1
|
Lafi ASH, Tzar MN, Santhanam J, Huyop F. Comparing ergosterol identification by HPLC with fungal serology in human sera. Heliyon 2024; 10:e38377. [PMID: 39397975 PMCID: PMC11467578 DOI: 10.1016/j.heliyon.2024.e38377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Background Ergosterol, a predominant sterol in fungal cell membranes, holds promise as a specific marker for detecting fungal presence in human samples. This study investigated the performance of ergosterol detection compared to serological tests in identifying the presence of fungi in human sera. Methods Eighty-four non-duplicate human sera were analyzed by high performance liquid chromatography (HPLC) for ergosterol detection. Results were compared to serological tests for Aspergillus antigen, Candida antigen, Cryptococcus antigen, Aspergillus antibody and Candida antibody performed on the same patient sera. Results Out of the 84 serum samples, 51 (60.7 %) were positive for ergosterol. Among the 33 serology-positive sera, 26 (78.8 %) were also ergosterol-positive. In contrast, 26 out of 51 (51 %) serology-negative sera (including 20 negative controls) tested negative for ergosterol. Seven out of 33 (21.2 %) serology-positive sera were ergosterol-negative, while 25 out of 51 (49 %) serology-negative sera were ergosterol-positive. Compared to serological tests, HPLC detection of ergosterol had a sensitivity of 78.8 %, specificity of 51 %, positive predictive value of 51 %, negative predictive value of 78.8 % and overall accuracy of 61.9 %. Conclusions Ergosterol detection may serve as a useful supplementary tool for identifying fungi in human sera, acting as a broad-spectrum diagnostic marker. However, further research with larger sample sizes and clinical comparisons is needed to validate these findings.
Collapse
Affiliation(s)
- Ahmad SH.A. Lafi
- Center of Desert Studies, University of Anbar. Ramadi, Iraq
- Department of Biosciences, Faculty of Science, University Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Mohd Nizam Tzar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Jacinta Santhanam
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, University Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| |
Collapse
|
2
|
Li W, Wan P, Qiao J, Liu Y, Peng Q, Zhang Z, Shu X, Xia Y, Sun B. Current and further outlook on the protective potential of Antrodia camphorata against neurological disorders. Front Pharmacol 2024; 15:1372110. [PMID: 38694913 PMCID: PMC11061445 DOI: 10.3389/fphar.2024.1372110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Prevalent neurological disorders such as Alzheimer's disease, Parkinson's disease, and stroke are increasingly becoming a global burden as society ages. It is well-known that degeneration and loss of neurons are the fundamental underlying processes, but there are still no effective therapies for these neurological diseases. In recent years, plenty of studies have focused on the pharmacology and feasibility of natural products as new strategies for the development of drugs that target neurological disorders. Antrodia camphorata has become one of the most promising candidates, and the crude extracts and some active metabolites of it have been reported to play various pharmacological activities to alleviate neurological symptoms at cellular and molecular levels. This review highlights the current evidence of Antrodia camphorata against neurological disorders, including safety evaluation, metabolism, blood-brain barrier penetration, neuroprotective activities, and the potential on regulating the gut-microbiome-brain axis. Furthermore, potential strategies to resolve problematic issues identified in previous studies are also discussed. We aim to provide an overview for the ongoing development and utilization of Antrodia camphorata in cerebral neuropathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yiyuan Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
3
|
Xu Y, Lin L, Zheng H, Xu S, Hong X, Cai T, Xu J, Zhang W, Mai Y, Li J, Huang B, Liu Z, Guo S. Protective effect of Amauroderma rugosum ethanol extract and its primary bioactive compound, ergosterol, against acute gastric ulcers based on LXR-mediated gastric mucus secretions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155236. [PMID: 38016383 DOI: 10.1016/j.phymed.2023.155236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Amauroderma rugosum (Blume & T. Nees) Torrend (Ganodermataceae) is an edible mushroom with a wide range of medicinal values. Our previous publication demonstrated the therapeutic effects of the water extract of A. rugosum (WEA) against gastric ulcers. However, the protective effects of the ethanol extract of A. rugosum (EEA) on gastric mucosa and its major active constituents have not yet been elucidated. PURPOSE This study aims to evaluate the gastroprotective effects and underlying mechanisms of EEA and its fat-soluble constituent, ergosterol, in acute gastric ulcers. STUDY DESIGN AND METHOD SD rats were pre-treated with EEA (50, 100, and 200 mg/kg) or ergosterol (5, 10, and 20 mg/kg), and acute gastric ulcer models were constructed using ethanol, gastric mucus secretion inhibitor (indomethacin) or pyloric-ligation. The gastric ulcer area, histological structure alterations (H&E staining), and mucus secretion (AB-PAS staining) were recorded. Additionally, Q-PCR, western blotting, immunohistochemistry, ELISA, molecular docking, molecular dynamics simulations, MM-GBSA