1
|
Balthazart J. Steroid-dependent plasticity in the song control system: Perineuronal nets and HVC neurogenesis. Front Neuroendocrinol 2023; 71:101097. [PMID: 37611808 PMCID: PMC10841294 DOI: 10.1016/j.yfrne.2023.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The vocal control nucleus HVC in songbirds has emerged as a widespread model system to study adult brain plasticity in response to changes in the hormonal and social environment. I review here studies completed in my laboratory during the last decade that concern two aspects of this plasticity: changes in aggregations of extracellular matrix components surrounding the soma of inhibitory parvalbumin-positive neurons called perineuronal nets (PNN) and the production/incorporation of new neurons. Both features are modulated by the season, age, sex and endocrine status of the birds in correlation with changes in song structure and stability. Causal studies have also investigated the role of PNN and of new neurons in the control of song. Dissolving PNN with chondroitinase sulfate, a specific enzyme applied directly on HVC or depletion of new neurons by focalized X-ray irradiation both affected song structure but the amplitude of changes was limited and deserves further investigations.
Collapse
|
2
|
Fujita T, Aoki N, Mori C, Homma KJ, Yamaguchi S. Molecular biology of serotonergic systems in avian brains. Front Mol Neurosci 2023; 16:1226645. [PMID: 37538316 PMCID: PMC10394247 DOI: 10.3389/fnmol.2023.1226645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved neurotransmitter and modulator. Neurons utilizing serotonin have been identified in the central nervous systems of all vertebrates. In the central serotonergic system of vertebrate species examined so far, serotonergic neurons have been confirmed to exist in clusters in the brainstem. Although many serotonin-regulated cognitive, behavioral, and emotional functions have been elucidated in mammals, equivalents remain poorly understood in non-mammalian vertebrates. The purpose of this review is to summarize current knowledge of the anatomical organization and molecular features of the avian central serotonergic system. In addition, selected key functions of serotonin are briefly reviewed. Gene association studies between serotonergic system related genes and behaviors in birds have elucidated that the serotonergic system is involved in the regulation of behavior in birds similar to that observed in mammals. The widespread distribution of serotonergic modulation in the central nervous system and the evolutionary conservation of the serotonergic system provide a strong foundation for understanding and comparing the evolutionary continuity of neural circuits controlling corresponding brain functions within vertebrates. The main focus of this review is the chicken brain, with this type of poultry used as a model bird. The chicken is widely used not only as a model for answering questions in developmental biology and as a model for agriculturally useful breeding, but also in research relating to cognitive, behavioral, and emotional processes. In addition to a wealth of prior research on the projection relationships of avian brain regions, detailed subdivision similarities between avian and mammalian brains have recently been identified. Therefore, identifying the neural circuits modulated by the serotonergic system in avian brains may provide an interesting opportunity for detailed comparative studies of the function of serotonergic systems in mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
3
|
Rook N, Stacho M, Schwarz A, Bingman VP, Güntürkün O. Neuronal circuits within the homing pigeon hippocampal formation. J Comp Neurol 2023; 531:790-813. [PMID: 36808394 DOI: 10.1002/cne.25462] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/20/2023]
Abstract
The current study aimed to reveal in detail patterns of intrahippocampal connectivity in homing pigeons (Columba livia). In light of recent physiological evidence suggesting differences between dorsomedial and ventrolateral hippocampal regions and a hitherto unknown laminar organization along the transverse axis, we also aimed to gain a higher-resolution understanding of the proposed pathway segregation. Both in vivo and high-resolution in vitro tracing techniques were employed and revealed a complex connectivity pattern along the subdivisions of the avian hippocampus. We uncovered connectivity pathways along the transverse axis that started in the dorsolateral hippocampus and continued to the dorsomedial subdivision, from where information was relayed to the triangular region either directly or indirectly via the V-shaped layers. The often-reciprocal connectivity along these subdivisions displayed an intriguing topographical arrangement such that two parallel pathways could be discerned along the ventrolateral (deep) and dorsomedial (superficial) aspects of the avian hippocampus. The segregation along the transverse axis was further supported by expression patterns of the glial fibrillary acidic protein and calbindin. Moreover, we found strong expression of Ca2+ /calmodulin-dependent kinase IIα and doublecortin in the lateral but not medial V-shape layer, indicating a difference between the two V-shaped layers. Overall, our findings provide an unprecedented, detailed description of avian intrahippocampal pathway connectivity, and confirm the recently proposed segregation of the avian hippocampus along the transverse axis. We also provide further support for the hypothesized homology of the lateral V-shape layer and the dorsomedial hippocampus with the dentate gyrus and Ammon's horn of mammals, respectively.
