRC Laboratory of Molecular Biology, Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - So Yeon Kim
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michal Blaszczyk
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Vítor Mendes
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- MRC Laboratory of Molecular Biology, Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Chris Abell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - R. Andres Floto
- MRC Laboratory of Molecular Biology, Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Anthony G. Coyne
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Sunman B, Emiralioglu N, Hazirolan G, Ademhan Tural D, Ozsezen B, Nayir Buyuksahin H, Guzelkas I, Yalcin E, Dogru D, Özçelik U, Kiper N. Impact of Achromobacter spp. isolation on clinical outcomes in children with cystic fibrosis. Pediatr Pulmonol 2022; 57:658-666. [PMID: 34918495 DOI: 10.1002/ppul.25793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/10/2021] [Accepted: 12/07/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND The prevalence of Achromobacter spp. in cystic fibrosis (CF) has increased while its significance remains controversial. Our aim was to investigate the impact of Achromobacter spp. isolation on clinical outcomes in children with CF. METHODS Children with Achromobacter spp. isolation were retrospectively included from the CF database of our center. Control groups of children with CF, who had never been infected by Achromobacter spp., were individually case-matched by age, sex, and Pseudomonas aeruginosa isolation status. Pulmonary function and exacerbation frequency were compared between groups during follow-up. RESULTS Thirty-seven children had at least one respiratory specimen positive for Achromobacter spp. Achromobacter spp. were chronically isolated from 15 (40.5%) and intermittently from 22 (59.5%) of these 37 children. Although the baseline forced expiratory volume in 1 s (FEV1) z-score was similar between the Achromobacter spp.-infected and -uninfected groups (-0.65 ± 2.22 vs. -0.15 ± 1.30, respectively; p = 0.318), children infected by Achromobacter spp. had a lower FEV1 z-score compared to the control group by the end of the first year (-1.37 ± 2.17 vs. -0.14 ± 1.65, respectively; p = 0.025). In addition, the FEV1 decline in 1 year was significantly greater in the group infected by Achromobacter spp. compared to the uninfected group (-1.18%/year vs. -9.07%/year, respectively; p = 0.043). Furthermore, the cumulative numbers of exacerbations observed in the Achromobacter spp.-infected group were higher compared to the control group by the end of the second year (4 [0-17] versus 3 [0-9], respectively; p = 0.001). CONCLUSIONS Achromobacter spp. isolation is associated with more accelerated decline in lung function parameters and frequent exacerbations in children with CF.
Collapse
Affiliation(s)
- Birce Sunman
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Nagehan Emiralioglu
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Gülsen Hazirolan
- Department of Medical Microbiology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Dilber Ademhan Tural
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Beste Ozsezen
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Halime Nayir Buyuksahin
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Ismail Guzelkas
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Ebru Yalcin
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Deniz Dogru
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Uğur Özçelik
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Nural Kiper
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| |
Collapse
|
26
|
Vázquez Castellanos JL, Copado Villagrana ED, Torres Mendoza BMG, Gallegos Durazo DL, González Plascencia J, Mejía-Zárate AK. First bacteremia outbreak due Achromobacter spp. in hemodialysis patients in Mexico. Nefrologia 2022; 42:101-103. [PMID: 36153889 DOI: 10.1016/j.nefroe.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/26/2020] [Accepted: 08/13/2020] [Indexed: 06/16/2023] Open
Affiliation(s)
| | | | | | | | - Juana González Plascencia
- Hospital General Regional Núm. 110, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | | |
Collapse
|
27
|
Evaluating Metabolic Pathways and Biofilm Formation in Stenotrophomonas maltophilia. J Bacteriol 2021; 204:e0039821. [PMID: 34633868 DOI: 10.1128/jb.00398-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia has recently arisen as a prominent nosocomial pathogen because of its high antimicrobial resistance and ability to cause chronic respiratory infections. Often the infections are worsened by biofilm formation which enhances antibiotic tolerance. We have previously found that mutation of the gpmA gene, encoding the glycolytic enzyme phosphoglycerate mutase, impacts the formation of this biofilm on biotic and abiotic surfaces at early timepoints. This finding, indicating an association between carbon source and biofilm formation, led us to hypothesize that metabolism would influence S. maltophilia biofilm formation and planktonic growth. In the present study, we tested the impact of various growth substrates on biofilm levels and growth kinetics to determine metabolic requirements for these processes. We found that S. maltophilia wildtype preferred amino acids versus glucose for planktonic and biofilm growth and that gpmA deletion inhibited growth in amino acids. Furthermore, supplementation of the ΔgpmA strain by glucose or ribose phenotypically complemented growth defects. These results suggest that S. maltophilia shuttles amino acid carbon through gluconeogenesis to an undefined metabolic pathway supporting planktonic and biofilm growth. Further evaluation of these metabolic pathways might reveal novel metabolic activities of this pathogen. Importance Stenotrophomonas maltophilia is a prominent opportunistic pathogen that often forms biofilms during infection. However, the molecular mechanisms of virulence and biofilm formation are poorly understood. The glycolytic enzyme phosphoglycerate mutase appears to play a role in biofilm formation, and we used a mutant in its gene (gpmA) to probe the metabolic circuitry potentially involved in biofilm development. The results of our study indicate that S. maltophilia displays unique metabolic activities, which could be exploited for inhibiting growth and biofilm formation of this pathogen.
Collapse
|
28
|
Effect of N-Acetylcysteine in Combination with Antibiotics on the Biofilms of Three Cystic Fibrosis Pathogens of Emerging Importance. Antibiotics (Basel) 2021; 10:antibiotics10101176. [PMID: 34680757 PMCID: PMC8532722 DOI: 10.3390/antibiotics10101176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder causing dysfunctional ion transport resulting in accumulation of viscous mucus that fosters chronic bacterial biofilm-associated infection in the airways. Achromobacter xylosoxidans and Stenotrophomonas maltophilia are increasingly prevalent CF pathogens and while Burkholderia cencocepacia is slowly decreasing; all are complicated by multidrug resistance that is enhanced by biofilm formation. This study investigates potential synergy between the antibiotics ciprofloxacin (0.5–128 µg/mL), colistin (0.5–128 µg/mL) and tobramycin (0.5–128 µg/mL) when combined with the neutral pH form of N-Acetylcysteine (NACneutral) (0.5–16.3 mg/mL) against 11 cystic fibrosis strains of Burkholderia, Stenotrophomonas and Achromobacter sp. in planktonic and biofilm cultures. We screened for potential synergism using checkerboard assays from which fraction inhibitory concentration indices (FICI) were calculated. Synergistic (FICI ≤ 0.5) and additive (0.5 > FICI ≥ 1) combinations were tested on irreversibly attached bacteria and 48 h mature biofilms via time-course and colony forming units (CFU/mL) assays. This study suggests that planktonic FICI analysis does not necessarily translate to reduction in bacterial loads in a biofilm model. Future directions include refining synergy testing and determining further mechanisms of action of NAC to understand how it may interact with antibiotics to better predict synergy.