analysis, and surface plasmon resonance assay (SPR) were used to investigate the underlying mechanisms of the gastroprotective effect. RESULT Compared with WEA, which primarily exerts its anti-ulcer effects by inhibiting inflammation, EEA containing fat-soluble molecules showed more potent gastroprotective effect through the promotion of gastric mucus secretion, as the anti-ulcer activity was partly blocked by indomethacin. Meanwhile, EEA exhibited anti-inflammatory effects by suppressing the production of IL-6, IL-1β, TNF-α, and NO, thereby inhibiting the MAPK pathway. Significantly, ergosterol (20 mg/kg), the bioactive water-insoluble compound in EEA, exhibited a gastroprotective effect comparable to that of lansoprazole (30 mg/kg). The promotion of gastric mucus secretion contributed to the effects of ergosterol, as indomethacin can completely block it. The upregulations of COX1-PGE2 and C-fos, an activator protein 1 (AP-1) transcription factor, were observed after the ergosterol treatment. Ergosterol acted as an LXRβ agonist via van der Waals binding and stabilizing the LXRβ protein without compromising its flexibility, thereby inducing the upregulation of AP-1 and COX-1. CONCLUSION EEA and its primary bioactive compound, ergosterol, exert anti-ulcer effects by promoting gastric mucus secretion through the LXRβ/C-fos/COX-1/PGE2 pathway.
Collapse
Affiliation(s)
- Yifei Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Linsun Lin
- Huizhou Health Sciences Polytechnic, Huizhou 516025, China
| | - Huantian Zheng
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Siyuan Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Xinxin Hong
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Tiantian Cai
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Jianqu Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Weijian Zhang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Yanzhen Mai
- Huizhou Health Sciences Polytechnic, Huizhou 516025, China
| | - Jingwei Li
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Bin Huang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Zhu Liu
- School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
| | - Shaoju Guo
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China.
| |
Collapse
|
4
|
Rangsinth P, Sharika R, Pattarachotanant N, Duangjan C, Wongwan C, Sillapachaiyaporn C, Nilkhet S, Wongsirojkul N, Prasansuklab A, Tencomnao T, Leung GPH, Chuchawankul S. Potential Beneficial Effects and Pharmacological Properties of Ergosterol, a Common Bioactive Compound in Edible Mushrooms. Foods 2023; 12:2529. [PMID: 37444267 DOI: 10.3390/foods12132529] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Ergosterol is an important sterol commonly found in edible mushrooms, and it has important nutritional value and pharmacological activity. Ergosterol is a provitamin. It has been well established that edible mushrooms are an excellent food source of vitamin D2 because ergosterol is a precursor that is converted to vitamin D2 under ultraviolet radiation. The pharmacological effects of ergosterol, which include antimicrobial, antioxidant, antimicrobial, anticancer, antidiabetic, anti-neurodegenerative, and other activities, have also been reported. This review aims to provide an overview of the available evidence regarding the pharmacological effects of ergosterol and its underlying mechanisms of action. Their potential benefits and applications are also discussed.
Collapse
Affiliation(s)
- Panthakarn Rangsinth
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Rajasekharan Sharika
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattaporn Pattarachotanant
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatrawee Duangjan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Chamaiphron Wongwan
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanin Sillapachaiyaporn
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nichaporn Wongsirojkul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Machida K, Koseki Y, Kotani A, Yamamoto K, Miura T, Hakamata H. Simultaneous determination of deuterium-labeled ergosterol and brassicasterol in stroke-prone spontaneously hypertensive rats by ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4879-4885. [PMID: 36416170 DOI: 10.1039/d2ay01705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A previous study has shown that brassicasterol-d1 was detected in the serum of stroke-prone spontaneously hypertensive rats after oral administration of ergosterol-d1. To quantitatively evaluate the serum concentration of brassicasterol-d1, an ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry method was developed for the simultaneous determination of picolinyl ester-derivatized ergosterol-d1 and brassicasterol-d1. The separation was performed on an ODS column (Waters Acquity UPLC BEH C18) with a mobile phase consisting of methanol and water containing 0.1% acetic acid (95/5, v/v). Linear calibration curves in the presence of the serum were obtained in a concentration range of 0.04-8 μg mL-1. Recovery rates of 95.6-119% were obtained with an RSD (n = 6) of less than 7.5%. The method was applied to the determination of time-concentration curves of ergosterol-d1 and brassicasterol-d1 in stroke-prone spontaneously hypertensive rats, showing a pharmacokinetic profile of ergosterol-d1 where the peak serum concentration of brassicasterol-d1 was 3-fold higher than that of ergosterol-d1.