Collapse
Affiliation(s)
- Noemi Rook
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Martin Stacho
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Ariane Schwarz
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, Ohio, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, Ohio, USA
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Mehlhorn J, Niski N, Liu K, Caspers S, Amunts K, Herold C. Regional Patterning of Adult Neurogenesis in the Homing Pigeon’s Brain. Front Psychol 2022; 13:889001. [PMID: 35898980 PMCID: PMC9311432 DOI: 10.3389/fpsyg.2022.889001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
In the avian brain, adult neurogenesis has been reported in the telencephalon of several species, but the functional significance of this trait is still ambiguous. Homing pigeons (Columba livia f.d.) are well-known for their navigational skills. Their brains are functionally adapted to homing with, e.g., larger hippocampi. So far, no comprehensive mapping of adult neuro- and gliogenesis or studies of different developmental neuronal stages in the telencephalon of homing pigeons exists, although comprehensive analyses in various species surely will result in a higher understanding of the functional significance of adult neurogenesis. Here, adult, free flying homing pigeons were treated with 5-bromo-deoxyuridine (BrdU) to label adult newborn cells. Brains were dissected and immunohistochemically processed with several markers (GFAP, Sox2, S100ß, Tbr2, DCX, Prox1, Ki67, NeuN, Calbindin, Calretinin) to study different stages of adult neurogenesis in a quantitative and qualitative way. Therefore, immature and adult newborn neurons and glial cells were analyzed along the anterior–posterior axis. The analysis proved the existence of different neuronal maturation stages and showed that immature cells, migrating neurons and adult newborn neurons and glia were widely and regionally unequally distributed. Double- and triple-labelling with developmental markers allowed a stage classification of adult neurogenesis in the pigeon brain (1: continuity of stem cells/proliferation, 2: fate specification, 3: differentiation/maturation, 4: integration). The most adult newborn neurons and glia were found in the intercalated hyperpallium (HI) and the hippocampal formation (HF). The highest numbers of immature (DCX+) cells were detected in the nidopallium (N). Generally, the number of newborn glial cells exceeded the number of newborn neurons. Individual structures (e.g., HI, N, and HF) showed further variations along the anterior–posterior axis. Our qualitative classification and the distribution of maturing cells in the forebrain support the idea that there is a functional specialization, respectively, that there is a link between brain-structure and function, species-specific requirements and adult neurogenesis. The high number of immature neurons also suggests a high level of plasticity, which points to the ability for rapid adaption to environmental changes through additive mechanisms. Furthermore, we discuss a possible influence of adult neurogenesis on spatial cognition.
Collapse
Affiliation(s)
- Julia Mehlhorn
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Julia Mehlhorn,
| | - Nelson Niski
- C. and O. Vogt-Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ke Liu
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Katrin Amunts
- C. and O. Vogt-Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Christina Herold
- C. and O. Vogt-Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Lynch KS. The neuroethology of avian brood parasitism. J Exp Biol 2021; 224:272057. [PMID: 34486660 DOI: 10.1242/jeb.222307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Obligate brood-parasitic birds never build nests, incubate eggs or supply nestlings with food or protection. Instead, they leave their eggs in nests of other species and rely on host parents to raise their offspring, which allows the parasite to continue reproducing throughout the breeding season. Although this may be a clever fitness strategy, it is loaded with a set of dynamic challenges for brood parasites, including recognizing individuals from their own species while growing up constantly surrounded by unrelated individuals, remembering the location of potential host nests for successful reproduction and learning the song of their species while spending time being entirely surrounded by another species during a critical developmental period, a predicament that has been likened to being 'raised by wolves'. Here, I will describe what we currently know about the neurobiology associated with the challenges of being a brood parasite and what is known about the proximate mechanisms of brood parasite evolution. The neuroethology of five behaviors (mostly social) in brood parasites is discussed, including: (1) parental care (or the lack thereof), (2) species recognition, (3) song learning, (4) spatial memory and (5) pair-bonding and mate choice. This Review highlights how studies of brood parasites can lend a unique perspective to enduring neuroethological questions and describes the ways in which studying brood-parasitic species enhances our understanding of ecologically relevant behaviors.