Collapse
|
29
|
Johansen MD, Alcaraz M, Dedrick RM, Roquet-Banères F, Hamela C, Hatfull GF, Kremer L. Mycobacteriophage-antibiotic therapy promotes enhanced clearance of drug-resistant Mycobacterium abscessus. Dis Model Mech 2021; 14:272140. [PMID: 34530447 PMCID: PMC8461822 DOI: 10.1242/dmm.049159] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
Infection by multidrug-resistant Mycobacterium abscessus is increasingly prevalent in cystic fibrosis (CF) patients, leaving clinicians with few therapeutic options. A compassionate study showed the clinical improvement of a CF patient with a disseminated M. abscessus (GD01) infection, following injection of a phage cocktail, including phage Muddy. Broadening the use of phage therapy in patients as a potential antibacterial alternative necessitates the development of biological models to improve the reliability and successful prediction of phage therapy in the clinic. Herein, we demonstrate that Muddy very efficiently lyses GD01 in vitro, an effect substantially increased with standard drugs. Remarkably, this cooperative activity was retained in an M. abscessus model of infection in CFTR-depleted zebrafish, associated with a striking increase in larval survival and reduction in pathological signs. The activity of Muddy was lost in macrophage-ablated larvae, suggesting that successful phage therapy relies on functional innate immunity. CFTR-depleted zebrafish represent a practical model to rapidly assess phage treatment efficacy against M. abscessus isolates, allowing the identification of drug combinations accompanying phage therapy and treatment prediction in patients. This article has an associated First Person interview with the first author of the paper. Summary: A zebrafish model of infection was developed to evaluate the in vivo cooperative activity of specific phages and antibiotics for the treatment of Mycobacterium abscessus infection.
Collapse
Affiliation(s)
- Matt D Johansen
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier 34293, France
| | - Matthéo Alcaraz
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier 34293, France
| | - Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Françoise Roquet-Banères
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier 34293, France
| | - Claire Hamela
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier 34293, France
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique UMR 9004, Université de Montpellier, Montpellier 34293, France.,INSERM, Institut de Recherche en Infectiologie de Montpellier, Montpellier 34293, France
| |
Collapse
|
30
|
Dwivedi GR, Rai R, Pratap R, Singh K, Pati S, Sahu SN, Kant R, Darokar MP, Yadav DK. Drug resistance reversal potential of multifunctional thieno[3,2-c]pyran via potentiation of antibiotics in MDR P. aeruginosa. Biomed Pharmacother 2021; 142:112084. [PMID: 34449308 DOI: 10.1016/j.biopha.2021.112084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022] Open
Abstract
We explored the antibacterial potential (alone and combination) against multidrug resistant (MDR) Pseudomonas aeruginosa isolates KG-P2 using synthesized thieno[3,2-c]pyran-2-ones in combination with different antibiotics. Out of 14 compounds, two compounds (3g and 3l) abridged the MIC of tetracycline (TET) by 16 folds. Compounds was killing the KG-P2 cells, in time dependent manner, lengthened post-antibiotic effect (PAE) of TET and found decreased the mutant prevention concentration (MPC) of TET. In ethidium bromide efflux experiment, two compounds repressed the drug transporter (efflux pumps) which is further supported by molecular docking of these compounds with efflux complex MexAB-OprM. In another study, these compounds inhibited the synthesis of biofilm.
Collapse
Affiliation(s)
- Gaurav Raj Dwivedi
- Microbiology Department, ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur 273013, India.
| | - Reeta Rai
- Department of Biochemistry, AIIMS Ansari Nagar, New Delhi 110029, India
| | - Ramendra Pratap
- Department of Chemistry, North campus University of Delhi, Delhi 110007, India.
| | - Khusbu Singh
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - Sanghamitra Pati
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - Satya Narayan Sahu
- Government College Balrampur, Balrampur-Ramanujganj, Chhattisgarh 497119, India
| | - Rajni Kant
- Microbiology Department, ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur 273013, India
| | - Mahendra P Darokar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, ̥Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India
| | - Dharmendra K Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon 21924, Republic of Korea.
| |
Collapse
|
31
|
The Role of Respiratory Flora in the Pathogenesis of Chronic Respiratory Diseases. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6431862. [PMID: 34435047 PMCID: PMC8382525 DOI: 10.1155/2021/6431862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/20/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022]
Abstract
Large quantities of bacteria, including Firmicutes, Actinobacteria, and Bacteroidetes, colonize the surface of the respiratory mucosa of healthy people. They interact and coexist with the local mucosal immune system of the human airway, maintaining the immune stability and balance of the respiratory system. While suffering from chronic respiratory diseases, the microbial population in the airway changes and the proportion of Proteobacteria is increased in patients with asthma. The abundance of the microbial population in patients with chronic obstructive pulmonary disease (COPD) is decreased, and conversely, the proportion of Firmicutes and Proteobacteria increased. The diversity of airway microorganisms in cystic fibrosis (CF) patients is decreased, while pathogenic bacteria and conditional pathogenic bacteria are proliferated in large numbers. The proportion of Firmicutes and Proteobacteria is increased in patients with upper airway cough syndrome (UACS), which replaces the dominance of Streptococcus and Neisseria in the pharynx of a normal population. Therefore, a clear understanding of the immune process of the airway flora and the immune dysfunction of the flora on the pathogenesis of chronic respiratory diseases can provide new ideas for the prevention and treatment of human respiratory diseases.