Collapse
Affiliation(s)
- Koichi Machida
- Department of Analytical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| | - Yuji Koseki
- Center for the Advancement of Pharmaceutical Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Akira Kotani
- Department of Analytical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| | - Kazuhiro Yamamoto
- Department of Analytical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| | - Tsuyoshi Miura
- Department of Pharmaceutical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hideki Hakamata
- Department of Analytical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
7
|
Zhabinskii VN, Drasar P, Khripach VA. Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules 2022; 27:2103. [PMID: 35408501 PMCID: PMC9000798 DOI: 10.3390/molecules27072103] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mushrooms are known not only for their taste but also for beneficial effects on health attributed to plethora of constituents. All mushrooms belong to the kingdom of fungi, which also includes yeasts and molds. Each year, hundreds of new metabolites of the main fungal sterol, ergosterol, are isolated from fungal sources. As a rule, further testing is carried out for their biological effects, and many of the isolated compounds exhibit one or another activity. This study aims to review recent literature (mainly over the past 10 years, selected older works are discussed for consistency purposes) on the structures and bioactivities of fungal metabolites of ergosterol. The review is not exhaustive in its coverage of structures found in fungi. Rather, it focuses solely on discussing compounds that have shown some biological activity with potential pharmacological utility.
Collapse
Affiliation(s)
- Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| | - Pavel Drasar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technicka 5, CZ-166 28 Prague, Czech Republic;
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| |
Collapse
|
8
|
Kawai J, Mori K, Hirasawa N. Grifola frondosa extract and ergosterol reduce allergic reactions in an allergy mouse model by suppressing the degranulation of mast cells. Biosci Biotechnol Biochem 2019; 83:2280-2287. [PMID: 31412751 DOI: 10.1080/09168451.2019.1654360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The increasing number of patients suffering from allergic diseases is a global health problem. Grifola frondosa is an edible mushroom consumed as a health food in Asia, and has recently been reported to have anti-allergic effects. We previously reported that G. frondosa extract (GFE) and its active components, ergosterol and its derivatives, inhibited the antigen-induced activation of RBL-2H3 cells. Here, we demonstrated that GFE and ergosterol also had an inhibitory effect on the degranulation of bone marrow-derived mast cells (BMMCs) and alleviated anaphylactic cutaneous responses in mice. Using an air pouch-type allergic inflammation mouse model, we confirmed that oral administration of GFE and ergosterol suppressed the degranulation of mast cells in vivo. Our findings suggest that G. frondosa, including ergosterol as its active component, reduces type I allergic reactions by suppressing mast cell degranulation in mice, and might be a novel functional food that prevents allergic diseases.
Collapse
Affiliation(s)
- Junya Kawai
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| | - Koichiro Mori
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
9
|
Liu X, Cong L, Wang C, Li H, Zhang C, Guan X, Liu P, Xie Y, Chen J, Sun J. Pharmacokinetics and distribution of schisandrol A and its major metabolites in rats. Xenobiotica 2019; 49:322-331. [DOI: 10.1080/00498254.2017.1418543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xu Liu
- College of Pharmacy, Beihua University, Jilin, P.R. China,
| | - Lixin Cong
- Second Treatment Area of Senile Disease, First Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, P.R. China, and
| | - Chunmei Wang
- College of Pharmacy, Beihua University, Jilin, P.R. China,
| | - He Li
- College of Pharmacy, Beihua University, Jilin, P.R. China,
| | - Chengyi Zhang
- College of Pharmacy, Beihua University, Jilin, P.R. China,
| | - Xingang Guan
- Research Center for Life Sciences, Beihua University, Jilin, P.R. China
| | - Peng Liu
- Research Center for Life Sciences, Beihua University, Jilin, P.R. China
| | - Yu Xie
- Research Center for Life Sciences, Beihua University, Jilin, P.R. China
| | - Jianguang Chen
- College of Pharmacy, Beihua University, Jilin, P.R. China,
| | - Jinghui Sun
- College of Pharmacy, Beihua University, Jilin, P.R. China,
| |
Collapse
|
10
|
Kawai J, Higuchi Y, Hirota M, Hirasawa N, Mori K. Ergosterol and its derivatives from Grifola frondosa inhibit antigen-induced degranulation of RBL-2H3 cells by suppressing the aggregation of high affinity IgE receptors. Biosci Biotechnol Biochem 2018; 82:1803-1811. [DOI: 10.1080/09168451.2018.1490169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
ABSTRACT