Collapse
Affiliation(s)
- Kathleen S Lynch
- Hofstra University, Department of Biology, Hempstead, NY 11549, USA
| |
Collapse
|
6
|
Diez A, An HY, Carfagnini N, Bottini C, MacDougall-Shackleton SA. Neurogenesis and the development of neural sex differences in vocal control regions of songbirds. J Comp Neurol 2021; 529:2970-2986. [PMID: 33719029 DOI: 10.1002/cne.25138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/10/2022]
Abstract
The brain regions that control the learning and production of song and other learned vocalizations in songbirds exhibit some of the largest sex differences in the brain known in vertebrates and are associated with sex differences in singing behavior. Song learning takes place through multiple stages: an early sensory phase when song models are memorized, followed by a sensorimotor phase in which auditory feedback is used to modify song output through subsong, plastic song, to adult crystalized song. However, how patterns of neurogenesis in these brain regions change through these learning stages, and differ between the sexes, is little explored. We collected brains from 63 young male and female zebra finches (Taeniopygia guttata) over four stages of song learning. Using neurogenesis markers for cell division (proliferating cell nuclear antigen), neuron migration (doublecortin), and mature neurons (neuron-specific nuclear protein), we demonstrate that there are sex-specific changes in neurogenesis over song development that differ between the caudal motor pathway and anterior forebrain pathway of the vocal control circuit. In many of these regions, sex differences emerged very early in development, by 25 days post hatch, at the beginning of song learning. The emergence of sex differences in other components of the system was more gradual and had specific trajectories depending on the brain region and its function. In conclusion, we found that sex differences occurred early and continued during song learning. Moreover, transitions from the different phases of song development do not seem to depend on large changes in neurogenesis in the vocal control areas measured.
Collapse
Affiliation(s)
- Adriana Diez
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada.,Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Ha Yun An
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Nicole Carfagnini
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Claire Bottini
- Department of Biology, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Scott A MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.,Department of Biology, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
Voukali E, Veetil NK, Němec P, Stopka P, Vinkler M. Comparison of plasma and cerebrospinal fluid proteomes identifies gene products guiding adult neurogenesis and neural differentiation in birds. Sci Rep 2021; 11:5312. [PMID: 33674647 PMCID: PMC7935914 DOI: 10.1038/s41598-021-84274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 11/27/2022] Open
Abstract
Cerebrospinal fluid (CSF) proteins regulate neurogenesis, brain homeostasis and participate in signalling during neuroinflammation. Even though birds represent valuable models for constitutive adult neurogenesis, current proteomic studies of the avian CSF are limited to chicken embryos. Here we use liquid chromatography-tandem mass spectrometry (nLC-MS/MS) to explore the proteomic composition of CSF and plasma in adult chickens (Gallus gallus) and evolutionarily derived parrots: budgerigar (Melopsittacus undulatus) and cockatiel (Nymphicus hollandicus). Because cockatiel lacks a complete genome information, we compared the cross-species protein identifications using the reference proteomes of three model avian species: chicken, budgerigar and zebra finch (Taeniopygia guttata) and found the highest identification rates when mapping against the phylogenetically closest species, the budgerigar. In total, we identified 483, 641 and 458 unique proteins consistently represented in the CSF and plasma of all chicken, budgerigar and cockatiel conspecifics, respectively. Comparative pathways analyses of CSF and blood plasma then indicated clusters of proteins involved in neurogenesis, neural development and neural differentiation overrepresented in CSF in each species. This study provides the first insight into the proteomics of adult avian CSF and plasma and brings novel evidence supporting the adult neurogenesis in birds.
Collapse
Affiliation(s)
- Eleni Voukali
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.
| | - Nithya Kuttiyarthu Veetil
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.
| |
Collapse
|
8
|
Pimentel HDC, Macêdo-Lima M, Viola GG, Melleu FF, Dos Santos TS, Franco HS, da Silva RDS, Lino-de-Oliveira C, Marino-Neto J, Dos Santos JR, Marchioro M. Telencephalic distributions of doublecortin and glial fibrillary acidic protein suggest novel migratory pathways in adult lizards. J Chem Neuroanat 2020; 112:101901. [PMID: 33271217 DOI: 10.1016/j.jchemneu.2020.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 11/30/2022]
Abstract
Adult neurogenesis has been reported in all major vertebrate taxa. However, neurogenic rates and the number of neurogenic foci vary greatly, and are higher in ancestral taxa. Our study aimed to evaluate the distribution of doublecortin (DCX) and glial fibrillary acidic protein (GFAP) in telencephalic areas of the adult tropical lizard Tropidurus hispidus. We describe evidence for four main neurogenic foci, which coincide anatomically with the ventricular sulci described by the literature. Based on neuronal morphology, we infer four migratory patterns/pathways. In the cortex, patterns of GFAP and DCX staining support radial migrations from ventricular zones into cortical areas and dorsoventricular ridge. Cells radiating from the sulcus septomedialis (SM) seemed to migrate to the medial cortex and dorsal cortex. From the sulcus lateralis (SL), they seemed to be bound for the lateral cortex, central amygdala and nucleus sphericus. We describe a DCX-positive stream originating in the caudal sulcus ventralis and seemingly bound for the olfactory bulb, resembling a rostral migratory stream. We provide evidence for a previously undescribed tangential dorso-septo-caudal migratory stream, with neuroblasts supported by DCX-positive fibers. Finally, we provide evidence for a commissural migration stream seemingly bound for the contralateral nucleus sphericus. Therefore, in addition to two previously known migratory streams, this study provides anatomical evidence in support for two novel migratory routes in amniotes.