Collapse
|
32
|
Wang M, Gauthier AG, Kennedy TP, Wang H, Velagapudi UK, Talele TT, Lin M, Wu J, Daley L, Yang X, Patel V, Mun SS, Ashby CR, Mantell LL. 2-O, 3-O desulfated heparin (ODSH) increases bacterial clearance and attenuates lung injury in cystic fibrosis by restoring HMGB1-compromised macrophage function. Mol Med 2021; 27:79. [PMID: 34271850 PMCID: PMC8283750 DOI: 10.1186/s10020-021-00334-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/21/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND High mobility group box 1 protein (HMGB1) is an alarmin following its release by immune cells upon cellular activation or stress. High levels of extracellular HMGB1 play a critical role in impairing the clearance of invading pulmonary pathogens and dying neutrophils in the injured lungs of cystic fibrosis (CF) and acute respiratory distress syndrome (ARDS). A heparin derivative, 2-O, 3-O desulfated heparin (ODSH), has been shown to inhibit HMGB1 release from a macrophage cell line and is efficacious in increasing bacterial clearance in a mouse model of pneumonia. Thus, we hypothesized that ODSH can attenuate the bacterial burden and inflammatory lung injury in CF and we conducted experiments to determine the underlying mechanisms. METHODS We determined the effects of ODSH on lung injury produced by Pseudomonas aeruginosa (PA) infection in CF mice with the transmembrane conductance regulator gene knockout (CFTR-/-). Mice were given ODSH or normal saline intraperitoneally, followed by the determination of the bacterial load and lung injury in the airways and lung tissues. ODSH binding to HMGB1 was determined using surface plasmon resonance and in silico docking analysis of the interaction of the pentasaccharide form of ODSH with HMGB1. RESULTS CF mice given 25 mg/kg i.p. of ODSH had significantly lower PA-induced lung injury compared to mice given vehicle alone. The CF mice infected with PA had decreased levels of nitric oxide (NO), increased levels of airway HMGB1 and HMGB1-impaired macrophage phagocytic function. ODSH partially attenuated the PA-induced alteration in the levels of NO and airway HMGB1 in CF mice. In addition, ODSH reversed HMGB1-impaired macrophage phagocytic function. These effects of ODSH subsequently decreased the bacterial burden in the CF lungs. In a surface plasmon resonance assay, ODSH interacted with HMGB1 with high affinity (KD = 3.89 × 10-8 M) and induced conformational changes that may decrease HMGB1's binding to its membrane receptors, thus attenuating HMGB1-induced macrophage dysfunction. CONCLUSIONS The results suggest that ODSH can significantly decrease bacterial infection-induced lung injury in CF mice by decreasing both HMGB1-mediated impairment of macrophage function and the interaction of HMGB1 with membrane receptors. Thus, ODSH could represent a novel approach for treating CF and ARDS patients that have HMGB1-mediated lung injury.
Collapse
Affiliation(s)
- Mao Wang
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Alex G Gauthier
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Thomas P Kennedy
- Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Haichao Wang
- The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Uday Kiran Velagapudi
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Mosi Lin
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - LeeAnne Daley
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Xiaojing Yang
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Vivek Patel
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Sung Soo Mun
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Queens, 11439, NY, USA.
- The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA.
| |
Collapse
|
33
|
Effectors of the Stenotrophomonas maltophilia Type IV Secretion System Mediate Killing of Clinical Isolates of Pseudomonas aeruginosa. mBio 2021; 12:e0150221. [PMID: 34182776 PMCID: PMC8262851 DOI: 10.1128/mbio.01502-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previously, we documented that Stenotrophomonas maltophilia encodes a type IV secretion system (T4SS) that allows the organism to kill, in contact-dependent fashion, heterologous bacteria, including wild-type Pseudomonas aeruginosa. Bioinformatic screens based largely on the presence of both a C-terminal consensus sequence and an adjacent gene encoding a cognate immunity protein identified 13 potential antibacterial effectors, most of which were highly conserved among sequenced strains of S. maltophilia. The immunity proteins of two of these proved especially capable of protecting P. aeruginosa and Escherichia coli against attack from the Stenotrophomonas T4SS. In turn, S. maltophilia mutants lacking the putative effectors RS14245 and RS14255 were impaired for killing not only laboratory E. coli but clinical isolates of P. aeruginosa, including ones isolated from the lungs of cystic fibrosis patients. That complemented mutants behaved as wild type did confirmed that RS14245 and RS14255 are required for the bactericidal activity of the S. maltophilia T4SS. Moreover, a mutant lacking both of these proteins was as impaired as a mutant lacking the T4SS apparatus, indicating that RS14245 and RS14255 account for (nearly) all of the bactericidal effects seen. Utilizing an interbacterial protein translocation assay, we determined that RS14245 and RS14255 are bona fide substrates of the T4SS, a result confirmed by examination of mutants lacking both the T4SS and the individual effectors. Delivery of the cloned 14245 protein (alone) into the periplasm resulted in the killing of target bacteria, indicating that this effector, a putative lipase, is both necessary and sufficient for bactericidal activity.
Collapse
|
34
|
Iorio A, Biazzo M, Gardini S, Muda AO, Perno CF, Dallapiccola B, Putignani L. Cross-correlation of virome-bacteriome-host-metabolome to study respiratory health. Trends Microbiol 2021; 30:34-46. [PMID: 34052095 DOI: 10.1016/j.tim.2021.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
A comprehensive understanding of the microbiome-host relationship in respiratory diseases can be elucidated by exploring the landscape of virome-bacteriome-host metabolome data through unsupervised 'multi-omics' approaches. Here, we describe how the composition and function of airway and gut virome and bacteriome may contribute to pathogen establishment and propagation in airway districts and how the virome-bacteriome communities may react to respiratory diseases. A new systems medicine approach, including the characterization of respiratory and gut microbiome, may be crucial to demonstrate the likelihood and odds of respiratory disease pathophysiology, opening new avenues to the discovery of a chain of causation for key bacteria and viruses in disease severity.
Collapse
Affiliation(s)
- Andrea Iorio
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manuele Biazzo
- The BioArte Ltd, The Victoria Centre, Mosta, Malta; SienaBioActive, University of Siena, Siena, Italy
| | | | - Andrea Onetti Muda
- Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Federico Perno
- Unit of Microbiology and Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Bruno Dallapiccola
- Scientific Directorate, Children's Hospital and Research Institute 'Bambino Gesù', IRCCS, Rome
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
35
|
Khanal S, Webster M, Niu N, Zielonka J, Nunez M, Chupp G, Slade MD, Cohn L, Sauler M, Gomez JL, Tarran R, Sharma L, Dela Cruz CS, Egan M, Laguna T, Britto CJ. SPLUNC1: a novel marker of cystic fibrosis exacerbations. Eur Respir J 2021; 58:13993003.00507-2020. [PMID: 33958427 DOI: 10.1183/13993003.00507-2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/29/2021] [Indexed: 11/05/2022]
Abstract
Acute pulmonary Exacerbations (AE) are episodes of clinical worsening in cystic fibrosis (CF), often precipitated by infection. Timely detection is critical to minimise morbidity and lung function declines associated with acute inflammation during AE. Based on our previous observations that airway protein Short Palate Lung Nasal epithelium Clone 1 (SPLUNC1) is regulated by inflammatory signals, we investigated the use of SPLUNC1 fluctuations to diagnose and predict AE in CF.We enrolled CF participants from two independent cohorts to measure AE markers of inflammation in sputum and recorded clinical outcomes for a 1-year follow-up period.SPLUNC1 levels were high in healthy controls (n=9, 10.7 μg mL-1), and significantly decreased in CF participants without AE (n=30, 5.7 μg mL-1, p=0.016). SPLUNC1 levels were 71.9% lower during AE (n=14, 1.6 μg mL-1, p=0.0034) regardless of age, sex, CF-causing mutation, or microbiology findings. Cytokines Il-1β and TNFα were also increased in AE, whereas lung function did not consistently decrease. Stable CF participants with lower SPLUNC1 levels were much more likely to have an AE at 60 days (HR: 11.49, Standard Error: 0.83, p=0.0033). Low-SPLUNC1 stable participants remained at higher AE risk even one year after sputum collection (HR: 3.21, Standard Error: 0.47, p=0.0125). SPLUNC1 was downregulated by inflammatory cytokines and proteases increased in sputum during AE.In acute CF care, low SPLUNC1 levels could support a decision to increase airway clearance or to initiate pharmacological interventions. In asymptomatic, stable patients, low SPLUNC1 levels could inform changes in clinical management to improve long-term disease control and clinical outcomes in CF.
