1
|
Etim I, Abasifreke B, Sun R, Kuddabujja D, Liang D, Du T, Gao S. Development of a novel UPLC-MS/MS method for the simultaneous quantification of mycophenolic mofetil, mycophenolic acid, and its major metabolites: Application to pharmacokinetic and tissue distribution study in rats. J Pharm Biomed Anal 2023; 234:115504. [PMID: 37478553 PMCID: PMC10530401 DOI: 10.1016/j.jpba.2023.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/23/2023]
Abstract
Mycophenolate mofetil (MMF) is a prodrug of mycophenolic acid (MPA) used to prevent rejection in organ transplant patients. The purpose of this study is to develop a sensitive LC-MS/MS method to simultaneously quantify MMF, MPA, and two major metabolites, mycophenolic acid-glucuronide (MPAG) and Acyl-mycophenolic acid-glucuronide (AcMPAG) and applied this method in a pharmacokinetic (PK) and tissue distribution study. A Shimadzu UHPLC system coupled to an AB Sciex QTrap 4000 mass spectrometer was used for the analysis. Protein precipitation with a mixture of methanol: acetonitrile (2:1, v:v) was used to process the plasma samples and tissue samples. Separation was achieved using an Ultra Biphenyl 5 µm column (100 × 2.1 mm) with 0.1% formic acid in water (A) and acetonitrile (B) as the mobile phases. Quantification analysis was performed under positive ionization mode using the multiple reaction monitoring (MRM) approach. The method was linear in the range of 1.22 - 1250.00 nM for all four analytes with correlation coefficient values > 0.99. The method was reproducible, with intra- and inter-day accuracy ranging from 85.0 ± 11.2-108.3 ± 6.50 for all analytes in both plasma, liver and intestine homogenates. The extraction recovery and matrix effect of plasma sample using a mixture methanol/acetonitrile (2:1, V:V) can achieve an acceptable range (<20%), but extraction recovery and matrix effect of AcMPAG decreased to 64.10 ± 15.42 in the liver and intestine homogenates. The analytes in plasma were found to be stable under bench-top, freeze-thaw, and storage conditions. The validated method was successfully applied to quantify MMF, MPA, MPAG, and AcMPAG in a rat PK study. The PK results showed MPA was the major form exposed in the plasma in rats after oral administration of MMF, but the major metabolites in the rat's tissue disposition were MPAG.
Collapse
Affiliation(s)
- Imoh Etim
- Department of Pharmaceutical Science, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, United States
| | - Benson Abasifreke
- Department of Pharmaceutical Science, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, United States
| | - Rongjin Sun
- Department of Pharmaceutical Science, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, United States
| | - Daniel Kuddabujja
- Department of Pharmaceutical Science, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, United States
| | - Dong Liang
- Department of Pharmaceutical Science, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, United States
| | - Ting Du
- Department of Pharmaceutical Science, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, United States.
| | - Song Gao
- Department of Pharmaceutical Science, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, United States.
| |
Collapse
|
2
|
Bodnar-Broniarczyk M, Durlik M, Bączkowska T, Czerwińska K, Marszałek R, Pawiński T. Kidney and Liver Tissue Tacrolimus Concentrations in Adult Transplant Recipients-The Influence of the Whole Blood and Tissue Concentrations on Efficiency of Treatment during Immunosuppressive Therapy. Pharmaceutics 2021; 13:pharmaceutics13101576. [PMID: 34683869 PMCID: PMC8538499 DOI: 10.3390/pharmaceutics13101576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
Tacrolimus (TAC) has a narrow therapeutic index and highly variable pharmacokinetic characteristics. Close monitoring of the TAC concentrations is required in order to avoid the risk of acute rejection or adverse drug reaction. The results in some studies indicate that inter-tissue TAC concentrations can be a better predictor with regards to acute rejection episode than TAC concentration in whole blood. Therefore, the aim of the study was to assess the correlation between dosage, blood, hepatic and kidney tissue concentration of TAC measured by a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) and clinical outcomes in a larger cohort of 100 liver and renal adult transplant recipients. Dried biopsies were weighed, mechanically homogenized and then the samples were treated with a mixture of zinc sulfate—acetonitrile to perform protein precipitation. After centrifugation, the extraction with tert-butyl methyl ether was performed. The analytical range was proven for TAC tissue concentrations of 10–400 pg/mg. The accuracy and precision fell within the acceptance criteria for intraday as well as interday assay. There was no correlation between dosage, blood (C0) and tissue TAC concentrations. TAC concentrations determined in liver and kidney biopsies ranged from 8.5 pg/mg up to 160.0 pg/mg and from 7.1 pg/mg up to 215.7 pg/mg, respectively. To the best of our knowledge, this is the first LC-MS/MS method for kidney and liver tissue TAC monitoring using Tac13C,D2 as the internal standard, which permits measuring tissue TAC concentrations as low as 10 pg/mg.
