1
|
Francese R, Civra A, Donalisio M, Volpi N, Capitani F, Sottemano S, Tonetto P, Coscia A, Maiocco G, Moro GE, Bertino E, Lembo D. Anti-Zika virus and anti-Usutu virus activity of human milk and its components. PLoS Negl Trop Dis 2020; 14:e0008713. [PMID: 33027261 PMCID: PMC7571670 DOI: 10.1371/journal.pntd.0008713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/19/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
The benefits of human milk are mediated by multiple nutritional, trophic, and immunological components, able to promote infant's growth, maturation of its immature gut, and to confer protection against infections. Despite these widely recognized properties, breast-feeding represents an important mother-to-child transmission route of some viral infections. Different studies show that some flaviviruses can occasionally be detected in breast milk, but their transmission to the newborn is still controversial. The aim of this study is to investigate the antiviral activity of human milk (HM) in its different stages of maturation against two emerging flaviviruses, namely Zika virus (ZIKV) and Usutu virus (USUV) and to verify whether HM-derived extracellular vesicles (EVs) and glycosaminoglycans (GAGs) contribute to the milk protective effect. Colostrum, transitional and mature milk samples were collected from 39 healthy donors. The aqueous fractions were tested in vitro with specific antiviral assays and EVs and GAGs were derived and characterized. HM showed antiviral activity against ZIKV and USUV at all the stages of lactation with no significant differences in the activity of colostrum, transitional or mature milk. Mechanism of action studies demonstrated that colostrum does not inactivate viral particles, but it hampers the binding of both flaviviruses to cells. We also demonstrated that HM-EVs and HM-GAGs contribute, at least in part, to the anti-ZIKV and anti-USUV action of HM. This study discloses the intrinsic antiviral activity of HM against ZIKV and USUV and demonstrates the contribution of two bioactive components in mediating its protective effect. Since the potential infectivity of HM during ZIKV and USUV infection is still unclear, these data support the World Health Organization recommendations about breast-feeding during ZIKV infection and could contribute to producing new guidelines for a possible USUV epidemic.
Collapse
Affiliation(s)
- Rachele Francese
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Andrea Civra
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Capitani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Sottemano
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Paola Tonetto
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Alessandra Coscia
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Giulia Maiocco
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Guido E. Moro
- Italian Association of Human Milk Banks (AIBLUD), Milan, Italy
| | - Enrico Bertino
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| |
Collapse
|
2
|
Devlin A, Mycroft-West C, Procter P, Cooper L, Guimond S, Lima M, Yates E, Skidmore M. Tools for the Quality Control of Pharmaceutical Heparin. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E636. [PMID: 31557911 PMCID: PMC6843833 DOI: 10.3390/medicina55100636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 11/25/2022]
Abstract
Heparin is a vital pharmaceutical anticoagulant drug and remains one of the few naturally sourced pharmaceutical agents used clinically. Heparin possesses a structural order with up to four levels of complexity. These levels are subject to change based on the animal or even tissue sources that they are extracted from, while higher levels are believed to be entirely dynamic and a product of their surrounding environments, including bound proteins and associated cations. In 2008, heparin sources were subject to a major contamination with a deadly compound-an over-sulphated chondroitin sulphate polysaccharide-that resulted in excess of 100 deaths within North America alone. In consideration of this, an arsenal of methods to screen for heparin contamination have been applied, based primarily on the detection of over-sulphated chondroitin sulphate. The targeted nature of these screening methods, for this specific contaminant, may leave contamination by other entities poorly protected against, but novel approaches, including library-based chemometric analysis in concert with a variety of spectroscopic methods, could be of great importance in combating future, potential threats.
Collapse
Affiliation(s)
- Anthony Devlin
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Courtney Mycroft-West
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Patricia Procter
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Lynsay Cooper
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Scott Guimond
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK.
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Marcelo Lima
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Edwin Yates
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Mark Skidmore
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK.
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
3
|
Chondroitin Sulfate Safety and Quality. Molecules 2019; 24:molecules24081447. [PMID: 31013685 PMCID: PMC6515237 DOI: 10.3390/molecules24081447] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
The industrial production of chondroitin sulfate (CS) uses animal tissue sources as raw material derived from different terrestrial or marine species of animals. CS possesses a heterogeneous structure and physical-chemical profile in different species and tissues, responsible for the various and more specialized functions of these macromolecules. Moreover, mixes of different animal tissues and sources are possible, producing a CS final product having varied characteristics and not well identified profile, influencing oral absorption and activity. Finally, different extraction and purification processes may introduce further modifications of the CS structural characteristics and properties and may lead to extracts having a variable grade of purity, limited biological effects, presence of contaminants causing problems of safety and reproducibility along with not surely identified origin. These aspects pose a serious problem for the final consumers of the pharmaceutical or nutraceutical products mainly related to the traceability of CS and to the declaration of the real origin of the active ingredient and its content. In this review, specific, sensitive and validated analytical quality controls such as electrophoresis, eHPLC (enzymatic HPLC) and HPSEC (high-performance size-exclusion chromatography) able to assure CS quality and origin are illustrated and discussed.
Collapse
|
4
|
Palanisamy S, Vinosha M, Manikandakrishnan M, Anjali R, Rajasekar P, Marudhupandi T, Manikandan R, Vaseeharan B, Prabhu NM. Investigation of antioxidant and anticancer potential of fucoidan from Sargassum polycystum. Int J Biol Macromol 2018; 116:151-161. [PMID: 29729339 DOI: 10.1016/j.ijbiomac.2018.04.163] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/02/2018] [Accepted: 04/29/2018] [Indexed: 01/10/2023]
Abstract
The present study was aimed to evaluate the antioxidant and anticancer potential of fucoidan isolated from Sargassum polycystum. The isolated fucoidan was successfully purified by DEAE cellulose-ion exchange chromatography and dialysis. Totally four active fractions (F1-F4) were collected and explored its chemical constitution by calorimetric assays. Among them, fraction 2 (F2) showed the higher yield percentage, fucose and sulphate content. Further, monosaccharide composition, structural and functional properties of the F2 was analyzed by HPLC, FTIR and NMR. F2 shows highest DPPH radical scavenging activity (55.94 ± 0.69%), reducing power (0.33 absorbance rate), hydrogen peroxide scavenging activity (71.76 ± 2.14%) and nitric oxide radical scavenging activity (51.81 ± 1.04%) at 1000 μg/ml. The cell viability of MCF-7 and HCT-15 cell lines was proportionate to the concentration of F2 with an estimated IC50 was 20 and 50 μg/ml respectively. The fluorescence and confocal laser scanning microscopic analysis demonstrated the apoptotic morphological changes and cell mediated death in F2 treated cancer cells. Higher amount of LDH release was found in the F2 treated cancer cells than the control group. Thus, the present finding proved that the isolated F2 encompasses significant antioxidant and anticancer property.