Collapse
Affiliation(s)
- Sara Khanal
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Megan Webster
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Naiqian Niu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jana Zielonka
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Myra Nunez
- Division of Pediatric Respiratory Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Geoffrey Chupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Martin D Slade
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lauren Cohn
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maor Sauler
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jose L Gomez
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marie Egan
- Division of Pediatric Pulmonology, Allergy, Immunology, and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Theresa Laguna
- Division of Pediatric Respiratory Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clemente J Britto
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
36
|
Menetrey Q, Sorlin P, Jumas-Bilak E, Chiron R, Dupont C, Marchandin H. Achromobacter xylosoxidans and Stenotrophomonas maltophilia: Emerging Pathogens Well-Armed for Life in the Cystic Fibrosis Patients' Lung. Genes (Basel) 2021; 12:610. [PMID: 33919046 PMCID: PMC8142972 DOI: 10.3390/genes12050610] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
In patients with cystic fibrosis (CF), the lung is a remarkable ecological niche in which the microbiome is subjected to important selective pressures. An inexorable colonization by bacteria of both endogenous and environmental origin is observed in most patients, leading to a vicious cycle of infection-inflammation. In this context, long-term colonization together with competitive interactions among bacteria can lead to over-inflammation. While Pseudomonas aeruginosa and Staphylococcus aureus, the two pathogens most frequently identified in CF, have been largely studied for adaptation to the CF lung, in the last few years, there has been a growing interest in emerging pathogens of environmental origin, namely Achromobacter xylosoxidans and Stenotrophomonas maltophilia. The aim of this review is to gather all the current knowledge on the major pathophysiological traits, their supporting mechanisms, regulation and evolutionary modifications involved in colonization, virulence, and competitive interactions with other members of the lung microbiota for these emerging pathogens, with all these mechanisms being major drivers of persistence in the CF lung. Currently available research on A. xylosoxidans complex and S. maltophilia shows that these emerging pathogens share important pathophysiological features with well-known CF pathogens, making them important members of the complex bacterial community living in the CF lung.
Collapse
Affiliation(s)
- Quentin Menetrey
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, 34093 Montpellier, France; (Q.M.); (P.S.)
| | - Pauline Sorlin
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, 34093 Montpellier, France; (Q.M.); (P.S.)
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, Department d’Hygiène Hospitalière, CHU Montpellier, 34093 Montpellier, France; (E.J.-B.); (C.D.)
| | - Raphaël Chiron
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Centre de Ressources et de Compétences de la Mucoviscidose, CHU de Montpellier, 34093 Montpellier, France;
| | - Chloé Dupont
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, Department d’Hygiène Hospitalière, CHU Montpellier, 34093 Montpellier, France; (E.J.-B.); (C.D.)
| | - Hélène Marchandin
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Nîmes, France
- UMR 5151 HydroSciences Montpellier, Equipe Pathogènes Hydriques Santé Environnements, U.F.R. des Sciences Pharmaceutiques et Biologiques, Université de Montpellier, 15, Avenue Charles Flahault, BP 14491, CEDEX 5, 34093 Montpellier, France
| |
Collapse
|
37
|
van der Loo C, Bartie C, Barnard TG, Potgieter N. Detection of Free-Living Amoebae and Their Intracellular Bacteria in Borehole Water before and after a Ceramic Pot Filter Point-of-Use Intervention in Rural Communities in South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3912. [PMID: 33917870 PMCID: PMC8068299 DOI: 10.3390/ijerph18083912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022]
Abstract
Free-living amoebae (FLA) are ubiquitous in nature, whereas amoeba-resistant bacteria (ARB) have evolved virulent mechanisms that allow them to resist FLA digestion mechanisms and survive inside the amoeba during hostile environmental conditions. This study assessed the prevalence of FLA and ARB species in borehole water before and after a ceramic point-of-use intervention in rural households. A total of 529 water samples were collected over a five-month period from 82 households. All water samples were subjected to amoebal enrichment, bacterial isolation on selective media, and molecular identification using 16S PCR/sequencing to determine ARB species and 18S rRNA PCR/sequencing to determine FLA species present in the water samples before and after the ceramic pot intervention. Several FLA species including Acanthamoeba spp. and Mycobacterium spp. were isolated. The ceramic pot filter removed many of these microorganisms from the borehole water. However, design flaws could have been responsible for some FLA and ARB detected in the filtered water. FLA and their associated ARB are ubiquitous in borehole water, and some of these species might be potentially harmful and a health risk to vulnerable individuals. There is a need to do more investigations into the health risk of these organisms after point-of-use treatment.
Collapse
Affiliation(s)
- Clarissa van der Loo
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2094, South Africa; (C.v.d.L.); (T.G.B.)
| | | | - Tobias George Barnard
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2094, South Africa; (C.v.d.L.); (T.G.B.)
| | - Natasha Potgieter
- Environmental Health, Domestic Hygiene and Microbial Pathogens Research Group, Department of Microbiology, University of Venda, Thohoyandou 1950, South Africa
| |
Collapse
|
38
|
Verma D, Chan ED, Ordway DJ. The double-edged sword of Tregs in M tuberculosis, M avium, and M absessus infection. Immunol Rev 2021; 301:48-61. [PMID: 33713043 DOI: 10.1111/imr.12959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Immunity against different Mycobacteria species targeting the lung requires distinctly different pulmonary immune responses for bacterial clearance. Many parameters of acquired and regulatory immune responses differ quantitatively and qualitatively from immunity during infection with Mycobacteria species. Nontuberculosis Mycobacteria species (NTM) Mycobacterium avium- (M avium), Mycobacterium abscessus-(M abscessus), and the Mycobacteria species Mycobacterium tuberculosis-(Mtb). Herein, we discuss the potential implications of acquired and regulatory immune responses in the context of animal and human studies, as well as future directions for efforts to treat Mycobacteria diseases.
