1
|
Hughes H, Brady LJ, Schoonover KE. GABAergic dysfunction in postmortem dorsolateral prefrontal cortex: implications for cognitive deficits in schizophrenia and affective disorders. Front Cell Neurosci 2024; 18:1440834. [PMID: 39381500 PMCID: PMC11458443 DOI: 10.3389/fncel.2024.1440834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
The microcircuitry within superficial layers of the dorsolateral prefrontal cortex (DLPFC), composed of excitatory pyramidal neurons and inhibitory GABAergic interneurons, has been suggested as the neural substrate of working memory performance. In schizophrenia, working memory impairments are thought to result from alterations of microcircuitry within the DLPFC. GABAergic interneurons, in particular, are crucially involved in synchronizing neural activity at gamma frequency, the power of which increases with working memory load. Alterations of GABAergic interneurons, particularly parvalbumin (PV) and somatostatin (SST) subtypes, are frequently observed in schizophrenia. Abnormalities of GABAergic neurotransmission, such as deficiencies in the 67 kDA isoform of GABA synthesis enzyme (GAD67), vesicular GABA transporter (vGAT), and GABA reuptake transporter 1 (GAT1) in presynaptic boutons, as well as postsynaptic alterations in GABA A receptor subunits further contribute to impaired inhibition. This review explores GABAergic abnormalities of the postmortem DLPFC in schizophrenia, with a focus on the roles of interneuron subtypes involved in cognition, and GABAergic neurotransmission within presynaptic boutons and postsynaptic alterations. Where available, comparisons between schizophrenia and affective disorders that share cognitive pathology such as bipolar disorder and major depressive disorder will be made. Challenges in directly measuring GABA levels are addressed, emphasizing the need for innovative techniques. Understanding GABAergic abnormalities and their implications for neural circuit dysfunction in schizophrenia is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Hannah Hughes
- Graduate Biomedical Sciences Program, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Lillian J. Brady
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Kirsten E. Schoonover
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
- Department of Psychology and Sociology, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, United States
| |
Collapse
|
2
|
Yamamoto M, Sakai M, Yu Z, Nakanishi M, Yoshii H. Glial Markers of Suicidal Behavior in the Human Brain-A Systematic Review of Postmortem Studies. Int J Mol Sci 2024; 25:5750. [PMID: 38891940 PMCID: PMC11171620 DOI: 10.3390/ijms25115750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Suicide is a major public health priority, and its molecular mechanisms appear to be related to glial abnormalities and specific transcriptional changes. This study aimed to identify and synthesize evidence of the relationship between glial dysfunction and suicidal behavior to understand the neurobiology of suicide. As of 26 January 2024, 46 articles that met the inclusion criteria were identified by searching PubMed and ISI Web of Science. Most postmortem studies, including 30 brain regions, have determined no density or number of total Nissl-glial cell changes in suicidal patients with major psychiatric disorders. There were 17 astrocytic, 14 microglial, and 9 oligodendroglial studies using specific markers of each glial cell and further on their specific gene expression. Those studies suggest that astrocytic and oligodendroglial cells lost but activated microglia in suicides with affective disorder, bipolar disorders, major depression disorders, or schizophrenia in comparison with non-suicided patients and non-psychiatric controls. Although the data from previous studies remain complex and cannot fully explain the effects of glial cell dysfunction related to suicidal behaviors, they provide risk directions potentially leading to suicide prevention.
Collapse
Affiliation(s)
- Mana Yamamoto
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mai Sakai
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Miharu Nakanishi
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hatsumi Yoshii
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
3
|
Palmisano A, Pandit S, Smeralda CL, Demchenko I, Rossi S, Battelli L, Rivolta D, Bhat V, Santarnecchi E. The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders. Life (Basel) 2024; 14:578. [PMID: 38792599 PMCID: PMC11122172 DOI: 10.3390/life14050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/26/2024] Open
Abstract
Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders' etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of γ alterations arising from the aberrant activity of parvalbumin-positive GABAergic interneurons, whose dysfunction is associated with perineuronal net impairment and neuroinflammation. This model of pathogenesis is supported by molecular, cellular, and functional evidence. Proof for alterations of γ oscillations and their underlying mechanisms has also been reported in bipolar disorder and represents an emerging topic for major depressive disorder. Although evidence from animal models needs to be further elucidated in humans, the pathophysiology of γ-band alteration represents a common denominator for different neuropsychiatric disorders. The purpose of this narrative review is to outline a framework of converging results in psychiatric conditions characterized by γ abnormality, from neurochemical dysfunction to alterations in brain rhythms.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TUD Dresden University of Technology, 01069 Dresden, Germany
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Siddhartha Pandit
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
| | - Carmelo L. Smeralda
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Lorella Battelli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
4
|
Garcia-Marin V, Kelly JG, Hawken MJ. Neuronal composition of processing modules in human V1: laminar density for neuronal and non-neuronal populations and a comparison with macaque. Cereb Cortex 2024; 34:bhad512. [PMID: 38183210 PMCID: PMC10839852 DOI: 10.1093/cercor/bhad512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024] Open
Abstract
The neuronal composition of homologous brain regions in different primates is important for understanding their processing capacities. Primary visual cortex (V1) has been widely studied in different members of the catarrhines. Neuronal density is considered to be central in defining the structure-function relationship. In human, there are large variations in the reported neuronal density from prior studies. We found the neuronal density in human V1 was 79,000 neurons/mm3, which is 35% of the neuronal density previously determined in macaque V1. Laminar density was proportionally similar between human and macaque. In V1, the ocular dominance column (ODC) contains the circuits for the emergence of orientation preference and spatial processing of a point image in many mammalian species. Analysis of the total neurons in an ODC and of the full number of neurons in macular vision (the central 15°) indicates that humans have 1.3× more neurons than macaques even though the density of neurons in macaque is 3× the density in human V1. We propose that the number of neurons in a functional processing unit rather than the number of neurons under a mm2 of cortex is more appropriate for cortical comparisons across species.