Grifola frondosa is an edible mushroom consumed as a health food and/or traditional medicine in Asia. However, the anti-allergic effects of G. frondosa are not yet understood. In this study, we demonstrated the effects of G. frondosa extract (GFE) on IgE-mediated allergic responses, using antigen-stimulated RBL-2H3 cells. Three active compounds: ergosterol, 6β-methoxyergosta-7,22-dien-3β,5α-diol (MEDD), and 6-oxoergosta-7,22-dien-3β-ol (6-OXO) were isolated from GFE and shown to inhibit the antigen-induced release of β-hexosaminidase and histamine. Among the three active components, we focused on ergosterol because of its high content in GFE. Ergosterol inhibited the aggregation of high-affinity IgE receptor (FcεRI), which is the first step in the activation of mast cells and antigen-induced tyrosine phosphorylation. Furthermore, ergosterol suppressed antigen-increased IL-4 and TNF-α mRNA. Taken together, our findings suggest that G. frondosa, including ergosterol and its derivatives as active components, has the potential to be a novel functional food that prevents type I allergies.
Collapse
Affiliation(s)
- Junya Kawai
- Mushroom Research Laboratory,Hokuto Corporation, Nagano, Japan
| | - Yuka Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Kami-ina, Nagano, Japan
| | - Mitsuru Hirota
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Kami-ina, Nagano, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi Japan
| | - Koichiro Mori
- Mushroom Research Laboratory,Hokuto Corporation, Nagano, Japan
| |
Collapse
|
11
|
Yuan L, Ji X, Chen J, Xie M, Geng L, Gao R. Enhanced oral bioavailability and tissue distribution of ferric citrate through liposomal encapsulation. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2016.1221858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Ohtsubo T, Kageyama R, Koseki Y, Hagi J, Kotani A, Yamamoto K, Kusu F, Miura T, Hakamata H. Determination of serum brassicasterol in spontaneously hypertensive rats stroke-prone fed a high-ergosterol diet by ultra performance liquid chromatography. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takaaki Ohtsubo
- Department of Analytical Chemistry, School of Pharmacy; Tokyo University of Pharmacy and Life Sciences; Tokyo Japan
| | - Ryo Kageyama
- Department of Analytical Chemistry, School of Pharmacy; Tokyo University of Pharmacy and Life Sciences; Tokyo Japan
| | - Yuji Koseki
- Department of Pharmaceutical Chemistry, School of Pharmacy; Tokyo University of Pharmacy and Life Sciences; Tokyo Japan
| | - Junya Hagi
- Department of Analytical Chemistry, School of Pharmacy; Tokyo University of Pharmacy and Life Sciences; Tokyo Japan
| | - Akira Kotani
- Department of Analytical Chemistry, School of Pharmacy; Tokyo University of Pharmacy and Life Sciences; Tokyo Japan
| | - Kazuhiro Yamamoto
- Department of Analytical Chemistry, School of Pharmacy; Tokyo University of Pharmacy and Life Sciences; Tokyo Japan
| | - Fumiyo Kusu
- Department of Analytical Chemistry, School of Pharmacy; Tokyo University of Pharmacy and Life Sciences; Tokyo Japan
| | - Tsuyoshi Miura
- Department of Pharmaceutical Chemistry, School of Pharmacy; Tokyo University of Pharmacy and Life Sciences; Tokyo Japan
| | - Hideki Hakamata
- Department of Analytical Chemistry, School of Pharmacy; Tokyo University of Pharmacy and Life Sciences; Tokyo Japan
| |
Collapse
|
13
|
Bandara AR, Rapior S, Bhat DJ, Kakumyan P, Chamyuang S, Xu J, Hyde KD. Polyporus umbellatus, an Edible-Medicinal Cultivated Mushroom with Multiple Developed Health-Care Products as Food, Medicine and Cosmetics: A Review. CRYPTOGAMIE MYCOL 2015. [DOI: 10.7872/crym.v36.iss1.2015.3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Pluchino LA, Liu AKY, Wang HCR. Reactive oxygen species-mediated breast cell carcinogenesis enhanced by multiple carcinogens and intervened by dietary ergosterol and mimosine. Free Radic Biol Med 2015; 80:12-26. [PMID: 25535943 DOI: 10.1016/j.freeradbiomed.2014.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 01/16/2023]
Abstract
Most breast cancers occur sporadically due to long-term exposure to low-dose carcinogens in the diet and the environment. Specifically, smoke, polluted air, and high-temperature cooked meats comprise multiple carcinogens, such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), benzo[α]pyrene (B[α]P), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). We sought to determine if these carcinogens act together to induce breast cell carcinogenesis, and if so, whether noncytotoxic dietary agents could intervene. We demonstrated that coexposure to physiologically achievable doses of NNK, B[α]P, and PhIP (NBP) holistically enhanced initiation and progression of breast cell carcinogenesis. Reactive oxygen species (ROS) and activation of the ERK pathway were transiently induced by NBP in each exposure, and cross talk between reinforced ROS elevation and ERK activation played an essential role in increased DNA oxidation and damage. After cumulative exposures to NBP, this cross talk contributed to enhanced initiation of cellular carcinogenesis and led to enhanced acquisition of cancer-associated properties. Using NBP-induced transient changes, such as ROS elevation and ERK pathway activation, and cancer-associated properties as targeted endpoints, we revealed, for the first time, that two less-studied dietary compounds, ergosterol and mimosine, at physiologically achievable noncytotoxic levels, were highly effective in intervention of NBP-induced cellular carcinogenesis. Combined ergosterol and mimosine were more effective than individual agents in blocking NBP-induced transient endpoints, including ROS-mediated DNA oxidation, which accounted for their preventive ability to suppress progression of NBP-induced cellular carcinogenesis. Thus, dietary components, such as mushrooms containing ergosterol and legumes containing mimosine, should be considered for affordable prevention of sporadic breast cancer associated with long-term exposure to environmental and dietary carcinogens.