Collapse
Affiliation(s)
- Deepshikha Verma
- Mycobacteria Research Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Edward D Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, CO, USA.,Departments of Medicine and Academic Affairs, National Jewish Health, Denver, CO, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Diane J Ordway
- Mycobacteria Research Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
39
|
Talman S, Uzun S, Djamin RS, Baart SJ, Grootenboers MJJH, Aerts J, van der Eerden M. Long-Term Azithromycin Maintenance Treatment in Patients with Frequent Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2021; 16:495-498. [PMID: 33688175 PMCID: PMC7935328 DOI: 10.2147/copd.s284397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/07/2021] [Indexed: 12/31/2022] Open
Abstract
Macrolides are effective in reducing the number of exacerbations in COPD patients with the frequent exacerbator phenotype. Our study did not show a persistent effect of azithromycin on exacerbation frequencies after more than one year of usage.
Collapse
Affiliation(s)
- Sander Talman
- Amphia Hospital Breda, Department of Pulmonary Medicine, Breda, 4800RK, the Netherlands
| | - Sevim Uzun
- Erasmus Medical Centre Rotterdam, Department of Pulmonary Medicine, Rotterdam, 3015 CE, the Netherlands
| | - Remco S Djamin
- Amphia Hospital Breda, Department of Pulmonary Medicine, Breda, 4800RK, the Netherlands
| | - Sara J Baart
- Erasmuc Medical Centre Rotterdam, Department of Biostatistics, Rotterdam, 3015 CE, the Netherlands
| | | | - Joachim Aerts
- Erasmus Medical Centre Rotterdam, Department of Pulmonary Medicine, Rotterdam, 3015 CE, the Netherlands
| | - Menno van der Eerden
- Erasmus Medical Centre Rotterdam, Department of Pulmonary Medicine, Rotterdam, 3015 CE, the Netherlands
| |
Collapse
|
40
|
Martin I, Waters V, Grasemann H. Approaches to Targeting Bacterial Biofilms in Cystic Fibrosis Airways. Int J Mol Sci 2021; 22:ijms22042155. [PMID: 33671516 PMCID: PMC7926955 DOI: 10.3390/ijms22042155] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of lung infection in the context of cystic fibrosis (CF) is limited by a biofilm mode of growth of pathogenic organisms. When compared to planktonically grown bacteria, bacterial biofilms can survive extremely high levels of antimicrobials. Within the lung, bacterial biofilms are aggregates of microorganisms suspended in a matrix of self-secreted proteins within the sputum. These structures offer both physical protection from antibiotics as well as a heterogeneous population of metabolically and phenotypically distinct bacteria. The bacteria themselves and the components of the extracellular matrix, in addition to the signaling pathways that direct their behaviour, are all potential targets for therapeutic intervention discussed in this review. This review touches on the successes and failures of current anti-biofilm strategies, before looking at emerging therapies and the mechanisms by which it is hoped they will overcome current limitations.
Collapse
Affiliation(s)
- Isaac Martin
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Correspondence:
| | - Valerie Waters
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Department of Paediatrics and Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Department of Paediatrics and Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
41
|
Raj Dwivedi G, Khwaja S, Singh Negi A, Panda SS, Swaroop Sanket A, Pati S, Chand Gupta A, Bawankule DU, Chanda D, Kant R, Darokar MP. Design, synthesis and drug resistance reversal potential of novel curcumin mimics Van D: Synergy potential of curcumin mimics. Bioorg Chem 2021; 106:104454. [PMID: 33213895 DOI: 10.1016/j.bioorg.2020.104454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/03/2020] [Accepted: 11/01/2020] [Indexed: 12/29/2022]
Abstract
Being crucial part of plant-based novel discovery of drug from natural resources, a study was done to explore the antibacterial potential of curcumin mimics in combination with antibiotics against multidrug resistant isolates of Pseudomonas aeruginosa. The best candidate Van D, a curcumin mimics reduced the MIC of tetracycline (TET) up to 16 folds against multidrug resistant clinical isolates. VanD further inhibited the efflux pumps as evident by ethidium bromide efflux and by in-silico docking studies. In another experiment, it was also found that Van D inhibits biofilm synthesis. This derivative kills the KG-P2, an isolate of P. aeruginosa in a time dependent manner, the post-antibiotic effect (PAE) of tetracycline was extended as well as mutant prevention concentration (MPC) of TET was also decreased. In Swiss albino mice, Van D reduced the proinflammatory cytokines concentration. In acute oral toxicity study, this derivative was well tolerated and found to be safe up to 1000 mg/kg dose. To the best of our knowledge, this is the first report on curcumin mimics as synergistic agent via inhibition of efflux pump.
Collapse
Affiliation(s)
- Gaurav Raj Dwivedi
- Microbiology Department, ICMR-Regional Medical Research Centre, Gorakhpur 273013, Uttar Pradesh, India.