Collapse
Affiliation(s)
| | - Magdalena Durlik
- Department of Transplantation Medicine, Nephrology and Internal Medicine, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (M.D.); (T.B.); (K.C.)
| | - Teresa Bączkowska
- Department of Transplantation Medicine, Nephrology and Internal Medicine, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (M.D.); (T.B.); (K.C.)
| | - Katarzyna Czerwińska
- Department of Transplantation Medicine, Nephrology and Internal Medicine, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; (M.D.); (T.B.); (K.C.)
| | - Ryszard Marszałek
- Department of Drug Bioanalysis and Analysis, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Tomasz Pawiński
- Department of Drug Chemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-5720-697
| |
Collapse
|
3
|
Seyfinejad B, Jouyban A. Overview of therapeutic drug monitoring of immunosuppressive drugs: Analytical and clinical practices. J Pharm Biomed Anal 2021; 205:114315. [PMID: 34399192 DOI: 10.1016/j.jpba.2021.114315] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 01/04/2023]
Abstract
Immunosuppressant drugs (ISDs) play a key role in short-term patient survival together with very low acute allograft rejection rates in transplant recipients. Due to the narrow therapeutic index and large inter-patient pharmacokinetic variability of ISDs, therapeutic drug monitoring (TDM) is needed to dose adjustment for each patient (personalized medicine approach) to avoid treatment failure or side effects of the therapy. To achieve this, TDM needs to be done effectively. However, it would not be possible without the proper clinical practice and analytical tools. The purpose of this review is to provide a guide to establish reliable TDM, followed by a critical overview of the current analytical methods and clinical practices for the TDM of ISDs, and to discuss some of the main practical aspects of the TDM.
Collapse
Affiliation(s)
- Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
4
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Determination and validation of mycophenolic acid by a UPLC-MS/MS method: Applications to pharmacokinetics and tongue tissue distribution studies in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1136:121930. [DOI: 10.1016/j.jchromb.2019.121930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/11/2023]
|
6
|
Alsmadi MM, Alfarah MQ, Albderat J, Alsalaita G, AlMardini R, Hamadi S, Al‐Ghazawi A, Abu‐Duhair O, Idkaidek N. The development of a population physiologically based pharmacokinetic model for mycophenolic mofetil and mycophenolic acid in humans using data from plasma, saliva, and kidney tissue. Biopharm Drug Dispos 2019; 40:325-340. [DOI: 10.1002/bdd.2206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/22/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Jawaher Albderat
- Queen Rania Abdullah Children Hospital, Royal Medical Services Amman Jordan
| | - Ghazi Alsalaita
- Queen Rania Abdullah Children Hospital, Royal Medical Services Amman Jordan
| | - Reham AlMardini
- Queen Rania Abdullah Children Hospital, Royal Medical Services Amman Jordan
| | - Salim Hamadi
- Deparment of Pharmaceutical Technology, Faculty of PharmacyUniversity of Petra Amman Jordan
| | | | - Omar Abu‐Duhair
- Deparment of Pharmaceutical Technology, Faculty of PharmacyUniversity of Petra Amman Jordan
| | - Nasir Idkaidek
- Deparment of Pharmaceutical Technology, Faculty of PharmacyUniversity of Petra Amman Jordan
| |
Collapse
|
7
|
Md Dom ZI, Coller JK, Carroll RP, Tuke J, McWhinney BC, Somogyi AA, Sallustio BC. Mycophenolic acid concentrations in peripheral blood mononuclear cells are associated with the incidence of rejection in renal transplant recipients. Br J Clin Pharmacol 2018; 84:2433-2442. [PMID: 29974488 DOI: 10.1111/bcp.13704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 11/28/2022] Open
Abstract
AIMS Although therapeutic drug monitoring of plasma mycophenolic acid (MPA) concentrations has been recommended to individualize dosage in transplant recipients, little is known regarding lymphocyte concentrations of MPA, where MPA inhibits inosine monophosphate dehydrogenase (IMPDH). This study investigated the utility of measuring predose MPA concentrations in peripheral blood mononuclear cells (C0C ) and predose IMPDH activity, as predictors of graft rejection in renal transplant recipients. METHODS Forty-eight patients commencing mycophenolate mofetil (1 g twice daily) in combination with tacrolimus and prednisolone were recruited. Blood was collected for determination of trough total (C0P ) and unbound (C0u ) plasma MPA concentrations. Peripheral blood mononuclear cells were isolated for determination of C0C and IMPDH activity. The incidence of rejection within 2 days of sample collection was determined histologically and classified according to the Banff 2007 criteria. RESULTS There was no association between MPA C0C and C0P (rs = 0.28, P = 0.06), however, MPA C0C were weakly correlated with MPA C0u (rs = 0.42, P = 0.013). Multivariate analysis indicated that MPA C0C was the only covariate independently associated with rejection (FDR-adjusted P = 0.033). The receiver operating characteristic area under the curve (AUC) for the prediction of severe rejection using MPA C0C was 0.75 (P = 0.013), with 73% sensitivity and specificity at a C0C threshold of 0.5 ng 10-7 cells. However, predose IMPDH activity was not a predictor of rejection (P > 0.15). CONCLUSIONS MPA C0C measurement within the early post-transplant period may be useful to facilitate early titration of MPA dosing to significantly reduce rejection.
