1
|
Chalençon L, Midroit M, Athanassi A, Thevenet M, Breton M, Forest J, Richard M, Didier A, Mandairon N. Age-related differences in perception and coding of attractive odorants in mice. Neurobiol Aging 2024; 137:8-18. [PMID: 38394723 DOI: 10.1016/j.neurobiolaging.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/23/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Hedonic perception deeply changes with aging, significantly impacting health and quality of life in elderly. In young adult mice, an odor hedonic signature is represented along the antero-posterior axis of olfactory bulb, and transferred to the olfactory tubercle and ventral tegmental area, promoting approach behavior. Here, we show that while the perception of unattractive odorants was unchanged in older mice (22 months), the appreciation of some but not all attractive odorants declined. Neural activity in the olfactory bulb and tubercle of older mice was consistently altered when attraction to pleasant odorants was impaired while maintained when the odorants kept their attractivity. Finally, in a self-stimulation paradigm, optogenetic stimulation of the olfactory bulb remained rewarding in older mice even without ventral tegmental area's response to the stimulation. Aging degrades behavioral and neural responses to some pleasant odorants but rewarding properties of olfactory bulb stimulation persisted, providing new insights into developing novel olfactory training strategies to elicit motivation even when the dopaminergic system is altered as observed in normal and/or neurodegenerative aging.
Collapse
Affiliation(s)
- Laura Chalençon
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Maëllie Midroit
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Anna Athanassi
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Marc Thevenet
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Marine Breton
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Jérémy Forest
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Marion Richard
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Anne Didier
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France; Institut Universitaire de France (IUF), France
| | - Nathalie Mandairon
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France.
| |
Collapse
|
2
|
Rocha GS, Freire MAM, Paiva KM, Oliveira RF, Morais PLAG, Santos JR, Cavalcanti JRLP. The neurobiological effects of senescence on dopaminergic system: A comprehensive review. J Chem Neuroanat 2024; 137:102415. [PMID: 38521203 DOI: 10.1016/j.jchemneu.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Over time, the body undergoes a natural, multifactorial, and ongoing process named senescence, which induces changes at the molecular, cellular, and micro-anatomical levels in many body systems. The brain, being a highly complex organ, is particularly affected by this process, potentially impairing its numerous functions. The brain relies on chemical messengers known as neurotransmitters to function properly, with dopamine being one of the most crucial. This catecholamine is responsible for a broad range of critical roles in the central nervous system, including movement, learning, cognition, motivation, emotion, reward, hormonal release, memory consolidation, visual performance, sexual drive, modulation of circadian rhythms, and brain development. In the present review, we thoroughly examine the impact of senescence on the dopaminergic system, with a primary focus on the classic delimitations of the dopaminergic nuclei from A8 to A17. We provide in-depth information about their anatomy and function, particularly addressing how senescence affects each of these nuclei.
Collapse
Affiliation(s)
- Gabriel S Rocha
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Marco Aurelio M Freire
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Karina M Paiva
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Rodrigo F Oliveira
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Paulo Leonardo A G Morais
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - José Ronaldo Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | | |
Collapse
|
3
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Targeting dopamine transporter to ameliorate cognitive deficits in Alzheimer's disease. Front Cell Neurosci 2023; 17:1292858. [PMID: 38026688 PMCID: PMC10679733 DOI: 10.3389/fncel.2023.1292858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the pathologic deposition of amyloid and neurofibrillary tangles in the brain, leading to neuronal damage and defective synapses. These changes manifest as abnormalities in cognition and behavior. The functional deficits are also attributed to abnormalities in multiple neurotransmitter systems contributing to neuronal dysfunction. One such important system is the dopaminergic system. It plays a crucial role in modulating movement, cognition, and behavior while connecting various brain areas and influencing other neurotransmitter systems, making it relevant in