Collapse
Affiliation(s)
| | - Jenna G Kelly
- Center for Neural Science, New York University, New York City, NY 10003, United States
| | - Michael J Hawken
- Center for Neural Science, New York University, New York City, NY 10003, United States
| |
Collapse
|
5
|
Hu YT, Tan ZL, Hirjak D, Northoff G. Brain-wide changes in excitation-inhibition balance of major depressive disorder: a systematic review of topographic patterns of GABA- and glutamatergic alterations. Mol Psychiatry 2023; 28:3257-3266. [PMID: 37495889 DOI: 10.1038/s41380-023-02193-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
The excitation-inhibition (E/I) imbalance is an important molecular pathological feature of major depressive disorder (MDD) as altered GABA and glutamate levels have been found in multiple brain regions in patients. Healthy subjects show topographic organization of the E/I balance (EIB) across various brain regions. We here raise the question of whether such EIB topography is altered in MDD. Therefore, we systematically review the gene and protein expressions of inhibitory GABAergic and excitatory glutamatergic signaling-related molecules in postmortem MDD brain studies as proxies for EIB topography. Searches were conducted through PubMed and 45 research articles were finally included. We found: i) brain-wide GABA- and glutamatergic alterations; ii) attenuated GABAergic with enhanced glutamatergic signaling in the cortical-subcortical limbic system; iii) that GABAergic signaling is decreased in regions comprising the default mode network (DMN) while it is increased in lateral prefrontal cortex (LPFC). These together demonstrate abnormal GABA- and glutamatergic signaling-based EIB topographies in MDD. This enhances our pathophysiological understanding of MDD and carries important therapeutic implications for stimulation treatment.
Collapse
Affiliation(s)
- Yu-Ting Hu
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.
| | - Zhong-Lin Tan
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dusan Hirjak
- Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Georg Northoff
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
6
|
He Y, Guo W, Ren Z, Liu S, Ming D. Gamma Rhythm and Theta-gamma Coupling Alternation in Chronic Unpredictable Stress (CUS)-induced Depression Rats . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082931 DOI: 10.1109/embc40787.2023.10340209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Depression is a debilitating disease, which, in severe cases, can lead to suicide. However, objective and reliable biomarker for the diagnosis of depression is lack. In this preclinical study, we recorded resting local field potentials (LFPs) from chronic unpredictable stress (CUS)-induced depressed (n =20) and control (n = 20) rats and then compared their gamma activities in terms of single-band and cross-frequency coupling patterns. Both theta-gamma coupling and relative power in total gamma band revealed significant abnormalities in gamma rhythm in the right auditory cortex of depressed rats. These findings implied that resting-state gamma rhythms may be a promising objective diagnostic biomarker for depression. Furthermore, our research provided direct evidence from the perspective of source signals in deep brain sites, which might be useful for clinical applications.Clinical Relevance- This research showed that resting gamma in the auditory cortex is a promising biomarker for depression diagnosis.
Collapse
|
7
|
Lu K, Hong Y, Tao M, Shen L, Zheng Z, Fang K, Yuan F, Xu M, Wang C, Zhu D, Guo X, Liu Y. Depressive patient-derived GABA interneurons reveal abnormal neural activity associated with HTR2C. EMBO Mol Med 2022; 15:e16364. [PMID: 36373384 PMCID: PMC9832822 DOI: 10.15252/emmm.202216364] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Major depressive disorder with suicide behavior (sMDD) is a server mood disorder, bringing tremendous burden to family and society. Although reduced gamma amino butyric acid (GABA) level has been observed in postmortem tissues of sMDD patients, the molecular mechanism by which GABA levels are altered remains elusive. In this study, we generated induced pluripotent stem cells (iPSC) from five sMDD patients and differentiated the iPSCs to GABAergic interneurons (GINs) and ventral forebrain organoids. sMDD GINs exhibited altered neuronal morphology and increased neural firing, as well as weakened calcium signaling propagation, compared with controls. Transcriptomic sequencing revealed that a decreased expression of serotoninergic receptor 2C (5-HT2C) may cause the defected neuronal activity in sMDD. Furthermore, targeting 5-HT2C receptor, using a small molecule agonist or genetic approach, restored neuronal activity deficits in sMDD GINs. Our findings provide a human cellular model for studying the molecular mechanisms and drug discoveries for sMDD.
Collapse
Affiliation(s)
- Kaiqin Lu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Yuan Hong
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Luping Shen
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Zhilong Zheng
- Department of NeurobiologyKey Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Kaiheng Fang
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Fang Yuan
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Dongya Zhu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Xing Guo
- Department of NeurobiologyKey Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina,Co‐innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| |
Collapse
|
8
|
Kim GW, Farabaugh AH, Vetterman R, Holmes A, Nyer M, Nasiriavanaki Z, Fava M, Holt DJ. Diminished frontal pole size and functional connectivity in young adults with high suicidality. J Affect Disord 2022; 310:484-492. [PMID: 35427718 DOI: 10.1016/j.jad.2022.04.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/06/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Suicide rates among young people have been increasing in recent years, yet no validated methods are available for identifying those who are at greatest risk for suicide. Abnormalities in the medial prefrontal cortex have been previously observed in suicidal individuals, but confounding factors such as treatment and chronic illness may have contributed to these findings. Thus, in this study we tested whether the size of the medial prefrontal cortex is altered in suicidal young adults who have received no treatment with psychotropic medications. METHODS Suicidality was evaluated using the Suicide Behaviors Questionnaire-Revised (SBQ-R) and surface areas of four regions-of-interest (ROIs) within the medial prefrontal cortex were measured using magnetic resonance imaging (MRI) in a cohort of college students (n = 102). In addition, a secondary seed-based functional connectivity analysis was conducted using resting-state functional MRI data. Areas and functional connectivity of the medial prefrontal cortex of young adults with high suicidality (HS; SBQ-R score > 7; n = 20) were compared to those with low suicidality (LS; SBQ-R score = 3, n = 37). RESULTS Compared to the LS group, the HS group had a significantly lower surface area of the right frontal pole (p < 0.05, Bonferroni-corrected) and significantly lower functional connectivity of the right frontal pole with the bilateral inferior frontal cortex (p < 0.001, Monte-Carlo corrected). LIMITATION These findings require replication in a larger sample and extension in younger (adolescent) populations. CONCLUSION Diminished frontal pole surface area and functional connectivity may be linked to elevated levels of suicidality in young people.