Collapse
Affiliation(s)
- Lenora Ann Pluchino
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amethyst Kar-Yin Liu
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| | - Hwa-Chain Robert Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
15
|
Tong S, Zhong H, Yi C, Cao X, Firempong CK, Zheng Q, Feng Y, Yu J, Xu X. Simultaneous HPLC determination of ergosterol and 22,23-dihydroergosterol inFlammulina velutipessterol-loaded microemulsion. Biomed Chromatogr 2013; 28:247-54. [DOI: 10.1002/bmc.3012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Shanshan Tong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 People's Republic of China
| | - Hui Zhong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 People's Republic of China
| | - Chengxue Yi
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 People's Republic of China
- Zhenjiang Center for Disease Control and Prevention; 9 Huangshan South Road Zhenjiang Jiangsu 212004 People's Republic of China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 People's Republic of China
| | - Caleb Kesse Firempong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 People's Republic of China
| | - Qianfeng Zheng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 People's Republic of China
| | - Yingshu Feng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 People's Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212013 People's Republic of China
| |
Collapse
|
16
|
Zhao YY. Traditional uses, phytochemistry, pharmacology, pharmacokinetics and quality control of Polyporus umbellatus (Pers.) Fries: a review. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:35-48. [PMID: 23811047 DOI: 10.1016/j.jep.2013.06.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polyporus umbellatus (Pers.) Fries (Polyporaceae, Zhuling ) has been commonly used in medicine for a wide range of ailments related to the edema, scanty urine, vaginal discharge, urinary dysfunction, as well as jaundice and diarrhea. AIM OF THE REVIEW The present paper reviewed the traditional uses, propagation, phytochemistry, pharmacology, pharmacokinetics and quality control of Polyporus umbellatus. MATERIALS AND METHODS All the available information on Polyporus umbellatus was collected via a library and electronic search (using Web of Science, Pubmed, ScienceDirect, Splinker, Google Scholar, etc.). RESULTS Phytochemical studies showed the presence of many valuable secondary metabolites such as steroids, polysaccharides, anthraquinones and nucleosides. Crude extracts and isolated compounds showed a wide spectrum of pharmacological activities including diuretic, nephroprotective, anti-cancer, immuno-enhancing, hepatoprotective, anti-inflammatory and antioxidative activities. The pharmacokinetic studies demonstrated that the ergosterol and ergone had a high distribution and absorption in the plasma and the two main components of Polyporus umbellatus were mainly excreted by faeces. The determination of multiple chemical components was successfully applied to the quality control of Polyporus umbellatus. CONCLUSIONS Modern phytochemical, pharmacological and metabonomic investigations showed that the crude extracts and isolated compounds from Polyporus umbellatus possess many kinds of biological functions, especially in the diuretic activities and the treatment of kidney diseases as well as anti-cancer, immuno-enhancing and hepatoprotective activities. The pathways of the distribution, absorption, metabolism and excretion of main steroidal compounds were clarified by pharmacokinetic studies. Most of the pharmacological studies were conducted using crude and poorly characterized extracts of Polyporus umbellatus in animals especially in case of diuretic activities and the treatment of kidney diseases. Thus, more bioactive components especially diuretic compounds should be identified using bioactivity-guided isolation strategies and the possible mechanism of action as well as potential synergistic or antagonistic effects of multi-component mixtures derived from Polyporus umbellatus need to be evaluated integrating pharmacological, pharmacokinetic, bioavailability-centered and physiological approaches. In addition, more experiments including in vitro, in vivo and clinical studies should be encouraged to identify any side effects or toxicity. These achievements will further expand the existing therapeutic potential of Polyporus umbellatus and provide a beneficial support to its future further clinical use in modern medicine.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, PR China.