neurodegenerative disorders like AD and Parkinson's disease (PD). Considering its significance, the dopaminergic system has emerged as a promising target for alleviating movement and cognitive deficits in PD and AD, respectively. Extensive research has been conducted on dopaminergic neurons, receptors, and dopamine levels as critical factors in cognition and memory in AD. However, the exact nature of movement abnormalities and other features of extrapyramidal symptoms are not fully understood yet in AD. Recently, a previously overlooked element of the dopaminergic system, the dopamine transporter, has shown significant promise as a more effective target for enhancing cognition while addressing dopaminergic system dysfunction in AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Herat LY, Matthews JR, Hibbs M, Rakoczy EP, Schlaich MP, Matthews VB. SGLT1/2 inhibition improves glycemic control and multi-organ protection in type 1 diabetes. iScience 2023; 26:107260. [PMID: 37520739 PMCID: PMC10384225 DOI: 10.1016/j.isci.2023.107260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/26/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Sodium glucose cotransporters (SGLTs) are transport proteins that are expressed throughout the body. Inhibition of SGLTs is a relatively novel therapeutic strategy to improve glycemic control and has been shown to promote cardiorenal benefits. Dual SGLT1/2 inhibitors (SGLT1/2i) such as sotagliflozin target both SGLT1 and 2 proteins. Sotagliflozin or vehicle was administered to diabetic Akimba mice for 8 weeks at a dose of 25 mg/kg/day. Urine glucose levels, water consumption, and body weight were measured weekly. Serum, kidney, pancreas, and brain tissue were harvested under terminal anesthesia. Tissues were assessed using immunohistochemistry or ELISA techniques. Treatment with sotagliflozin promoted multiple metabolic benefits in diabetic Akimba mice resulting in decreased blood glucose and improved polydipsia. Sotagliflozin also prevented mortalities associated with diabetes. Our data suggests that there is the possibility that combined SGLT1/2i may be superior to SGLT2i in controlling glucose homeostasis and provides protection of multiple organs affected by diabetes.
Collapse
Affiliation(s)
- Lakshini Yasaswi Herat
- Dobney Hypertension Centre, School of Biomedical Sciences – Royal Perth Hospital Unit / Royal Perth Hospital Medical Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
| | - Jennifer Rose Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences – Royal Perth Hospital Unit / Royal Perth Hospital Medical Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
| | - Moira Hibbs
- Research Centre, Royal Perth Hospital, Perth, WA 6000, Australia
| | | | - Markus Peter Schlaich
- Dobney Hypertension Centre, Medical School – Royal Perth Hospital Unit / Royal Perth Hospital Medical Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Vance Bruce Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences – Royal Perth Hospital Unit / Royal Perth Hospital Medical Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
5
|
Rocha GS, Freire MAM, Britto AM, Paiva KM, Oliveira RF, Fonseca IAT, Araújo DP, Oliveira LC, Guzen FP, Morais PLAG, Cavalcanti JRLP. Basal ganglia for beginners: the basic concepts you need to know and their role in movement control. Front Syst Neurosci 2023; 17:1242929. [PMID: 37600831 PMCID: PMC10435282 DOI: 10.3389/fnsys.2023.1242929] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The basal ganglia are a subcortical collection of interacting clusters of cell bodies, and are involved in reward, emotional, and motor circuits. Within all the brain processing necessary to carry out voluntary movement, the basal nuclei are fundamental, as they modulate the activity of the motor regions of the cortex. Despite being much studied, the motor circuit of the basal ganglia is still difficult to understand for many people at all, especially undergraduate and graduate students. This review article seeks to bring the functioning of this circuit with a simple and objective approach, exploring the functional anatomy, neurochemistry, neuronal pathways, related diseases, and interactions with other brain regions to coordinate voluntary movement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - José R. L. P. Cavalcanti
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, State University of Rio Grande do Norte, Mossoró, Brazil
| |
Collapse
|
6
|