Collapse
Affiliation(s)
- Gwang-Won Kim
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States of America; Advanced Institute of Aging Science, Chonnam National University, Republic of Korea
| | - Amy H Farabaugh
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Richard Vetterman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Avram Holmes
- Department of Psychology, Yale University, United States of America
| | - Maren Nyer
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Zahra Nasiriavanaki
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, United States of America; Athinoula A. Martinos Center for Biomedical Imaging, United States of America.
| |
Collapse
|
9
|
Qi Z, Wang J, Gong J, Su T, Fu S, Huang L, Wang Y. Common and specific patterns of functional and structural brain alterations in schizophrenia and bipolar disorder: a multimodal voxel-based meta-analysis. J Psychiatry Neurosci 2022; 47:E32-E47. [PMID: 35105667 PMCID: PMC8812718 DOI: 10.1503/jpn.210111] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/12/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Schizophrenia and bipolar disorder have been linked to alterations in the functional activity and grey matter volume of some brain areas, reflected in impaired regional homogeneity and aberrant voxel-based morphometry. However, because of variable findings and methods used across studies, identifying patterns of brain alteration in schizophrenia and bipolar disorder has been difficult. METHODS We conducted a meta-analysis of differences in regional homogeneity and voxel-based morphometry between patients and healthy controls for schizophrenia and bipolar disorder separately, using seed-based d mapping. RESULTS We included 45 publications on regional homogeneity (26 in schizophrenia and 19 in bipolar disorder) and 190 publications on voxel-based morphometry (120 in schizophrenia and 70 in bipolar disorder). Patients with schizophrenia showed increased regional homogeneity in the frontal cortex and striatum and the supplementary motor area; they showed decreased regional homogeneity in the insula, primary sensory cortex (visual and auditory cortices) and sensorimotor cortex. Patients with bipolar disorder showed increased regional homogeneity in the frontal cortex and striatum; they showed decreased regional homogeneity in the insula. Patients with schizophrenia showed decreased grey matter volume in the superior temporal gyrus, inferior frontal gyrus, cingulate cortex and cerebellum. Patients with bipolar disorder showed decreased grey matter volume in the insula, cingulate cortex, frontal cortex and thalamus. Overlap analysis showed that patients with schizophrenia displayed decreased regional homogeneity and grey matter volume in the left insula and left superior temporal gyrus; patients with bipolar disorder displayed decreased regional homogeneity and grey matter volume in the left insula. LIMITATIONS The small sample size for our subgroup analysis (unmedicated versus medicated patients and substantial heterogeneity in the results for some regions could limit the interpretability and generalizability of the results. CONCLUSION Patients with schizophrenia and bipolar disorder shared a common pattern of regional functional and structural alterations in the insula and frontal cortex. Patients with schizophrenia showed more widespread functional and structural impairment, most prominently in the primary sensory motor areas.
Collapse
Affiliation(s)
| | - Junjing Wang
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China (Qi, Su, Fu, Huang, Y. Wang); the Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China (Qi, Su, Fu, Huang, Y. Wang); the Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, China (J. Wang); and the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong)
| | | | | | | | | | | |
Collapse
|
10
|
Glial Cell Abnormalities in Major Psychiatric Diseases: A Systematic Review of Postmortem Brain Studies. Mol Neurobiol 2022; 59:1665-1692. [PMID: 35013935 DOI: 10.1007/s12035-021-02672-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
There have been a large number of reports about glial cell dysfunction being related to major psychiatric diseases such as schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). In this review, we provide an overview of postmortem studies analyzing the structural changes of glial cells in these three major psychiatric diseases, including the density, number and size of glial cells, and the expression of related markers. Up to May 1, 2021, 108 articles that met the inclusion criteria were identified by searching PubMed and Web of Science. Although most studies evaluating total glial cells did not show abnormalities in the brains of postmortem patients, astrocytes, microglial cells, and oligodendrocytes seem to have specific patterns of changes in each disease. For example, out of 20 studies that evaluated astrocyte markers in MDD, 11 studies found decreased astrocyte marker expression in MDD patients. Similarly, out of 25 studies evaluating oligodendrocyte markers in SCZ, 15 studies showed decreased expression of oligodendrocyte markers in different brain regions of SCZ patients. In addition, activated microglial cells were observed in patients with SCZ, BD, and MDD, but suicide may be a confounding factor for the observed effects. Although the data from the included studies were heterogeneous and this cannot be fully explained at present, it is likely that there are a variety of contributing factors, including the measured brain regions, methods of measurement, gender, age at time of death, and medications.