| |
Collapse
|
17
|
Yi C, Fu M, Cao X, Tong S, Zheng Q, Firempong CK, Jiang X, Xu X, Yu J. Enhanced oral bioavailability and tissue distribution of a new potential anticancer agent, Flammulina velutipes sterols, through liposomal encapsulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5961-5971. [PMID: 23721187 DOI: 10.1021/jf3055278] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study innovatively investigated the anticancer effect of Flammulina velutipes sterols (FVSs), the in vivo pharmacokinetics, and the tissue distribution of FVS-loaded liposomes. The FVS consisting of mainly 54.8% ergosterol and 27.9% 22,23-dihydroergosterol exhibited evident in vitro antiproliferative activity (liver HepG-2, IC50 = 9.3 μg mL(-1); lung A549, IC50 = 20.4 μg mL(-1)). To improve the poor solubility of FVS, F. velutipes sterol liposome (FVSL) was originally prepared. The encapsulation efficiency of ergosterol was 71.3 ± 0.1% in FVSL, and the encapsulation efficiency of 22,23-dihydroergosterol was 69.0 ± 0.02% in FVSL. In comparison to its two free sterol counterparts, the relative bioavailability of ergosterol and 22,23-dihydroergosterol in FVSL was 162.9 and 244.2%, respectively. After oral administration in Kunming mice, the results of tissue distribution demonstrated that the liposomal FVS was distributed mostly in liver and spleen. The drug was eliminated rapidly within 4 h. These findings support the fact that FVS, a potential nutraceutical and an effective drug for the treatment of liver cancer, could be encapsulated in liposomes for improved solubility and bioavailability.
Collapse
Affiliation(s)
- Chengxue Yi
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212013, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhao YY. Metabolomics in chronic kidney disease. Clin Chim Acta 2013; 422:59-69. [PMID: 23570820 DOI: 10.1016/j.cca.2013.03.033] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/23/2013] [Accepted: 03/27/2013] [Indexed: 12/24/2022]
Abstract
Chronic kidney disease (CKD) represents a major challenge to public healthcare. Traditional clinical biomarkers of renal function (blood urea nitrogen and serum creatinine) are not sensitive or specific enough and only increase significantly after the presence of substantial CKD. Therefore, more sensitive biomarkers of CKD are needed. CKD-specific biomarkers at an early disease stage and early diagnosis of specific renal diseases would enable improved therapeutic treatment and reduced the personal and financial burdens. The goal of metabolomics is to identify non-targeted, global small-molecule metabolite profiles of complex samples, such as biofluids and tissues. This method offers the potential for a holistic approach to clinical medicine, as well as improvements in disease diagnoses and the understanding of pathological mechanisms. This review article presents an overview of the recent developments in the field of metabolomics, followed by an in-depth discussion of its application to the study of CKD (primary, chronic glomerulonephritis such as IgA nephropathy; secondary, chronic renal injury such as diabetic nephropathy; chronic renal failure including end-stage kidney disease with and without undergoing replacement therapies, etc), including metabolomic analytical technologies, chemometrics, and metabolomics in experimental and clinical research. We describe the current status of the identification of metabolic biomarkers in CKD. Several markers have been confirmed across multiple studies to detect CKD earlier than traditional clinical chemical and histopathological methods. The application of metabolomics in CKD studies provides researchers the opportunity to gain new insights into metabolic profiling and pathophysiological mechanisms. Particular challenges in the field are presented and placed within the context of future applications of metabolomic approaches to the studies of CKD.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, the College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China.