Melo JEC, Santos TFO, Santos RS, Franco HS, Monteiro MCN, Bispo JMM, Mendonça MS, Ribeiro AM, Silva RH, Gois AM, Marchioro M, Lins LCRF, Santos JR. Aging accentuates decrease in tyrosine hydroxylase immunoreactivity associated with the increase in the motor impairment in a model of reserpine-induced parkinsonism. J Chem Neuroanat 2022; 125:102162. [PMID: 36115503 DOI: 10.1016/j.jchemneu.2022.102162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by progressive dopaminergic neuron loss. Animal models have been used to develop a better understanding of the pathophysiologic mechanisms of PD. However, these models are usually conducted with young animals diverging of the age of PD patients, suggesting a bias in translational science. Thus, the aim of the study was to evaluate the effect of the age on rats in a progressive parkinsonism model induced by reserpine (RES). Adult (6 - 8 month-old) or elderly (18 - 24 month-old) male rats were assigned to six groups: control-elderly (CTL-ELDERLY), reserpine-elderly (RES-ELDERLY), reserpine-elderly withdrawal (RES-ELDERLY WITHDRAWAL), control-adult (CTL-ADULT), reserpine-adult (RES-ADULT), and reserpine-adult withdrawal (RES-ADULT WITHDRAWAL). Animals received 15 injections every other day of RES (0.1 mg / kg) or vehicle during 30 days. Throughout treatment, animals were evaluated in the catalepsy test (every 48 h) and open field test (24 h after the second injection), and weight assessment (every 4 days) was also made. Upon completion of behavioral tests, rat brains were collected for tyrosine hydroxylase (TH) immunohistochemical analysis. Main results demonstrated that RES-treated animals spent more time in the catalepsy bar compared with control groups, moreover the RES-elderly group showed a longer catalepsy time compared with the RES-ADULT group. A shorter time from RES treatment to the development of symptoms was observed in the RES-ADULT group, compared with the RES-ELDERLY group. In addition, RES-induced weight loss in both RES-ELDERLY and RES-ADULT when compared with their corresponding controls. Cessation of RES treatment was followed by weight gain only in the RES-ADULT group. A significant decrease in TH-immunoreactive cells was observed in the substantia nigra pars compacta (SNpc) and dorsal striatum (STR) in the rats in both the RES-ADULT and RES-ELDERLY groups and in the ventral tegmental area in rats in the RES-ADULT group. Furthermore, TH immunoreactivity decrease was not reversible in SNpc and STR in the RES-ELDERLY. These results show that RES has an age-dependent effect in rats, suggesting a greater sensitivity of the dopaminergic pathway to RES with advancing age. These suggest that the RES rat model of parkinsonism can be useful in improving our knowledge on the effect of aging on neurodegeneration.
Collapse
Affiliation(s)
- João E C Melo
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Thassya F O Santos
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Rodolfo S Santos
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Heitor S Franco
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Milena C N Monteiro
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - José M M Bispo
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Mylaine S Mendonça
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | | | - Regina H Silva
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Auderlan M Gois
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Murilo Marchioro
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Lívia C R F Lins
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - José R Santos
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil; Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil.
| |
Collapse
|
7
|
Rocha GS, Freire MAM, Paiva KM, Oliveira RF, Norrara B, Morais PLAG, Oliveira LC, Engelberth RCGJ, Cavalcante JS, Cavalcanti JRLP. Effect of senescence on the tyrosine hydroxylase and S100B immunoreactivity in the nigrostriatal pathway of the rat. J Chem Neuroanat 2022; 124:102136. [PMID: 35809809 DOI: 10.1016/j.jchemneu.2022.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Senescence is a natural and progressive physiological event that leads to a series of morphophysiological alterations in the organism. The brain is the most vulnerable organ to both structural and functional changes during this process. Dopamine is a key neurotransmitter for the proper functioning of the brain, directly involved in circuitries related with emotions, learning, motivation and reward. One of the main dopamine- producing nuclei is the substantia nigra pars compacta (SNpc), which establish connections with the striatum forming the so-called nigrostriatal pathway. S100B is a calcium binding protein mainly expressed by astrocytes, involved in both intracellular and extracellular processes, and whose expression is increased following injury in the nervous tissue, being a useful marker in altered status of central nervous system. The present study aimed to analyze the impact of senescence on the cells immunoreactive for tyrosine hydroxylase (TH) and S100B along the nigrostriatal pathway of the rat. Our results show an decreased expression of S100B+ cells in SNpc. In addition, there was a significant decrease in TH immunoreactivity in both projection fibers and TH+ cell bodies. In the striatum, a decrease in TH immunoreactivity was also observed, as well as an enlargement of the white matter bundles. Our findings point out that senescence is related to the anatomical and neurochemical changes observed throughout the nigrostriatal pathway.