Collapse
Affiliation(s)
- Zaipul I Md Dom
- Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.,Department of Clinical Pharmacology, The Queen Elizabeth Hospital, Woodville, SA, 5011, Australia
| | - Janet K Coller
- Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Robert P Carroll
- Centre for Clinical and Experimental Transplantation, Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Jonathan Tuke
- School of Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.,ARC Centre of Excellence for Mathematical & Statistical Frontiers, School of Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Brett C McWhinney
- Department of Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Andrew A Somogyi
- Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.,Department of Clinical Pharmacology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Benedetta C Sallustio
- Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.,Department of Clinical Pharmacology, The Queen Elizabeth Hospital, Woodville, SA, 5011, Australia
| |
Collapse
|
8
|
Kikuchi M, Tanaka M, Takasaki S, Takahashi A, Akiba M, Matsuda Y, Noda M, Hisamichi K, Yamaguchi H, Okada Y, Mano N. Comparison of PETINIA and LC-MS/MS for determining plasma mycophenolic acid concentrations in Japanese lung transplant recipients. J Pharm Health Care Sci 2018; 4:7. [PMID: 29619240 PMCID: PMC5879875 DOI: 10.1186/s40780-018-0101-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/05/2018] [Indexed: 11/21/2022] Open
Abstract
Background Mycophenolic acid (MPA) treatment requires therapeutic drug monitoring to improve the outcome after organ transplantation. The aim of this study was to compare two methods, a particle enhanced turbidimetric inhibition immunoassay (PETINIA) and a reference liquid chromatography tandem mass spectrometry (LC-MS/MS) for determining plasma MPA concentrations from Japanese lung transplant recipients. Methods Plasma MPA concentrations were determined from 20 Japanese lung transplant recipients using LC-MS/MS and the PETINIA on the Dimension Xpand Plus-HM analyzer. Results The mean MPA concentration measured by PETINIA was significantly higher than that measured by LC-MS/MS (3.26 ± 2.73 μg/mL versus 2.82 ± 2.71 μg/mL, P < 0.0001). The result of the Passing Bablok analysis was a slope of 1.104 (95% confidence interval [CI], 1.036–1.150) and an intercept of 0.229 (95%CI, 0.144–0.315). Bland–Altman analysis revealed PETINIA overestimates plasma MPA concentration by 26.25% and 95%CI from 21.43 to 31.07%. Conclusion The measurement of MPA by the PETINIA in Japanese lung transplant patients should evaluate the result with attention to positive bias.