Collapse
Affiliation(s)
- Hugo de C Pimentel
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Sergipe, São Cristovão, SE, Brazil
| | - Matheus Macêdo-Lima
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA, USA
| | - Giordano G Viola
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Sergipe, São Cristovão, SE, Brazil
| | - Fernando F Melleu
- Department of Physiological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - Tiago S Dos Santos
- Department of Physiological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - Heitor S Franco
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Rodolfo Dos S da Silva
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | | | - José Marino-Neto
- Department of Physiological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - José R Dos Santos
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Murilo Marchioro
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Sergipe, São Cristovão, SE, Brazil.
| |
Collapse
|
9
|
Lormant F, Ferreira VHB, Meurisse M, Lemarchand J, Constantin P, Morisse M, Cornilleau F, Parias C, Chaillou E, Bertin A, Lansade L, Leterrier C, Lévy F, Calandreau L. Emotionality modulates the impact of chronic stress on memory and neurogenesis in birds. Sci Rep 2020; 10:14620. [PMID: 32884096 PMCID: PMC7471904 DOI: 10.1038/s41598-020-71680-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022] Open
Abstract
Chronic stress is a strong modulator of cognitive processes, such as learning and memory. There is, however, great within-individual variation in how an animal perceives and reacts to stressors. These differences in coping with stress modulate the development of stress-induced memory alterations. The present study investigated whether and how chronic stress and individual emotionality interrelate and influence memory performances and brain neurogenesis in birds. For that, we used two lines of Japanese quail (Coturnix japonica) with divergent emotionality levels. Highly (E+) and less (E-) emotional quail were submitted to chronic unpredictable stress (CUS) for 3 weeks and trained in a spatial task and a discrimination task, a form of cue-based memory. E + and E- birds were also used to assess the impact of CUS and emotionality on neurogenesis within the hippocampus and the striatum. CUS negatively impacted spatial memory, and cell proliferation, and survival in the hippocampus. High emotionality was associated with a decreased hippocampal neurogenesis. CUS improved discrimination performances and favored the differentiation of newborn cells into mature neurons in the striatum, specifically in E+ birds. Our results provide evidence that CUS consequences on memory and neural plasticity depends both on the memory system and individual differences in behavior.
Collapse
Affiliation(s)
- Flore Lormant
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Vitor Hugo Bessa Ferreira
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France.,Yncréa Hauts-de-France, ISA Lille, 48 bd Vauban, 59046, Lille Cedex, France
| | - Maryse Meurisse
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Julie Lemarchand
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Paul Constantin
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Mélody Morisse
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Fabien Cornilleau
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Céline Parias
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Elodie Chaillou
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Aline Bertin
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Léa Lansade
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Christine Leterrier
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Frédéric Lévy
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Ludovic Calandreau
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France. .,CNRS, UMR 7247, 37380, Nouzilly, France. .,Université François Rabelais, 37041, Tours, France. .,IFCE, 37380, Nouzilly, France.
| |
Collapse
|
10
|
Mazengenya P, Bhagwandin A, Ihunwo AO. Putative adult neurogenesis in palaeognathous birds: The common ostrich (Struthio camelus) and emu (Dromaius novaehollandiae). Int J Dev Neurosci 2020; 80:613-635. [PMID: 32767787 DOI: 10.1002/jdn.10057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022] Open
Abstract
In the current study, we examined adult neurogenesis throughout the brain of the common ostrich (Struthio camelus) and emu (Dromaius novaehollandiae) using immunohistochemistry for the endogenous markers PCNA which labels proliferating cells, and DCX, which stains immature and migrating neurons. The distribution of PCNA and DCX labelled cells was widespread throughout the brain of both species. The highest density of cells immunoreactive to both markers was observed in the olfactory bulbs and the telencephalon, especially the subventricular zone of the lateral ventricle. Proliferative hot spots, identified with strong PCNA and DCX immunolabelling, were identified in the dorsal and ventral poles of the rostral aspects of the lateral ventricles. The density of PCNA immunoreactive cells was less in the telencephalon of the emu compared to the common ostrich. Substantial numbers of PCNA immunoreactive cells were observed in the diencephalon and brainstem, but DCX immunoreactivity was weaker in these regions, preferentially staining axons and dendrites over cell bodies, except in the medial regions of the hypothalamus where distinct DCX immunoreactive cells and fibres were observed. PCNA and DCX immunoreactive cells were readily observed in moderate density in the cortical layers of the cerebellum of both species. The distribution of putative proliferating cells and immature neurons in the brain of the common ostrich and the emu is widespread, far more so than in mammals, and compares with the neognathous birds, and suggests that brain plasticity and neuronal turnover is an important aspect of cognitive brain functions in these birds.