Collapse
Affiliation(s)
- Gabriel S Rocha
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Marco Aurelio M Freire
- Graduate Program in Health and Society, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Karina M Paiva
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Rodrigo F Oliveira
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Bianca Norrara
- Laboratory of Experimental Neurology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Paulo Leonardo A G Morais
- Laboratory of Experimental Neurology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Lucidio C Oliveira
- Laboratory of Experimental Neurology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | | | | | - José Rodolfo L P Cavalcanti
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil; Graduate Program in Health and Society, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil; Laboratory of Experimental Neurology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil.
| |
Collapse
|
8
|
Bispo JMM, Melo JEC, Gois AM, Medeiros KAAL, Silva RS, Leal PC, Franco HS, Souza MF, Lins LCRF, Ribeiro AM, Silva RH, Santos JR. Testosterone propionate improves motor alterations and dopaminergic damage in the reserpine-induced progressive model of Parkinson's disease. Brain Res Bull 2022; 187:162-168. [PMID: 35781030 DOI: 10.1016/j.brainresbull.2022.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder with a higher susceptibility to occur in men. Studies suggest that this susceptibility is related to the hormonal differences observed between men and women, being a risk factor for PD. In addition, testosterone supplementation has shown controversial results in animal models of PD and parkinsonian patients. This study evaluated the effect of chronic administration of testosterone propionate (TP) on motor behavior and neurochemical parameters in the reserpine-induced rat model of parkinsonism. Male Wistar rats received 15 injections of reserpine (RES - 0.1 mg/kg) every other day and were concomitantly treated with different doses (0.1, 1.0, or 5.0 mg/kg) of daily TP for 30 days. The rats were euthanized 48 h after the 15th injection of RES or vehicle. Brains were removed and subjected to Tyrosine hydroxylase (TH) immunohistochemistry. TP at 1.0 mg/kg reduced the damages caused by reserpine in the vacuous chewing and tong protrusion behaviors and prevented dopaminergic damage in the SNpc, VTA, and Striatum. TP at 5.0 mg/kg reduced the damages caused by reserpine in the catalepsy and tong protrusion behaviors, prevented the weight loss, and prevented dopaminergic damage in the VTA. Our results suggest that chronic administration of TP has a protective effect in a rat model of parkinsonism, improving motor alterations and dopamine depletion induced by RES.
Collapse
Affiliation(s)
- José M M Bispo
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - João E C Melo
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Auderlan M Gois
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Katty A A L Medeiros
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Rodolfo Santos Silva
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Pollyana C Leal
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil; Graduate Program in Dentistry / Federal University of Sergipe, Aracaju, SE, Brazil.
| | - Heitor S Franco
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Marina F Souza
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Lívia C R F Lins
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| | | | - Regina H Silva
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - José R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| |
Collapse
|
9
|
Razenkova VA, Korzhevskii DE. Catecholaminergic Rat’s Forebrain Structures in Early Postnatal Development and Aging. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422030067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Polzin BJ, Heimovics SA, Riters LV. Immunolabeling Provides Evidence for Subregions in the Songbird Nucleus Accumbens and Suggests a Context-Dependent Role in Song in Male European Starlings (Sturnus vulgaris). BRAIN, BEHAVIOR AND EVOLUTION 2022; 96:147-162. [PMID: 34879382 DOI: 10.1159/000521310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Birdsong is well known for its role in mate attraction during the breeding season. However, many birds, including European starlings (Sturnus vulgaris), also sing outside the breeding season as part of large flocks. Song in a breeding context can be extrinsically rewarded by mate attraction; however, song in nonbreeding flocks, referred to here as gregarious song, results in no obvious extrinsic reward and is proposed to be intrinsically rewarded. The nucleus accumbens (NAC) is a brain region well known to mediate reward and motivation, which suggests it is an ideal candidate to regulate reward associated with gregarious song. The goal of this study was to provide new histochemical information on the songbird NAC and its subregions (rostral pole, core, and shell) and to begin to determine subregion-specific contributions to gregarious song in male starlings. We examined immunolabeling for tyrosine hydroxylase (TH), neurotensin, and enkephalin (ENK) in the NAC. We then examined the extent to which gregarious and sexually motivated song differentially correlated with immunolabeling for the immediate early genes FOS and ZENK in each subdivision of the NAC. We found that TH and ENK labeling within subregions of the starling NAC was generally similar to patterns seen in the core and shell of NACs in mammals and birds. Additionally, we found that gregarious song, but not sexually motivated song, positively correlated with FOS in all NAC subregions. Our observations provide further evidence for distinct subregions within the songbird NAC and suggest the NAC may play an important role in regulating gregarious song in songbirds.