| | - Sadiya Khwaja
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arvind Singh Negi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Swati S Panda
- ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - A Swaroop Sanket
- ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - Amit Chand Gupta
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India
| | - Dnyaneshwar Umrao Bawankule
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debabrata Chanda
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajni Kant
- Microbiology Department, ICMR-Regional Medical Research Centre, Gorakhpur 273013, Uttar Pradesh, India
| | - Mahendra P Darokar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
42
|
Vázquez Castellanos JL, Copado Villagrana ED, Torres Mendoza BMG, Gallegos Durazo DL, González Plascencia J, Mejía-Zárate AK. First bacteremia outbreak due Achromobacter spp. in hemodialysis patients in Mexico. Nefrologia 2020; 42:S0211-6995(20)30174-0. [PMID: 33358364 DOI: 10.1016/j.nefro.2020.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/26/2020] [Accepted: 08/13/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
| | | | | | | | - Juana González Plascencia
- Hospital General Regional Núm. 110, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | | |
Collapse
|
43
|
Alcaraz E, Centrón D, Camicia G, Quiroga MP, Di Conza J, Passerini de Rossi B. Stenotrophomonas maltophilia phenotypic and genotypic features through 4-year cystic fibrosis lung colonization. J Med Microbiol 2020; 70. [PMID: 33258754 DOI: 10.1099/jmm.0.001281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Introduction. Stenotrophomonas maltophilia has emerged as one of the most common multi-drug-resistant pathogens isolated from people with cystic fibrosis (CF). However, its adaptation over time to CF lungs has not been fully established.Hypothesis. Sequential isolates of S. maltophilia from a Brazilian adult patient are clonally related and show a pattern of adaptation by loss of virulence factors.Aim. To investigate antimicrobial susceptibility, clonal relatedness, mutation frequency, quorum sensing (QS) and selected virulence factors in sequential S. maltophilia isolates from a Brazilian adult patient attending a CF referral centre in Buenos Aires, Argentina, between May 2014 and May 2018.Methodology. The antibiotic resistance of 11 S. maltophilia isolates recovered from expectorations of an adult female with CF was determined. Clonal relatedness, mutation frequency, QS variants (RpfC-RpfF), QS autoinducer (DSF) and virulence factors were investigated in eight viable isolates.Results. Seven S. maltophilia isolates were resistant to trimethoprim-sulfamethoxazole and five to levofloxacin. All isolates were susceptible to minocycline. Strong, weak and normomutators were detected, with a tendency to decreased mutation rate over time. XbaI PFGE revealed that seven isolates belong to two related clones. All isolates were RpfC-RpfF1 variants and DSF producers. Only two isolates produced weak biofilms, but none displayed swimming or twitching motility. Four isolates showed proteolytic activity and amplified stmPr1 and stmPr2 genes. Only the first three isolates were siderophore producers. Four isolates showed high resistance to oxidative stress, while the last four showed moderate resistance.Conclusion. The present study shows the long-time persistence of two related S. maltophilia clones in an adult female with CF. During the adaptation of the prevalent clones to the CF lungs over time, we identified a gradual loss of virulence factors that could be associated with the high amounts of DSF produced by the evolved isolates. Further, a decreased mutation rate was observed in the late isolates. The role of all these adaptations over time remains to be elucidated from a clinical perspective, probably focusing on the damage they can cause to CF lungs.
Collapse
Affiliation(s)
- Eliana Alcaraz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
| | - Daniela Centrón
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Gabriela Camicia
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - María Paula Quiroga
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - José Di Conza
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Beatriz Passerini de Rossi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
| |
Collapse
|
44
|
Flynn S, Reen FJ, Caparrós-Martín JA, Woods DF, Peplies J, Ranganathan SC, Stick SM, O’Gara F. Bile Acid Signal Molecules Associate Temporally with Respiratory Inflammation and Microbiome Signatures in Clinically Stable Cystic Fibrosis Patients. Microorganisms 2020; 8:microorganisms8111741. [PMID: 33172004 PMCID: PMC7694639 DOI: 10.3390/microorganisms8111741] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 02/08/2023] Open
Abstract
Cystic fibrosis (CF) is a congenital disorder resulting in a multisystemic impairment in ion homeostasis. The subsequent alteration of electrochemical gradients severely compromises the function of the airway epithelia. These functional changes are accompanied by recurrent cycles of inflammation–infection that progressively lead to pulmonary insufficiency. Recent developments have pointed to the existence of a gut–lung axis connection, which may modulate the progression of lung disease. Molecular signals governing the interplay between these two organs are therefore candidate molecules requiring further clinical evaluation as potential biomarkers. We demonstrate a temporal association between bile acid (BA) metabolites and inflammatory markers in bronchoalveolar lavage fluid (BALF) from clinically stable children with CF. By modelling the BALF-associated microbial communities, we demonstrate that profiles enriched in operational taxonomic units assigned to supraglottic taxa and opportunistic pathogens are closely associated with inflammatory biomarkers. Applying regression analyses, we also confirmed a linear link between BA concentration and pathogen abundance in BALF. Analysis of the time series data suggests that the continuous detection of BAs in BALF is linked to differential ecological succession trajectories of the lung microbiota. Our data provide further evidence supporting a role for BAs in the early pathogenesis and progression of CF lung disease.
Collapse
Affiliation(s)
- Stephanie Flynn
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.F.); (F.J.R.); (D.F.W.)
| | - F. Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.F.); (F.J.R.); (D.F.W.)
| | - Jose A. Caparrós-Martín
- Wal-yan Respiratory Research Centre. Telethon Kids Institute, 6009 Perth, Western Australia, Australia; (J.A.C.-M.); (S.M.S.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, 6845 Perth, Western Australia, Australia
| | - David F. Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.F.); (F.J.R.); (D.F.W.)
| | - Jörg Peplies
- Ribocon GmbH, Fahrenheitstraße. 1, 28359 Bremen, Germany;
| | - Sarath C. Ranganathan
- Department of Respiratory Medicine, The Royal Children’s Hospital, 3052 Melbourne, Australia;
- Infection and Immunity, Murdoch Children’s Research Institute, 3052 Melbourne, Australia
- Department of Paediatrics, University of Melbourne, 3010 Melbourne, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre. Telethon Kids Institute, 6009 Perth, Western Australia, Australia; (J.A.C.-M.); (S.M.S.)
- Telethon Kids Institute, The University of Western Australia, 6009 Perth, Western Australia, Australia
- Department of Respiratory Medicine and Sleep Medicine, Perth Children’s Hospital, 6009 Perth, Western Australia, Australia
| | - Fergal O’Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.F.); (F.J.R.); (D.F.W.)
- Wal-yan Respiratory Research Centre. Telethon Kids Institute, 6009 Perth, Western Australia, Australia; (J.A.C.-M.); (S.M.S.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, 6845 Perth, Western Australia, Australia
- Correspondence:
| |
Collapse
|
45
|
Somayaji R, Nichols DP, Bell SC. Cystic fibrosis - Ten promising therapeutic approaches in the current era of care. Expert Opin Investig Drugs 2020; 29:1107-1124. [PMID: 32744089 DOI: 10.1080/13543784.2020.1805733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic disease affecting multiple organ systems. Research and innovations in novel therapeutic agents and health care delivery have resulted in dramatic improvements in quality of life and survival for people with CF. Despite this, significant disease burden persists for many and this is compounded by disparities in treatment access and care which globally necessitates further work to improve outcomes. Because of the advent of numerous therapies which include gene-targeted modulators in parallel with specialized care delivery models, innovative efforts continue. AREAS COVERED In this review, we discuss the available data on investigational agents in clinical development and currently available treatments for CF. We also evaluate approaches to care delivery, consider treatment gaps, and propose future directions for advancement. EXPERT OPINION Since the discovery of the CF gene, CFTR modulators have provided a hallmark of success, even though it was thought not previously possible. This has led to reinvigorated efforts and innovations in treatment approaches and care delivery. Numerous challenges remain because of genetic and phenotypic heterogeneity, access issues, and therapeutic costs, but the collaborative approach between stakeholders for continued innovation fuels optimism. Abbreviations: CF cystic fibrosis; CFF Cystic Fibrosis Foundation (USA); CFTR cystic fibrosis transmembrane regulator; CRISPR clustered regularly interspaced short palindromic repeats; COX cyclo oxygenase; FDA US Food and Drug Administration; FEV1% forced expiratory volume in one second % predicted; F508del deletion of phenylalanine (F) in the 508th position (most common mutation); G551D substitution of the amino acid glycine by aspartate at position 551 in the nucleotide binding domain-1 of the CFTR gene; LMIC low- and middle-income country; LTB4 leukotriene B4; MDT multi-disciplinary care team; NO nitric oxide; NSAIDs non-steroidal anti-inflammatory drugs; SLPI secretory leukocyte protease inhibitor.