Collapse
Affiliation(s)
- Subramanian Palanisamy
- Disease control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Manoharan Vinosha
- Disease control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Muthushanmugam Manikandakrishnan
- Disease control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Ravichandran Anjali
- Disease control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Periyannan Rajasekar
- Disease control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Thangapandi Marudhupandi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Ramar Manikandan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Narayanasamy Marimuthu Prabhu
- Disease control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 004, Tamil Nadu, India.
| |
Collapse
|
5
|
An Inhalable Powder Formulation Based on Micro- and Nanoparticles Containing 5-Fluorouracil for the Treatment of Metastatic Melanoma. NANOMATERIALS 2018; 8:nano8020075. [PMID: 29385692 PMCID: PMC5853707 DOI: 10.3390/nano8020075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 01/21/2023]
Abstract
Melanoma is the most aggressive and lethal type of skin cancer, with a poor prognosis because of the potential for metastatic spread. The aim was to develop innovative powder formulations for the treatment of metastatic melanoma based on micro- and nanocarriers containing 5-fluorouracil (5FU) for pulmonary administration, aiming at local and systemic action. Therefore, two innovative inhalable powder formulations were produced by spray-drying using chondroitin sulfate as a structuring polymer: (a) 5FU nanoparticles obtained by piezoelectric atomization (5FU-NS) and (b) 5FU microparticles of the mucoadhesive agent Methocel™ F4M for sustained release produced by conventional spray drying (5FU-MS). The physicochemical and aerodynamic were evaluated in vitro for both systems, proving to be attractive for pulmonary delivery. The theoretical aerodynamic diameters obtained were 0.322 ± 0.07 µm (5FU-NS) and 1.138 ± 0.54 µm (5FU-MS). The fraction of respirable particles (FR%) were 76.84 ± 0.07% (5FU-NS) and 55.01 ± 2.91% (5FU-MS). The in vitro mucoadhesive properties exhibited significant adhesion efficiency in the presence of Methocel™ F4M. 5FU-MS and 5FU-NS were tested for their cytotoxic action on melanoma cancer cells (A2058 and A375) and both showed a cytotoxic effect similar to 5FU pure at concentrations of 4.3 and 1.7-fold lower, respectively.
Collapse
|
6
|
Köwitsch A, Zhou G, Groth T. Medical application of glycosaminoglycans: a review. J Tissue Eng Regen Med 2017; 12:e23-e41. [DOI: 10.1002/term.2398] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/08/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Alexander Köwitsch
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle Germany
| | - Guoying Zhou
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle Germany
| |
Collapse
|
7
|
Lepedda AJ, De Muro P, Capobianco G, Formato M. Significance of urinary glycosaminoglycans/proteoglycans in the evaluation of type 1 and type 2 diabetes complications. J Diabetes Complications 2017; 31:149-155. [PMID: 27842978 DOI: 10.1016/j.jdiacomp.2016.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/12/2016] [Accepted: 10/09/2016] [Indexed: 11/16/2022]
Abstract
Because of the high incidence of kidney disease in diabetic patients, the early diagnosis of renal impairment is a key point for intervention and management. Although urinary albumin excretion currently represents the accepted standard to assess both diabetic nephropathy and cardiovascular risk, it has some limitations as structural changes in the glomerular basement membrane may occur before the onset of microalbuminuria. It is therefore important to identify urinary markers that may provide greater sensitivity, earlier detection, and greater predictive power for diabetes complications. In this respect, urinary glycosaminoglycans/proteoglycans (GAGs/PGs) have been long associated with several kidney diseases as well as diabetic nephropathies as their levels increase more readily than albuminuria. In particular, heparan sulfate, a key component of the glomerular basement membrane responsible for its charge-dependent permeability, is excreted into urine at higher concentrations during the early kidney remodeling events caused by the altered glucose metabolism in diabetes. Over the past few years, also urinary trypsin inhibitor has been linked to a chronic inflammatory condition in both type 1 and 2 diabetes. The underlying mechanisms of such increase are not completely known since either a systemic inflammatory condition or a more localized early renal impairment could play a role. Nevertheless, the association with other inflammatory markers and a detailed urinary trypsin inhibitor structural characterization in diabetes remain to be elucidated. This review will discuss a great deal of information on the association between urinary GAGs/PGs and type 1 and 2 diabetes, with particular emphasis on renal involvement, and their potential as markers useful in screening, diagnosis and follow up to be associated with the current standard tests.
Collapse
Affiliation(s)
- Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, 07100, Sassari, Italy.
| | - Pierina De Muro
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, 07100, Sassari, Italy.
| | - Giampiero Capobianco
- Gynecologic and Obstetric Clinic, Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Viale San Pietro 12, 07100, Sassari, Italy.
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Via Muroni 25, 07100, Sassari, Italy.
| |
Collapse
|
8
|
Efficient recovery of glycosaminoglycan oligosaccharides from polyacrylamide gel electrophoresis combined with mass spectrometry analysis. Anal Bioanal Chem 2016; 409:1257-1269. [DOI: 10.1007/s00216-016-0052-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/10/2016] [Accepted: 10/21/2016] [Indexed: 02/05/2023]
|
9
|
Park KY, Kim DY, Shin WS. Roles of chondroitin sulfate in oil-in-water emulsions formulated using bovine serum albumin. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0204-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Olczyk P, Mencner Ł, Komosinska-Vassev K. Diverse Roles of Heparan Sulfate and Heparin in Wound Repair. BIOMED RESEARCH INTERNATIONAL 2015; 2015:549417. [PMID: 26236728 PMCID: PMC4508384 DOI: 10.1155/2015/549417] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/19/2015] [Indexed: 12/17/2022]
Abstract
Heparan sulfate (HS) and heparin (Hp) are linear polysaccharide chains composed of repeating (1→4) linked pyrosulfuric acid and 2-amino-2-deoxy glucopyranose (glucosamine) residue. Mentioned glycosaminoglycans chains are covalently O-linked to serine residues within the core proteins creating heparan sulfate/heparin proteoglycans (HSPG). The latter ones participate in many physiological and pathological phenomena impacting both the plethora of ligands such as cytokines, growth factors, and adhesion molecules and the variety of the ECM constituents. Moreover, HS/Hp determine the effective wound healing process. Initial growth of HS and Hp amount is pivotal during the early phase of tissue repair; however heparan sulfate and heparin also participate in further stages of tissue regeneration.