Collapse
Affiliation(s)
- Pedzisai Mazengenya
- College of Medicine, Ajman University, Ajman, United Arab Emirates.,School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Rondebosch, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Lumineau S, Pawluski JL, Charlier TD, Beylard A, Aigueperse N, Bertin A, Lévy F. High social motivation induces deficits in maternal behaviour but not plasticity of the subventricular zone in Japanese quail (Coturnix japonica). J Neuroendocrinol 2019; 31:e12716. [PMID: 30927275 DOI: 10.1111/jne.12716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/15/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
Maternal behaviour develops differently depending on the characteristics of an individual, such as age or emotional reactivity. Social motivation, defined as the propensity to establish social contact, has received little attention in relation to maternal behaviour in birds. In addition, the transition to motherhood is a time of plasticity in the brain of the new mother in mammals. However, it remains to be determined how maternal brain plasticity is affected in avian species. The present study investigated how a the social motivation of a mother alters maternal behaviour and brain plasticity of the Japanese quail (Coturnix japonica). Adult females from lines selected for high and low social motivation were exposed to chicks for 11 days. After maternal care testing, and at matched time points in controls, the brains of females were perfused for assessment of doublecortin-immunoreactive staining, a marker of neurogenesis, in the subventricular zone (SVZ), a neurogenic niche. The results obtained showed that high socially motivated female quail spent significantly less time performing maternal behaviour when exposed to chicks compared to low socially motivated females. Moreover, the warming of chicks by high socially motivated females involved less covering postures and mothers were more rejecting of chicks. Interestingly, the plasticity indicators in the SVZ did not differ between low and high socially motivated females and were not associated with differences in maternal caregiving when using doublecortin-immunoreactive staining. Thus, high social motivation in this avian species does not favour maternal behaviour and this level of motivation to the mother is not related to changes in neuroplasticity in the SVZ of the female quail.
Collapse
Affiliation(s)
- Sophie Lumineau
- CNRS, Ethos (Ethologie animale et humaine), UMR 6552, Univ Rennes, Normandie Univ, Rennes, France
| | - Jodi L Pawluski
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Univ Rennes, Rennes, France
| | - Thierry D Charlier
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Univ Rennes, Rennes, France
| | - Amandine Beylard
- CNRS, Ethos (Ethologie animale et humaine), UMR 6552, Univ Rennes, Normandie Univ, Rennes, France
| | - Nadège Aigueperse
- CNRS, Ethos (Ethologie animale et humaine), UMR 6552, Univ Rennes, Normandie Univ, Rennes, France
| | - Aline Bertin
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Univ Rennes, Rennes, France
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, CNRS, UMR 7247, IFCE, Université F. Rabelais, Nouzilly, France
| | - Frédéric Lévy
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Univ Rennes, Rennes, France
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, CNRS, UMR 7247, IFCE, Université F. Rabelais, Nouzilly, France
| |
Collapse
|
12
|
Herold C, Schlömer P, Mafoppa-Fomat I, Mehlhorn J, Amunts K, Axer M. The hippocampus of birds in a view of evolutionary connectomics. Cortex 2019; 118:165-187. [DOI: 10.1016/j.cortex.2018.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
|
13
|
Nkomozepi P, Mazengenya P, Ihunwo AO. Quantitative analysis of age and life-history stage related changes in DCX expression in the male Japanese quail (Cortunix japonica) telencephalon. Int J Dev Neurosci 2019; 74:38-48. [PMID: 30890437 DOI: 10.1016/j.ijdevneu.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/23/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Most avian neurogenesis studies focused on the song control system and little attention has been given to non-song birds such as the Japanese quail. However, the only few neurogenesis studies in quails mainly focused on the sex steroid sensitive areas of the brain such as the medial preoptic and lateral septal nuclei. Despite the important role the quail telencephalon plays in filial imprinting and passive avoidance learning, neurogenesis in this structure has been completely overlooked. The aim of this study was therefore to quantitatively determine how DCX expression in the Japanese quail telencephalon changes with post hatching age (3-12 weeks) and life history stage. In this study, DCX was used as a proxy for neuronal incorporation. Bipolar and multipolar DCX immunoreactive cells were observed in the entire telencephalon except for the entopallium and arcopallium. In addition, DCX expression in all the eight telencephalic areas quantified was strongly negatively correlated with post-hatching age. Furthermore, numbers of bipolar and multipolar DCX immunoreactive cells were higher in the juvenile compared to subadult and adult quails. In conclusion, neuronal incorporation in the quail telencephalon is widespread but it declines with post hatching age. In addition, the most dramatic decline in neuronal incorporation in the telencephalic areas quantified takes place just after the birds have attained sexual maturity.