Collapse
Affiliation(s)
- Masafumi Kikuchi
- 1Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574 Japan
| | - Masaki Tanaka
- 1Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574 Japan
| | - Shinya Takasaki
- 1Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574 Japan
| | - Akiko Takahashi
- 1Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574 Japan
| | - Miki Akiba
- 2Department of Organ Transplantation Center, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574 Japan
| | - Yasushi Matsuda
- 3Department of Thoracic Surgery, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574 Japan
| | - Masafumi Noda
- 3Department of Thoracic Surgery, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574 Japan
| | - Kanehiko Hisamichi
- 1Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574 Japan
| | - Hiroaki Yamaguchi
- 1Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574 Japan
| | - Yoshinori Okada
- 3Department of Thoracic Surgery, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574 Japan
| | - Nariyasu Mano
- 1Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574 Japan
| |
Collapse
|
9
|
Bahram M, Mojarrad S, Moghtader M. Simultaneous kinetic–spectrophotometric determination of mycophenolate mofetil and mycophenolic acid based on complexation with Fe(III) using chemometric techniques. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-017-1276-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Wang L, Qiang W, Li Y, Cheng Z, Xie M. A novel freeze-dried storage and preparation method for the determination of mycophenolic acid in plasma by high-performance liquid chromatography. Biomed Chromatogr 2017; 31. [PMID: 28205247 DOI: 10.1002/bmc.3958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 02/01/2017] [Accepted: 02/11/2017] [Indexed: 11/09/2022]
Abstract
Plasma samples were conventionally stored at freezing conditions until the time of detection. Such a technique, when carried out over an extended period, is energy consuming; in addition, preparation and transportation of stored samples is inconvenient. In this study, a freeze-dried storage and preparation method was proposed to determine the presence of mycophenolic acid (MPA) in plasma. Fresh plasma samples were freeze-dried using a device, and then stored at ambient temperature. After the stored samples were soaked with methanol spiked with the internal standard, high-performance liquid chromatography was conducted to detect MPA. The proposed method was demonstrated to be precise and accurate over the linear range of 0.5-50 μg mL-1 , with both intra- and inter-day precision being <7% and biases <10%. The freeze-dried samples were stable at ambient temperature for at least 40 days. This method was also successfully applied to the pharmacokinetic study of MPA in healthy volunteers. Pharmacokinetic parameters, such as maximum plasma concentration, time point of maximum plasma concentration and elimination half-life, among others, were consistent with the results in the published study. This proposed technique was proved to be simple, reproducible and energy saving. This approach could also simplify the storage and analysis of samples in clinical and scientific drug research.
Collapse
Affiliation(s)
- Lei Wang
- School of Life Sciences, Central South University, Changsha, Hunan, China.,Research Institute of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Wei Qiang
- Research Institute of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Ying Li
- School of Food and Pharmaceutical Engineering, Guiyang College, Guiyang, China
| | - Zeneng Cheng
- Research Institute of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Mengmeng Xie
- Research Institute of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Shipkova M, Valbuena H. Liquid chromatography tandem mass spectrometry for therapeutic drug monitoring of immunosuppressive drugs: Achievements, lessons and open issues. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Development and validation of an ultrafast chromatographic method for quantification of the immunosuppressant mycophenolic acid in canine, feline and human plasma. J Pharm Biomed Anal 2016; 131:94-102. [DOI: 10.1016/j.jpba.2016.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/17/2016] [Accepted: 08/11/2016] [Indexed: 01/28/2023]
|
13
|
Capron A, Haufroid V, Wallemacq P. Intra-cellular immunosuppressive drugs monitoring: A step forward towards better therapeutic efficacy after organ transplantation? Pharmacol Res 2016; 111:610-618. [PMID: 27468645 DOI: 10.1016/j.phrs.2016.07.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
Abstract
Immunosuppressive drugs (IS) used in solid organ transplantation are critical dose drugs with high intra- and inter-subject variability. Therefore, IS therapeutic drug monitoring (TDM), mainly as trough levels analysis, is a major support to patient management, mandatory to optimize clinical outcome. Even though transplant patients undoubtedly benefited by this pre-dose (C0) monitoring, the relationship between these C0 concentrations and the incidence of graft rejections remains hardly predictable. Identification and validation of additional biomarkers of efficacy are therefore very much needed. As the main IS effects are mediated through the inhibition of lymphocyte proliferation pathways, direct drug quantification within this target compartment would appear meaningful, providing hopefully more consistent information on drug efficacy. Due to the analytical performances improvement, these intracellular concentrations became accessible for comprehensive studies regarding clinical benefit of intracellular IS TDM after solid organ transplantation. Over the last ten years, number of studies investigated the potential relationship between IS blood and intracellular pharmacokinetics, genetic variability, and clinical efficacy after solid organ transplantation. A recent literature review suggests that calcineurin inhibitors (tacrolimus and cyclosporine) intracellular concentrations appear more closely related to drug efficacy than blood levels. This closer association has however not been described for the m-TOR inhibitors (sirolimus, everolimus) and the antimetabolite (mycophenolic acid). Additional larger and multicenter clinical trials are needed to confirm these observations.