Collapse
Affiliation(s)
- Brandon J Polzin
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Sarah A Heimovics
- Department of Biology, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Wang Y, Jin YK, Guo TC, Li ZR, Feng BY, Han JH, Vreugdenhil M, Lu CB. Activation of Dopamine 4 Receptor Subtype Enhances Gamma Oscillations in Hippocampal Slices of Aged Mice. Front Aging Neurosci 2022; 14:838803. [PMID: 35370600 PMCID: PMC8966726 DOI: 10.3389/fnagi.2022.838803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/17/2022] [Indexed: 11/26/2022] Open
Abstract
Aim Neural network oscillation at gamma frequency band (γ oscillation, 30–80 Hz) is synchronized synaptic potentials important for higher brain processes and altered in normal aging. Recent studies indicate that activation of dopamine 4 receptor (DR4) enhanced hippocampal γ oscillation of young mice and fully recovered the impaired hippocampal synaptic plasticity of aged mice, we determined whether this receptor is involved in aging-related modulation of hippocampal γ oscillation. Methods We recorded γ oscillations in the hippocampal CA3 region from young and aged C57bl6 mice and investigated the effects of dopamine and the selective dopamine receptor (DR) agonists on γ oscillation. Results We first found that γ oscillation power (γ power) was reduced in aged mice compared to young mice, which was restored by exogenous application of dopamine (DA). Second, the selective agonists for different D1- and D2-type dopamine receptors increased γ power in young mice but had little or small effect in aged mice. Third, the D4 receptor (D4R) agonist PD168077 caused a large increase of γ power in aged mice but a small increase in young mice, and its effect is blocked by the highly specific D4R antagonist L-745,870 or largely reduced by a NMDAR antagonist. Fourth, D3R agonist had no effect on γ power of either young or aged mice. Conclusion This study reveals DR subtype-mediated hippocampal γ oscillations is aging-related and DR4 activation restores the impaired γ oscillations in aged brain, and suggests that D4R is the potential target for the improvement of cognitive deficits related to the aging and aging-related diseases.
Collapse
Affiliation(s)
- Yuan Wang
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
| | - Yi-Kai Jin
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
| | - Tie-Cheng Guo
- Department of Rehabilitation Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen-Rong Li
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Bing-Yan Feng
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
| | - Jin-Hong Han
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
| | - Martin Vreugdenhil
- Department of Health Sciences, Birmingham City University, Birmingham, United Kingdom
- *Correspondence: Martin Vreugdenhil,
| | - Cheng-Biao Lu
- Henan International Key Laboratory for Non-invasive Neuromodulation, Department of Physiology and Pathology, Xinxiang Medical University, Xinxiang, China
- Cheng-Biao Lu,
| |
Collapse
|
12
|
Carving the senescent phenotype by the chemical reactivity of catecholamines: An integrative review. Ageing Res Rev 2022; 75:101570. [PMID: 35051644 DOI: 10.1016/j.arr.2022.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/21/2022]
Abstract
Macromolecules damaged by covalent modifications produced by chemically reactive metabolites accumulate in the slowly renewable components of living bodies and compromise their functions. Among such metabolites, catecholamines (CA) are unique, compared with the ubiquitous oxygen, ROS, glucose and methylglyoxal, in that their high chemical reactivity is confined to a limited set of cell types, including the dopaminergic and noradrenergic neurons and their direct targets, which suffer from CA propensities for autoxidation yielding toxic quinones, and for Pictet-Spengler reactions with carbonyl-containing compounds, which yield mitochondrial toxins. The functions progressively compromised because of that include motor performance, cognition, reward-driven behaviors, emotional tuning, and the neuroendocrine control of reproduction. The phenotypic manifestations of the resulting disorders culminate in such conditions as Parkinson's and Alzheimer's diseases, hypertension, sarcopenia, and menopause. The reasons to suspect that CA play some special role in aging accumulated since early 1970-ies. Published reviews address the role of CA hazardousness in the development of specific aging-associated diseases. The present integrative review explores how the bizarre discrepancy between CA hazardousness and biological importance could have emerged in evolution, how much does the chemical reactivity of CA contribute to the senescent phenotype in mammals, and what can be done with it.