Collapse
|
11
|
Chang S, Varadarajan D, Yang J, Chen IA, Kura S, Magnain C, Augustinack JC, Fischl B, Greve DN, Boas DA, Wang H. Scalable mapping of myelin and neuron density in the human brain with micrometer resolution. Sci Rep 2022; 12:363. [PMID: 35013441 PMCID: PMC8748995 DOI: 10.1038/s41598-021-04093-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022] Open
Abstract
Optical coherence tomography (OCT) is an emerging 3D imaging technique that allows quantification of intrinsic optical properties such as scattering coefficient and back-scattering coefficient, and has proved useful in distinguishing delicate microstructures in the human brain. The origins of scattering in brain tissues are contributed by the myelin content, neuron size and density primarily; however, no quantitative relationships between them have been reported, which hampers the use of OCT in fundamental studies of architectonic areas in the human brain and the pathological evaluations of diseases. Here, we built a generalized linear model based on Mie scattering theory that quantitatively links tissue scattering to myelin content and neuron density in the human brain. We report a strong linear relationship between scattering coefficient and the myelin content that is retained across different regions of the brain. Neuronal cell body turns out to be a secondary contribution to the overall scattering. The optical property of OCT provides a label-free solution for quantifying volumetric myelin content and neuron cells in the human brain.
Collapse
Affiliation(s)
- Shuaibin Chang
- Department of Electrical and Computer Engineering, Boston University, 8 St Mary's St, Boston, 02215, USA
| | - Divya Varadarajan
- Department of Radiology, Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, 13th Street, Boston, 02129, USA
| | - Jiarui Yang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, 02215, USA
| | - Ichun Anderson Chen
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, 02215, USA
| | - Sreekanth Kura
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, 02215, USA
| | - Caroline Magnain
- Department of Radiology, Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, 13th Street, Boston, 02129, USA
| | - Jean C Augustinack
- Department of Radiology, Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, 13th Street, Boston, 02129, USA
| | - Bruce Fischl
- Department of Radiology, Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, 13th Street, Boston, 02129, USA
| | - Douglas N Greve
- Department of Radiology, Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, 13th Street, Boston, 02129, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, 02215, USA
- Department of Electrical and Computer Engineering, Boston University, 8 St Mary's St, Boston, 02215, USA
| | - Hui Wang
- Department of Radiology, Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, 13th Street, Boston, 02129, USA.
| |
Collapse
|
12
|
Smiley JF, Bleiwas C, Canals-Baker S, Williams SZ, Sears R, Teixeira CM, Wilson DA, Saito M. Neonatal ethanol causes profound reduction of cholinergic cell number in the basal forebrain of adult animals. Alcohol 2021; 97:1-11. [PMID: 34464696 DOI: 10.1016/j.alcohol.2021.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/24/2021] [Accepted: 08/12/2021] [Indexed: 11/26/2022]
Abstract
In animal models that mimic human third-trimester fetal development, ethanol causes substantial cellular apoptosis in the brain, but for most brain structures, the extent of permanent neuron loss that persists into adulthood is unknown. We injected ethanol into C57BL/6J mouse pups at postnatal day 7 (P7) to model human late-gestation ethanol toxicity, and then used stereological methods to investigate adult cell numbers in several subcortical neurotransmitter systems that project extensively in the forebrain to regulate arousal states. Ethanol treatment caused especially large reductions (34-42%) in the cholinergic cells of the basal forebrain, including cholinergic cells in the medial septal/vertical diagonal band nuclei (Ch1/Ch2) and in the horizontal diagonal band/substantia innominata/nucleus basalis nuclei (Ch3/Ch4). Cell loss was also present in non-cholinergic basal forebrain cells, as demonstrated by 34% reduction of parvalbumin-immunolabeled GABA cells and 25% reduction of total Nissl-stained neurons in the Ch1/Ch2 region. In contrast, cholinergic cells in the striatum were reduced only 12% by ethanol, and those of the brainstem pedunculopontine/lateral dorsal tegmental nuclei (Ch5/Ch6) were not significantly reduced. Similarly, ethanol did not significantly reduce dopamine cells of the ventral tegmental area/substantia nigra or serotonin cells in the dorsal raphe nucleus. Orexin (hypocretin) cells in the hypothalamus showed a modest reduction (14%). Our findings indicate that the basal forebrain is especially vulnerable to alcohol exposure in the late gestational period. Reduction of cholinergic and GABAergic projection neurons from the basal forebrain that regulate forebrain arousal may contribute to the behavioral and cognitive deficits associated with neonatal ethanol exposure.
Collapse
|
13
|
Perlman G, Tanti A, Mechawar N. Parvalbumin interneuron alterations in stress-related mood disorders: A systematic review. Neurobiol Stress 2021; 15:100380. [PMID: 34557569 PMCID: PMC8446799 DOI: 10.1016/j.ynstr.2021.100380] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/23/2022] Open
Abstract
Stress-related psychiatric disorders including depression involve complex cellular and molecular changes in the brain, and GABAergic signaling dysfunction is increasingly implicated in the etiology of mood disorders. Parvalbumin (PV)-expressing neurons are fast-spiking interneurons that, among other roles, coordinate synchronous neuronal firing. Mounting evidence suggests that the PV neuron phenotype is altered by stress and in mood disorders. In this systematic review, we assessed PV interneuron alterations in psychiatric disorders as reported in human postmortem brain studies and animal models of environmental stress. This review aims to 1) comprehensively catalog evidence of PV cell function in mood disorders (humans) and stress models of mood disorders (animals); 2) analyze the strength of evidence of PV interneuron alterations in various brain regions in humans and rodents; 3) determine whether the modulating effect of antidepressant treatment, physical exercise, and environmental enrichment on stress in animals associates with particular effects on PV function; and 4) use this information to guide future research avenues. Its principal findings, derived mainly from rodent studies, are that stress-related changes in PV cells are only reported in a minority of studies, that positive findings are region-, age-, sex-, and stress recency-dependent, and that antidepressants protect from stress-induced apparent PV cell loss. These observations do not currently translate well to humans, although the postmortem literature on the topic remains limited.