Collapse
Affiliation(s)
- Ranjani Somayaji
- Departments of Medicine; Microbiology, Immunology & Infectious Disease; Community Health Sciences, University of Calgary , Calgary, AB, Canada.,Snyder Institute for Chronic Diseases , Calgary, AB, Canada.,O'Brien Institute for Public Health , Calgary, AB, Canada
| | - Dave P Nichols
- Department of Pediatrics, Seattle Children's Hospital , Seattle, WA, USA.,Department of Pediatrics, University of Washington , Seattle, WA, USA.,Seattle Children's Research Institute , Seattle, WA, USA
| | - Scott C Bell
- Department of Thoracic Medicine, The Prince Charles Hospital , Brisbane, QLD, Australia.,Children's Health Research Centre, Faculty of Medicine, The University of Queensland , Brisbane, QLD, Australia.,Translational Research Institute , Brisbane, QLD, Australia
| |
Collapse
|
46
|
Saladié M, Caparrós-Martín JA, Agudelo-Romero P, Wark PAB, Stick SM, O'Gara F. Microbiomic Analysis on Low Abundant Respiratory Biomass Samples; Improved Recovery of Microbial DNA From Bronchoalveolar Lavage Fluid. Front Microbiol 2020; 11:572504. [PMID: 33123104 PMCID: PMC7573210 DOI: 10.3389/fmicb.2020.572504] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years the study of the commensal microbiota is driving a remarkable paradigm shift in our understanding of human physiology. However, intrinsic technical difficulties associated with investigating the Microbiomics of some body niches are hampering the development of new knowledge. This is particularly the case when investigating the functional role played by the human microbiota in modulating the physiology of key organ systems. A major hurdle in investigating specific Microbiome communities is linked to low bacterial density and susceptibility to bias caused by environmental contamination. To prevent such inaccuracies due to background processing noise, harmonized tools for Microbiomic and bioinformatics practices have been recommended globally. The fact that the impact of this undesirable variability is negatively correlated with the DNA concentration in the sample highlights the necessity to improve existing DNA isolation protocols. In this report, we developed and tested a protocol to more efficiently recover bacterial DNA from low volumes of bronchoalveolar lavage fluid obtained from infants and adults. We have compared the efficiency of the described method with that of a commercially available kit for microbiome analysis in body fluids. We show that this new methodological approach performs better in terms of extraction efficiency. As opposed to commercial kits, the DNA extracts obtained with this new protocol were clearly distinguishable from the negative extraction controls in terms of 16S copy number and Microbiome community profiles. Altogether, we described a cost-efficient protocol that can facilitate microbiome research in low-biomass human niches.
Collapse
Affiliation(s)
- Montserrat Saladié
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Jose Antonio Caparrós-Martín
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Patricia Agudelo-Romero
- Telethon Kids Institute, Perth, WA, Australia.,ARC Centre for Plant Energy Biology, Faculty of Science, School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Peter A B Wark
- Centre of Excellence in Severe Asthma and Priority Research, Centre for Healthy Lungs, Faculty of Health, University of Newcastle, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Stephen M Stick
- Telethon Kids Institute, Perth, WA, Australia.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, WA, Australia
| | - Fergal O'Gara
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Telethon Kids Institute, Perth, WA, Australia.,BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
47
|
Damar-Çelik D, Mataracı-Kara E, Savage PB, Özbek-Çelik B. Antibacterial and antibiofilm activities of ceragenins against Achromobacter species isolated from cystic fibrosis patients. J Chemother 2020; 33:216-227. [PMID: 32985386 DOI: 10.1080/1120009x.2020.1819702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Achromobacter species, which are recognized as emerging pathogens isolated from patients with cystic fibrosis, are capable of forming biofilm in the respiratory tract in patients and innate multidrug resistance to antimicrobials. CSAs are cationic salt derivatives that mimic the activity of antimicrobial peptides and exhibit antimicrobial activity against bacteria. In this study, the in vitro activities of various ceragenins against Achromobacter-species biofilms were investigated comparatively with a conventional antibiotic (meropenem). Biofilm-formation inhibition and biofilm-adhesion inhibition were investigated on five strong biofilm-producing strains. The lowest MIC50 result was obtained with CSA-13. All of the tested CSAs showed significant biofilm inhibitory activity in the manner of a time- and concentration-dependent effect. To the best of our knowledge, this is the first article to evaluate the antibacterial and antibiofilm activities of tested CSAs against Achromobacter species.