Collapse
|
13
|
Souza MF, Medeiros KAAL, Lins LCRF, Bispo JMM, Gois AM, Santos ER, Almeida-Souza TH, Melo JEC, Franco HS, Silva RS, Pereira-Filho EA, Freire MAM, Santos JR. Motor, memory, and anxiety-like behavioral impairments associated with brain-derived neurotrophic factor and dopaminergic imbalance after inhalational exposure to deltamethrin. Brain Res Bull 2022; 181:55-64. [PMID: 35041849 DOI: 10.1016/j.brainresbull.2022.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/16/2022]
Abstract
Believed to cause damage to the nervous system and possibly being associated with neurodegenerative diseases, deltamethrin (DM) is a type II pyrethroid used in pest control, public health, home environment, and vector control. The objective of this study was to evaluate the motor, cognitive and emotional changes associated with dopaminergic and BDNF imbalance after DM exposure in rats. Sixty Wistar rats (9-10 months-old) were used, under Ethics Committee on Animal Research license (ID 19/2017). The animals were randomly divided into four groups: control (CTL, 0.9% saline), DM2 (2mg DM in 1.6mL 0.9% saline), DM4 (4mg of DM in 1.6mL of 0.9% saline), and DM8 (8mg of DM in 1.6mL of 0.9% saline). DM groups were submitted to 9 or 15 inhalations, one every 48hours. Half of the animals from each group were randomly selected and perfused 24hours after the 9th or 15th inhalation. Throughout the experiment, the animal's behavior were evaluated using catalepsy test, open field, hole-board test, Modified Elevated Plus Maze, and social interaction. At the end of the experiments, the rats were perfused transcardially and their brains were processed for Tyrosine Hydroxylase (TH) and Brain derived neurotrophic factor (BDNF) immunohistochemistries. The animals submitted to 9 inhalations of DM showed a reduction in immunoreactivity for TH in the Substantia nigra pars compacta (SNpc), ventral tegmental area (VTA), and dorsal striatum (DS) areas, and an increase in BDNF in the DS and CA1, CA3 and dentate gyrus (DG) hippocampal areas. Conversely, the animals submitted to 15 inhalations of DM showed immunoreactivity reduced for TH in the SNpc and VTA, and an increase in BDNF in the hippocampal areas (CA3 and DG). Our results indicate that the DM inhalation at different periods induce motor and cognitive impairments in rats. Such alterations were accompanied by dopaminergic system damage and a possible dysfunction on synaptic plasticity.
Collapse
Affiliation(s)
- Marina F Souza
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Katty A A L Medeiros
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Lívia C R F Lins
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - José M M Bispo
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Auderlan M Gois
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Edson R Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Thiago H Almeida-Souza
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - João E C Melo
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Heitor S Franco
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Rodolfo S Silva
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Eduardo A Pereira-Filho
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Marco Aurelio M Freire
- Graduate Program in Health and Society, University of the State of Rio Grande do Norte, Mossoró/RN, Brazil
| | - José R Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
14
|
Krashia P, Spoleti E, D'Amelio M. The VTA dopaminergic system as diagnostic and therapeutical target for Alzheimer's disease. Front Psychiatry 2022; 13:1039725. [PMID: 36325523 PMCID: PMC9618946 DOI: 10.3389/fpsyt.2022.1039725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Neuropsychiatric symptoms (NPS) occur in nearly all patients with Alzheimer's Disease (AD). Most frequently they appear since the mild cognitive impairment (MCI) stage preceding clinical AD, and have a prognostic importance. Unfortunately, these symptoms also worsen the daily functioning of patients, increase caregiver stress and accelerate the disease progression from MCI to AD. Apathy and depression are the most common of these NPS, and much attention has been given in recent years to understand the biological mechanisms related to their appearance in AD. Although for many decades these symptoms have been known to be related to abnormalities of the dopaminergic ventral tegmental area (VTA), a direct association between deficits in the VTA and NPS in AD has never been investigated. Fortunately, this scenario is changing since recent studies using preclinical models of AD, and clinical studies in MCI and AD patients demonstrated a number of functional, structural and metabolic alterations affecting the VTA dopaminergic neurons and their mesocorticolimbic targets. These findings appear early, since the MCI stage, and seem to correlate with the appearance of NPS. Here, we provide an overview of the recent evidence directly linking the dopaminergic VTA with NPS in AD and propose a setting in which the precocious identification of dopaminergic deficits can be a helpful biomarker for early diagnosis. In this scenario, treatments of patients with dopaminergic drugs might slow down the disease progression and delay the impairment of daily living activities.