Collapse
Affiliation(s)
- Pawel Olczyk
- Department of Community Pharmacy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Łukasz Mencner
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
| | - Katarzyna Komosinska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
| |
Collapse
|
11
|
Zhang Z, Till S, Knappe S, Quinn C, Catarello J, Ray GJ, Scheiflinger F, Szabo CM, Dockal M. Screening of complex fucoidans from four brown algae species as procoagulant agents. Carbohydr Polym 2015; 115:677-85. [PMID: 25439948 DOI: 10.1016/j.carbpol.2014.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Fucoidans are complex sulfated polysaccharides extracted from brown algae. Depending on the concentration, they have been shown to stimulate and inhibit blood coagulation in vitro. Promotion of coagulation is mediated by blocking tissue factor pathway inhibitor (TFPI). We screened fucoidan extracts from four brown algae species in vitro with respect to their potential to improve coagulation in bleeding disorders. The fucoidans' pro- and anticoagulant activities were assessed by global hemostatic and standard clotting assays. Results showed that fucoidans improved coagulation parameters. Some fucoidans also activated the contact pathway of coagulation, an undesired property reported for sulfated glycosaminoglycans. Chemical evaluation of fucoidans' complex and variable structure included molecular weight (Mw), polydispersity (polyD), structural heterogeneity, and organic and inorganic impurities. Herewith, we describe a screening strategy that facilitates the identification of crude fucoidan extracts with desired biological and structural properties for improvement of compromised coagulation like in hemophilia.
Collapse
Affiliation(s)
- Zhenqing Zhang
- Baxter Healthcare Corporation, Round Lake, IL, USA; College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | | | | | | | | | - G Joseph Ray
- Baxter Healthcare Corporation, Round Lake, IL, USA
| | | | | | | |
Collapse
|
12
|
Abstract
OBJECTIVES The benefits of human milk for preterm infants are mainly the result of its nutritional characteristics and the presence of biologically active compounds. Among these compounds, glycosaminoglycans (GAGs) play an emerging leading role. When mother's milk is unavailable or in short supply, pasteurised donor milk represents an important nutritional alternative. The aim of this study was to evaluate the effect of Holder pasteurisation on the concentration of different GAGs in preterm human milk. METHODS Milk samples collected from 9 mothers having delivered preterm were divided into 2 parts. One part of each sample was immediately frozen (-80°C), whereas the other part was pasteurised with the Holder method before being frozen at -80°C. Specific analytical procedures were applied to evaluate the amount, composition, and structure of main human milk GAGs. RESULTS No significative differences were measured between not-treated and pasteurised samples for total GAGs content, relative percentages of chondroitin sulfate and heparan sulfate, and main parameters related to galactosaminoglycans structure, even if a slight decrease of total GAGs content of ∼18% was observed in treated samples. CONCLUSIONS Our results indicate that the Holder pasteurisation does not significatively affect the concentration of the main human milk GAGs.
Collapse
|
13
|
Oberkersch R, Maccari F, Bravo AI, Volpi N, Gazzaniga S, Calabrese GC. Atheroprotective remodelling of vascular dermatan sulphate proteoglycans in response to hypercholesterolaemia in a rat model. Int J Exp Pathol 2014; 95:181-90. [PMID: 24602133 DOI: 10.1111/iep.12072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/14/2014] [Indexed: 01/03/2023] Open
Abstract
Proteoglycan accumulation within the arterial intima has been implicated in atherosclerosis progression in humans. Nevertheless, hypercholesterolaemia is unable to induce intimal thickening and atheroma plaque development in rats. The study was performed to analyse proteoglycans modifications in rats fed with a high-cholesterol diet to understand whether vascular wall remodelling protects against lesions. Sections obtained from rat aortas showed normal features, in intimal-to-media ratio and lipid accumulation. However, focal endothelial hyperplasia and neo-intima rearrangement were observed in high-cholesterol animals. Besides, hypercholesterolaemia induced an inflammatory microenviroment. We determined the expression of different proteoglycans from aortic cells by Western blot and observed a diminished production of decorin and biglycan in high-cholesterol animals compared with control (P < 0.01 and P < 0.05, respectively). Versican was increased in high-cholesterol animals (P < 0.05), whereas perlecan production showed no differences. No modification of the total content of glycosaminoglycans (GAGs) was found between the two experimental groups. In contrast, the chondroitin sulphate/dermatan sulphate ratio was increased in the high-cholesterol group as compared to the control (0.56 and 0.34, respectively). Structural alterations in the disaccharide composition of galactosaminoglycans were also detected by HPLC, as the ratio of 6-sulphate to 4-sulphate disaccharides was increased in high-cholesterol animals (P < 0.05). Our results suggest that attenuation of decorin and biglycan expression might be an effective strategy to inhibit the first step in atherogenesis, although specific GAG structural modification associated with the development of vascular disease took place. Results emphasize the potential application of therapies based on vascular matrix remodelling to treat atherosclerosis.
Collapse
Affiliation(s)
- Roxana Oberkersch
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
14
|
Giji S, Arumugam M. Isolation and characterization of hyaluronic acid from marine organisms. ADVANCES IN FOOD AND NUTRITION RESEARCH 2014; 72:61-77. [PMID: 25081077 DOI: 10.1016/b978-0-12-800269-8.00004-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hyaluronic acid (HA) being a viscous slippery substance is a multifunctional glue with immense therapeutic applications such as ophthalmic surgery, orthopedic surgery and rheumatology, drug delivery systems, pulmonary pathology, joint pathologies, and tissue engineering. Although HA has been isolated from terrestrial origin (human umbilical cord, rooster comb, bacterial sources, etc.) so far, the increasing interest on this polysaccharide significantly aroused the alternative search from marine sources since it is at the preliminary level. Enthrallingly, marine environments are considered more biologically diverse than terrestrial environments. Although numerous methods have been described for the extraction and purification of HA, the hitch on the isolation methods which greatly influences the yield as well as the molecular weight of the polymer still exists. Adaptation of suitable method is essential in this venture. Stimulated by the developed technology, to sketch the steps involved in isolation and analytical techniques for characterization of this polymer, a brief report on the concerned approach has been reviewed.