| |
Collapse
|
19
|
Zhao YY, Zhang L, Feng YL, Chen DQ, Xi ZH, Du X, Bai X, Lin RC. Pharmacokinetics of 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside in rat using ultra-performance LC-quadrupole TOF-MS. J Sep Sci 2013; 36:863-871. [DOI: 10.1002/jssc.201200668] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China; Ministry of Education; the College of Life Sciences; Northwest University; Xi'an; Shaanxi; P. R. China
| | - Li Zhang
- Department of Nephrology; Xi'an No. 4 Hospital; Xi'an; Shaanxi; P. R. China
| | - Ya-Long Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China; Ministry of Education; the College of Life Sciences; Northwest University; Xi'an; Shaanxi; P. R. China
| | - Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China; Ministry of Education; the College of Life Sciences; Northwest University; Xi'an; Shaanxi; P. R. China
| | - Zhi-Hui Xi
- Key Laboratory of Resource Biology and Biotechnology in Western China; Ministry of Education; the College of Life Sciences; Northwest University; Xi'an; Shaanxi; P. R. China
| | - Xiao Du
- Key Laboratory of Resource Biology and Biotechnology in Western China; Ministry of Education; the College of Life Sciences; Northwest University; Xi'an; Shaanxi; P. R. China
| | - Xu Bai
- Waters Technologies (Shanghai) Ltd.; Shanghai; P. R. China
| | - Rui-Chao Lin
- National Institutes for Food and Drug Control; State Food and Drug Administration; Beijing; P. R. China
| |
Collapse
|
20
|
Zhao YY, Cheng XL, Wei F, Han XQ, Xiao XY, Lin RC. PHARMACOKINETICS, BIOAVAILABILITY, AND METABOLISM OF 2,3,5,4′-TETRAHYDROXYSTILBENE-2-O-β-D-GLUCOSIDE IN RATS BY ULTRA-PERFORMANCE LIQUID CHROMATOGRAPHY–QUADRUPOLE TIME-OF-FLIGHT MASS SPECTROMETRY AND HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY-ULTRAVIOLET DETECTION. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.673209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ying-Yong Zhao
- a Key Laboratory of Resource Biology and Biotechnology in Western China , Ministry of Education, the College of Life Sciences, Northwest University , Shaanxi , China
| | - Xian-Long Cheng
- b National Institutes for Food and Drug Control, State Food and Drug Administration , Beijing , China
| | - Feng Wei
- b National Institutes for Food and Drug Control, State Food and Drug Administration , Beijing , China
| | - Xiao-Qiang Han
- c State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center , Beijing , China
| | - Xin-Yue Xiao
- b National Institutes for Food and Drug Control, State Food and Drug Administration , Beijing , China
| | - Rui-Chao Lin
- b National Institutes for Food and Drug Control, State Food and Drug Administration , Beijing , China
| |
Collapse
|
21
|
Zhao YY, Cheng XL, Cui JH, Yan XR, Wei F, Bai X, Lin RC. Effect of ergosta-4,6,8(14),22-tetraen-3-one (ergone) on adenine-induced chronic renal failure rat: A serum metabonomic study based on ultra performance liquid chromatography/high-sensitivity mass spectrometry coupled with MassLynx i-FIT algorithm. Clin Chim Acta 2012; 413:1438-45. [DOI: 10.1016/j.cca.2012.06.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/30/2012] [Accepted: 06/01/2012] [Indexed: 12/19/2022]
|
22
|
Zhao YY, Cheng XL, Wei F, Bai X, Lin RC. Ultra performance liquid chromatography coupled with electrospray and atmospheric pressure chemical ionization (ESCi)-quadrupole time-of-flight mass spectrometry with novel mass spectrometryElevated Energy (MSE) data collection technique: Determination an. J Sep Sci 2012; 35:1619-26. [DOI: 10.1002/jssc.201200131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ying-Yong Zhao
- Department of Traditional Chinese Medicine; The College of Life Sciences; Northwest University; Xi'an Shaanxi P. R. China
| | - Xian-Long Cheng
- National Institutes for Food and Drug Control; State Food and Drug Administration; Beijing P. R. China
| | - Feng Wei
- National Institutes for Food and Drug Control; State Food and Drug Administration; Beijing P. R. China
| | - Xu Bai
- Waters Technologies (Shanghai) Ltd.; Shanghai P. R. China
| | - Rui-Chao Lin
- National Institutes for Food and Drug Control; State Food and Drug Administration; Beijing P. R. China
| |
Collapse
|
23
|
Interaction of ergosterol with bovine serum albumin and human serum albumin by spectroscopic analysis. Mol Biol Rep 2012; 39:9493-508. [PMID: 22733490 DOI: 10.1007/s11033-012-1814-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
Abstract
This study was designed to examine the interactions of ergosterol with bovine serum albumin (BSA) and human serum albumin (HSA) under physiological conditions with the drug concentrations in the range of 2.99-105.88 μM and the concentration of proteins was fixed at 5.0 μM. The analysis of emission spectra quenching at different temperatures revealed that the quenching mechanism of HSA/BSA by ergosterol was the static quenching. The number of binding sites n and the binding constants K were obtained at various temperatures. The distance r between ergosterol and HSA/BSA was evaluated according to Föster non-radioactive energy transfer theory. The results of synchronous fluorescence, 3D fluorescence, FT-IR, CD and UV-Vis absorption spectra showed that the conformations of HSA/BSA altered in the presence of ergosterol. The thermodynamic parameters, free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) for BSA-ergosterol and HSA-ergosterol systems were calculated by the van't Hoff equation and discussed. Besides, with the aid of three site markers (for example, phenylbutazone, ibuprofen and digitoxin), we have reported that ergosterol primarily binds to the tryptophan residues of BSA/HSA within site I (subdomain II A).