Collapse
Affiliation(s)
- Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Elena Spoleti
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
15
|
Spoleti E, Krashia P, La Barbera L, Nobili A, Lupascu CA, Giacalone E, Keller F, Migliore M, Renzi M, D'Amelio M. Early derailment of firing properties in CA1 pyramidal cells of the ventral hippocampus in an Alzheimer's disease mouse model. Exp Neurol 2021; 350:113969. [PMID: 34973962 DOI: 10.1016/j.expneurol.2021.113969] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
Gradual decline in cognitive and non-cognitive functions are considered clinical hallmarks of Alzheimer's Disease (AD). Post-mortem autoptic analysis shows the presence of amyloid β deposits, neuroinflammation and severe brain atrophy. However, brain circuit alterations and cellular derailments, assessed in very early stages of AD, still remain elusive. The understanding of these early alterations is crucial to tackle defective mechanisms. In a previous study we proved that the Tg2576 mouse model of AD displays functional deficits in the dorsal hippocampus and relevant behavioural AD-related alterations. We had shown that these deficits in Tg2576 mice correlate with the precocious degeneration of dopamine (DA) neurons in the Ventral Tegmental Area (VTA) and can be restored by L-DOPA treatment. Due to the distinct functionality and connectivity of dorsal versus ventral hippocampus, here we investigated neuronal excitability and synaptic functionality in the ventral CA1 hippocampal sub-region of Tg2576 mice. We found an age-dependent alteration of cell excitability and firing in pyramidal neurons starting at 3 months of age, that correlates with reduced levels in the ventral CA1 of tyrosine hydroxylase - the rate-limiting enzyme of DA synthesis. Additionally, at odds with the dorsal hippocampus, we found no alterations in basal glutamatergic transmission and long-term plasticity of ventral neurons in 8-month old Tg2576 mice compared to age-matched controls. Last, we used computational analysis to model the early derailments of firing properties observed and hypothesize that the neuronal alterations found could depend on dysfunctional sodium and potassium conductances, leading to anticipated depolarization-block of action potential firing. The present study depicts that impairment of cell excitability and homeostatic control of firing in ventral CA1 pyramidal neurons is a prodromal feature in Tg2576 AD mice.
Collapse
Affiliation(s)
- Elena Spoleti
- Faculty of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, Rome 00128, Italy
| | - Paraskevi Krashia
- Faculty of Medicine and Surgery, University Campus Bio-Medico, Rome 00128, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome 00143, Italy
| | - Livia La Barbera
- Faculty of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, Rome 00128, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome 00143, Italy
| | - Annalisa Nobili
- Faculty of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, Rome 00128, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome 00143, Italy
| | | | | | - Flavio Keller
- Faculty of Medicine and Surgery, University Campus Bio-Medico, Rome 00128, Italy
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo 90146, Italy
| | - Massimiliano Renzi
- Department of Physiology and Pharmacology, Sapienza University, Rome 00185, Italy.
| | - Marcello D'Amelio
- Faculty of Medicine and Surgery, University Campus Bio-Medico, Rome 00128, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome 00143, Italy.