Collapse
Affiliation(s)
- Sadhasivam Giji
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India
| | - Muthuvel Arumugam
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India.
| |
Collapse
|
15
|
Mannello F, Maccari F, Ligi D, Canale M, Galeotti F, Volpi N. Characterization of oversulfated chondroitin sulfate rich in 4,6-O-disulfated disaccharides in breast cyst fluids collected from human breast gross cysts. Cell Biochem Funct 2013; 32:344-50. [DOI: 10.1002/cbf.3022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology; “Carlo Bo” University; Urbino Italy
| | - Francesca Maccari
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Daniela Ligi
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology; “Carlo Bo” University; Urbino Italy
| | - Matteo Canale
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology; “Carlo Bo” University; Urbino Italy
| | - Fabio Galeotti
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Nicola Volpi
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
16
|
Gesslbauer B, Theuer M, Schweiger D, Adage T, Kungl AJ. New targets for glycosaminoglycans and glycosaminoglycans as novel targets. Expert Rev Proteomics 2013; 10:77-95. [PMID: 23414361 DOI: 10.1586/epr.12.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biological functions of a variety of proteins are mediated via their interaction with glycosaminoglycans (GAGs). The structural diversity within the wide GAG landscape provides individual interaction sites for a multitude of proteins involved in several pathophysiological processes. This 'GAG angle' of such proteins as well as their specific GAG ligands give rise to novel therapeutic concepts for drug development. Current glycomic technologies to elucidate the glycan structure-function relationships, methods to investigate the selectivity and specificity of glycan-protein interactions and existing therapeutic approaches to interfere with GAG-protein interactions are discussed.
Collapse
Affiliation(s)
- Bernd Gesslbauer
- ProtAffin Biotechnologie AG, Reininghausstrasse 13a, 8020 Graz, Austria
| | | | | | | | | |
Collapse
|
17
|
Baek S, Na K. Advanced photodynamic agent from chondroitin sulfate/zinc phthalocyanine conjugate. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424612501386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to improve the therapeutic effect of zinc phthalocyanines (ZnPc), a photoactive nanodrug was prepared with acetylated chondroitin sulfate (AcCS), utilizing a simple chemical method. AcCS/ZnPc nanodrugs have a unimodal size distribution below 200 nm and a negative surface charge due to AcCS located on the nanodrug surface. In organic solvent such as DMSO or DMF, it has strong fluorescence intensity and generates abundant singlet oxygen. However, in aqueous solvent, AcCS/ZnPc nanodrugs developed a self-organized form which induced reducing fluorescence intensity and singlet oxygen generation. The cellular uptake of the nanodrug was determined using a cell lysis test and confocal microscopy observation. The results indicated that cellular internalization efficiency of the nanodrug was 1.7–2.1 times higher than that of free ZnPc . Also, the phototoxicity of the nanodrug was detected via MTT assay with or without light. Although free ZnPc did not exhibit cytotoxicity in both light and dark condition, the nanodrug exhibited increasing cytotoxicity after irradiation. We therefore suggest that AcCS/ZnPc nanodrugs may have promising applications as new photodynamic agents for the clinical treatment of various tumors.
Collapse
Affiliation(s)
- SongYi Baek
- Nano Biomedical Polymer Research Laboratory, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Korea
| | - Kun Na
- Nano Biomedical Polymer Research Laboratory, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Korea
| |
Collapse
|
18
|
Smith DF, Cummings RD. Application of microarrays for deciphering the structure and function of the human glycome. Mol Cell Proteomics 2013; 12:902-12. [PMID: 23412570 DOI: 10.1074/mcp.r112.027110] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glycan structures were defined historically using multiple methods to determine composition, sequence, linkage, and anomericity of component monosaccharides. Such approaches have been replaced by more sensitive MS methods to profile or predict glycan structures, but these methods are limited in their ability to completely define glycan structures. Glycan-binding proteins, including lectins and antibodies, have been found to have exquisite binding specificities that can provide information about glycan structures. Here, we show glycan-binding proteins can be used along with MS to help define glycan linkages and other determinants in unknown glycans printed as shotgun glycan microarrays.
Collapse
Affiliation(s)
- David F Smith
- Department of Biochemistry and Glycomics Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
19
|
Volpi N, Maccari F, Suwan J, Linhardt RJ. Electrophoresis for the analysis of heparin purity and quality. Electrophoresis 2012; 33:1531-7. [PMID: 22736353 DOI: 10.1002/elps.201100479] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adulteration of raw heparin with oversulfated chondroitin sulfate (OSCS) in 2007-2008 produced a global crisis resulting in extensive revisions to the pharmacopeia monographs and prompting the FDA to recommend the development of additional methods for the analysis of heparin purity. As a consequence, a wide variety of innovative analytical approaches have been developed for the quality assurance and purity of unfractionated and low-molecular-weight heparins. This review discusses recent developments in electrophoresis techniques available for the sensitive separation, detection, and partial structural characterization of heparin contaminants. In particular, this review summarizes recent publications on heparin quality and related impurity analysis using electrophoretic separations such as capillary electrophoresis (CE) of intact polysaccharides and hexosamines derived from their acidic hydrolysis, and polyacrylamide gel electrophoresis (PAGE) for the separation of heparin samples without and in the presence of its relatively specific depolymerization process with nitrous acid treatment.
Collapse
Affiliation(s)
- Nicola Volpi
- Department of Biology, University of Modena and Reggio Emilia, Italy.