Collapse
Affiliation(s)
- A Capron
- Department of Clinical Chemistry, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.
| | - V Haufroid
- Department of Clinical Chemistry, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - P Wallemacq
- Department of Clinical Chemistry, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
14
|
Zhang D, Chow DSL, Renbarger JL. Simultaneous quantification of mycophenolic acid and its glucuronide metabolites in human plasma by an UPLC-MS/MS assay. Biomed Chromatogr 2016; 30:1648-55. [DOI: 10.1002/bmc.3736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Daping Zhang
- Department of Pharmacological and Pharmaceutical Sciences; University of Houston College of Pharmacy; Houston TX 77030 USA
| | - Diana S-L. Chow
- Department of Pharmacological and Pharmaceutical Sciences; University of Houston College of Pharmacy; Houston TX 77030 USA
| | - Jamie L. Renbarger
- Department of Medicine; Indiana University School of Medicine; Indianapolis IN 46202 USA
| |
Collapse
|
15
|
Syed M, Srinivas NR. A comprehensive review of the published assays for the quantitation of the immunosuppressant drug mycophenolic acid and its glucuronidated metabolites in biological fluids. Biomed Chromatogr 2016; 30:721-48. [DOI: 10.1002/bmc.3682] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Muzeeb Syed
- Department of Pharmacy, Faculty of Health and Medical Sciences; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | | |
Collapse
|
16
|
Mika A, Stepnowski P. Current methods of the analysis of immunosuppressive agents in clinical materials: A review. J Pharm Biomed Anal 2016; 127:207-31. [PMID: 26874932 DOI: 10.1016/j.jpba.2016.01.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/08/2016] [Accepted: 01/28/2016] [Indexed: 12/24/2022]
Abstract
More than 100000 solid organ transplantations are performed every year worldwide. Calcineurin (cyclosporine A, tacrolimus), serine/threonine kinase (sirolimus, everolimus) and inosine monophosphate dehydrogenase inhibitor (mycophenolate mofetil), are the most common drugs used as immunosuppressive agents after solid organ transplantation. Immunosuppressive therapy, although necessary after transplantation, is associated with many adverse consequences, including the formation of secondary metabolites of drugs and the induction of their side effects. Calcineurin inhibitors are associated with nephrotoxicity, cardiotoxicity and neurotoxicity; moreover, they increase the risk of many diseases after transplantation. The review presents a study of the movement of drugs in the body, including the processes of absorption, distribution, localisation in tissues, biotransformation and excretion, and also their accompanying side effects. Therefore, there is a necessity to monitor immunosuppressants, especially because these drugs are characterised by narrow therapeutic ranges. Their incorrect concentrations in a patient's blood could result in transplant rejection or in the accumulation of toxic effects. Immunosuppressive pharmaceuticals are macrolide lactones, peptides, and high molecular weight molecules that can be metabolised to several metabolites. Therefore the two main analytical methods used for their determination are high performance liquid chromatography with various detection methods and immunoassay methods. Despite the rapid development of new analytical methods of analysing immunosuppressive agents, the application of the latest generation of detectors and increasing sensitivity of such methods, there is still a great demand for the development of highly selective, sensitive, specific, rapid and relatively simple methods of immunosuppressive drugs analysis.
Collapse
Affiliation(s)
- Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
17
|
Franquet-Griell H, Ventura F, Boleda MR, Lacorte S. Do cytostatic drugs reach drinking water? The case of mycophenolic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:532-536. [PMID: 26552545 DOI: 10.1016/j.envpol.2015.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
Mycophenolic acid (MPA) has been identified as a new river contaminant according to its wide use and high predicted concentration. The aim of this study was to monitor the impact of MPA in a drinking water treatment plant (DWTP) that collects water downstream Llobregat River (NE Spain) in a highly densified urban area. During a one week survey MPA was recurrently detected in the DWTP intake (17-56.2 ng L(-1)). The presence of this compound in river water was associated to its widespread consumption (>2 tons in 2012 in Catalonia), high excretion rates and low degradability. The fate of MPA in waters at each treatment step of the DWTP was analyzed and complete removal was observed after pretreatment with chlorine dioxide. So far, MPA has not been described as water contaminant and its presence associated with its consumption in anticancer treatments is of relevance to highlight the importance of monitoring this compound.
Collapse
Affiliation(s)
- Helena Franquet-Griell
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Francesc Ventura
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - M Rosa Boleda
- Aigües de Barcelona, S.A. General Batet 5-7, 08028 Barcelona, Catalonia, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain.
| |
Collapse
|
18
|
Staeheli SN, Poetzsch M, Kraemer T, Steuer AE. Development and validation of a dynamic range-extended LC-MS/MS multi-analyte method for 11 different postmortem matrices for redistribution studies applying solvent calibration and additional 13C isotope monitoring. Anal Bioanal Chem 2015; 407:8681-712. [DOI: 10.1007/s00216-015-9023-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/29/2015] [Accepted: 09/01/2015] [Indexed: 11/28/2022]
|