Collapse
Affiliation(s)
| | - Arnaud Tanti
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| | - Naguib Mechawar
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| |
Collapse
|
14
|
O'Leary LA, Mechawar N. Implication of cerebral astrocytes in major depression: A review of fine neuroanatomical evidence in humans. Glia 2021; 69:2077-2099. [PMID: 33734498 DOI: 10.1002/glia.23994] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/01/2023]
Abstract
Postmortem investigations have implicated astrocytes in many neurological and psychiatric conditions. Multiple brain regions from individuals with major depressive disorder (MDD) have lower expression levels of astrocyte markers and lower densities of astrocytes labeled for these markers, suggesting a loss of astrocytes in this mental illness. This paper reviews the general properties of human astrocytes, the methods to study them, and the postmortem evidence for astrocyte pathology in MDD. When comparing astrocyte density and morphometry studies, astrocytes are more abundant and smaller in human subcortical than cortical brain regions, and immunohistochemical labeling for the astrocyte markers glial fibrillary acidic protein (GFAP) and vimentin (VIM) reveals fewer than 15% of all astrocytes that are present in cortical and subcortical regions, as revealed using other staining techniques. By combining astrocyte densities and morphometry, a model was made to illustrate that domain organization is mostly limited to GFAP-IR astrocytes. Using these markers and others, alterations of astrocyte densities appear more widespread than those for astrocyte morphologies throughout the brain of individuals having died with MDD. This review suggests how reduced astrocyte densities may relate to the association of depressive episodes in MDD with elevated S100 beta (S100B) cerebrospinal fluid serum levels. Finally, a potassium imbalance theory is proposed that integrates the reduced astrocyte densities generated from postmortem studies with a hypothesis for the antidepressant effects of ketamine generated from rodent studies.
Collapse
Affiliation(s)
- Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Lim SH, Shin S, Kim MH, Kim EC, Lee DY, Moon J, Park HY, Ryu YK, Kang YM, Kang YJ, Kim TH, Lee NY, Kim NS, Yu DY, Shim I, Gondo Y, Satake M, Kim E, Kim KS, Min SS, Lee JR. Depression-like behaviors induced by defective PTPRT activity through dysregulated synaptic functions and neurogenesis. J Cell Sci 2020; 133:jcs243972. [PMID: 32938684 DOI: 10.1242/jcs.243972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
PTPRT has been known to regulate synaptic formation and dendritic arborization of hippocampal neurons. PTPRT-/- null and PTPRT-D401A mutant mice displayed enhanced depression-like behaviors compared with wild-type mice. Transient knockdown of PTPRT in the dentate gyrus enhanced the depression-like behaviors of wild-type mice, whereas rescued expression of PTPRT ameliorated the behaviors of PTPRT-null mice. Chronic stress exposure reduced expression of PTPRT in the hippocampus of mice. In PTPRT-deficient mice the expression of GluR2 (also known as GRIA2) was attenuated as a consequence of dysregulated tyrosine phosphorylation, and the long-term potentiation at perforant-dentate gyrus synapses was augmented. The inhibitory synaptic transmission of the dentate gyrus and hippocampal GABA concentration were reduced in PTPRT-deficient mice. In addition, the hippocampal expression of GABA transporter GAT3 (also known as SLC6A11) was decreased, and its tyrosine phosphorylation was increased in PTPRT-deficient mice. PTPRT-deficient mice displayed reduced numbers and neurite length of newborn granule cells in the dentate gyrus and had attenuated neurogenic ability of embryonic hippocampal neural stem cells. In conclusion, our findings show that the physiological roles of PTPRT in hippocampal neurogenesis, as well as synaptic functions, are involved in the pathogenesis of depressive disorder.
Collapse
Affiliation(s)
- So-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Sangyep Shin
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon 34824, Korea
| | - Myoung-Hwan Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eung Chang Kim
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon 34824, Korea
| | - Da Yong Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jeonghee Moon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Young-Mi Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Yu Jeong Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Tae Hwan Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Na-Yoon Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Nam-Soon Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Dae-Yeul Yu
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yoichi Gondo
- Department of Molecular Life Sciences, Tokai University School of Medicine, Shimo-Kasuya, Isehara 259-1193, Japan
| | - Masanobu Satake
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Eunhee Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Sun Seek Min
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon 34824, Korea
| | - Jae-Ran Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| |
Collapse
|
16
|
Applying dimensional psychopathology: transdiagnostic associations among regional homogeneity, leptin and depressive symptoms. Transl Psychiatry 2020; 10:248. [PMID: 32699219 PMCID: PMC7376105 DOI: 10.1038/s41398-020-00932-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 12/29/2022] Open
Abstract
Dimensional psychopathology and its neurobiological underpinnings could provide important insights into major psychiatric disorders, including major depressive disorder, bipolar disorder and schizophrenia. In a dimensional transdiagnostic approach, we examined depressive symptoms and their relationships with regional homogeneity and leptin across major psychiatric disorders. A total of 728 participants (including 403 patients with major psychiatric disorders and 325 age-gender-matched healthy controls) underwent resting-state functional magnetic resonance imaging at a single site. We obtained plasma leptin levels and depressive symptom measures (Hamilton Depression Rating Scale (HAMD)) within 24 h of scanning and compared the regional homogeneity (ReHo), plasma leptin levels and HAMD total score and factor scores between patients and healthy controls. To reveal the potential relationships, we performed correlational and mediational analyses. Patients with major psychiatric disorders had significant lower ReHo in primary sensory and visual association cortices and higher ReHo in the frontal cortex and angular gyrus; plasma leptin levels were also elevated. Furthermore, ReHo alterations, leptin and HAMD factor scores had significant correlations. We also found that leptin mediated the transdiagnostic relationships among ReHo alterations in primary somatosensory and visual association cortices, core depressive symptoms and body mass index. The transdiagnostic associations we demonstrated support the common neuroanatomical substrates and neurobiological mechanisms. Moreover, leptin could be an important association among ReHo, core depressive symptoms and body mass index, suggesting a potential therapeutic target for dimensional depressive symptoms across major psychiatric disorders.