Collapse
Affiliation(s)
- Pilani Nkomozepi
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa; Department of Human Anatomy & Physiology, University of Johannesburg, Cnr Siemert and Beit Streets, Doornfontein, Johannesburg, 2094, South Africa
| | - Pedzisai Mazengenya
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
14
|
Mazengenya P, Bhagwandin A, Manger PR, Ihunwo AO. Putative Adult Neurogenesis in Old World Parrots: The Congo African Grey Parrot ( Psittacus erithacus) and Timneh Grey Parrot ( Psittacus timneh). Front Neuroanat 2018; 12:7. [PMID: 29487507 PMCID: PMC5816827 DOI: 10.3389/fnana.2018.00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/15/2018] [Indexed: 11/21/2022] Open
Abstract
In the current study, we examined for the first time, the potential for adult neurogenesis throughout the brain of the Congo African grey parrot (Psittacus erithacus) and Timneh grey parrot (Psittacus timneh) using immunohistochemistry for the endogenous markers proliferating cell nuclear antigen (PCNA), which labels proliferating cells, and doublecortin (DCX), which stains immature and migrating neurons. A similar distribution of PCNA and DCX immunoreactivity was found throughout the brain of the Congo African grey and Timneh grey parrots, but minor differences were also observed. In both species of parrots, PCNA and DCX immunoreactivity was observed in the olfactory bulbs, subventricular zone of the lateral wall of the lateral ventricle, telencephalic subdivisions of the pallium and subpallium, diencephalon, mesencephalon and the rhombencephalon. The olfactory bulb and telencephalic subdivisions exhibited a higher density of both PCNA and DCX immunoreactive cells than any other brain region. DCX immunoreactive staining was stronger in the telencephalon than in the subtelencephalic structures. There was evidence of proliferative hot spots in the dorsal and ventral poles of the lateral ventricle in the Congo African grey parrots at rostral levels, whereas only the dorsal accumulation of proliferating cells was observed in the Timneh grey parrot. In most pallial regions the density of PCNA and DCX stained cells increased from rostral to caudal levels with the densest staining in the nidopallium caudolaterale (NCL). The widespread distribution of PCNA and DCX in the brains of both parrot species suggest the importance of adult neurogenesis and neuronal plasticity during learning and adaptation to external environmental variations.
Collapse
Affiliation(s)
- Pedzisai Mazengenya
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
15
|
Lynch KS. Region-specific neuron recruitment in the hippocampus of brown-headed cowbirds Molothrus ater (Passeriformes: Icteridae). THE EUROPEAN ZOOLOGICAL JOURNAL 2018. [DOI: 10.1080/24750263.2018.1435743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Kathleen S. Lynch
- Department of Biological Sciences, Hofstra University, Hempstead, NY, USA
| |
Collapse
|
16
|
Nkomozepi P, Mazengenya P, Ihunwo AO. Changes in neurogenesis with post-hatching age in the male Japanese quail (Cortunix japonica) brain. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Ahn JH, Park JH, Choi SY, Lee TK, Cho JH, Kim IH, Lee JC, Choi JH, Hwang IK, Lee E, Park S, Lim J, Lee YJ, Seo K, Won MH. The distribution of calbindinD-28k and parvalbumin immunoreactive neurons in the somatosensory area of the pigeon pallium. Anat Histol Embryol 2017; 47:64-70. [DOI: 10.1111/ahe.12325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 10/21/2017] [Indexed: 12/15/2022]
Affiliation(s)
- J. H. Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology; Hallym University; Chuncheon South Korea
| | - J. H. Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology; Hallym University; Chuncheon South Korea
| | - S. Y. Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology; Hallym University; Chuncheon South Korea
| | - T.-K. Lee
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| | - J. H. Cho
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| | - I. H. Kim
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| | - J.-C. Lee
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| | - J. H. Choi
- Department of Anatomy; College of Veterinary Medicine; Kangwon National University; Chuncheon South Korea
| | - I. K. Hwang
- Department of Anatomy and Cell Biology; College of Veterinary Medicine; Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - E. Lee