Collapse
Affiliation(s)
- Damla Damar-Çelik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Beyazit-Istanbul, Turkey
| | - Emel Mataracı-Kara
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Beyazit-Istanbul, Turkey
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Berna Özbek-Çelik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Beyazit-Istanbul, Turkey
| |
Collapse
|
48
|
Menetrey Q, Dupont C, Chiron R, Jumas-Bilak E, Marchandin H. High Occurrence of Bacterial Competition Among Clinically Documented Opportunistic Pathogens Including Achromobacter xylosoxidans in Cystic Fibrosis. Front Microbiol 2020; 11:558160. [PMID: 33013789 PMCID: PMC7513574 DOI: 10.3389/fmicb.2020.558160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cystic Fibrosis (CF) airways favor abnormal microbial development. Infections are considered as polymicrobial and competition can be observed between microorganisms. The current literature on bacterial competition in CF mostly consists of studies with limited numbers of strains, mainly focused on the major pathogens Pseudomonas aeruginosa (Pa) and Staphylococcus aureus (Sa) and does not give a comprehensive overview of the overall importance of bacterial interactions or the behavior of less often encountered emerging bacteria such as Achromobacter. In this context, we screened a panel of 39 strains from six CF patients, of either clinical or domestic environmental origin, distinguished according to genotype and belonging to four opportunistic pathogens, Pa (n = 15), Sa (n = 3), Stenotrophomonas maltophilia (Sm, n = 10) and Achromobacter xylosoxidans (Ax, n = 11). We investigated their capacity to compete in terms of growth, motility, and pigment production on agar media through 203 crossing experiments. Eleven strains selected via the initial screening results were further studied for competitive growth in liquid medium and biofilm formation. Competition was noted for 33% (67/203) of the pairs of strains with 85 modifications observed between monocultures and co-cultures, impacting growth (23.6%), motility (13.8%), and/or pigment production (6.1%). Under all conditions of the study (clinical, environmental strains; intra-, inter-patients; intra-, inter-species levels), competition was significantly more frequent among pairs of strains with at least one clinical strain. While Pa mainly outcompeted other species, in one patient with chronic colonization by Ax and sporadic colonization by Pa, we showed that some Ax inhibited the growth and pigmentation of Pa whereas biofilm formation was drastically reduced. Enlarging the panel of strains tested in competition assays gave new perspectives on the complex interactions taking place among the CF airway community. Indeed, the frequent occurrence of varied, strain-dependent interactions is revealed here. We report the first results of competition assays for Ax with the ability of certain strains to outcompete Pa. Our results are linked to the patient’s colonization history and question the importance of bacterial competitiveness in the colonization pattern of CF airways.
Collapse
Affiliation(s)
- Quentin Menetrey
- HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Chloé Dupont
- HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France.,HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Laboratoire d'Ecologie Microbienne Hospitalière, CHU Montpellier, Montpellier, France
| | - Raphaël Chiron
- HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France.,HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Centre de Ressources et de Compétences de la Mucoviscidose, CHU Montpellier, Montpellier, France
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France.,HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Laboratoire d'Ecologie Microbienne Hospitalière, CHU Montpellier, Montpellier, France
| | - Hélène Marchandin
- HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France.,HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Département de Microbiologie, CHU Nîmes, Nîmes, France
| |
Collapse
|
49
|
Menetrey Q, Dupont C, Chiron R, Marchandin H. [Emerging bacteria in cystic fibrosis and non-cystic fibrosis bronchiectasis from a microbiologist's perspective]. Rev Mal Respir 2020; 37:561-571. [PMID: 32684338 DOI: 10.1016/j.rmr.2020.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Common major pathogens like Pseudomonas aeruginosa are identified in the airways of patients with cystic fibrosis (CF) and non-CF bronchiectasis. However, other opportunistic bacterial pathogens like Achromobacter xylosoxidans complex, Stenotrophomonas maltophilia and non-tuberculous mycobacteria are currently emerging in CF and are also reported in non-CF bronchiectasis. BACKGROUND The emergence of opportunistic bacterial pathogens has been recognized in CF through annual national reports of sputum microbiology data. Despite common factors driving the emergence of bacteria identified in CF and non-CF bronchiectasis patients, bronchiectasis registries have been created more recently and no longitudinal analysis of recorded microbiological data is currently available in the literature, thereby preventing the recognition of emerging bacteria in patients with non-CF bronchiectasis. OUTLOOK A longitudinal follow-up of microbiological data is still needed in non-CF bronchiectasis to identify emerging opportunistic bacterial pathogens. Homogeneity in practice of sputum microbiological examination is also required to allow comparative analysis of data in CF and non-CF bronchiectasis. CONCLUSION Bacterial pathogens recognized as emerging in CF have to be more carefully monitored in non-CF bronchiectasis in view of their association with deterioration of the lung disease.
Collapse
Affiliation(s)
- Q Menetrey
- HydroSciences Montpellier, CNRS, IRD, université de Montpellier, Montpellier, France
| | - C Dupont
- HydroSciences Montpellier, CNRS, IRD, laboratoire d'écologie microbienne hospitalière, université de Montpellier, CHU de Montpellier, Montpellier, France
| | - R Chiron
- HydroSciences Montpellier, CNRS, IRD, centre de ressources et de compétences de la mucoviscidose, université de Montpellier, CHU de Montpellier, Montpellier, France
| | - H Marchandin
- HydroSciences Montpellier, CNRS, IRD, département de microbiologie, université de Montpellier, CHU de Nîmes, Nîmes, France.
| |
Collapse
|
50
|
Price EP, Soler Arango V, Kidd TJ, Fraser TA, Nguyen TK, Bell SC, Sarovich DS. Duplex real-time PCR assay for the simultaneous detection of Achromobacter xylosoxidans and Achromobacter spp. Microb Genom 2020; 6:mgen000406. [PMID: 32667877 PMCID: PMC7478622 DOI: 10.1099/mgen.0.000406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/26/2020] [Indexed: 01/10/2023] Open
Abstract
Several members of the Gram-negative environmental bacterial genus Achromobacter are associated with serious infections, with Achromobacter xylosoxidans being the most common. Despite their pathogenic potential, little is understood about these intrinsically drug-resistant bacteria and their role in disease, leading to suboptimal diagnosis and management. Here, we performed comparative genomics for 158 Achromobacter spp. genomes to robustly identify species boundaries, reassign several incorrectly speciated taxa and identify genetic sequences specific for the genus Achromobacter and for A. xylosoxidans. Next, we developed a Black Hole Quencher probe-based duplex real-time PCR assay, Ac-Ax, for the rapid and simultaneous detection of Achromobacter spp. and A. xylosoxidans from both purified colonies and polymicrobial clinical specimens. Ac-Ax was tested on 119 isolates identified as Achromobacter spp. using phenotypic or genotypic methods. In comparison to these routine diagnostic methods, the duplex assay showed superior identification of Achromobacter spp. and A. xylosoxidans, with five Achromobacter isolates failing to amplify with Ac-Ax confirmed to be different genera according to 16S rRNA gene sequencing. Ac-Ax quantified both Achromobacter spp. and A. xylosoxidans down to ~110 genome equivalents and detected down to ~12 and ~1 genome equivalent(s), respectively. Extensive in silico analysis, and laboratory testing of 34 non-Achromobacter isolates and 38 adult cystic fibrosis sputa, confirmed duplex assay specificity and sensitivity. We demonstrate that the Ac-Ax duplex assay provides a robust, sensitive and cost-effective method for the simultaneous detection of all Achromobacter spp. and A. xylosoxidans and will facilitate the rapid and accurate diagnosis of this important group of pathogens.
Collapse
Affiliation(s)
- Erin P. Price
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Valentina Soler Arango
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Timothy J. Kidd
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Tamieka A. Fraser
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Thuy-Khanh Nguyen
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Scott C. Bell
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Derek S. Sarovich
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| |
Collapse
|