Collapse
|
17
|
Khan AR, Geiger L, Wiborg O, Czéh B. Stress-Induced Morphological, Cellular and Molecular Changes in the Brain-Lessons Learned from the Chronic Mild Stress Model of Depression. Cells 2020; 9:cells9041026. [PMID: 32326205 PMCID: PMC7226496 DOI: 10.3390/cells9041026] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder (MDD) is a severe illness imposing an increasing social and economic burden worldwide. Numerous rodent models have been developed to investigate the pathophysiology of MDD. One of the best characterized and most widely used models is the chronic mild stress (CMS) model which was developed more than 30 years ago by Paul Willner. More than 2000 published studies used this model, mainly to assess novel compounds with potential antidepressant efficacy. Most of these studies examined the behavioral consequences of stress and concomitant drug intervention. Much fewer studies focused on the CMS-induced neurobiological changes. However, the stress-induced cellular and molecular changes are important as they may serve as potential translational biomarkers and increase our understanding of the pathophysiology of MDD. Here, we summarize current knowledge on the structural and molecular alterations in the brain that have been described using the CMS model. We discuss the latest neuroimaging and postmortem histopathological data as well as molecular changes including recent findings on microRNA levels. Different chronic stress paradigms occasionally deliver dissimilar findings, but the available experimental data provide convincing evidence that the CMS model has a high translational value. Future studies examining the neurobiological changes in the CMS model in combination with clinically effective antidepressant drug intervention will likely deliver further valuable information on the pathophysiology of MDD.
Collapse
Affiliation(s)
- Ahmad Raza Khan
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute (SGPGI) Campus, Lucknow-226017, U.P, India;
| | - Lili Geiger
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
| | - Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
18
|
Levitt JG, Kalender G, O’Neill J, Diaz JP, Cook IA, Ginder N, Krantz D, Minzenberg MJ, Vince-Cruz N, Nguyen LD, Alger JR, Leuchter AF. Dorsolateral prefrontal γ-aminobutyric acid in patients with treatment-resistant depression after transcranial magnetic stimulation measured with magnetic resonance spectroscopy. J Psychiatry Neurosci 2019; 44:386-394. [PMID: 31199104 PMCID: PMC6821508 DOI: 10.1503/jpn.180230] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The therapeutic mechanism of repetitive transcranial magnetic stimulation (rTMS) for treatment-resistant depression (TRD) may involve modulation of γ-aminobutyric acid (GABA) levels. We used proton magnetic resonance spectroscopy (MRS) to assess changes in GABA levels at the site of rTMS in the left dorsolateral prefrontal cortex (DLPFC). METHODS In 26 adults with TRD, we used Mescher–Garwood point-resolved spectroscopy (MEGA-PRESS) spectral-editing MRS to measure GABA in the left DLPFC before and after standard clinical treatment with rTMS. All participants but 1 were medicated, including 12 patients on GABA agonist agents. RESULTS Mean GABA in the DLPFC increased 10.0% (p = 0.017) post-rTMS in the overall sample. As well, GABA increased significantly in rTMS responders (n = 12; 23.6%, p = 0.015) but not in nonresponders (n = 14; 4.1%, p = not significant). Changes in GABA were not significantly affected by GABAergic agonists, but clinical response was less frequent (p = 0.005) and weaker (p = 0.035) in the 12 participants who were receiving GABA agonists concomitant with rTMS treatment. LIMITATIONS This study had an open-label design in a population receiving naturalistic treatment. CONCLUSION Treatment using rTMS was associated with increases in GABA levels at the stimulation site in the left DLPFC, and the degree of GABA change was related to clinical improvement. Participants receiving concomitant treatment with a GABA agonist were less likely to respond to rTMS. These findings were consistent with earlier studies showing the effects of rTMS on GABA levels and support a GABAergic model of depression.