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - S. Park
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - J. Lim
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - Y. J. Lee
- Department of Emergency Medicine; Seoul Hospital; College of Medicine; Sooncheonhyang University; Seoul South Korea
| | - K. Seo
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Research Institute for Veterinary Science; Seoul National University; Seoul South Korea
| | - M.-H. Won
- Department of Neurobiology; School of Medicine; Kangwon National University; Chuncheon South Korea
| |
Collapse
|
18
|
Mazengenya P, Bhagwandin A, Nkomozepi P, Manger PR, Ihunwo AO. Putative adult neurogenesis in two domestic pigeon breeds (Columba livia domestica): racing homer versus utility carneau pigeons. Neural Regen Res 2017; 12:1086-1096. [PMID: 28852390 PMCID: PMC5558487 DOI: 10.4103/1673-5374.211187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Generation of neurons in the brains of adult birds has been studied extensively in the telencephalon of song birds and few studies are reported on the distribution of PCNA and DCX in the telencephalon of adult non-song learning birds. We report here on adult neurogenesis throughout the brains of two breeds of adult domestic pigeons (Columba livia domestica), the racing homer and utility carneau using endogenous immunohistochemical markers proliferating cell nuclear antigen (PCNA) for proliferating cells and doublecortin (DCX) for immature and migrating neurons. The distribution of PCNA and DCX immunoreactivity was very similar in both pigeon breeds with only a few minor differences. In both pigeons, PCNA and DCX immunoreactivity was observed in the olfactory bulbs, walls of the lateral ventricle, telencephalic subdivisions of the pallium and subpallium, diencephalon, mesencephalon and cerebellum. Generally, the olfactory bulbs and telencephalon had more PCNA and DCX cells than other regions. Two proliferative hotspots were evident in the dorsal and ventral poles of the lateral ventricles. PCNA- and DCX-immunoreactive cells migrated radially from the walls of the lateral ventricle into the parenchyma. In most telencephalic regions, the density of PCNA- and DCX-immunoreactive cells increased from rostral to caudal, except in the mesopallium where the density decreased from rostral to middle levels and then increased caudally. DCX immunoreactivity was more intense in fibres than in cell bodies and DCX-immunoreactive cells included small granular cells, fusiform bipolar cells, large round and or polygonal multipolar cells. The similarity in the distribution of proliferating cells and new neurons in the telencephalon of the two breeds of pigeons may suggest that adult neurogenesis is a conserved trait as an ecological adaptation irrespective of body size.
Collapse
Affiliation(s)
- Pedzisai Mazengenya
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pilani Nkomozepi
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
19
|
Balthazart J, Ball GF. Endocrine and social regulation of adult neurogenesis in songbirds. Front Neuroendocrinol 2016; 41:3-22. [PMID: 26996818 DOI: 10.1016/j.yfrne.2016.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 01/07/2023]
Abstract
The identification of pronounced seasonal changes in the volume of avian song control nuclei stimulated the discovery of adult neurogenesis in songbirds as well as renewed studies in mammals including humans. Neurogenesis in songbirds is modulated by testosterone and other factors such as photoperiod, singing activity and social environment. Adult neurogenesis has been widely studied by labeling, with tritiated thymidine or its analog BrdU, cells duplicating their DNA in anticipation of their last mitotic division and following their fate as new neurons. New methods based on endogenous markers of cell cycling or of various stages of neuronal life have allowed for additional progress. In particular immunocytochemical visualization of the microtubule-associated protein doublecortin has provided an integrated view of neuronal replacement in the song control nucleus HVC. Multiple questions remain however concerning the specific steps in the neuronal life cycle that are modulated by various factors and the underlying cellular mechanisms.
Collapse
Affiliation(s)
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, College Park, MD, USA.