| | | | | | | |
Collapse
|
20
|
Zhang D, Wu H, Xia Z, Wang C, Cai J, Huang Z, Du L, Sun P, Xie J. Partial characterization, antioxidant and antitumor activities of three sulfated polysaccharides purified from Bullacta exarata. J Funct Foods 2012. [DOI: 10.1016/j.jff.2012.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
21
|
Agarose-gel electrophoresis for the quality assurance and purity of heparin formulations. J Pharm Biomed Anal 2012; 67-68:144-7. [PMID: 22534509 DOI: 10.1016/j.jpba.2012.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 11/21/2022]
|
22
|
Bae BC, Kun N. Polymeric Photosensitizer Nano-drugs for Long Term Therapeutic Effect: in vitro and in vivo Phototoxicity against Human Colon Cancer (HCT-116). J PHOTOPOLYM SCI TEC 2012. [DOI: 10.2494/photopolymer.25.713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Takegawa Y, Araki K, Fujitani N, Furukawa JI, Sugiyama H, Sakai H, Shinohara Y. Simultaneous analysis of heparan sulfate, chondroitin/dermatan sulfates, and hyaluronan disaccharides by glycoblotting-assisted sample preparation followed by single-step zwitter-ionic-hydrophilic interaction chromatography. Anal Chem 2011; 83:9443-9. [PMID: 22044073 DOI: 10.1021/ac2021079] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glycosaminoglycans (GAGs) play important roles in cell adhesion and growth, maintenance of extracellular matrix (ECM) integrity, and signal transduction. To fully understand the biological functions of GAGs, there is a growing need for sensitive, rapid, and quantitative analysis of GAGs. The present work describes a novel analytical technique that enables high throughput cellular/tissue glycosaminoglycomics for all three families of uronic acid-containing GAGs, hyaluronan (HA), chondroitin sulfate (CS)/dermatan sulfate (DS), and heparan sulfate (HS). A one-pot purification and labeling procedure for GAG Δ-disaccharides was established by chemo-selective ligation of disaccharides onto high density hydrazide beads (glycoblotting) and subsequent labeling by fluorescence. The 17 most common disaccharides (eight comprising HS, eight CS/DS, and one comprising HA) could be separated with a single chromatography for the first time by employing a zwitter-ionic type of hydrophilic-interaction chromatography column. These novel analytical techniques were able to precisely characterize the glycosaminoglycome in various cell types including embryonal carcinoma cells and ocular epithelial tissues (cornea, conjunctiva, and limbus).
Collapse
Affiliation(s)
- Yasuhiro Takegawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Jung YS, Na K. Protein Delivery System based on Various Polysaccharides. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2011. [DOI: 10.4333/kps.2011.41.4.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
25
|
Li F, Na K. Self-Assembled Chlorin e6 Conjugated Chondroitin Sulfate Nanodrug for Photodynamic Therapy. Biomacromolecules 2011; 12:1724-30. [DOI: 10.1021/bm200115v] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Fangyuan Li
- Department of Biotechnology, The Catholic University of Korea, 43-1 Yeokkok2-dong, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, 43-1 Yeokkok2-dong, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Korea
| |
Collapse
|
26
|
Pielesz A, Biniaś W. Cellulose acetate membrane electrophoresis and FTIR spectroscopy as methods of identifying a fucoidan in Fucusvesiculosus Linnaeus. Carbohydr Res 2010; 345:2676-82. [PMID: 21055732 DOI: 10.1016/j.carres.2010.09.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/14/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
Abstract
A fucoidan from brown algae such as the common bladder wrack (Fucusvesiculosus Linnaeus) is now widely examined in many countries for its interesting biological and therapeutic properties. In this study, the fucoidan was identified during extraction in hydrochloric acid; its presence was confirmed by FTIR spectroscopy. Two slightly different structures were found in real samples of dried bladder wrack supplied by Flos and Witherba, by comparing them with a reference sample of F. vesiculosus L. A simple, repeatable analytical procedure was developed using apparatus for cellulose acetate membrane electrophoresis and this was supplemented by semi-quantitative analysis.
Collapse
Affiliation(s)
- A Pielesz
- University of Bielsko-Biała, Faculty of Materials and Environment Sciences, Bielsko-Biała, Poland.
| | | |
Collapse
|
27
|
Ly M, Laremore TN, Linhardt RJ. Proteoglycomics: recent progress and future challenges. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:389-99. [PMID: 20450439 DOI: 10.1089/omi.2009.0123] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteoglycomics is a systematic study of structure, expression, and function of proteoglycans, a posttranslationally modified subset of a proteome. Although relying on the established technologies of proteomics and glycomics, proteoglycomics research requires unique approaches for elucidating structure-function relationships of both proteoglycan components, glycosaminoglycan chain, and core protein. This review discusses our current understanding of structure and function of proteoglycans, major players in the development, normal physiology, and disease. A brief outline of the proteoglycomic sample preparation and analysis is provided along with examples of several recent proteoglycomic studies. Unique challenges in the characterization of glycosaminoglycan component of proteoglycans are discussed, with emphasis on the many analytical tools used and the types of information they provide.
Collapse
Affiliation(s)
- Mellisa Ly
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | | |
Collapse
|
28
|
Coppa GV, Buzzega D, Zampini L, Maccari F, Galeazzi T, Pederzoli F, Gabrielli O, Volpi N. Effect of 6 years of enzyme replacement therapy on plasma and urine glycosaminoglycans in attenuated MPS I patients. Glycobiology 2010; 20:1259-73. [DOI: 10.1093/glycob/cwq088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Development and evaluation of a fluorescence microplate assay for quantification of heparins and other sulfated carbohydrates. J Pharm Biomed Anal 2010; 52:1-8. [DOI: 10.1016/j.jpba.2009.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/11/2009] [Accepted: 12/14/2009] [Indexed: 11/21/2022]
|
30
|
Laremore TN, Ly M, Solakyildirim K, Zagorevski DV, Linhardt RJ. High-resolution preparative separation of glycosaminoglycan oligosaccharides by polyacrylamide gel electrophoresis. Anal Biochem 2010; 401:236-41. [PMID: 20211145 DOI: 10.1016/j.ab.2010.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 02/27/2010] [Accepted: 03/03/2010] [Indexed: 11/19/2022]
Abstract
Separation of milligram amounts of heparin oligosaccharides ranging in degree of polymerization from 4 to 32 is achieved within 6h using continuous elution polyacrylamide gel electrophoresis (CE-PAGE) on commercially available equipment. The purity and structural integrity of CE-PAGE-separated oligosaccharides are confirmed by strong anion exchange high-pressure liquid chromatography, electrospray ionization Fourier transform mass spectrometry, and two-dimensional nuclear magnetic resonance spectroscopy. The described method is straightforward and time-efficient, affording size-homogeneous oligosaccharides that can be used in sequencing, protein binding, and other structure-function relationship studies.