Collapse
Affiliation(s)
- Jennifer G. Levitt
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Guldamla Kalender
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Joseph O’Neill
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Joel P. Diaz
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Ian A. Cook
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Nathaniel Ginder
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - David Krantz
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Michael J. Minzenberg
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Nikita Vince-Cruz
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Lydia D. Nguyen
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Jeffry R. Alger
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| | - Andrew F. Leuchter
- From the Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, Diaz, Cook, Ginder, Krantz, Minzenberg, Vince-Cruz, Nguyen, Leuchter); the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles (Levitt, Kalender, O’Neill, Cook, Krantz, Minzenberg, Leuchter); the Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles (Kalender); the Division of Child and Adolescent Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles (Levitt, O’Neill); the Department of Bioengineering, Henry Samueli School of Engineering at Applied Science at UCLA, Los Angeles (Cook); the Department of Neurology, UCLA David Geffen School of Medicine at UCLA, Los Angeles (Alger); the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas (Alger); and the NeuroSpectroScopics, LCC, Sherman Oaks, California (Alger)
| |
Collapse
|
19
|
Wang D, Wang X, Luo MT, Wang H, Li YH. Gamma-Aminobutyric Acid Levels in the Anterior Cingulate Cortex of Perimenopausal Women With Depression: A Magnetic Resonance Spectroscopy Study. Front Neurosci 2019; 13:785. [PMID: 31481863 PMCID: PMC6710535 DOI: 10.3389/fnins.2019.00785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/15/2019] [Indexed: 02/01/2023] Open
Abstract
Objective The anterior cingulate cortex (ACC) is associated with the processing of negative emotions. Gamma-aminobutyric acid (GABA) metabolism plays an important role in the pathogenesis of mental disorders. We aimed to determine the changes in GABA levels in the ACC of perimenopausal women with depression. Methods We recruited 120 perimenopausal women, who were followed up for 18-24 months. After reaching menopause, the participants were divided into a control group (n = 71), an anxiety group (n = 30), and a depression group (n = 19). The participants were examined using proton magnetic resonance spectroscopy (MRS). TARQUIN software was used to calculate the GABA concentrations in the ACC before and after menopause. The relationship of the GABA levels with the patients' scores on the 14-item Hamilton Anxiety Scale and 17-item Hamilton Depression Scale was determined. Results GABA decreased with time. The postmenopausal GABA levels were significantly lower in the depression group than in the anxiety group and were significantly lower in both these groups than in the normal group. The postmenopausal GABA levels were significantly lower than the premenopausal levels in the normal, anxiety, and depression groups (P = 0.014, <0.001, and <0.001, respectively). The premenopausal GABA levels did not significantly differ between the normal vs. anxiety group (P = 0.907), normal vs. depression group (P = 0.495), and anxiety vs. depression group. The postmenopausal GABA levels were significantly lower in the depression group than in the anxiety group and were significantly lower in both these groups than in the normal group, normal vs. anxiety group (P = 0.022), normal vs. depression group (P < 0.001), and anxiety vs. depression group (P = 0.047). Conclusion Changes in GABA concentrations in the anterior cingulate cortex are related with the pathophysiological mechanism and symptoms of perimenopausal depression.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Wang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Meng-Ting Luo
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hui Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yue-Hua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Goubert E, Altvater M, Rovira MN, Khalilov I, Mazzarino M, Sebastiani A, Schaefer MKE, Rivera C, Pellegrino C. Bumetanide Prevents Brain Trauma-Induced Depressive-Like Behavior. Front Mol Neurosci 2019; 12:12. [PMID: 30804751 PMCID: PMC6370740 DOI: 10.3389/fnmol.2019.00012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/14/2019] [Indexed: 01/24/2023] Open
Abstract
Brain trauma triggers a cascade of deleterious events leading to enhanced incidence of drug resistant epilepsies, depression, and cognitive dysfunctions. The underlying mechanisms leading to these alterations are poorly understood and treatment that attenuates those sequels are not available. Using controlled-cortical impact as an experimental model of brain trauma in adult mice, we found a strong suppressive effect of the sodium-potassium-chloride importer (NKCC1) specific antagonist bumetanide on the appearance of depressive-like behavior. We demonstrate that this alteration in behavior is associated with an impairment of post-traumatic secondary neurogenesis within the dentate gyrus of the hippocampus. The mechanism mediating the effect of bumetanide involves early transient changes in the expression of chloride regulatory proteins and qualitative changes in GABA(A) mediated transmission from hyperpolarizing to depolarizing after brain trauma. This work opens new perspectives in the early treatment of human post-traumatic induced depression. Our results strongly suggest that bumetanide might constitute an efficient prophylactic treatment to reduce neurological and psychiatric consequences of brain trauma.
Collapse
Affiliation(s)
- Emmanuelle Goubert
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Marc Altvater
- Department of Anesthesiology and Research Center Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marie-Noelle Rovira
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Ilgam Khalilov
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Morgane Mazzarino
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Anne Sebastiani
- Department of Anesthesiology and Research Center Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael K E Schaefer
- Department of Anesthesiology and Research Center Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudio Rivera
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Christophe Pellegrino
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| |
Collapse
|
21
|
Khan AR, Kroenke CD, Wiborg O, Chuhutin A, Nyengaard JR, Hansen B, Jespersen SN. Differential microstructural alterations in rat cerebral cortex in a model of chronic mild stress depression. PLoS One 2018; 13:e0192329. [PMID: 29432490 PMCID: PMC5809082 DOI: 10.1371/journal.pone.0192329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 01/22/2018] [Indexed: 01/17/2023] Open
Abstract
Chronic mild stress leads to depression in many cases and is linked to several debilitating diseases including mental disorders. Recently, neuronal tracing techniques, stereology, and immunohistochemistry have revealed persistent and significant microstructural alterations in the hippocampus, hypothalamus, prefrontal cortex, and amygdala, which form an interconnected system known as the stress circuit. Most studies have focused only on this circuit, however, some studies indicate that manipulation of sensory and motor systems may impact genesis and therapy of mood disorders and therefore these areas should not be neglected in the study of brain microstructure alterations in response to stress and depression. For this reason, we explore the microstructural alterations in different cortical regions in a chronic mild stress model of depression. The study employs ex-vivo diffusion MRI (d-MRI) to assess cortical microstructure in stressed (anhedonic and resilient) and control animals. MRI is followed by immunohistochemistry to substantiate the d-MRI findings. We find significantly lower extracellular diffusivity in auditory cortex (AC) of stress groups and a significantly higher fractional anisotropy in the resilient group. Neurite density was not found to be significantly higher in any cortical ROIs in the stress group compared to control, although axonal density is higher in the stress groups. We also report significant thinning of motor cortex (MC) in both stress groups. This is in agreement with recent clinical and preclinical studies on depression and similar disorders where significant microstructural and metabolic alterations were found in AC and MC. Our findings provide further evidence that the AC and MC are sensitive towards stress exposure and may extend our understanding of the microstructural effects of stress beyond the stress circuit of the brain. Progress in this field may provide new avenues of research to help in diagnosis and treatment intervention for depression and related disorders.