Collapse
|
24
|
Pharmacokinetics, bioavailability and metabolism of rhaponticin in rat plasma by UHPLC–Q-TOF/MS and UHPLC–DAD–MSn. Bioanalysis 2012; 4:713-23. [DOI: 10.4155/bio.12.24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Rhaponticin (Rheum L.) demonstrates a variety of pharmacological activities, including antitumor, antithrombotic and antioxidant effect. However, there is no information describing the pharmacokinetics, bioavailability and metabolism of rhaponticin after intravenous administration. Results: UHPLC–Q-TOF/MS and UHPLC–multistage tandem MS methods were developed for the pharmacokinetics, bioavailability and metabolism of rhaponticin in rats. The metabolite of rhaponticin, rhapontigenin, a potent inhibitor of cytochrome P450, was confirmed by UHPLC–multistage tandem MS. The plasma profile of rhaponticin and rhapontigenin was determined by UHPLC–Q-TOF/MS. The results showed that rhaponticin was rapidly distributed and eliminated from rat plasma. The absolute oral bioavailability of rhaponticin was calculated to be 0.03%. The plasma concentrations of rhapontigenin rapidly increased and gradually eliminated after intravenous administration. Conclusion: The present pharmacokinetics, bioavailability and metabolism studies of rhaponticin will provide helpful information for development of suitable dosage forms and clinical references on rational administration.
Collapse
|
25
|
Zhao YY, Liu J, Cheng XL, Bai X, Lin RC. Urinary metabonomics study on biochemical changes in an experimental model of chronic renal failure by adenine based on UPLC Q-TOF/MS. Clin Chim Acta 2011; 413:642-9. [PMID: 22227165 DOI: 10.1016/j.cca.2011.12.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 01/28/2023]
Abstract
BACKGROUND Chronic renal failure (CRF) is a serious clinical symptom, occurring as the end result of all kinds of chronic kidney disease and its pathophysiological mechanism is not yet well understood. We investigated the metabolic profiling of urine samples from CRF model rats to find potential disease biomarkers and research pathology of CRF. METHODS An animal model of CRF was produced by adenine. Metabolic profiling of the urine was performed by using ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC Q-TOF/MS). Acquired data were subjected to principal component analysis (PCA) for differentiating the CRF and the normal control groups. Potential biomarkers were screened by using S-plot and were identified by the accurate mass, isotopic pattern and MS(E) fragments information obtained from UPLC Q-TOF/MS analysis. RESULTS 12 metabolites in urine were identified as potential biomarkers. Adenine-induced CRF rats were characterized by the increase of phytosphingosine, adrenosterone, tryptophan, 2,8-dihydroxyadenine, creatinine, and dihydrosphingosine together with the decrease of N-acetylleucine, 3-O-methyldopa, ethyl-N2-acetyl-L-argininate, dopamine, phenylalanine and kynurenic acid in urine. The altered metabolites demonstrated perturbations of amino acids metabolism, phospholipids metabolism and creatinine metabolism in CRF rats. CONCLUSION This work shows that metabonomics method is a valuable tool in CRF mechanism study and assists in clinical diagnosis of CRF.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Department of Traditional Chinese Medicine, the College of Life Sciences, Northwest University, Xi'an, Shaanxi, China.
| | | | | | | | | |
Collapse
|