Collapse
Affiliation(s)
- Tatiana N Laremore
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
31
|
Buzzega D, Pederzoli F, Maccari F, Aslan D, Türk M, Volpi N. Comparison of cetylpyridinium chloride and cetyltrimethylammonium bromide extractive procedures for quantification and characterization of human urinary glycosaminoglycans. Clin Chem Lab Med 2010; 48:1133-9. [DOI: 10.1515/cclm.2010.217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Stutz H. Protein attachment onto silica surfaces - a survey of molecular fundamentals, resulting effects and novel preventive strategies in CE. Electrophoresis 2009; 30:2032-61. [DOI: 10.1002/elps.200900015] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Park W, Na K. Polyelectrolyte complex of chondroitin sulfate and peptide with lower pI value in poly(lactide-co-glycolide) microsphere for stability and controlled release. Colloids Surf B Biointerfaces 2009; 72:193-200. [PMID: 19414243 DOI: 10.1016/j.colsurfb.2009.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/01/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
Abstract
A polyelectrolyte complex between a therapeutic peptide and chargeable polymer was applied to prevent peptide denaturation in poly(lactide-co-glycolide) (PLGA) microspheres. Chondroitin sulfate A (CsA) was employed as a polymeric additive for the formation of an ionic complex with insulin (InS). The complex prepared at pH 3.0 evidenced a nano-size in the range of 100-400 nm with a mono distribution. The stability of InS in the complex in an organic/water (O/W) interface was verified via RP-HPLC. The insulin in the complex evidenced a retention time almost identical to native InS, whereas free insulin did not evidence such a retention time. On the basis of these studies, PLGA microspheres including a complex with various CsA/InS ratios were prepared via a double-emulsion method (PLGA/CsA MS). InS loading efficiency in the system is higher than that of the microspheres without CsA. The system evidenced a lower initial burst and, following the initial burst, continuous release kinetics for 30 days. Circular dichroism (CD) spectra demonstrated that the insulin in PLGA/CsA MS is more stable than the PLGA-only microspheres (PLGA/only MS) for 20 days. These results indicate that the complex system with CsA is useful for the long-term delivery of peptides with lower pI values.
Collapse
Affiliation(s)
- Wooram Park
- Department of Biotechnology, The Catholic University of Korea, 43-1 Yeokkok2-dong, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Republic of Korea
| | | |
Collapse
|
34
|
Nimptsch A, Schibur S, Schnabelrauch M, Fuchs B, Huster D, Schiller J. Characterization of the quantitative relationship between signal-to-noise (S/N) ratio and sample amount on-target by MALDI-TOF MS: Determination of chondroitin sulfate subsequent to enzymatic digestion. Anal Chim Acta 2009; 635:175-82. [DOI: 10.1016/j.aca.2009.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 10/21/2022]
|
35
|
Zaia J. On-line separations combined with MS for analysis of glycosaminoglycans. MASS SPECTROMETRY REVIEWS 2009; 28:254-72. [PMID: 18956477 PMCID: PMC4119066 DOI: 10.1002/mas.20200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The glycosaminoglycan (GAG) family of polysaccharides includes the unsulfated hyaluronan and the sulfated heparin, heparan sulfate, keratan sulfate, and chondroitin/dermatan sulfate. GAGs are biosynthesized by a series of enzymes, the activities of which are controlled by complex factors. Animal cells alter their responses to different growth conditions by changing the structures of GAGs expressed on their cell surfaces and in extracellular matrices. Because this variation is a means whereby the functions of the limited number of protein gene products in animal genomes is elaborated, the phenotypic and functional assessment of GAG structures expressed spatially and temporally is an important goal in glycomics. On-line mass spectrometric separations are essential for successful determination of expression patterns for the GAG compound classes due to their inherent complexity and heterogeneity. Options include size exclusion, anion exchange, reversed phase, reversed phase ion pairing, hydrophilic interaction, and graphitized carbon chromatographic modes and capillary electrophoresis. This review summarizes the application of these approaches to on-line MS analysis of the GAG classes.
Collapse
Affiliation(s)
- Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
36
|
Rigouin C, Ladrat CD, Sinquin C, Colliec-Jouault S, Dion M. Assessment of biochemical methods to detect enzymatic depolymerization of polysaccharides. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Holtkamp AD, Kelly S, Ulber R, Lang S. Fucoidans and fucoidanases--focus on techniques for molecular structure elucidation and modification of marine polysaccharides. Appl Microbiol Biotechnol 2009; 82:1-11. [PMID: 19043701 DOI: 10.1007/s00253-008-1790-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 11/07/2008] [Accepted: 11/08/2008] [Indexed: 01/12/2023]
Abstract
The research field of fucoidans (sulphated polysaccharides from algae) and fucoidanases was strongly developing in recent years. Several different fucoidans and a few fucoidan-degrading enzymes were isolated and characterised. A high potential is seen in the medical exploitation of the fucoidans and its degradation products. This review gives an overview about the research of the last 5 years concerning fucoidan characterisation and application as well as enzyme detection, characterisation and production.
Collapse
Affiliation(s)
- Andrea Désirée Holtkamp
- Institute of Biochemistry and Biotechnology, Department of Biotechnology, Technical University of Braunschweig, Spielmannstr. 7, Braunschweig, Germany
| | | | | | | |
Collapse
|
38
|
Domanig R, Jöbstl W, Gruber S, Freudemann T. One-dimensional cellulose acetate plate electrophoresis—A feasible method for analysis of dermatan sulfate and other glycosaminoglycan impurities in pharmaceutical heparin. J Pharm Biomed Anal 2009; 49:151-5. [DOI: 10.1016/j.jpba.2008.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
|
39
|
Volpi N. Micellar electrokinetic capillary chromatography determination of alginic acid in pharmaceutical formulations after treatment with alginate lyase and UV detection. Electrophoresis 2008; 29:3504-10. [PMID: 18803212 DOI: 10.1002/elps.200800104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new highly specific and sensitive capillary electrophoresis method (electrokinetic chromatography with SDS) for the determination of the total alginic acid (AA) content in pharmaceutical formulations is described by means of capillary electrophoresis at 230 nm after treatment with alginate lyase [4.2.2.3] and separation of unsaturated products, Delta-oligomers (DeltaHexA-[HexA](n)), in particular, DP3 (DeltaHexA-HexA-HexA) and DP4 (DeltaHexA-HexA-HexA-HexA). Using a buffer constituted with 10 mM sodium borate and 50 mM SDS at pH 9.0, micellar electrokinetic capillary chromatography was able to determine with very high resolution the AA Delta-oligomers produced by the action of the lyase (mainly DP3 and DP4) as one single species. The intra- and inter-day variations (CV%) were between 6.3 and 9.1 for migration time and between 2.5 and 5.7 for peak area, respectively. The calibration curve showed good linearity for the examined concentration range (60-360 ng) with an average correlation coefficient greater than 0.980. The lowest detection limit and the lowest quantitation limit of the method were 15 ng (0.25 mg/mL) and 40 ng (0.67 mg/mL), respectively. The intra- and inter-day variations in terms of CV% were 5.5 and 8.6%, respectively, and the intra- and inter-day accuracy was estimated to range from 4.1 to 8.9%, while the percent recoveries of AA were calculated to be 102, 97 and 93% for different AA amounts. Variations in temperatures, voltage and buffer composition in comparison with adopted conditions within a 10% limit do not modify the electrophoresis results. The evaluation of AA was performed in both solid and liquid pharmaceutical formulations also in the presence of other ingredients, in particular, aluminium, sodium and potassium bicarbonate, and emulsifying and flavouring agents. The quantitative results obtained were 101.2+/-3.4% of AA content in tablets and 98.4+/-2.8% in liquid formulation, in total conformity with the label claims.