| |
Collapse
|
16
|
Costa IM, Lima FOV, Fernandes LCB, Norrara B, Neta FI, Alves RD, Cavalcanti JRLP, Lucena EES, Cavalcante JS, Rego ACM, Filho IA, Queiroz DB, Freire MAM, Guzen FP. Astragaloside IV Supplementation Promotes A Neuroprotective Effect in Experimental Models of Neurological Disorders: A Systematic Review. Curr Neuropharmacol 2020; 17:648-665. [PMID: 30207235 PMCID: PMC6712289 DOI: 10.2174/1570159x16666180911123341] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 01/22/2023] Open
Abstract
Background: Neurological disorders constitute a growing worldwide concern due to the progressive aging of the population and the risky behavior they represent. Herbal medicines have scientific relevance in the treatment of these pathol-ogies. One of these substances, Astragaloside IV (AS-IV), is the main active compound present in the root of Astragalus membranaceus (Fisch.) Bge, a Chinese medicinal herb with neuroprotective properties. Objective: In the present study we performed a systematic review that sought to comprehend the neuroprotective effect pre-sented by AS-IV in experimental models of neurological disorders. Method: This study is a systematic review, where an electronic search in United States National Library of Medicine (Pub-Med), Science Direct, Cochrane Library, Scientific Electronic Library Online (SciELO), Scopus, Web of Science, Medline via Proquest and Periodicos Capes databases covering the years between 2007 and 2017, using “Astragaloside IV” and “Neurodegenerative diseases”; “Astragaloside IV” and “ Neurological disorders” as reference terms was made. Results: A total of 16 articles were identified, in which the efficacy of AS-IV was described in experimental models of Par-kinson’s disease, Alzheimer’s disease, cerebral ischemia and autoimmune encephalomyelitis, by improving motor deficits and/or neurochemical activity, especially antioxidant systems, reducing inflammation and oxidative stress. Conclusion: The findings of the present study indicate that the administration of AS-IV can improve behavioral and neuro-chemical deficits largely due to its antioxidant, antiapoptotic and anti-inflammatory properties, emerging as an alternative therapeutic approach for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Ianara M Costa
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - Francisca O V Lima
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - Luciana C B Fernandes
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - Bianca Norrara
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - Francisca I Neta
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - Rodrigo D Alves
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - José R L P Cavalcanti
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - Eudes E S Lucena
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Center of Biological Sciences, Federal University of Rio Grande do Norte (UFRN), Natal/RN, Brazil
| | - Amalia C M Rego
- Post Graduation Program in Biotechnology, Health School, Potiguar University (UnP), Natal/RN, Brazil
| | - Irami A Filho
- Post Graduation Program in Biotechnology, Health School, Potiguar University (UnP), Natal/RN, Brazil
| | - Dinalva B Queiroz
- Post Graduation Program in Biotechnology, Health School, Potiguar University (UnP), Natal/RN, Brazil
| | - Marco A M Freire
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil
| | - Fausto P Guzen
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, University of the State of Rio Grande do Norte (UERN), Mossoro/RN, Brazil.,Post Graduation Program in Biotechnology, Health School, Potiguar University (UnP), Natal/RN, Brazil
| |
Collapse
|
17
|
Souza MF, Medeiros KAAL, Lins LCRF, Bispo JMM, Gois AM, Freire MAM, Marchioro M, Santos JR. Intracerebroventricular injection of deltamethrin increases locomotion activity and causes spatial working memory and dopaminergic pathway impairment in rats. Brain Res Bull 2019; 154:1-8. [PMID: 31606407 DOI: 10.1016/j.brainresbull.2019.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/18/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
Deltamethrin (DM) is widely used in agriculture, veterinary medicine and control of domestic pests. Epidemiological studies suggest that DM exposure is a risk factor for neurodegenerative disorders such as Parkinson's (PD) and Alzheimer diseases; however the mechanisms are elusive. In the present study we evaluated the effects of intracerebroventricular (i.c.v.) administration of DM on locomotion activity, spatial working memory and dopaminergic pathway in the rat. Middle-aged male Wistar rats received three i.c.v. injections of DM 0.5 μg, DM 5 μg or vehicle, every other day. Across the treatment, the animals were submitted to behavioral evaluation in the catalepsy test, open field test, and spontaneous alternation task. Following completion of behavioral tests, rats were perfused and their brains were processed to tyrosine hydroxylase (TH) immunohistochemistry. We observed that i.c.v. administration of DM 5 μg increased locomotion activity (open field) and caused spatial working memory impairment (spontaneous alternation task). These alterations were accompanied by reduction TH immunoreactivity in the substantia nigra pars compacta (SNpc), ventral tegmental area (VTA) and dorsal striatum. Conversely, no motor change was observed in the catalepsy test. These results indicate that i.c.v. administration of DM can cause hyperactivity and cognitive alteration which may be related to disruption of the dopaminergic pathway.
Collapse
Affiliation(s)
- Marina F Souza
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Katty Anne A L Medeiros
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Lívia C R F Lins
- Department of Health Education, Federal University of Sergipe, Lagarto, SE, Brazil
| | - José M M Bispo
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Auderlan M Gois
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Marco Aurelio M Freire
- Post Graduation Program in Health and Society, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil; New Hope Faculty of Mossoró, RN, Brazil
| | - Murilo Marchioro
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - José R Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| |
Collapse
|
18
|
Serotonergic dysfunction in a model of parkinsonism induced by reserpine. J Chem Neuroanat 2019; 96:73-78. [DOI: 10.1016/j.jchemneu.2018.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/27/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
|