| |
Collapse
|
20
|
Zhou H, Liu Y, Tan XJ, Wang YC, Liu KY, Cui YX. Inhibitory effect of arsenic trioxide on neuronal migration in vitro and its potential molecular mechanism. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:671-677. [PMID: 26407229 DOI: 10.1016/j.etap.2015.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 06/05/2023]
Abstract
Primary neuron cultures were established from the brains of neonatal rats and the effects of arsenic trioxide (As2O3) on the migration of neurons and the potential mechanism of As2O3 were investigated. Boyden chamber assay was used to detect the effect of AS2O3 on neuronal migration. Matrix metalloproteinase-2 (MMP-2) and MMP-9 RNA expression and doublecortin (DCX) protein expression were measured. Neuronal migration ability was significantly lower in the 20 μmol/L group compared with the other three groups (all p < 0.001). The expression of both MMP-2 and MMP-9 was significantly inversely correlated with As2O3 concentration. The expression of DCX was significantly higher in the control group compared with the other three groups (all p ≤ 0.003). Thus, the inhibitory effect of As2O3 on the migration of primary neurons might be related to the reduction in MMP-2 and MMP-9 activities and decrease in β-actin and DCX expression.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Ye Liu
- Department of Otorhinolaryngology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xin-Jie Tan
- Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yu-Chuan Wang
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Kai-Yu Liu
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yu-Xia Cui
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| |
Collapse
|
21
|
Herold C, Coppola VJ, Bingman VP. The maturation of research into the avian hippocampal formation: Recent discoveries from one of the nature's foremost navigators. Hippocampus 2015; 25:1193-211. [DOI: 10.1002/hipo.22463] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Christina Herold
- C. & O. Vogt-Institute of Brain Research, University of Düsseldorf; Düsseldorf Germany
| | - Vincent J. Coppola
- Department of Psychology; J. P. Scott Center for Neuroscience, Bowling Green State University; Bowling Green Ohio
| | - Verner P. Bingman
- Department of Psychology; J. P. Scott Center for Neuroscience, Bowling Green State University; Bowling Green Ohio
| |
Collapse
|
22
|
Defensive behaviors and prosencephalic neurogenesis in pigeons (Columba livia) are affected by environmental enrichment in adulthood. Brain Struct Funct 2015; 221:2287-301. [DOI: 10.1007/s00429-015-1043-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/06/2015] [Indexed: 01/04/2023]
|
23
|
Balthazart J, Ball GF. Endogenous versus exogenous markers of adult neurogenesis in canaries and other birds: advantages and disadvantages. J Comp Neurol 2014; 522:4100-20. [PMID: 25131458 DOI: 10.1002/cne.23661] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/17/2014] [Accepted: 08/04/2014] [Indexed: 02/03/2023]
Abstract
Although the existence of newborn neurons had originally been suggested, but not broadly accepted, based on studies in adult rodent brains, the presence of an active neurogenesis process in adult homoeothermic vertebrates was first firmly established in songbirds. Adult neurogenesis was initially studied with the tritiated thymidine technique, later replaced by the injection and detection of the marker of DNA replication 5-bromo-2'-deoxyuridine (BrdU). More recently, various endogenous markers were used to identify young neurons or cycling neuronal progenitors. We review here the respective advantages and pitfalls of these different approaches in birds, with specific reference to the microtubule-associated protein, doublecortin (DCX), that has been extensively used to identify young newly born neurons in adult brains. All these techniques of course have limitations. Exogenous markers label cells replicating their DNA only during a brief period and it is difficult to select injection doses that would exhaustively label all these cells without inducing DNA damage that will also result in some form of labeling during repair. On the other hand, specificity of endogenous markers is difficult to establish due to problems related to the specificity of antibodies (these problems can be, but are not always, addressed) and more importantly because it is difficult, if not impossible, to prove that a given marker exhaustively and specifically labels a given cell population. Despite these potential limitations, these endogenous markers and DCX staining in particular clearly represent a useful approach to the detailed study of neurogenesis especially when combined with other techniques such as BrdU.
Collapse
|
24
|
Barker JM, Ball GF, Balthazart J. Anatomically discrete sex differences and enhancement by testosterone of cell proliferation in the telencephalic ventricle zone of the adult canary brain. J Chem Neuroanat 2013; 55:1-8. [PMID: 24211440 DOI: 10.1016/j.jchemneu.2013.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/18/2013] [Accepted: 10/27/2013] [Indexed: 01/18/2023]
Abstract
Previous work in songbirds has suggested that testosterone increases neuronal recruitment and survival in HVC but does not affect neuronal proliferation in the ventricular zone and that males and females have similar rates of proliferation except at discrete locations. Many of these conclusions are however based on limited data or were inferred indirectly. Here we specifically tested the effects of testosterone on cellular proliferation in the ventricular zone of both male and female adult canaries. We implanted adult birds of both sexes with testosterone or empty implants for 1 week and injected them with BrdU. One day later, we collected their brains and quantified BrdU-positive cells in the ventricular zone (VZ) at different rostro-caudal levels of the brain, ranging from the level where the song nucleus Area X occurs through the caudal extent of HVC. Proliferation in the dorsal part of the VZ was low and unaffected by sex or testosterone treatment. In the ventral part of the VZ, females had more proliferating cells than males, but only at rostral levels, near Area X. Also in the ventral part of the VZ, testosterone increased proliferation in birds of both sexes, but only in the mid- to caudal-VZ, caudal to the level of Area X, around the septum and HVC. We thus demonstrate here that there is both an effect of testosterone and possibly a more subtle effect of sex on cellular proliferation in the adult songbird brain, and that these effects are specific to different levels of the brain.
Collapse
Affiliation(s)
| | - Gregory F Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, United States
| | | |
Collapse
|
25
|
Powers AS. Adult Neurogenesis in Mammals and Nonmammals. BRAIN, BEHAVIOR AND EVOLUTION 2013; 81:206-8. [DOI: 10.1159/000350932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|