Collapse
Affiliation(s)
- Nicola Volpi
- Department of Biologia Animale, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
40
|
Frazier SB, Roodhouse KA, Hourcade DE, Zhang L. The Quantification of Glycosaminoglycans: A Comparison of HPLC, Carbazole, and Alcian Blue Methods. ACTA ACUST UNITED AC 2008; 1:31-39. [PMID: 20640171 DOI: 10.2174/1875398100801010031] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides that are found in the extracellular matrix and biological fluids of animals where they interact with hundreds of proteins and perform a variety of critical roles. There are five classes of animal GAGs: heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS), and hyaluronan (HA). Many biological functions can be monitored directly by their impact on GAG quantity. Thus, simple, sensitive, and robust GAG quantification methods are needed for the development of biomarkers. We have systematically compared three available GAG quantification assays including an HPLC-based assay, a simplified Alcian Blue assay, and a miniaturized carbazole assay. The carbazole and Alcian Blue assays were reproducible and simple to perform in general lab settings, but had important limitations: The carbazole assay could not detect KS and it overestimated GAGs that were contaminated with salts or dissolved in PBS. The Alcian Blue assay detected only those GAGs that were sulfated. In contrast, while the HPLC method was time-consuming, it was a robust and sensitive assay that not only detected all GAGs but also quantified glucosamine-GAGs and galactosamine-GAGs simultaneously. The HPLC assay was not affected by salt or level of GAG sulfation and it yielded reproducible values for all types of GAGs tested. These results suggest that an automated HPLC assay would be generally useful for the routine measurement of a panel of GAG-based biomarkers while the carbazole assay and the Alcian Blue assays could prove valuable for more specific purposes.
Collapse
Affiliation(s)
- Sarah B Frazier
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
41
|
Seelert H, Krause F. Preparative isolation of protein complexes and other bioparticles by elution from polyacrylamide gels. Electrophoresis 2008; 29:2617-36. [PMID: 18494038 DOI: 10.1002/elps.200800061] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Due to its unmatched resolution, gel electrophoresis is an indispensable tool for the analysis of diverse biomolecules. By adaptation of the electrophoretic conditions, even fragile protein complexes as parts of intracellular networks migrate through the gel matrix under sustainment of their integrity. If the thickness of such native gels is significantly increased compared to the analytical version, also high sample loads can be processed. However, the cage-like network obstructs an in-depth analysis for deciphering structure and function of protein complexes and other species. Consequently, the biomolecules have to be removed from the gel matrix into solution. Several approaches summarized in this review tackle this problem. While passive elution relies on diffusion processes, electroelution employs an electric field to force biomolecules out of the gel. An alternative procedure requires a special electrophoresis setup, the continuous elution device. In this apparatus, molecules migrate in the electric field until they leave the gel and were collected in a buffer stream. Successful isolation of diverse protein complexes like photosystems, ATP-dependent enzymes or active respiratory supercomplexes and some other bioparticles demonstrates the versatility of preparative electrophoresis. After liberating particles out of the gel cage, numerous applications are feasible. They include elucidation of the individual components up to high resolution structures of protein complexes. Therefore, preparative electrophoresis can complement standard purification methods and is in some cases superior to them.
Collapse
Affiliation(s)
- Holger Seelert
- Department of Chemistry, Physical Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
| | | |
Collapse
|
42
|
Jiang X, Cao Z, Tang H, Tan L, Xie Q, Yao S. Electrochemical surface plasmon resonance studies on the deposition of the charge-transfer complex from electrooxidation of o-tolidine and effects of dermatan sulfate. Electrochem commun 2008. [DOI: 10.1016/j.elecom.2008.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Abballe F, Lombardi M, Maccone I, Palazzo G, Severoni A, Travaini S, Venturini A. New method for low molecular weight heparin quantification in tablets by suppressed conductivity detection and cryptand column. J Pharm Biomed Anal 2008; 48:467-71. [DOI: 10.1016/j.jpba.2008.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 04/05/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
|
44
|
Abstract
Complex natural polysaccharides, glycosaminoglycans (GAGs), are a class of ubiquitous macromolecules that exhibit a wide range of biological functions and participate and regulate multiple cellular events and (patho)physiological processes. They are generally present either as free chains (hyaluronic acid and bacterial acidic polysaccharides) or as side chains of proteoglycans (PGs; chondroitin/dermatan sulfate, heparin/heparan sulfate, and keratan sulfate) and are most often found in cell membranes and in the extracellular matrix. The recent emergence of modern analytical tools for their study has produced a virtual explosion in the field of glycomics. CE, due to its high resolving power and sensitivity, has been useful in the analysis of intact GAGs and GAG-derived oligosaccharides and disaccharides affording concentration and structural characterization data essential for understanding the biological functions of GAGs. In this review, novel off-line and on-line CE-MS and MS/MS methods for screening of GAG-derived oligosaccharides and disaccharides will be discussed.
Collapse
Affiliation(s)
- Nicola Volpi
- Department of Biologia Animale, Biological Chemistry Section, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | |
Collapse
|
45
|
|
46
|
Tůma P, Samcová E, Opekar F, Štulík K. Determination of Intact Heparin by Capillary Electrophoresis with Contactless Conductivity Detection in Background Electrolytes Containing Hydrophilic Polymers. ACTA ACUST UNITED AC 2008. [DOI: 10.1135/cccc20080187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Intact heparin was characterized and determined in model samples, in infusion solutions and in blood plasma by capillary electrophoresis (CE) with contactless conductivity detection. The CE separation of polydisperse heparin took place in open silica capillaries, in electrolytes containing a polymer (hydroxyethyl)cellulose, poly(ethylene glycol) or dextran. The best separation of heparin from excess inorganic ions present in real samples was attained in a background electrolyte consisting of 0.8 M acetic acid and 1% (w/v) dextran (100 kDa). The limit of detection (LOD) was 1.3 μmol l-1. This electrolyte was used in determination of heparin in blood plasma and in infusion solutions.