Collapse
Affiliation(s)
- Ahmad Raza Khan
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Christopher D. Kroenke
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ove Wiborg
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Andrey Chuhutin
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Jens R. Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Gabbay V, Bradley KA, Mao X, Ostrover R, Kang G, Shungu DC. Anterior cingulate cortex γ-aminobutyric acid deficits in youth with depression. Transl Psychiatry 2017; 7:e1216. [PMID: 28892070 PMCID: PMC5611750 DOI: 10.1038/tp.2017.187] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 12/26/2022] Open
Abstract
Abnormally low γ-aminobutyric acid (GABA) levels have been consistently reported in adults with major depressive disorder (MDD). Our group extended this finding to adolescents, and documented that GABA deficits were associated with anhedonia. Here we aimed to confirm our prior finding of decreased brain GABA in youth with depression and explore its associations with clinical variables. Forty-four psychotropic medication-free youth with MDD and 36 healthy control (HC) participants (12-21 years) were studied. Participants represent a combined sample of 39 newly recruited youth (MDD=24) and 41 youth from our previously reported study (MDD=20). GABA levels and the combined resonances of glutamate and glutamine (Glx) were measured in vivo in the anterior cingulate cortex using proton magnetic resonance spectroscopy. Youth with depression exhibited significantly lower GABA levels than HC in both the newly reported (P=0.003) and the combined (P=0.003) samples. When depressed participants were classified based on the presence of anhedonia, only the anhedonic MDD subgroup showed reduced GABA levels compared to HC (P=0.002). While there were no associations between any clinical measures and GABA or Glx levels in the new sample, GABA was negatively correlated with only anhedonia severity in the combined MDD group. Furthermore, in the combined sample, hierarchical regression models showed that anhedonia, but not depression severity, anxiety or suicidality, contributed significant variance in GABA levels. This report solidifies the evidence for a GABA deficit early in the course of MDD, which correlates specifically with anhedonia in the disorder.
Collapse
Affiliation(s)
- V Gabbay
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA. E-mail:
| | - K A Bradley
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - X Mao
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - R Ostrover
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G Kang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - D C Shungu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
23
|
Zhan Y, Zhou S, Li Y, Mu S, Zhang R, Song X, Lin F, Zhang R, Zhang B. Using the BITOLA system to identify candidate molecules in the interaction between oral lichen planus and depression. Behav Brain Res 2017; 320:136-142. [PMID: 27913255 DOI: 10.1016/j.bbr.2016.11.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/19/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022]
Abstract
Exacerbations of oral lichen planus (OLP) have been linked to the periods of psychological stress, anxiety and depression. The specific mechanism of the interaction is unclear. The aim of this study was to explore the candidate genes or molecules that play important roles in the interaction between OLP and depression. The BITOLA system was used to search all intermediate concepts relevant to the "Gene or Gene Product" for OLP and depression, and the gene expression data and tissue-specific gene data along with manual checking were then employed to filter the intermediate concepts. Finally, two genes (NCAM1, neural cell adhesion molecule 1; CD4, CD4 molecule) passed the follow-up inspection. By using the text mining can formulate a new hypothesis: NCAM1 and CD4 were identified as involved or potentially involved in the interaction between OLP and depression. These results offer a new clue for the experimenters and hold promise for developing innovative therapeutic strategies for these two diseases.
Collapse
Affiliation(s)
- Yuanbo Zhan
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Shuang Zhou
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Sen Mu
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Ruijie Zhang
- Colleges of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Xuejing Song
- Department of Stomatology, The Central Hospital of Liaoyang City, Liaoyang 111000, China
| | - Feng Lin
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Ruimin Zhang
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; Heilongjiang Academy of Medical Sciences, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
24
|
Neuropathology of mood disorders: do we see the stigmata of inflammation? Transl Psychiatry 2016; 6:e946. [PMID: 27824355 PMCID: PMC5314124 DOI: 10.1038/tp.2016.212] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/08/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022] Open
Abstract
A proportion of cases with mood disorders have elevated inflammatory markers in the blood that conceivably may result from stress, infection and/or autoimmunity. However, it is not yet clear whether depression is a neuroinflammatory disease. Multiple histopathological and molecular abnormalities have been found postmortem but the etiology of these abnormalities is unknown. Here, we take an immunological perspective of this literature. Increases in activated microglia or perivascular macrophages in suicide victims have been reported in the parenchyma. In contrast, astrocytic markers generally are downregulated in mood disorders. Impairment of astrocytic function likely compromises the reuptake of glutamate potentially leading to excitotoxicity. Inflammatory cytokines and microglia/macrophage-derived quinolinic acid (QA) downregulate the excitatory amino acid transporters responsible for this reuptake, while QA has the additional effect of inhibiting astroglial glutamine synthetase, which converts glutamate to glutamine. Given that oligodendroglia are particularly vulnerable to inflammation, it is noteworthy that reductions in numbers or density of oligodendrocyte cells are one of the most prominent findings in depression. Structural and/or functional changes to GABAergic interneurons also are salient in postmortem brain samples, and may conceivably be related to early inflammatory insults. Although the postmortem data are consistent with a neuroimmune etiology in a subgroup of depressed individuals, we do not argue that all depression-associated abnormalities are reflective of a neuroinflammatory process or even that all immunological activity in the brain is deleterious. Rather, we highlight the pervasive role of immune signaling pathways in brain function and provide an alternative perspective on the current postmortem literature.
Collapse
|
25
|
Zhang H, Sun XR, Wang J, Zhang ZZ, Zhao HT, Li HH, Ji MH, Li KY, Yang JJ. Reactive Oxygen Species-mediated Loss of Phenotype of Parvalbumin Interneurons Contributes to Long-term Cognitive Impairments After Repeated Neonatal Ketamine Exposures. Neurotox Res 2016; 30:593-605. [DOI: 10.1007/s12640-016-9653-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 01/29/2023]
|