Collapse
|
47
|
Abstract
Chondroitin sulfate is a very heterogeneous polysaccharide in terms of relative molecular mass, charge density, chemical properties, biological and pharmacological activities. It is actually recommended by EULAR as a symptomatic slow acting drug (SYSADOA) in Europe in the treatment of knee osteoarthritis based on meta-analysis of numerous clinical studies. Chondroitin sulfate is also utilized as a nutraceutical in dietary supplements mainly in the United States. On the other hand, chondroitin sulfate is derived from animal sources by extraction and purification processes. As a consequence, source material, manufacturing processes, the presence of contaminants, and many other factors contribute to the overall biological and pharmacological actions of these agents. The aim of this review is to evaluate new possible more specific analytical approaches to the determination of the origin and purity of chondroitin sulfate preparations for pharmaceutical application and in nutraceuticals, such as the evaluation of the molecular mass values, the constituent disaccharides, and the specific and sensitive agarose-gel electrophoresis technique. Furthermore, a critical evaluation is presented, together with a discussion of the limits of these analytical approaches. Finally, the necessity for reference standards having high specificity, purity and well-known physico-chemical properties useful for accurate and reproducible quantitative analyses will be discussed.
Collapse
Affiliation(s)
- Nicola Volpi
- Department of Biologia Animale, Biological Chemistry Section, University of Modena and Reggio Emilia, Italy.
| |
Collapse
|
48
|
Gesslbauer B, Rek A, Falsone F, Rajkovic E, Kungl AJ. Proteoglycanomics: tools to unravel the biological function of glycosaminoglycans. Proteomics 2007; 7:2870-80. [PMID: 17654462 DOI: 10.1002/pmic.200700176] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glycosylation is the most frequent PTM and contributes significantly to the function of proteins depending on the type of glycosylation. Especially glycan structures like the glycosaminoglycans are considered to constitute themselves the major function of the glycoconjugate which is therefore termed proteoglycan. Here we review recent views on and novel tools for analysing the proteoglycanome, which are directly related to the type of glycanation under investigation. We define the major function of the proteoglycanome to be its interaction with various proteins in many different (patho-)physiological conditions. This is exemplified by the differential glycosaminoglycan-interactome of healthy versus arthritic patient sera.
Collapse
Affiliation(s)
- Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | | | | | | | | |
Collapse
|
49
|
Dainese L, Polvani G, Barili F, Maccari F, Guarino A, Alamanni F, Zanobini M, Biglioli P, Volpi N. Fine characterization of mitral valve glycosaminoglycans and their modification with degenerative disease. Clin Chem Lab Med 2007; 45:361-6. [PMID: 17378733 DOI: 10.1515/cclm.2007.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The levels and fine structure of complex polysaccharides, glycosaminoglycans (GAGs), were determined in segments of the posterior mitral valve leaflet (MVL) taken from 15 patients affected by mitral regurgitation and degenerative disease and were compared with segments from 15 multiorgan donors. METHODS MVL GAGs were analyzed by agarose gel electrophoresis, and by HPLC and fluorophore-assisted carbohydrate electrophoresis to evaluate disaccharide patterns after treatment with chondroitinase ABC. RESULTS GAGs from the control group were composed of approximately 37% hyaluronic acid and 63% chondroitin sulfate/dermatan sulfate with a charge density of approximately 0.61. Chondroitin sulfate/dermatan sulfate polymers contained approximately 23% of the disaccharide sulfated in position 6 on N-acetyl-galactosamine, approximately 38% of the 4-sulfated disaccharide and approximately 2% of the non-sulfated disaccharide (with a 4-sulfated/6-sulfated ratio of 1.7). The total amount of GAGs was 0.66 microg/mg tissue. The total amount of GAGs in patients suffering from mitral regurgitation and degenerative disease was approximately 51.5% higher (although the difference was not significant, probably because of the low number of subjects enrolled in the study). However, significantly higher hyaluronic acid content (approx. +38%, p<0.05) and lower sulfated GAG content (approx. -21%, p<0.005) were demonstrated. As a consequence, the total charge density decreased by approximately 23% (p<0.005). This macro-modification of GAG composition was also followed by a micro-alteration of the structure of the sulfated polysaccharides, in particular with a significant decrease in the 4-sulfated disaccharide (and a parallel increase in hyaluronic acid content) with no modification of the percentage of the 6-sulfated and non-sulfated disaccharides (with a significant decrease in the 4-/6-sulfated ratio). CONCLUSIONS We assume that changes in the relative amount and distribution of GAGs in posterior MVL in subjects suffering from mitral regurgitation and degenerative disease are consistent with a decrease in the tension to which these tissues are subjected and with an abnormal matrix microstructure capable of influencing the hydration and of conditioning the mechanical weakness of these pathological tissues.
Collapse
Affiliation(s)
- Luca Dainese
- Department of Cardiac and Vascular Surgery, Centro Cardiologico Monzino, IRCCS University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lee ES, Park KH, Kang D, Park IS, Min HY, Lee DH, Kim S, Kim JH, Na K. Protein complexed with chondroitin sulfate in poly(lactide-co-glycolide) microspheres. Biomaterials 2007; 28:2754-62. [PMID: 17337049 DOI: 10.1016/j.biomaterials.2007.01.049] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 01/23/2007] [Indexed: 12/15/2022]
Abstract
Chondroitin sulfate (CsA) is an acidic mucopolysaccharide, which is able to form ionic complexes with positively charged proteins. In this study, a protein-CsA complex was constructed to nano-sized particles. Zeta potential measurements revealed that a CsA-to-protein fraction of greater than 0.1 results in a neutralization of the positive charge on lysozyme (Lys). Based on this preliminary study, we have prepared poly(lactide-co-glycolide) (PLGA) microspheres harboring Lys/CsA complexes via the multi-emulsion method. Protein stability in the PLGA microspheres was preserved during both microsphere preparation and protein release. The profiles of Lys release from the PLGA microspheres evidenced nearly zero-order kinetics, depending on the quantity of CsA. An in vivo fluorescent image of experimental mouse tissue showed that the PLGA microspheres with the Lys/CsA complex had released the entirety of their Lys without no residual amount after 23 days, but microspheres without the complex harbored a great deal of residual Lys, which is attributable to its degradation by acidic PLGA degradates. The tissue reaction evidenced by the PLGA microspheres stabilized with CsA showed minimal foreign body reaction and little configuration of immune cells including neutrophils and macrophages, but the reactions of the PLGA microspheres without CsA were characterized by a relatively elevated inflammation. These results show that CsA is a viable candidate for long-acting micro-particular protein delivery.
Collapse
Affiliation(s)
- Eun Seong Lee
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|